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Abstract

Given a finite strongly connected directed graph G = (V, E), we study a Markov chain
taking values on the space of probability measures on V . The chain, motivated by bio-
logical applications in the context of stochastic population dynamics, is characterized by
transitions between states that respect the structure superimposed by E: mass (probabil-
ity) can only be moved between neighbors in G. We provide conditions for the ergodicity
of the chain. In a simple, symmetric case, we fully characterize the invariant probability.
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1. Introduction and motivation

1.1. Description

Let G = (V, E) be a strongly connected directed graph without loops. This means that G
is a graph with directed edges such that for any two different vertices there exists a directed
path joining them. We endow G with a probability vector indexed by E, p := (pij : ij ∈ E). This
means that pij > 0 if and only if ij ∈ E, and

∑
ij pij = 1. Hereafter, we refer to a pair (G, p) as a

transport scheme on G.
Assume that |V| = m ≥ 2. Let �V be the set of probability measures on V . We identify �V

with the (m − 1)-dimensional simplex, and consequently we endow �V with the Euclidean
topology inherited from R

m−1. Observe that since �V is finite-dimensional, this topology and
the weak topology of probability measures coincide in our case. In many situations we freely
identify V with the set [1, . . . , m], without further mention of this convention. We use the nota-
tion Lebm−1 to denote the Lebesgue measure on �V . The space of continuous (resp. bounded
Borel) functions on �V will be denoted by C(�V ) (resp. B(�V )).

Given

μ0 = (
μ

(1)
0 , μ

(2)
0 , . . . , μ

(m)
0

) ∈ �V ,

in this paper we aim to study the following dynamics. For n ≥ 0, given μn ∈ �V ,
choose an edge in+1jn+1 := en+1 ∈ E with probability pen+1 and independently draw

Received 24 July 2021; revision received 7 April 2022.
∗ Postal address: Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile,
Las Sophoras 173, Estación Central, Santiago, Chile. Email address: leonardo.videla@usach.cl

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

341

https://doi.org/10.1017/jpr.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.47
https://orcid.org/0000-0003-3423-6508
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2022.47&domain=pdf
https://doi.org/10.1017/jpr.2022.47


342 L. VIDELA

Un+1 ∼ Uniform (0, 1). Define μn+1 as

μ
(k)
n+1 = μ(k)

n , k �= in+1, jn+1,

μ
(in+1)
n+1 = (1 − Un+1)μ(in+1)

n , (1)

μ
(jn+1)
n+1 = μ

(jn+1)
n + Un+1μ

(in+1)
n

In words: we move to jn+1 a chunk of size uniformly chosen from the heap at vertex in+1.
From now on, we refer to the process (μn : n ≥ 0) as the transport process on (G, p).
The description above has many points in common with other mass transport processes on

graphs. For example, under the condition of symmetric weights (i.e. pij = pji), the transport
process (or an easily derivable continuous-time version of it) can be regarded as a smooth ver-
sion of the averaging process (see [1]), in that the expectations obey the same linear dynamics,
up to a constant velocity factor (see the closing remarks at the end of this paper). It is known,
however, that in the averaging process the limit distribution is the point mass at the uniform dis-
tribution, a situation that certainly does not hold in our model. Also, in [14], Smith considered
general Gibbs samplers on graphs based on moves between adjacent vertices, and studied rates
of convergence to the invariant measure. In his case, this invariant measure is always uniformly
distributed. As the reader will see, the relevant distribution in our model (at least in the cases
we study here) comes from the Dirichlet family. In [15], Smith studied convergence rates of a
sampler with mass exchange on the set of vertices of the complete graph; although his model
is strongly tuned to deal with this particular structure, he suggests that a slight modification
to his model would yield the Dirichlet distribution as the limiting law. In contrast, our model
allows for general connected graphs as the underlying structure for the allowed moves, and we
are more interested in fundamental ergodic properties than estimates of convergence rates. In
any case, as far as we know, the transport process, as described above, has not been studied in
the previous literature.

1.2. Our results

Obviously, the transport process is a �V -valued Markov chain. Let Pμ, Eμ be the associated
probability measure and expectation operator, respectively, when the chain is started from μ ∈
�V . Let P be the transition kernel of the chain, that is, P : B(�V ) �→B(�V ) is the operator
given by

PF(μ) =Eμ(F(μ1)).

As usual, for x ∈ �V , we adopt the notation P(x, ·) to denote the probability measure on �V

given by B(�V ) 	 A �→ P1A(x). Let P := P(�V ) be the space of probability measures on
B(�V ). As is customary, we consider the action of the transition kernel P acting on P from the
right by definition: for M ∈P , MP is the unique element M′ ∈P such that for every F ∈B(�V ),

∫
�V

PF(μ)M(dμ) =
∫

�V

F(μ)M′(dμ).

Recall that a probability measure M is said to be invariant or stationary for P if MP = M, and
it is called a limiting distribution if for some initial probability measure π we have πPn → M
weakly as n → ∞. In this case we say that π is in the basin of attraction of P. A chain (or
its transition operator) is ergodic if it admits a unique invariant distribution whose basin of
attraction is the whole of P .

https://doi.org/10.1017/jpr.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.47


A transport process on finite graphs 343

In this article we will focus on the problem of existence, uniqueness, and (at least in a simple
case) the identification of the invariant distributions for P. The next results, whose proofs will
be provided in the following pages, are the highlights of this article.

Theorem 1. Assume |V| ≥ 2. Then P is ergodic, and its unique invariant measure is absolutely
continuous with respect to Lebesgue measure.

Theorem 2. Assume that |V| = 2. Let M be the unique stationary distribution of P. If (X, 1 − X)
is distributed as M, then X has the Beta distribution Beta (p21, p12).

Theorem 3. Assume that |V| ≥ 2, and moreover assume that pij = pji for every ij ∈ E. Then
the unique stationary distribution is given by the Dirichlet distribution with concentration
parameter 1/2.

1.3. A biological motivation

Although in this paper our presentation can be followed without mention of any particu-
lar application, some words about the motivation to study the transport process are in order.
Indeed, the transport process arises as a first step in the agenda of characterizing the properties
of a larger process regarding stochastic population dynamics. For example, consider a simple
Lotka–Volterra model driven by Lévy noise, namely

dXt = diag(Xt)

(
(B + AXt) dt + � dWt +

∫
Rn\{0}

L(Xt, z)Ñ(dt, dz)

)
. (2)

Here B ∈R
n is a constant vector representing the rates of increase or decrease of the species,

A, � are constant n × n real matrices, W is a standard n-dimensional Brownian motion,
L : Rn ×R

n �→R
n is a measurable, reasonable function, and Ñ is a compensated Poisson mea-

sure of intensity measure dtν(dz), where ν is a finite measure. Stochastic systems such as (2)
have been previously studied in the literature (see e.g. [2], [9], and more recently [18]). Under
certain conditions on Ñ, it can be proved that the process X is an R

n-valued right-continuous
strong Markov–Feller process, with the vector Xt usually interpreted as the vector of abun-
dances of the n species at time t. Consider the case where the process is intended to model
a simple ecological network with one predator (species 1) and m ≥ 2 prey species (species 2
through m + 1). In this situation the constant matrix A, called the interaction matrix, has com-
ponents A1,j > 0 and Aj,1 < 0 for j = 2, 3, . . . , m + 1, and these values are interpreted as the
average rate of increase (resp. decrease) of the fitness of the predator per encounter with prey
j (resp. the fitness of the prey species j per encounter with the predator). Now it has been
observed that some predators are able to modify their foraging strategies in accordance with the
density of prey species. When the prey species j, say, is becoming less abundant than species k,
the predator tends to change its hunting behavior, becoming increasingly specialized in hunt-
ing more of k and less of j. In turn, this shift in the interest of the predator modifies the fitness
of the species j and k. This phenomenon, known in the ecology literature as prey-switching
behavior (PSB: see e.g. [10]), has been studied previously in the mathematical biology liter-
ature; see [11] and [16] for a formulation based on deterministic dynamical systems, and, in
a simple stochastic setting, [7]. To introduce this effect into our model, we impose dynamics
on the interaction matrix, thus obtaining a new matrix-valued process At. This means that the
interaction matrix, which was a constant in the model (2), now becomes a dynamic object.
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Thus the fundamental object of study is now the pair �t := (Xt, At) whose joint dynamics is
governed by

dXt = diag(Xt)

(
(B + AtXt) dt + � dWt +

∫
Rn\{0}

L(Xt, z)Ñ(dt, dz)

)
,

dAt =
∫

[0,1]

∫
[0,1]

∑
(j,k)∈S

1u∈Ij,k(Xt−)Z(j, k, At−, z)N′(du, dt, dz).

Here S is the set of ordered pairs of prey species, Ij,k(x) are pairwise disjoint sub-intervals of
(0, 1) whose endpoints depend continuously on x, and N′ is an independent Poisson random
measure with intensity measure Leb ⊗ Leb ⊗m, with m a probability measure on [0, 1]. The
length of the interval Ij,k, which depends on the state of the community, coincides with the rate
at which a change in the foraging strategy involving species j and k is modified: the longer
Ij,k is, the more frequently we introduce a change in the coefficients of the interaction matrix
through the application of the operator Z. This operator encodes the prey-switching behav-
ior described above. More specifically, if η = (u, T, z) is a point mass of the Poisson random
measure N′ with u ∈ Ij,k(XT−), then the interaction matrix is modified as

A(1,j)
T = A(1,j)

T− − zA(1,j)
T− ,

A(j,1)
T = A(j,1)

T− − zA(j,1)
T− ,

A(1,k)
T = A(1,k)

T− + zA(1,j)
T− ,

A(k,1)
T = A(k,1)

T− + zA(j,1)
T− ,

with all the other entries unchanged. Observe that this modification preserves the sign structure
of A, and moreover it preserves the total interaction strengths

∑
j A(1,j)

t and
∑

j A(j,1)
t . Thus, if

m is the Lebesgue measure on the unit interval, after normalization the action of Z on both the
vector

(
A(1,j) : j = 2, . . . , m

)
and

(−A(j,1) : j = 2, . . . , m
)

is precisely the transition prescribed
for the transport process in (1). Moreover, it can be argued on a biological basis that the allowed
changes in the foraging efforts are not arbitrary: when the preferred prey has reached low den-
sities, the predator would generally tend to switch to a subset of the potential prey species, and
this diet preference imposes certain constraints on the underlying structure of allowed trans-
port of foraging efforts between preys. In the simplest case, i.e. if the predator is a generalist,
the transport of foraging efforts from one prey to another can be modeled, in a first approach,
through a transport scheme (G, p), with G a directed complete graph and p a set of weights
assigning equal probability to every possible pair of distinct species. In any case, once this
underlying structure is fixed, the transport rules in the last display coincide with the transport
process on the corresponding transport scheme.

It is well known that in a model such as (2), for any initial condition on the positive orthant,
no extinction occurs in finite time a.s., and thus the fundamental question about coexistence
translates mathematically into a question about stochastic persistence, namely that no extinc-
tion occurs asymptotically. The strongest version of this notion is called strong stochastic
persistence, which can be defined as the fact that the system (2) possesses a unique invari-
ant probability measure that does not charge the extinction set

⋃
i{x : xi = 0 for at least one i}.

In recent years, much of the literature has successfully tackled the problem of finding opera-
tional conditions to ensure strong stochastic persistence of ecological models, at least in the
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case of dynamics driven by Brownian motion; see e.g. the fundamental paper [6] and the afore-
mentioned paper [18], which deals with the problem of finding conditions for strong stochastic
persistence in a Lévy-driven framework. On the other hand, PSB can be considered as a special
case of a Holling type III functional response (see [8]) in which predation is low at low den-
sities but saturates quickly at a high value when prey is abundant (see e.g. [10]). As has been
frequently recognized, prey-switching tends to relax or even remove predation pressure on
highly impacted taxa, and thus allows them to recover from low densities (see e.g. [3]) as well
as decrease prey competition due to a shared predator. Consequently, the ecological stability
of natural ecosystems is enhanced [16, 17]. It is thus expected that PSB should promote per-
sistence in any suitable model of prey–predator interaction (see [17]). This is the phenomenon
we aim to quantify via a stochastic version of prey-switching as described above. Specifically,
if PSB enhances stability, we wish to understand how much it facilitates the coexistence of
species, in comparison with a situation where prey-switching is absent. As a fundamental step
toward this end, we need to characterize, as much as possible, the convergence of the pair
(X, A) for suitable initial conditions. In this program, a first step is to investigate the dynamics
of the matrix component in the simpler, admittedly unrealistic case where the changes of the
matrix are independent of the abundances. This means Ij,k constant intervals. As the reader can
easily convince herself, this amounts to studying ergodic properties of the transport process as
a Markov chain in its own right.

This is the aim of the forthcoming sections.

2. Basic analytic properties

In this short section we provide some simple results that guarantee the existence of invariant
measures.

For arbitrary functions f : V �→R, consider the Laplace functionals �V 	 μ �→ e〈μ,f 〉 ∈R+.
For μ ∈ �V we easily compute

Eμ

(
e〈μ1,f 〉)= e〈μ,f 〉

(∑
ij∈E

pij
eμ(i)(f (j)−f (i)) − 1

μ(i)(f (j) − f (i))

)
. (3)

Observe that if (μ(k))k≥0 is a sequence such that 〈μ(k), f 〉 → 〈μ̂, f 〉 for some probability mea-
sure μ̂ and for every f (which is simply weak convergence of probability measures when �V is
identified with P(V)), then Eμ(k)

(
e〈μ1,f 〉) converges to Eμ̂

(
e〈μ1,f 〉) for every f as well. On the

other hand, since V is finite, the convergence 〈μ(k), f 〉 → 〈μ̂, f 〉 for some probability measure
μ̂ and for every f is equivalent to pointwise convergence of μ(k) to μ̂ when the elements of
�V are considered as vectors indexed by V .

Proposition 1. The process (μn : n ≥ 0) is a Feller chain.

Proof. By the discussion above, PG(μ(k)) → PG(μ) whenever G is a Laplace functional
and μ(k) → μ weakly. Now let F ∈ C(�V ) be an arbitrary continuous function on �V , fix
ε > 0, and again consider a sequence μ(k) converging to μ weakly. Let G be a finite linear
combination of functions of the form μ �→ e〈μ,f 〉 that uniformly approximates the function
F up to ε/3. Such a function exists by the Stone–Weierstrass theorem. Fix k0 > 0 such that
|PG(μ(k)) − PG(μ)| for every k ≥ k0. Plainly

|PF(μ(k)) − PF(μ)|
≤ |PF(μ(k)) − PG(μ(k))| + |PG(μ(k)) − PG(μ)| + |PG(μ) − PF(μ)|
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≤Eμ(k)(|F(μ1) − G(μ1)|) + |PG(μ(k)) − PG(μ)| +Eμ(|G(μ1) − F(μ1)|)

≤ ε

3
+ |PG(μ(k)) − PG(μ)| + ε

3
,

and we deduce that the last expression is no greater than ε whenever k ≥ k0. The result
follows. �

Corollary 1. P admits invariant measures.

Proof. �V is compact and, by Proposition 1, the chain is Feller. The result follows from the
well-known Bogolyubov–Krylov theorem. �

3. The simplest case

In this section we specialize the previous discussion to the case |V| = m = 2, and for sim-
plicity we first consider pij = pji = 1

2 for i �= j. Observe that in this case every probability
measure on �V is completely described by a random variable X supported on [0, 1] via the
prescription μ(1) = X, μ(2) = 1 − X. Indeed, it is easily seen that the description of the pro-
cess

(
μ

(1)
n : n ≥ 0

)
is equivalent to the next one. Let (Un : n ≥ 1) be a family of independent

and identically distributed (i.i.d.) Uniform ([0, 1]) random variables, and let (Yn : n ≥ 1) be
an i.i.d. sequence of Bernoulli (1/2) random variables, both defined on the same probability
space (	, P). Given an initial condition X0, consider the discrete-parameter random dynamical
systems

Xn+1 =
⎧⎨
⎩

Xn − XnUn+1 if Yn+1 = 0,

Xn + (1 − Xn)Un+1 if Yn+1 = 1.

Then (Xn : n ≥ 0) has the same law as
(
μ

(1)
n
)

for the same initial condition.

Proposition 2. The unique invariant probability measure of the process (Xn : n ≥ 0) is given
by the arcsine distribution, i.e. the absolutely continuous probability measure on (0, 1) with
density

h(x) = 1

π

1√
x(1 − x)

, x ∈ (0, 1).

Proof. To ease notation, write X = X0, U1 = U. For t ∈ (0, 1), we compute

P(X1 ≤ t) = 1

2
(P(X1 ≤ t | Y1 = 0) + P(X1 ≤ t | Y1 = 1))

= 1

2
(P(X(1 − U) ≤ t) + P(X + U(1 − X) ≤ t))

= 1

2

(
P

(
U ≥ X − t

X

)
+ P

(
U ≤ t − X

1 − X

))

= 1

2

(
P

(
U ≥ X − t

X
, X > t

)
+ P(X ≤ t) + P

(
U ≤ t − X

1 − X
, X ≤ t

))
. (4)

Assume now that X has a density with respect to Lebesgue measure on the unit interval. Let
g be such a density, and so G′ = g Lebesgue a.s. on (0, 1). Then, by independence between X
and U,
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P(X1 ≤ t) = 1

2

(
P(X ≤ t) + P

(
U ≥ X − t

X
, X > t

)
+ P

(
U ≤ t − X

1 − X
, X ≤ t

))

= 1

2

(
G(t) +

∫ 1

t

(
1 − x − t

x

)
g(x) dx +

∫ t

0

(
t − 1

1 − x
+ 1

)
g(x) dx

)

= 1

2

(
G(t) + t

∫ 1

t

1

x
g(x) dx − (1 − t)

∫ t

0

1

1 − x
g(x) dx + G(t)

)

= G(t) + 1

2

(
t
∫ 1

t

1

x
g(x) dx − (1 − t)

∫ t

0

1

1 − x
g(x) dx

)
.

Let ĥ(t) be the derivative of the left-hand side. Differentiation yields

ĥ(t) = g(t) + 1

2

(∫ 1

t

g(x)

x
dx − g(t) − g(t) +

∫ t

0

g(x)

1 − x
dx

)
.

Thus, if (Xn : n ≥ 0) possesses a continuous invariant density, by the above equation it is
differentiable and must thus satisfy

h′ = h

2

(
1

1 − t
− 1

t

)
, (5)

whose unique solution integrating up to 1 is given by the arcsine law. Thus h is the unique
continuous invariant density for the dynamical system (Xn : n ≥ 0).

Now let P′ be the transition kernel of the chain Xn. For a Borel set A and x ∈ (0, 1), we easily
compute

P′1A(x) = 1

2

(
Leb(A ∩ [0, x])

x
+ Leb(A ∩ [x, 1])

1 − x

)
. (6)

For small h > 0, we obtain the straightforward estimate∣∣∣∣Leb(A ∩ [0, x])

x
− Leb(A ∩ [0, x + h])

x + h

∣∣∣∣≤ 2h

x + h
.

Thus the first term in (6) is the expression of a continuous function on (0, 1). A similar estimate
for the second term above shows that P′1A is continuous on (0, 1). By a standard approximation
argument, P′ f is continuous for every bounded Borel function f . Thus P′ possesses the strong
Feller property. On the other hand, the above computation also shows that every point in [0, 1]
is accessible for the chain, in the sense that for every Ux open neighborhood of x, and for every
z ∈ [0, 1], there exists a k ≥ 1 such that Pk(z, Ux) > 0. It is well known that every strong Feller
Markov chain with at least one accessible point has at most one invariant measure (see e.g. [5,
Proposition 2.7]). We deduce that the arcsine law is the unique invariant probability measure
of the process. �

The above proof is easily extended to the non-symmetric case. Indeed, if we put p = p12,
q = p21, equation (4) above becomes

P(X1 ≤ t) = p

(
P

(
U ≥ X − t

X
, X > t

)
+ P(X ≤ t)

)
+ qP

(
U ≤ t − X

1 − X
, X ≤ t

)
,
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and proceeding through the same steps detailed in the proof, equation (5) becomes

h′ = h

(
q

1 − t
− p

t

)
.

From this point on, the argument works in exactly the same way, and we arrive at the following
result.

Proposition 3. The unique invariant measure of the process (μk : k ≥ 0) in the case m = 2
is the Beta distribution with density Beta(pji, pij), i.e. the probability measure on [0, 1] with
density

1

B(pij, pji)

1

xpij (1 − x)pji
.

Still in the case m = 2, let π be the invariant measure identified above. We now state the
geometric convergence of the transition operator to the measure π .

Theorem 4. There exist constants C > 0, η ∈ (0, 1) such that

‖P′nf − π f ‖ ≤ Cηn‖f − π f ‖
for every bounded measurable function f : [0, 1] �→R.

Proof. Let x, y ∈ [0, 1], and assume x < y. Then

P′(x, dz) − P′(y, dz)

= dz

(
p1z<x

1

x
+ q1z>x

1

1 − x
− p1z<y

1

y
− q1z>y

1

1 − y

)

= dz

(
p1z<x

[
1

x
− 1

y

]
+ q1z>y

[
1

1 − x
− 1

1 − y

]
+ 1z ∈ (x, y)

[
q

1 − x
− p

y

])
.

Let ϕ : [0, 1] �→R be a measurable function with |ϕ(x)| ≤ 1-Lebesgue a.e. By virtue of the
above computation,

|P′ϕ(x) − P′ϕ(y)|

≤ p(y − x)

xy

∫ x

0
|ϕ(z)| dz + q(y − x)

(1 − x)(1 − y)

∫ 1

y
|ϕ(z)| dz + |p − px − qy|

(1 − x)y

∫ y

x
|ϕ(z)| dz

= (y − x)

(
p

y
+ q

1 − x
+ max(p − px − qy, qy + px − p

(1 − x)y

)

= (y − x) max

(
2p

y
,

2q

1 − x

)

= max

(
2p

[
1 − x

y

]
, 2q

[
1 − 1 − y

1 − x

])

≤ 1.

This is a sufficient condition to apply Harris’s theorem in the compact state-space case (see
[5]), and this concludes the proof. �
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4. The general case

Let us come back to the general model: G = (V, E) is a directed, strongly connected graph,
and p is a probability vector indexed by the edges with pij > 0 if and only if ij ∈ E. Recall
that P is the transition kernel of the chain. Observe that whenever m > 2, P is, in general, a
degenerate transition operator, in the sense that it does not possess a density. Thus, to prove
uniqueness of the invariant law, we cannot rely directly on P, and in fact we will need to prove
some properties for higher-order iterates of P.

For this part we will need the following condition to hold.

Assumption 1. uv ∈ E ⇔ vu ∈ E.

The connectedness of G is the least we can ask from the underlying structure in order to
guarantee uniqueness of the invariant measure. As for the above condition, we will need it in
order to guarantee that any spanning tree of (the undirected version of) G can be regarded as a
strongly connected subgraph of (the directed version of) G.

4.1. A transport algorithm with density

We introduce some extra notation. For any finite set V and z > 0, we write z�V to denote
the set of positive vectors indexed by V with

∑
v∈V xv = z. The notation is consistent, since

�V = 1�V . Let G = (V, E) be a finite directed graph. For two points x, y ∈ z�V , we say that
there exists a move that takes x into y if there exists an edge uv ∈ E such that yw = xw for every
w �= u, v and xu ≥ yu. In this case we write x → y. The move is non-trivial if xu > yu, and in
this case we write

x
u,yu−xu,v−−−−−→ y.

Fix x ∈ z�V . We say that y ∈ z�V is reachable from x if there exists a finite sequence of moves
x → x1 → x2 → · · · → xn−1 → y. Let Rx be the set of points in z�V reachable from x in one
non-trivial move, and in general, for j ≥ 1, let Rj

x be the set of points that are reachable from
x in j non-trivial moves, i.e. the points y such that there exist j non-trivial moves that take x
into y. Clearly

Rj
x =

⋃
y∈Rx

Rj−1
y .

Lemma 1. Let V be a set with |V| = m, and let G = (V, E) be a finite strongly connected
digraph that satisfies Assumption 1. Let z > 0, and fix x ∈ z�V . Then

Lebm−1
{
z�V \Rm−1

x

}= 0.

In words: almost every point is reachable in exactly m − 1 non-trivial moves.

Proof. Observe first that we can reduce the problem to the case where G is a tree, since the
general situation follows by considering that the moves are constrained to be made on a fixed
spanning tree of G.

So, let G be a tree. We will prove the following claim by induction on the number of vertices
of G:

(Pm) For every tree G = (V, E) on m vertices, for every z > 0, every x ∈ z�V and almost every
y ∈ z�V , there exists a sequence of m − 1 non-trivial moves that takes x into y.
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In order to prove the claim, for G, m, z, x, and y as above, we will define recursively a
particular sequence of m − 1 non-trivial moves, hereafter denoted tG,z(x, y), that takes x into y.

If G is the tree on the vertices {1, 2}, the claim is obviously true: either x1 > y1 or x2 ≥ y2.
In the first case let

tG,z(x, y) = x
1,x1−y1,2−−−−−→ y,

and in the second case define

tG,z(x, y) = x
2,x2−y2,1−−−−−→ y.

Observe that equality above arises only in a set of null Lebesgue measure.
Now suppose that (Pk) holds for k = 2, 3, . . . , m − 1, and let G be a tree on m vertices. We

proceed by pruning the tree of its leaves. Let v be a leaf of G and let u be its unique parent in
G. We distinguish two cases.

Case I: xv > yv. Define the auxiliary configurations x′ and y′ on the m − 1 vertices of the
tree G \ {v} as follows: x′

i = xi for i �= u, v, x′
u = xu + xv − yv, y′

i = yi, i �= v. Define tG,z(x, y) as
the concatenation of

x
v,xv−yv,u−−−−−→ x′

followed by tG\{v},z−yv (x′, y′), or with our notation

tG,z(x, y) = x
v,xv−yv,u−−−−−→ tG\{v},z−yv (x′, y′).

Case II: xv ≤ yv. In this case we define the auxiliary configurations x′′ and y′′ on the tree
G \ {v} as follows: x′′

i = xi for i �= v, y′′
i = yi for i �= u, v, and y′′

u = yu + yv − xv. The required
sequence tG,z(x, y) is given by the concatenation of tG\{v},z−xv (x′′, y′′) followed by the move

y′′ u,yv−xv,v−−−−−→ y,

or

tG,z(x, y) = tG\{v},z−xv (x′′, y′′) u,yv−xv,v−−−−−→ y.

In any case, by our induction hypothesis, we have proved that when G is a tree, the transport
operation from configuration x to y can be performed in exactly m − 1 moves. Some of these
moves, of course, may well be trivial moves, in that the second case in the description of the
algorithm may occur with equality. We now show that for fixed x this can occur on a set of null
Lebesgue measure. For every proper subset J ⊂ V and constants εi, ηi, i ∈ J with |εi| = |ηi| = 1,
define NJ,ε,η as the set

NJ,ε,η :=
{

y ∈ �V :
∑
i∈J

εiyi =
∑
j∈J

ηjxj

}
.

Then NJ,ε,η is a proper linear sub-manifold of �V , and thus has null Lebesgue measure. The
same holds, of course, for the finite union N := ⋃

J,ε,η NJ,ε,η. Now the algorithm we have
provided above shows that tG,z(x, y) is made up of less than m − 1 non-trivial moves on a y-set
where Case II above, at some point in the recursive application of the algorithm, holds with
equality. But this set is obviously contained in N . �

The proof of the above theorem indeed shows that Pm−1 has a continuous component that
has a density with respect to Lebesgue measure. Indeed, by the computation (6), this claim
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holds true when G has two vertices. Assume it is true for graphs with at most m − 1 ver-
tices for which Assumption 1 holds, and let G be a finite digraph on m vertices satisfying
Assumption 1. Let T be a fixed spanning tree of G when considered as an undirected graph.
Define the weight of T as wT := ∏

e∈T pe. Fix x ∈ �V . Let fG,z(x, dy) be the probability
that x is taken into a small element dy ⊆ �V , conditioned on the event that the moves are
performed on T and according to the sequence tG,z(x, y). Call this event M(y). Clearly, for
Lebesgue a.e. y,

P(M(y)) = wT

(m − 1)! > 0.

Let A ⊆ �V be a set with Lebm−1(A) > 0. On one hand we have

Pm−1(x, A) ≥ wT

(m − 1)!
∫

A
fG,z(x, dy).

On the other hand, with the notation of the above theorem, we have

fG,z(x, dy1, dy2, . . . , dym−1)

= 1xv>yv

dyv

xv
fG\{v},1−yv

(
x′, dy′

1, dy′
2, . . . , dy′

m
)

+ 1xv≤yv fG\{v},1−xv

(
x′, dy′′

1, dy′′
2, . . . , dy′′

m
) dyv

yu + yv − xv
.

By the induction hypothesis, both

fG\{v},1−yv

(
x′, dy′

1, dy′
2, . . . , dy′

m
)

and

fG\{v},1−xv

(
x′, dy′′

1, dy′′
2, . . . , dy′′

m
)

have a density with respect to the measures dy′
1dy′

2 . . . dy′
m and dy′′

1dy′′
2 . . . dy′′

m, respectively
(all the indices but v are present). On the other hand, both measures dy′

1dy′
2 . . . dy′

m and
dy′′

1dy′′
2 . . . dy′′

m are the image of dy1dy2 . . . dym (again, all the indices but v are present) under
linear a.s. non-singular transformations, and thus have a density with respect to this measure.
We have proved that fG,1(x, ·) has a density with respect to Lebm−1. The following result is an
immediate consequence.

Theorem 5. For every A ⊆ �V with Lebm−1(A) > 0, we have

Pm−1(x, A) > 0.

In particular, the chain is Lebm−1-irreducible, that is, if τA is the first hitting time of the chain
to the set A, then

P(τA < ∞) > 0.

We have all the ingredients to prove the following theorem.
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Theorem 6. There exists a unique invariant measure M for the chain (μn : n ≥ 0), and for
Lebm−1 a.e. x ∈ �V we have

lim
n→∞ ‖Pn(x, ·) − M(·)‖TV = 0,

where ‖·‖TV denotes the total variation norm.

Proof. Let M be any invariant measure whose existence is guaranteed by Corollary 1. By the
above theorem, P is Lebm−1-irreducible, and thus by Lemma 3 of [12] we have Lebm−1 � M.
Since the chain is obviously aperiodic, by application of the above theorem and Theorem 1 of
[12], we obtain that for Lebm−1 a.e. x ∈ �V ,

lim
n→∞ ‖Pn(x, ·) − M(·)‖TV = 0.

On the other hand, since any invariant measure for P is invariant for Pm−1, the computation
at the end of the last proof shows that every invariant measure has a density with respect
to Lebesgue measure. In particular, any ergodic measure is equivalent to Lebesgue measure.
Since two distinct ergodic measures must be mutually singular, this shows that M is the unique
invariant measure for P. �

5. Identification of the invariant law

For every i ∈ {1, 2, . . . , m}, set

pin
i =

∑
j �=i

pji, pout
i =

∑
j �=i

pij.

Also, let Q be the Q-matrix associated with the continuous-time random walk on G whose
jump rate from state i to state j is pij. Recall that we are still under the running hypothesis
that G is strongly connected, and thus the random walk associated with Q admits a unique
stationary distribution, say ν := (νi)i=1,...,m.

Theorem 7. Let M be the unique invariant distribution for P. Then

EM(μ(i)) = νi, i = 1, . . . , m. (7)

Proof. We start from equation (3). To simplify notation, we write Zk = μ(k). For fixed k ∈
{1, 2, . . . , m} and t ∈R, apply (3) to the function f : V �→R given by f (i) = 0 for i �= k, f (k) = t.
Then integrate both sides with respect to the invariant measure M to obtain

EM(eZkt) =EM

(
eZkt

∑
i �=k

∑
j �=i,j �=k

pij +
[

eZKt − 1

Zkt

]
pout

k +
∑
i �=k

pik

[
e(Zi+Zk)t − eZkt

Zit

])

=EM

(
eZkt

[
1 − pout

k − pin
k

]
+
[

eZKt − 1

Zkt

]
pout

k +
∑
i �=k

pik

[
e(Zi+Zk)t − eZkt

Zit

])
.

Differentiate with respect to t on both sides. By virtue of the Lebesgue-dominated convergence
theorem, after evaluation at t = 0 we obtain

EM(Zk) =EM

(
Zk
[
1 − pout

k − pin
k

]+ Zk

2
pout

k +
∑
i �=k

pik
Zi

2
+ Zkpin

k

)
,
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and this yields

EM(μ(i)) = 1

pout
i

∑
j �=i

pjiEM
(
μ(j)),

which is equation (7). �

After Proposition 2, intuition dictates that in the case m ≥ 2, the invariant probability mea-
sure should be related in some way to the Dirichlet distribution. Indeed, this educated guess is
exactly right in at least one simple case. For the rest of this paper, we will need the following
condition to hold.

Assumption 2. The transport probabilities are symmetric, namely

pij = pji, ij ∈ E.

Let M′ be the symmetric 1/2-Dirichlet distribution. Assume that X = (X1, X2, . . . , Xm) ∼
M′. It is well known that for any multi-index with positive integer components β =
(β1, . . . , βm), we have

E
(
Xβ
)=E

(
m∏

i=1

Xβi
i

)
= �(m/2)

�(1/2)m�
(
m/2 +∑m

i=1 βi
) m∏

i=1

�(βi + 1/2). (8)

Let U be a Uniform [0, 1] random variable independent of X. The action of the semigroup of
the process (μn : n ≥ 0) on the monomials

f (x) := xβ =
m∏

i=1

xβi
i

when the initial distribution is M′ can be written as

M′Pf =
∑
ij∈E

pijE

(
(Xi(1 − U))βi(Xj + UXi)

βj
∏
r �=i,j

Xβr
r

)
. (9)

Let Sij be the general term of the sum above. Plainly

Sij = pijE

(
(Xi(1 − U))βi(Xj + UXi)

βj
∏
r �=i,j

Xβr
r

)

= pij

βj∑
k=0

(
βj

k

)
E

(
(1 − U)βiUkXβi

i X
βj−k
j Xk

i

∏
r �=i,j

Xβr
r

)

= pij

βj∑
k=0

(
βj

k

)
E
(
(1 − U)βiUk)

E

(
Xβi+k

i X
βj−k
j

∏
r �=i,j

Xβr
r

)
,

where the last line follows from the independence between X and U. On the one hand,

E
(
(1 − U)βi Uk)= B(βi + 1, k + 1) = �(βi + 1)�(k + 1)

�(βi + k + 2)
.
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On the other hand, by (8),

E

(
Xβi+k

i X
βj−k
j

∏
r �=i,j

Xβr
r

)
= �(m/2)�(βi + k + 1/2)�(βj − k + 1/2)

�(1/2)m�
(
m/2 +∑m

s=1 βs
) ∏

r �=i,j

�(βr + 1/2).

Thus

Sij = pij
�(m/2)

�(1/2)m�
(
m/2 +∑m

s=1 βs
) ∏

r �=i,j

�(βr + 1/2)

×
βj∑

k=0

(
�(βi + 1)�(βi + k + 1/2)

�(βi + k + 2)

�(βj + 1)�(βj − k + 1/2)

�(βj − k + 1)

)

= pijMf
�(βi + 1)�(βj + 1)

�(βi + 1/2)�(βj + 1/2)

×
βj∑

k=0

(
�(βi + k + 1/2)

�(βi + k + 2)

�(βj − k + 1/2)

�(βj − k + 1)

)
. (10)

For a, b non-negative integer numbers, define

R(a, b) := �(a + 1)�(b + 1)

�(a + 1/2)�(b + 1/2)

b∑
k=0

(
�(a + k + 1/2)

�(a + k + 2)

�(b − k + 1/2)

�(b − k + 1)

)
.

The following lemma establishes the crucial algebraic identity.

Lemma 2. For arbitrary a, b ∈Z+,

R(a, b) + R(b, a) = 2.

Proof. A simple computation shows that

R(a, b) = 1

a + 1
3F2

[
1, a + 1

2 , −b

a + 2, −b + 1
2

; 1

]
, (11)

where 3F2[ ; ] is the generalized (3, 2)-hypergeometric function. By the classic Pfaff–
Saalschütz theorem (see [13, pages 48–49]), we have

3F2

[
1, a + 1

2 , −b

a + 2, −b + 1
2

; 1

]
= (a+1)b

( 3
2

)
b

(a+2)b

( 1
2

)
b

, (12)

where (x)n is the Pochhammer symbol:

(x)n = x(x + 1)(x + 2) · · · (x + n − 1).

Substitute (12) into (11). After some simplifications, we get

R(a, b) = 2b + 1

a + b + 1
,
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and analogously

R(b, a) = 2a + 1

a + b + 1
.

The result follows. �

We have the ingredients to prove our main result.

Theorem 8. Assume (G, p) satisfies Assumption 2. The unique P-invariant probability measure
is the symmetric Dirichlet distribution with concentration parameter 1/2.

Proof. By equations (9) and (10), for f a monomial, we have

M′Pf = M′f
∑
i<j

(pijR(βi, βj) + pjiR(βj, βi))

= M′f
∑
i<j

(2pij)

= M′f ,

where the last line follows from Assumption 2. By finite additivity, the result is still true
for polynomials. Since the class of polynomials is a point-separating algebra of continuous
functions on �V , which is a Polish space, in [4, Theorem 3.4.5, a)], we conclude that

M′P = M′

on B(�V ). By Theorem 6, M′ = M, the unique probability measure for P. �

6. Final remarks

We finish this article with two simple remarks that, although not connected with the general
topic of this paper, show interesting possibilities for further study.

First, the process just described is, in some sense, related to the well-known averaging
process (AP: see the beautiful survey by Aldous and Lanoue [1] for a simple description).
Remember some easy facts about the AP. Given a finite connected graph G = (V, E), we attach
to every (undirected) edge e ∈ E a Poisson process Ne of intensity νe. Initially, a real number
Xv(0) is given to every vertex v ∈ V . The AP is the continuous-time Markov chain (Xu(t) : u ∈
V, t ≥ 0) with state-space R

V that evolves according to the following rule: when the process
Ne jumps, say at time T , then we update the values of the incident vertices at e averaging their
values at time T−. More precisely, if e = {u, v}, we perform the change

Xu(T) = Xv(T) = Xu(T−) + Xv(T−)

2
.

If the initial values are positive numbers adding up to 1, then the AP can be seen as a �V -valued
Markov process. It can be proved that the unique invariant probability measure for this process
is the point mass at the Uniform distribution on V . Let Q be the generator of the continuous
time random walk with rates ν(i,j) = ν(j,i) = ν{i,j}. It is straightforward to show that the averages
obey the ODE

d

dt
E(X(t)) = 1

2
E(X(t))Q, t ≥ 0. (13)
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Now the process (μn : n ≥ 0) that we have studied in this paper can be put into the setting of
a continuous-time process as follows. To every directed edge e = (u, v) of G, attach a Poisson
process Ne of rate puv. When the process N(u,v) jumps, transport a uniformly chosen chunk of
mass from u to v. Observe that with this prescription for the jump rate of μt, the process is
running at twice the speed of the Aldous–Lanoue AP. On the other hand, the reader can check
that in this case the mean process E(μt) obeys the same equation (13).

Finally, it would be interesting to devise a strategy allowing us to characterize the unique
invariant measure in the non-symmetric case as well. Ideally, such a characterization should
be based on the corresponding invariant measure of the underlying random walk. The reader
can convince herself that the steps toward the proof of Theorem 8 do not generalize to the
setting where the hypothesis of symmetric rates does not hold, and thus we need other tools to
achieve the goal. On the other hand, the proof provided above is purely algebraic. It would be
desirable to have a probabilistic insight of our results, presumably based on an argument of the
stick-breaking type.
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