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Abstract

This paper obtains logarithmic asymptotics of moderate deviations of the stochastic pro-
cess of the number of customers in a many-server queue with generally distributed
inter-arrival and service times under a heavy-traffic scaling akin to the Halfin–Whitt
regime. The deviation function is expressed in terms of the solution to a Fredholm equa-
tion of the second kind. A key element of the proof is the large-deviation principle in the
scaling of moderate deviations for the sequential empirical process. The techniques of
large-deviation convergence and idempotent processes are used extensively.
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1. Introduction

Many-server queues are important in applications, but their analysis beyond Markovian
assumptions is difficult; see, e.g., [2]. Various heavy-traffic asymptotics have been explored
when the arrival and service rates tend to infinity. Of particular interest for applications is the
set-up proposed in [8], where the service time distributions are held fixed, whereas the number
of servers, n, and the arrival rate, λ, grow without bound in such a way that

√
n(1 − ρ) →

β ∈R, with ρ representing the traffic intensity: ρ = λ/(nμ), where μ represents the reciprocal
mean service time. With Q(t) denoting the number of customers present at time t, assuming
the initial conditions are suitably chosen, in a fairly general situation the sequence of processes
(Q(t) − n)/

√
n, considered as random elements of the associated Skorokhod space, converges

in law to a continuous-path process; see [1, 8, 11, 21, 23]. Unless the service time distribution
is exponential, the limit process is a process with memory, depends in an essential way on the
service time cumulative distribution function (CDF), and is not well understood.

In order to gain additional insight, the paper [20] proposed the study of moderate deviations
of Q(t) and conjectured a large-deviation principle (LDP) for the process (Q(t) − n)/(bn

√
n)

under the heavy-traffic condition
√

n/bn(1 − ρ) → β, where bn → ∞ and bn/
√

n → 0. (It has
been observed that moderate-deviation asymptotics may capture exponents in the distributions
of corresponding weak convergence limits; cf. [18].) The deviation function (a.k.a. rate func-
tion) was purported to solve a convex variational problem with a quadratic objective function.
In this paper we verify the conjecture and prove the LDP in question. Furthermore, we express

Received 5 February 2024; accepted 2 October 2024.
∗ Postal address: 19 B. Karetny, Moscow, Russia, 127051. Email address: puhalski@iitp.ru

© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust.

1

https://doi.org/10.1017/apr.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.62
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/apr.2024.62&domain=pdf
https://doi.org/10.1017/apr.2024.62


2 A. PUHALSKII

the deviation function in terms of the solution to a Fredholm equation of the second kind, and
we propose a framework for evaluating it numerically.

The proofs are arguably of methodological value, as they systematically use weak con-
vergence methods and the machinery of idempotent processes. As in [17, 19, 22], the LDP
is viewed as an analogue of weak convergence, the cornerstone of the approach being the
following analogue of the celebrated tightness theorem of Prokhorov: a sequence of probabil-
ity measures on a complete separable metric space is exponentially tight if and only if every
subsequence of it admits a further subsequence that satisfies an LDP (Theorem (P) in [16]).
Consequently, once exponential tightness has been proved, the proof of the LDP is accom-
plished by proving the uniqueness of a subsequential large-deviation limit point. In order to
take full advantage of weak convergence methods, it is convenient to recast the definition of
the LDP for stochastic processes as large-deviation convergence (LD convergence) to idem-
potent processes; see [19] and Appendix A for more detail. With tools for the study of weak
convergence properties of many-server queues in heavy traffic being well developed, this paper
derives the moderate-deviation asymptotics by using similar ideas. The main limit theorem
asserts LD convergence of the process (Q(t) − n)/(bn

√
n) to a certain idempotent process,

which is analogous to the stochastic-process limit in [21]. A key element of the proof is an
LD limit for the sequential empirical process (see Lemma 1), a result that complements devel-
opments in [12] and in [21] and may be of interest in its own right. It identifies the limit
idempotent process through finite-dimensional distributions. Whereas in weak convergence
looking at second moments usually suffices to establish tightness, establishing the stronger
property of exponential tightness calls for more intricate arguments and necessitates working
with exponential martingales. In addition, a study of idempotent counterparts of the standard
Wiener process, the Brownian bridge, and the Kiefer process is carried out. The properties of
those idempotent processes are integral to the proofs.

The paper is organised as follows. Section 2 provides a precise specification of the model as
well as the main result on the logarithmic asymptotics of moderate deviations of the number-
in-the-system process. An added feature is the moderate-deviation asymptotics of the number
of customers in an infinite-server queue in heavy traffic, which is also stated in the form of
an LDP. The proofs of the LDPs in Section 2 are presented in Section 3. The techniques of
LD convergence are employed. Section 4 is concerned with evaluating the deviation functions
by reduction to solving Fredholm equations of the second kind. For the reader’s convenience,
Appendix A gives a primer on idempotent processes and the use of weak convergence methods
for proving LD convergence. Appendix B is concerned with the absolute continuity of the
solution to a nonlinear renewal equation which is needed in Section 4.

2. Trajectorial moderate-deviation limit theorems

Assume as given a sequence of many-server queues with unlimited waiting room indexed
by n, where n represents the number of servers. Service is performed on a first-come-first-
served basis. If, upon a customer’s arrival, there are available servers, then the customer starts
being served by one of the available servers, chosen arbitrarily. Otherwise, the customer joins
the queue and awaits her turn to be served. When the service is complete, the customer leaves,
relinquishing the server.

Let Qn(t) denote the number of customers present at time t. Of those customers, Qn(t) ∧ n
customers are in service and (Qn(t) − n)+ customers are in the queue. The service times of
the customers in the queue at time 0 and the service times of customers exogenously arriving
after time 0 are denoted by η1, η2, . . . (in the order in which they enter service) and come
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Moderate deviations of many-server queues 3

from a sequence of independent and identically distributed (i.i.d.) positive unbounded random
variables with continuous CDF F. It is thus assumed that

F(0) = 0, F(x)< 1, for all x.

The mean service time μ−1 = ∫∞
0 x dF(x) is assumed to be finite. The residual service times

of customers in service at time 0 are denoted by η(0)
1 , η

(0)
2 , . . . and are assumed to be i.i.d. with

CDF F0, which is the CDF of the delay in a stationary renewal process with inter-renewal CDF
F. Thus,

F0(x) =μ

∫ x

0
(1 − F(y)) dy. (2.1)

Let An(t) denote the number of exogenous arrivals by time t, with An(0) = 0. It is assumed
that the process An(t) has unit jumps. The entities Qn(0), {η(0)

1 , η
(0)
2 , . . .}, {η1, η2, . . .}, and

An = (An(t), t ∈R+) are assumed to be independent. All stochastic processes are assumed to
have right-continuous paths with left-hand limits. Let Ân(t) denote the number of customers
that enter service after time 0 and by time t, with Ân(0) = 0. Since the random variables ηi

are continuous, the process Ân = (Ân(t), t ∈R+) has unit jumps almost surely. Balancing the
arrivals and departures yields the equation

Qn(t) = Q(0)
n (t) + (Qn(0) − n)+ + An(t) −

∫ t

0

∫ t

0
1{x+s≤t} d

Ân(s)∑
i=1

1{ηi≤x}, (2.2)

where

Q(0)
n (t) =

Qn(0)∧n∑
i=1

1{η(0)
i >t} , (2.3)

which represents the number of customers present at time t out of those in service at time 0,
and ∫ t

0

∫ t

0
1{x+s≤t} d

Ân(s)∑
i=1

1{ηi≤x} =
Ân(t)∑
i=1

1{ηi+τ̂n,i≤t} ,

which represents the number of customers that enter service after time 0 and leave by time t,
with τ̂n,i denoting the ith jump time of Ân, i.e., τ̂n,i = inf{t: Ân(t) ≥ i}. In addition, since each
customer that is either in the queue at time 0 or has arrived exogenously by time t must either
be in the queue at time t or have entered service by time t,

(Qn(0) − n)+ + An(t) = (Qn(t) − n)+ + Ân(t). (2.4)

For the existence and uniqueness of a solution to (2.2)–(2.4), the reader is referred to [21].
Given rn → ∞, as n → ∞, a sequence Pn of probability laws on the Borel σ -algebra of

a metric space M, and a [0,∞]-valued function I on M such that the sets {y ∈ M: I(y) ≤ γ }
are compact for all γ ≥ 0, the sequence Pn is said to obey the LDP for rate rn with deviation
function I, also referred to as a rate function, provided limn→∞ 1/rn ln Pn(W) = − infy∈W I(y),
for all Borel sets W such that the infima of I over the interior and the closure of W agree.

We now introduce the deviation function for the number-in-the-system process. For T >
0 and m ∈N, let D([0, T],Rm) and D(R+,Rm) represent the Skorokhod spaces of right-
continuous Rm-valued functions with left-hand limits defined on [0, T] and R+, respectively.
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4 A. PUHALSKII

These spaces are endowed with metrics rendering them complete separable metric spaces; see
[6, 9] for more detail. Given q = (q(t), t ∈R+) ∈D(R+,R) and x0 ∈R, let

IQ
x0

(q) = 1

2
inf

{ ∫ 1

0
ẇ0(x)2 dx +

∫ ∞

0
ẇ(t)2 dt +

∫ ∞

0

∫ 1

0
k̇(x, t)2 dx dt

}
, (2.5)

the infimum being taken over w0 = (w0(x), x ∈ [0, 1]) ∈D([0, 1],R), w = (w(t), t ∈R+) ∈
D(R+,R), and k = ((k(x, t), x ∈ [0, 1]), t ∈R+) ∈D(R+,D([0, 1],R)) such that w0(0) =
w0(1) = 0, w(0) = 0, k(x, 0) = k(0, t) = k(1, t) = 0; w0, w, and k are absolutely continuous with
respect to the Lebesgue measures on [0, 1], R+, and [0, 1] ×R+, respectively; and, for all t,

q(t) = (1 − F(t))x+
0 − (1 − F0(t))x−

0 − βF0(t) +
∫ t

0
q(t − s)+ dF(s) + w0(F0(t))

+
∫ t

0

(
1 − F(t − s)

)
σ ẇ(s) ds +

∫
R

2+
1{x+s≤t} k̇(F(x), μs) dF(x)μ ds, (2.6)

where x−
0 = (− x0)+, and ẇ0(x), ẇ(t) and k̇(x, t) represent the respective Radon–Nikodym

derivatives. If w0, w, and k as indicated do not exist, then IQ
x0 (q) = ∞. Note that IQ

x0 (q) = ∞
unless q(0) = x0 and q(t) is a continuous function, as the right-hand side of (2.6) is a continu-
ous function of t. It is proved in Lemma 8 that if F is, in addition, absolutely continuous with
respect to Lebesgue measure, then q(t) in (2.6) is absolutely continuous too. By Lemma B.1 in
[21], the equation (2.6) has a unique solution q(t) in the space of essentially locally bounded
functions.

Let the process Xn = (Xn(t), t ∈R+) be defined by

Xn(t) =
√

n

bn

(
Qn(t)

n
− 1

)
. (2.7)

The next theorem verifies and refines Conjecture 1 in [20]. Its proof is presented in
Section 3.

Theorem 1. Suppose, in addition, that An is a renewal process of rate λn. Let ρn = λn/(nμ),
β ∈R, x0 ∈R, and σ > 0. Suppose that, as n → ∞,

√
n

bn
(1 − ρn) → β (2.8)

and the sequence of random variables
√

n/bn (Qn(0)/n − 1) obeys the LDP in R for rate
b2

n with deviation function Ix0 (y) such that Ix0 (x0) = 0 and Ix0 (y) = ∞, for y 
= x0. Suppose
that the sequence of processes

(
(An(t) − λnt)/(bn

√
n), t ∈R+

)
obeys the LDP in D(R+,R)

for rate b2
n with deviation function IA(a) such that IA(a) = 1/(2σ 2)

∫∞
0 ȧ(t)2 dt, provided a =

(a(t), t ∈R+) is an absolutely continuous function with a(0) = 0, and IA(a) = ∞, otherwise. If,
in addition,

b6
nn1/b2

n−1 → 0, (2.9)

then the sequence Xn obeys the LDP in D(R+,R) for rate b2
n with deviation function IQ

x0 (q).

Remark 1. In order that the LDP for
(
(An(t) − λnt)/(bn

√
n) t ≥ 0

)
in the statement hold, it

suffices that E(nξn) → 1/μ, Var(nξn) → σ 2/μ3, and that either supnE(nξn)2+ε <∞, for some
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Moderate deviations of many-server queues 5

ε > 0, and
√

ln n/bn → ∞, or supnE exp (α(nξn)δ)<∞ and nδ/2/b2−δ
n → ∞, for some α > 0

and δ ∈ (0, 1], where ξn represents a generic inter-arrival time for the nth queue; see [18].

Remark 2. The condition (2.9) implies that b6
n/n → 0, so that the condition that bn/

√
n → 0

necessarily holds. On the other hand, if b6
n/n

1−ε → 0 for some ε > 0, then (2.9) holds.

As suggested by a referee, the next statement provides a version for the case of infinitely
many servers. Consider a GI/GI/∞ queue with renewal arrival process An of rate λn = nλ.
All the assumptions and notation concerning the service times are the same as in Theorem 1.
The arrival process, the initial number of customers, and the service times are independent.
With Qn(t) denoting the number of customers present at time t, the equations (2.2) and (2.3)
are replaced with the respective equations

Qn(t) = Q
(0)
n (t) + An(t) −

∫ t

0

∫ t

0
1{x+s≤t} d

An(s)∑
i=1

1{ηi≤x} (2.10)

and

Q
(0)
n (t) =

Qn(0)∑
i=1

1{η(0)
i >t}. (2.11)

Given q0 ∈R+, let

q(t) = q0(1 − F0(t)) + λt − λ

∫ t

0
(t − s) dF(s) (2.12)

and

Xn(t) =
√

n

bn

(
Qn(t)

n
− q(t)

)
. (2.13)

Theorem 2. Suppose that the sequence of processes
(
(An(t) − λnt)/(bn

√
n), t ∈R+

)
obeys the

LDP in the hypotheses of Theorem 1. Given x0 ∈R, suppose that the sequence Xn(0) obeys
the LDP with deviation function Ix0 (y) such that Ix0 (x0) = 0 and Ix0 (y) = ∞, for y 
= x0. If,
in addition, (2.9) holds, then the sequence Xn obeys the LDP in D(R+,R) for rate b2

n with

deviation function I
Q
q0,x0

(q) given by the right-hand side of (2.5), provided

q(t) = (1 − F0(t))x0 + √
q0 w0(F0(t)) +

∫ t

0

(
1 − F(t − s)

)
σ ẇ(s) ds

+
∫
R

2+
1{x+s≤t} k̇(F(x), λs) dF(x) λ ds,

and equals ∞ otherwise.

Remark 3. The parameter q0 arises as a law-of-large-numbers limit for the scaled initial num-
ber of customers. The corresponding parameter for the many-server queue in Theorem 1
equals 1.

3. Large-deviation convergence and proofs of Theorems 1 and 2

It is convenient to recast Theorem 1 as a statement on LD convergence. Introduce

Yn(t) =
√

n

bn

(An(t)

n
−μt

)
(3.1)
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6 A. PUHALSKII

and let Yn = (Yn(t), t ∈R+). For the statement and proof of the next theorem, Appendix A is
recommended reading.

Theorem 3. Suppose that, as n → ∞, the sequence Xn(0) LD converges in distribution in R

at rate b2
n to an idempotent variable X(0), the sequence Yn LD converges in distribution in

D(R+,R) at rate b2
n to an idempotent process Y with continuous paths, and (2.9) holds. Then

the sequence Xn LD converges in distribution in D(R+,R) at rate b2
n to the idempotent process

X = (X(t), t ∈R+) that is the unique solution to the equation

X(t) = (1 − F(t))X(0)+ − (1 − F0(t))X(0)− +
∫ t

0
X(t − s)+ dF(s) + W0(F0(t))

+ Y(t) −
∫ t

0
Y(t − s) dF(s) +

∫ t

0

∫ t

0
1{x+s≤t} K̇(F(x), μs) dF(x)μ ds, (3.2)

where W0 = (W0(x), x ∈ [0, 1]) is a Brownian bridge idempotent process and K =
(K(x, t), (x, t) ∈ [0, 1] ×R+) is a Kiefer idempotent process, X(0), Y, W0, and K being
independent.

Theorem 1 is obtained as a special case. Suppose An is a renewal process of rate λn, the
condition (2.8) holds, and the sequence ((An(t) − λnt)/(bn

√
n) , t ∈R+) LD converges in dis-

tribution in D(R+,R) at rate b2
n to σW, where σ > 0 and W = (W(t), t ∈R+) is a standard

Wiener idempotent process. Then, in the statement of Theorem 3, Y(t) = σW(t) − βμt, so that
the limit idempotent process X solves the equation

X(t) = (1 − F(t))X(0)+ − (1 − F0(t))X(0)− − βF0(t) +
∫ t

0
X(t − s)+ dF(s)

+ W0(F0(t)) +
∫ t

0

(
1 − F(t − s)

)
σ Ẇ(s) ds +

∫ t

0

∫ t

0
1{x+s≤t} K̇(F(x), μs) dF(x)μ ds,

with X(0), W, W0, and K being independent. The assertion of Theorem 1 follows on
observing that exp (− IQ(y)), with y ∈D(R+,R), is the deviability density of the idempo-
tent distribution of X. To see the latter, note that the mapping (w0,w, k) → q, as specified
by (2.6), is continuous when restricted to the set {(w0,w, k):
W0,W,K(w0,w, k) ≥ a}, where

W0,W,K(w0,w, k) =
W0

(w0)
W (w)
K(k) and a ∈ (0, 1], so that X is strictly Luzin on(
D([0, 1],R) ×D(R+,R) ×D(R+,D(R+,R)), 
W0,W,K

)
; see Appendix A for the definition

and properties of being strictly Luzin. Therefore,


X(q) =
W0,W,K(X = q) = sup(w0,w,k): (3.2) holds

W0

(w0)
W (w)
K(k).

It is noteworthy that the limit idempotent process in (3.2) is analogous to the limit stochastic
process on p. 139 in [21].

The proof of Theorem 3 relies on an analogue of the weak convergence of the sequential
empirical process to the Kiefer process; see, e.g., [12]. Let random variables ζi be independent
and uniform on [0, 1]. Define the centred and normalised sequential empirical process by

Kn(x, t) = 1

bn
√

n

�nt�∑
i=1

(
1{ζi≤x} − x

)
, (3.3)
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and let

Bn(x, t) = 1

bn
√

n

�nt�∑
i=1

(
1{ζi≤x} −

∫ x∧ζi

0

dy

1 − y

)
, (3.4)

where x ∈ [0, 1] and t ∈R+. It is a simple matter to check that

Kn(x, t) = −
∫ x

0

Kn(y, t)

1 − y
dy + Bn(x, t). (3.5)

Let Kn = (
(Kn(x, t), x ∈ [0, 1]), t ∈R+

)
and Bn = (

(Bn(x, t), x ∈ [0, 1]), t ∈R+
)
. Both pro-

cesses are considered as random elements of D(R+,D([0, 1],R)). Let B = ((B(x, t), x ∈
[0, 1]), t ∈R+) represent a Brownian sheet idempotent process, which is the canonical coor-
dinate process on D(R+,D([0, 1],R)), endowed with deviability 
. Let K = ((K(x, t), x ∈
[0, 1]), t ∈R+) be defined as the solution of the equation

K(x, t) = −
∫ x

0

K(y, t)

1 − y
dy + B(x, t). (3.6)

It is a Kiefer idempotent process by Lemma 7.

Lemma 1. Under (2.9), the sequence of stochastic processes (Kn, Bn) LD converges at rate b2
n

in D(R+,D([0, 1],R)2) to the idempotent process (K,B).

Proof. The proof draws on the proof of Lemma 3.1 in [12]; see also [9,
Chapter IX, §4c]. Given t ∈R+, let Kn(t) = (Kn(x, t), x ∈ [0, 1]) ∈D([0, 1],R),
Bn(t) = (Bn(x, t), x ∈ [0, 1]) ∈D([0, 1],R), K(t) = (K(x, t), x ∈ [0, 1]) ∈D([0, 1],R),
and B(t) = (B(x, t), x ∈ [0, 1]) ∈D([0, 1],R). We prove first that, for 0 ≤
t1 < t2 < . . . < tk, the sequence of D([0, 1],R)2k-valued stochastic processes(
(Kn(t1), Bn(t1)), ((Kn(t2), Bn(t2)), . . . , (Kn(tk), Bn(tk))

)
LD converges to the D([0, 1],R)2k-

valued idempotent process
(
(K(t1), B(t1)), (K(t2), B(t2)), . . . , (K(tk), B(tk))

)
in D([0, 1],R)2k,

as n → ∞. Since both the stochastic processes ((Kn(t), Bn(t)), t ∈R+) and the idempotent pro-
cess ((K(t), B(t)), t ∈R+) have independent increments in t (see Lemma 7), it suffices to prove
convergence of one-dimensional distributions, so we work with ((Kn(x, t), Bn(x, t)), x ∈ [0, 1])
and ((K(x, t), B(x, t)), x ∈ [0, 1]), holding t fixed. By (3.4) and [9, Chapter II, §3c], the
stochastic process (Bn(x, t), x ∈ [0, 1]) is a martingale with respect to the natural filtration with
the measure of jumps

μn,B([0, x], �) = 1{1/(bn
√

n)∈�}
�nt�∑
i=1

1{ζi≤x} ,

the predictable measure of jumps

νn,B([0, x], �) = 1{1/(bn
√

n)∈�}
�nt�∑
i=1

∫ x∧ζi

0

dy

1 − y
,
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and the predictable quadratic variation process

〈Bn〉(x, t) =
∫ x

0

∫
R

u2νn,B(dy, du) = 1

b2
nn
νn,B([0, x], {1/(bn

√
n)})

= 1

b2
nn

�nt�∑
i=1

∫ x∧ζi

0

dy

1 − y
= �nt�

b2
nn

x + 1

bn
√

n
Kn(x, t) − 1

bn
√

n
Bn(x, t), (3.7)

where � ⊂R \ {0}.
We show next that

lim
r→∞ lim sup

n→∞
P(supx∈[0,1]|Bn(x, t)|> r)1/b2

n = 0. (3.8)

Since the process

exp
(
b2

nBn(x, t) −
∫ x

0

∫
R

(eb2
nu − 1 − b2

nu)νn,B(dy, du)
)

= exp

(
b2

nBn(x, t) − (ebn/
√

n − 1 − bn√
n

)
�nt�∑
i=1

∫ x∧ζi

0

dy

1 − y

)

is a local martingale with respect to x (see, e.g., [19, Lemma 4.1.1, p. 294]), for any stopping
time τ ,

E exp

(
b2

nBn(τ, t) − (ebn/
√

n − 1 − bn√
n

)
�nt�∑
i=1

∫ τ∧ζi

0

dy

1 − y

)
≤ 1.

Lemma 3.2.6 on p. 282 in [19] implies that, for r> 0 and γ > 0,

P(supx∈[0,1]e
b2

nBn(x,t) ≥ eb2
nr) ≤ eb2

n(γ−r) + P

(
exp

((
ebn/

√
n − 1 − bn√

n

)�nt�∑
i=1

∫ ζi

0

dy

1 − y

)
≥ eb2

nγ

)

≤ eb2
n(γ−r) + e−b2

nγE

(
exp

((
ebn/

√
n − 1 − bn√

n

) �nt�∑
i=1

∫ ζi

0

dy

1 − y

))

= eb2
n(γ−r) + e−b2

nγ
(
1 − (ebn/

√
n − 1 − bn/

√
n)
)−�nt�

,

with the latter equality holding for all n large enough because ebn/
√

n − 1 − bn/
√

n → 0.
Hence, assuming that ebn/

√
n − 1 − bn/

√
n ≤ 1/2, we have

P(supx∈[0,1]e
b2

nBn(x,t) ≥ eb2
nr)1/b2

n ≤ eγ−r + e−γ 2�nt�/b2
n .

Since n/b2
n → ∞, it follows that

lim
r→∞ lim sup

n→∞
P(supx∈[0,1]Bn(x, t) ≥ r)1/b2

n = 0. (3.9)
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A similar convergence holds with −Bn(x, t) substituted for Bn(x, t). The limit (3.8) has been
proved.

We next prove that, similarly,

lim
r→∞ lim sup

n→∞
P(supx∈[0,1]|Kn(x, t)|> r)1/b2

n = 0. (3.10)

Since, by (3.3), (Kn(x, t), x ∈ [0, 1]) is distributed as (− Kn(1 − x, t), x ∈ [0, 1]), it suffices to
prove that

lim
r→∞ lim sup

n→∞
P(supx∈[0,1/2]|Kn(x, t)|> r)1/b2

n = 0. (3.11)

By (3.5) and the Gronwall–Bellman inequality,

supx∈[0,1/2]|Kn(x, t)| ≤ e2supx∈[0,1/2]|Bn(x, t)|, (3.12)

so that (3.11) follows from (3.9).
By (3.7), (3.8), and (3.10), for x ∈ [0, 1],

lim
n→∞ P(|b2

n〈Bn〉(x, t) − tx|> ε)1/b2
n = 0. (3.13)

If we extend it past x = 1 by letting Bn(x, t) = Bn(1, t), the process (Bn(x, t), x ∈R+) is a
square-integrable martingale with predictable quadratic variation process (〈Bn〉(x ∧ 1, t), x ∈
R+), so, by (3.13) and Theorem 5.4.4 on p. 423 in [19], where one takes βφ = bn

√
n,

αφ = n, and rφ = b2
n, the sequence of the extended processes (Bn(x, t), x ∈R+) LD converges

in D(R+,R) to the idempotent process (B(x ∧ 1, t), x ∈R+). By (3.5), (3.6), and the contin-
uous mapping principle, for 0 ≤ x1 ≤ . . .≤ xl < 1, the ((Kn(xi, t), Bn(xi, t)), i ∈ {1, 2, . . . , l})
LD converge in R

2l to ((K(xi, t), B(xi, t)), i ∈ {1, 2, . . . , l}). Since Kn(1, t) = 0 and K(1, t) = 0
(see Appendix A), the latter convergence also holds if xl = 1.

We now show that the sequence (Kn(x, t), x ∈ [0, 1]) is C-exponentially tight of order b2
n in

D([0, 1],R). (The definition and basic properties of C-exponential tightness are reviewed in
Appendix A.) By Theorem 8, (3.10) needs to be complemented with

lim
δ→0

lim sup
n→∞

supx∈[0,1]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)1/b2
n = 0, (3.14)

for arbitrary η > 0, where Kn(x, t) = 0 when x ≥ 1. We use an argument similar to that used in
the proof of (3.10). Defining Kn(x, t) = −Kn(1 − x, t) for x ∈ [0, 1] and Kn(x, t) = 0 for x ≥ 1,
we have by (3.3) that

supx∈[0,1]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

≤ supx∈[0,1/2]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

+ supx∈[1/2,1−δ]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

+ supx∈[1−δ,1]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

≤ supx∈[0,1/2]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

+ supx∈[δ,1/2]P(supy∈[0,δ]|Kn(1 − x + y, t) − Kn(1 − x, t)| ≥ η)
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+ P(supu∈[1−δ,1]|Kn(u, t)| ≥ η/2) ≤ supx∈[0,1/2]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

+ supx∈[δ,1/2]P(supy∈[0,δ]|Kn(x − y, t) − Kn(x, t)| ≥ η)

+ P(supu∈[0,δ]|Kn(u, t)| ≥ η/2)

≤ supx∈[0,1/2]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

+ supx∈[0,1/2]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

+ P(supu∈[0,δ]|Kn(u, t)| ≥ η/2). (3.15)

Since the random variables ζi are independent and uniformly distributed on [0,1], Kn has the
same finite-dimensional distributions as Kn, so that

supx∈[0,1]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)

≤ 2supx∈[0,1/2]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η) + P(supu∈[0,δ]|Kn(u, t)| ≥ η/2).
(3.16)

Since x + y ≤ 2/3 when x ∈ [0, 1/2] and y ∈ [0, δ] provided δ is small enough, by (3.5), for
x ∈ [0, 1/2] and δ small enough,

supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≤
3δsupu∈[0,1]|Kn(u, t)| + supy∈[0,δ]|Bn(x + y, t) − Bn(x, t)|. (3.17)

Similarly,

supu∈[0,δ]|Kn(u, t)| ≤ δ

1 − δ
supu∈[0,1]|Kn(u, t)| + supu∈[0,δ]|Bn(u, t)|. (3.18)

By (3.16), (3.17), (3.18), and the fact that Bn(t) LD converges to B(t),

lim sup
n→∞

supx∈[0,1]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)1/b2
n

≤ lim sup
n→∞

P(3δsupu∈[0,1]|Kn(u, t)| ≥ η/2)1/b2
n

+ lim sup
n→∞

P(
δ

1 − δ
supu∈[0,1]|Kn(u, t)| ≥ η/4)1/b2

n

+
(supx∈[0,1/2]supy∈[0,δ]|B(x + y, t) − B(x, t)| ≥ η/2)

+
(supu∈[0,δ]|B(u, t)| ≥ η/4). (3.19)

By (3.10),

lim
δ→0

lim sup
n→∞

supx∈[0,1]P(supy∈[0,δ]|Kn(x + y, t) − Kn(x, t)| ≥ η)1/b2
n

≤ lim
δ→0


(supx∈[0,1/2]supy∈[0,δ]|B(x + y, t) − B(x, t)| ≥ η/2)

+ lim
δ→0


(supu∈[0,δ]|B(u, t)| ≥ η/4). (3.20)
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The idempotent process B = ((B(x, t), x ∈ [0, 1]), t ∈R+) has trajectories from the space
of continuous functions C(R+,C([0, 1],R)); see Appendix A. Since the collections
of sets {b ∈C(R+,C([0, 1],R)): supx∈[0,1/2]supy∈[0,δ]|b(x + y, t) − b(x, t)| ≥ η/2} and {b ∈
C(R+,C([0, 1],R)): supx∈[0,δ]|b(x, t)| ≥ η/4} are nested collections of closed sets as δ ↓ 0,
the limit on the right of (3.20) is (see Appendix A)


(supx∈[0,1/2]supy∈[0,0]|B(x + y, t) − B(x, t)| ≥ η/2) +
(supu∈[0,0]|B(u, t)| ≥ η/4) = 0,

which concludes the proof of (3.14).
Since the sequence of stochastic processes ((Kn(x, t), Bn(x, t)), x ∈ [0, 1]) LD con-

verges to the idempotent process ((K(x, t), B(x, t)), x ∈ [0, 1]) in the sense of finite-
dimensional distributions and is C-exponentially tight, the LD convergence holds in
D([0, 1],R2); see Theorem 7 in Appendix A. It has thus been proved that the sequence of
stochastic processes

(
((Kn(x, t1), Bn(x, t1)), x ∈ [0, 1]), . . . , ((Kn(x, tl), Bn(x, tl)), x ∈ [0, 1])

)
LD converges in D([0, 1],R2)l to the idempotent process

(
((K(x, t1), B(x, t1)), x ∈

[0, 1]), . . . , ((K(x, tl), B(x, tl)), x ∈ [0, 1])
)
, for all t1 ≤ t2 ≤ . . .≤ tl. The proof of the lemma

will be complete if the sequence
(
((Kn(x, t), Bn(x, t)), x ∈ [0, 1]), t ∈R+

)
is shown to be C-

exponentially tight of order b2
n in D(R+,D([0, 1],R2)). The definition of exponential tightness

implies that it is sufficient to prove that each of the sequences {Kn, n ≥ 1} and {Bn, n ≥ 1}
is C-exponentially tight of order b2

n in D(R+,D([0, 1],R)). By (3.10) and Theorem 8, the
C-exponential tightness of {Kn, n ≥ 1} would follow if, for all L> 0 and η > 0,

lim
δ→0

lim sup
n→∞

sups∈[0,L]P(supt∈[0,δ]supx∈[0,1]|Kn(x, s + t) − Kn(x, s)| ≥ η)1/b2
n = 0. (3.21)

Since, in analogy with the reasoning in (3.15),

P(supt∈[0,δ]supx∈[0,1]|Kn(x, t + s) − Kn(x, s)| ≥ η)

≤ P(supt∈[0,δ]supx∈[0,1/2]|Kn(x, t + s) − Kn(x, s)| ≥ η)

+ P(supt∈[0,δ]supx∈[1/2,1]|Kn(x, t + s) − Kn(x, s)| ≥ η)

= P(supt∈[0,δ]supx∈[0,1/2]|Kn(x, t + s) − Kn(x, s)| ≥ η)

+ P(supt∈[0,δ]supx∈[0,1/2]|Kn(x, t + s) − Kn(x, s)| ≥ η)

= 2P(supt∈[0,δ]supx∈[0,1/2]|Kn(x, t + s) − Kn(x, s)| ≥ η),

(3.21) is implied by

lim
δ→0

lim sup
n→∞

sups∈[0,L]P(supt∈[0,δ]supx∈[0,1/2]|Kn(x, t + s) − Kn(x, s)| ≥ η)1/b2
n = 0.

(3.22)

By (3.3), with x being held fixed, the process (Kn(x, t + s) − Kn(x, s), t ∈R+) is a locally
square-integrable martingale, so (supx∈[0,1/2](Kn(x, t + s) − Kn(x, s)), t ∈R+), is a submartin-
gale; hence by Doob’s inequality [14, Theorem 3.2, p. 60],

P(supt∈[0,δ]supx∈[0,1/2]|Kn(x, t + s) − Kn(x, s)| ≥ η)

≤ 1

η2b2
n
Esupx∈[0,1/2](Kn(x, s + δ) − Kn(x, s))2b2

n . (3.23)
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As noted earlier, with t being held fixed, the process (Bn(x, t), x ∈ [0, 1]) is a square-integrable
martingale [9, Chapter II, §3c]. Equation (3.5) yields, by the Gronwall–Bellman inequality, as
in (3.12),

supx∈[0,1/2]|Kn(x, s + δ) − Kn(x, s)| ≤ e2supx∈[0,1]|Bn(x, s + δ) − Bn(x, s)|. (3.24)

Since (Bn(x, s + δ) − Bn(x, s), x ∈ [0, 1]) is a square-integrable martingale, by another appli-
cation of Doob’s inequality (see [9, Theorem I.1.43] and [13, Theorem I.9.2]), as well as by
Jensen’s inequality,

Esupx∈[0,1](Bn(x, s + δ) − Bn(x, s))2b2
n ≤

( 2b2
n

2b2
n − 1

)2b2
n
E(Bn(1, s + δ) − Bn(1, s))2b2

n .

By (3.4), the fact that 1 − ζ1 and ζ1 have the same distribution, and the bound (5.6) in the proof
of Theorem 19 in [15, Chapter III, §5],

E(Bn(1, s + δ) − Bn(1, s))2b2
n ≤ (bn

√
n)−2b2

n
(
(b2

n + 1)2b2
n(nδ + 1)E(1 + ln ζ1)2b2

n

+ 2b2
n(b2

n + 1)b2
n eb2

n+1(nδ + 1)b2
n
(
E(1 + ln ζ1)2)b2

n
)
.

(More specifically, the following bound is used. Suppose X1, . . . , Xn are i.i.d. with EX1 = 0.
Then, provided p ≥ 2 and r> p/2,

E|
n∑

i=1

Xi|p ≤ rpnE|X1|p + prp/2ernp/2(EX2
1)p/2.

See also [25] for similar results.)
As ζ1 is uniform on [0,1], E( ln ζ1)2b2

n = (2b2
n)!, so that, with the use of Jensen’s inequality,

lim sup
n→∞

(E(Bn(1, s + δ) − Bn(1, s))2b2
n)1/b2

n

≤ lim sup
n→∞

(bn
√

n)−2
(

4n1/b2
n (b2

n + 1)2((2b2
n)!)1/b2

n + (b2
n + 1)e(nδ + 1)E(1 + ln ζ1)2

)
,

which implies, via Stirling’s formula, on recalling that b6
nn1/b2

n−1 → 0, that

lim
δ→0

lim sup
n→∞

sups∈[0,L]

(
E(Bn(1, s + δ) − Bn(1, s))2b2

n

)1/b2
n = 0.

Recalling (3.23), (3.24), and (3.25) yields (3.22). The proof of the C-exponential tightness of
Bn is similar. (It is actually simpler.)

Going back to the set-up of Theorem 3, let

Hn(t) = Yn(t) −
∫ t

0
Yn(t − s) dF(s), (3.25)

X(0)
n (t) =

√
n

bn

(1

n
Q(0)

n (t) − (1 − F0(t))
)
, (3.26)
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Un(x, t) = 1

bn
√

n

Ân(t)∑
i=1

(
1{ηi≤x} − F(x)

)
, (3.27)

and

�n(t) = −
∫
R

2+
1{x+s≤t} dUn(x, s). (3.28)

As, owing to (2.1),

1 − F0(t) +μt −μ

∫ t

0
(t − s)dF(s) = 1, (3.29)

(2.2), (2.4), and (2.7) imply that

Xn(t) = (1 − F(t))Xn(0)+ + X(0)
n (t) +

∫ t

0
Xn(t − s)+ dF(s) + Hn(t) +�n(t). (3.30)

The equation (3.2) is written in a similar way: introducing

H(t) = Y(t) −
∫ t

0
Y(t − s) dF(s), (3.31)

X(0)(t) = W0(F0(t)) − (1 − F0(t))X(0)−, (3.32)

U(x, t) = K(F(x), μt), (3.33)

and

�(t) = −
∫
R

2+
1{x+s≤t} dU(x, s) = −

∫
R

2+
1{x+s≤t} K̇(F(x), μs) dF(x)μds (3.34)

yields

X(t) = (1 − F(t))X(0)+ + X(0)(t) +
∫ t

0
X(t − s)+ dF(s) + H(t) +�(t). (3.35)

Let H = (H(t), t ∈R+), Hn = (Hn(t), t ∈R+), X(0) = (X(0)(t), t ∈R+), X(0)
n = (X(0)

n (t), t ∈
R+), U = ((U(x, t), x ∈R+), t ∈R+), Un = ((Un(x, t), x ∈R+), t ∈R+), �= (�(t), t ∈R+),
and �n = (�n(t), t ∈R+).

Theorem 4. As n → ∞, the sequence (Xn(0), X(0)
n ,Hn, �n) LD converges in distribution at

rate b2
n in R×D(R+,R)3 to (X(0), X(0),H, �).

The groundwork needs to be laid first. Let

Ln(x, t) = 1

bn
√

n

Ân(t)∑
i=1

(
1{ηi≤x} −

∫ ηi∧x

0

dF(u)

1 − F(u)

)
. (3.36)

Since the random variables F(ηi) are i.i.d. and uniform on [0, 1], in view of (3.3), (3.4), and
(3.27), it may be assumed that

Ln(x, t) = Bn(F(x),
Ân(t)

n
) (3.37)
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and that

Un(x, t) = Kn

(
F(x),

Ân(t)

n

)
. (3.38)

By (3.5),

Un(x, t) = −
∫ x

0

Un(y, t)

1 − F(y)
dF(y) + Ln(x, t). (3.39)

By (3.28),
�n(t) = Jn(t) − Mn(t), (3.40)

with

Jn(t) =
∫ t

0

Un(x, t − x)

1 − F(x)
dF(x) (3.41)

and

Mn(t) =
∫
R

2+
1{x+s≤t} dLn(x, s). (3.42)

Lemma 2. Under the hypotheses,

lim
r→∞ lim sup

n→∞
P(sups∈[0,t]|Un(s, t − s)|> r)1/b2

n = 0 (3.43)

and

lim
r→∞ lim sup

n→∞
P(sups∈[0,t]|Mn(s)|> r)1/b2

n = 0. (3.44)

Proof. Note that

lim
r→∞ lim sup

n→∞
P

(
An(t)

n
> r

)1/b2
n

= 0, (3.45)

which is a consequence of the LD convergence at rate b2
n of the Yn to Y (see (3.1)). Similarly,

the LD convergence of Xn(0) to X(0) implies that

lim
r→∞ lim sup

n→∞
P

(
Qn(0)

n
> r

)1/b2
n

= 0. (3.46)

By (2.4), Ân(t) ≤ (Qn(0) − n)+ + An(t), so that (3.45) and (3.46) imply that

lim
L→∞ lim sup

n→∞
P

(
Ân(t)

n
> L

)1/b2
n

= 0. (3.47)

By (3.38),

P(sups∈[0,t]|Un(s, t − s)|> r) ≤ P

(
Ân(t)

n
> L

)
+ P(sups∈[0,L],

x∈[0,1]
|Kn(x, s)|> r). (3.48)
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By the LD convergence of Kn to K in Lemma 1, and since the trajectories of K are continuous,

lim
r→∞ lim sup

n→∞
P
(
sups∈[0,L],

x∈[0,1]
|Kn(x, s)|> r)1/b2

n = 0.

Combined with (3.47) and (3.48), this proves (3.43).
Lemma 3.1 in [21] implies that the process Mn = (Mn(t), t ∈R+) is a local martingale with

respect to the filtration Gn defined as follows. For t ∈R+, let Ĝn(t) denote the complete σ -
algebra generated by the random variables 1{τ̂n,i≤s} 1{ηi≤x}, where x + s ≤ t and i ∈N, and by

the Ân(s) (or, equivalently, by the 1{τ̂n,i≤s} for i ∈N), where s ≤ t. Define Gn(t) = ∩ε>0Ĝn(t + ε)
and Gn = (Gn(t), t ∈R+). By (3.36) and (3.42),

Mn(t) = 1

bn
√

n

Ân(t)∑
i=1

(
1{ηi+τ̂n,i≤t} −

∫ ηi∧(t−τ̂n,i)

0

dF(u)

1 − F(u)

)
. (3.49)

Thus, the measure of jumps of Mn is

μn([0, t], �) = 1{1/(bn
√

n)∈�}
Ân(t)∑
i=1

1{ηi+τ̂n,i≤t} (3.50)

and the associated Gn-predictable measure of jumps is

νn([0, t], �) = 1{1/(bn
√

n)∈�}
Ân(t)∑
i=1

∫ ηi∧(t−τ̂n,i)

0

dF(u)

1 − F(u)
. (3.51)

Note that it is a continuous process. (For Ân being predictable, see Lemma C.1 in [21].) The
associated stochastic cumulant is (see, e.g., [19, p. 293])

Gn(α, t) =
(

eα/(bn
√

n) − 1 − α

bn
√

n

) Ân(t)∑
i=1

∫ ηi∧(t−τ̂n,i)

0

dF(u)

1 − F(u)
. (3.52)

By Lemma 4.1.1 on p. 294 in [19], the process (eαMn(t)−Gn(α,t), t ∈R+) is a local martingale, so
that EeαMn(τ )−Gn(α,τ ) ≤ 1, for arbitrary stopping time τ . Lemma 3.2.6 on p. 282 in [19] implies
that, for γ > 0,

P(sups∈[0,t]e
αb2

nMn(s) ≥ eαb2
nr) ≤ eαb2

n(γ−r) + P(eGn(αb2
n,t) ≥ eαb2

nγ )

≤ eαb2
n(γ−r) + P(eĜn(αb2

n,t) ≥ eαb2
nγ ),

where

Ĝn(α, t) =
(

eα/(bn
√

n) − 1 − α

bn
√

n

) Ân(t)∑
i=1

∫ t−τ̂n,i

0

dF(u)

1 − F(u)
. (3.53)

Hence, for α > 0,

P(sups∈[0,t]Mn(s) ≥ r)1/b2
n ≤ eα(γ−r) + P(Ĝn(αb2

n, t) ≥ αb2
nγ )1/b2

n . (3.54)
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On writing

Ĝn(αb2
n, t) =

(
eαbn/

√
n − 1 − αbn√

n

) ∫ t

0

∫ t−s

0

dF(u)

1 − F(u)
dÂn(s)

=
(

eαbn/
√

n − 1 − αbn√
n

) ∫ t

0
Ân(t − u)

dF(u)

1 − F(u)
(3.55)

and noting that (n/b2
n)(eαbn/

√
n − 1 − αbn/

√
n) → α2/2, one can see, thanks to (3.47), that

lim
n→∞ P(Ĝn(αb2

n, t) ≥ αb2
nγ )1/b2

n = 0,

provided α is small enough, which proves that

lim
r→∞ lim sup

n→∞
P(sups∈[0,t]Mn(s)> r)1/b2

n = 0.

The argument for sups∈[0,t](− Mn(s)) is similar. The convergence (3.44) has been proved.

Lemma 3. For arbitrary ε > 0 and t> 0,

lim
n→∞ P

(
sups∈[0,t]| Ân(s)

n
−μs|> ε

)1/b2
n

= 0.

Proof. By (2.4), (2.2), (3.27), and (3.28),

1

n
Qn(t) =

(
1

n
Qn(0) − 1

)+
(1 − F(t)) + 1

n
Q(0)

n (t) + 1

n
An(t) − 1

n

∫ t

0
An(t − s) dF(s)

+ 1

n

∫ t

0
(Qn(t − s) − n)+ dF(s) + bn√

n
�n(t). (3.56)

By (3.40), (3.41), (3.43), and (3.44), on recalling that F(t)< 1, we have

lim
r→∞ lim sup

n→∞
P(sups∈[0,t]|�n(s)|> r)1/b2

n = 0. (3.57)

The LD convergence at rate b2
n of Yn to Y implies that, for ε > 0,

lim
n→∞ P

(
sups∈[0,t]|An(s)

n
−μs|> ε

)1/b2
n

= 0. (3.58)

By (2.3), (3.46), and Lemma 1,

lim
n→∞ P

(
sups∈[0,t]|1

n
Q(0)

n (s) − (1 − F0(s))|> ε
)1/b2

n

= 0.

Recalling (3.29) implies that

lim
n→∞ P

(
sups∈[0,t]|1

n
Q(0)

n (s) + 1

n
An(s) − 1

n

∫ s

0
An(s − x) dF(x) − 1|> ε

)1/b2
n

= 0.
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In addition, the LD convergence of Xn(0) to X(0) implies that (3.46) can be strengthened as
follows:

lim sup
n→∞

P

(
|Qn(0)

n
− 1|> ε

)1/b2
n

= 0. (3.59)

Hence, by (3.56) and (3.57),

1

n
Qn(t) − 1 =

∫ t

0

(
1

n
Qn(t − s) − 1

)+
dF(s) + θn(t),

where

θn(t) =
(

1

n
Qn(0) − 1

)+
(1 − F(t)) + 1

n
Q(0)

n (t) + 1

n
An(t) − 1

n

∫ t

0
An(t − s) dF(s) + bn√

n
�n(t)

and
lim

n→∞ P(sups∈[0,t]|θn(s)|> ε)1/b2
n = 0.

Lemma B.1 in [21] implies that there exists a function ρ, which depends only on the function
F, such that

sups∈[0,t]|1

n
Qn(s) − 1| ≤ ρ(t)sups∈[0,t]|θn(s)|.

Therefore,

lim
n→∞ P

(
sups∈[0,t]|1

n
Qn(s) − 1|> ε

)1/b2
n

= 0. (3.60)

When combined with (2.4) and (3.58), this yields the assertion of the lemma.
Let Ln = (

(Ln(x, t), x ∈R+), t ∈R+
)

and L = (
(L(x, t), x ∈R+), t ∈R+

)
, with L(x, t) =

B(F(x), μt).

Lemma 4. As n → ∞, the sequence (Xn(0), X(0)
n ,Un, Ln) LD converges in distribution in R×

D(R+,R) ×D(R+,D(R+,R))2 to (X(0), X(0),U, L).

Proof. Let

X̃(0)
n (x, t) = 1

bn
√

n

�nt�∑
i=1

( 1{η(0)
i >x} − (1 − F0(x))), (3.61)

X̃(0)
n (t) = (X̃(0)

n (x, t), x ∈R+) and X̃(0)
n = (X̃(0)

n (t), t ∈R+). By the hypotheses of Theorem
3, Xn(0) LD converges to X(0), by Lemma 1 and because F0 is strictly increas-
ing, and X̃(0)

n LD converges to ((K̃(F0(x), t), x ∈R+), t ∈R+), where K̃ represents a
Kiefer idempotent process that is independent of (X(0),K, B). Also (Kn, Bn) LD con-
verges to (K, B). By independence assumptions, these convergences hold jointly; cf.
Appendix A. Since Qn(0)/n → 1 and Ân(t)/n →μt super-exponentially in probability by
(3.59) and (3.58), respectively, ‘Slutsky’s theorem’ (Lemma 6) yields joint LD conver-
gence of (Xn(0), X̃(0)

n ,Kn, Bn,Qn(0)/n, (Ân(t)/n, t ∈R+)) to (X(0), ((K̃(F0(x), t), x ∈R+), t ∈
R+),K, B, 1, (μt, t ∈R+)). In addition, by (2.3), (3.26), and (3.61),

X(0)
n (t) = X̃(0)

n

(
t,

Qn(0)

n
∧ 1

)
− (1 − F0(t))Xn(0)−.
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In order to deduce the LD convergence of (Xn(0), X(0)
n ,Un, Ln) to (X(0), X(0),U, L), it remains

to recall (3.32), (3.33), (3.37), and (3.38); note that, by Lemma 7, (K̃(t, 1), t ∈ [0, 1]) is
a Brownian bridge idempotent process; and apply the continuous mapping principle, the
associated composition mappings being continuous at continuous limits. (See [24] for more
background on continuous functions in the Skorokhod space context.)

Lemma 5. The sequence {�n, n ∈N} is C-exponentially tight of order b2
n in D(R+,R).

Proof. Let

J(t) =
∫ t

0

U(x, t − x)

1 − F(x)
dF(x). (3.62)

By Lemma 4, (3.41), (3.62), and the continuous mapping principle, Jn = (Jn(t), t ∈R+)
LD converges to J = J(t), t ∈R+), so the sequence Jn is C-exponentially tight. By (3.40),
it remains to check that the sequence Mn is C-exponentially tight, which, according to
Theorem 8, is implied by the following convergences:

lim
r→∞ lim sup

n→∞
P(sups∈[0,t]|Mn(s)|> r)1/b2

n = 0

and

lim
δ→0

lim sup
n→∞

sups∈[0,t]P(sups′∈[0,δ]|Mn(s + s′) − Mn(s)|> ε)1/b2
n = 0, (3.63)

where t> 0 and ε > 0. The former convergence has already been proved; see (3.44). The
proof of (3.63) proceeds along similar lines. Since, with α ∈R, the process ( exp

(
α(Mn(s +

s′) − Mn(s)) − (Gn(α, s + s′) − Gn(α, s))
)
, s′ ∈R+) is a local martingale, so that, for arbitrary

stopping time τ ,
Eeα(Mn(s+τ )−Mn(s))−(Gn(α,s+τ )−Gn(α,s)) ≤ 1,

by Lemma 3.2.6 on p. 282 in [19], for arbitrary γ > 0, in analogy with (3.54), for bn ≥ 1, we
have

P(sups′∈[0,δ](Mn(s + s′) − Mn(s))

≥ ε)1/b2
n ≤ eα(γ−ε) + P(Ĝn(αb2

n, s + δ) − Ĝn(αb2
n, s) ≥ αb2

nγ )1/b2
n .

By (3.55) and Lemma 3,

1

b2
n

Ĝn(αb2
n, t) → α2

2
μ

∫ t

0
(t − u)

dF(u)

1 − F(u)

super-exponentially in probability at rate b2
n. The fact that the latter super-exponential conver-

gence in probability is locally uniform in t, as the limit is a monotonic continuous function
starting at 0, implies that, for δ small enough, depending on α,

lim sup
n→∞

sups∈[0,t]P(sups′∈[0,δ](Mn(s′ + s) − Mn(s)) ≥ ε)1/b2
n ≤ eα(γ−ε).

Now, one chooses γ < ε and sends α→ ∞. A similar convergence holds with −Mn(s′)
substituted for Mn(s′). The limit (3.63) has been proved.

https://doi.org/10.1017/apr.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.62


Moderate deviations of many-server queues 19

Lemma 6. The sequence (Xn(0), X(0)
n ,Hn, Jn, Ln,Un, �n) LD converges in distribution in R×

D(R+,R)3 ×D(R+,D(R+,R))2 ×D(R+,R) to (X(0), X(0),H, J, L,U, �), as n → ∞.

Proof. Let

�(l)
n (t) = −

∫
R

2+
I(l)
t (x, s)dUn(x, s), (3.64)

where

I(l)
t (x, s) =

∞∑
i=1

1{s∈(s(l)
i−1,s

(l)
i ]} 1{x∈[0,t−s(l)

i−1]} ,

for some 0 = s(l)
0 < s(l)

1 < . . . such that s(l)
i → ∞, as i → ∞, and supi≥1(s(l)

i − s(l)
i−1) → 0, as

l → ∞. Evidently,

�(l)
n (t) = −

∞∑
i=1

(Un(t − s(l)
i−1, s(l)

i ) − Un(t − s(l)
i−1, s(l)

i−1)) 1{s(l)
i−1≤t}.

Similarly, let

�(l)(t) = −
∫
R

2+
I(l)
t (x, s) dU(x, s) =

∞∑
i=1

(U(t − s(l)
i−1, s(l)

i ) − U(t − s(l)
i−1, s(l)

i−1)) 1{s(l)
i−1≤t}.

By the LD convergence of Yn to Y in the hypotheses of Theorem 3, Lemma 4,
(3.25), (3.31), (3.41), (3.62), and the continuous mapping principle, the sequence
(Xn(0), X(0)

n ,Hn, Jn, Ln,Un) LD converges to (X(0), X(0),H, J, L,U). Hence, the
sequence (Xn(0), X(0)

n ,Hn, Jn, Ln,Un, �
(l)
n ) LD converges to (X(0), X(0),H, J, L,U, �(l)).

In addition, by Lemma 5, the sequence �n is C-exponentially tight. Since
the idempotent processes X(0),H, J, L,U are seen to have continuous trajecto-
ries, the sequence (X(0)

n ,Hn, Jn, Ln,Un, �n) is C-exponentially tight. That a limit
point of (Xn(0), X(0)

n ,Hn, Jn, Ln,Un, �n) has the same idempotent distribution as
(X(0), X(0),H, J, L,U, �) would follow from the LD convergence of finite-dimensional
distributions of (Xn(0), X(0)

n ,Hn, Jn, Ln,Un, �n) to finite-dimensional distributions of
(X(0), X(0),H, J, L,U, �). Owing to (3.33),

�(l)(t) = −
∫
R

2+
I(l)
t (x, s)K̇(F(x), μs) dF(x)μds,

which implies, by (3.34) and the Cauchy–Schwarz inequality, that �(l) →� locally
uniformly, as l → ∞. Since the sequence (Xn(0), X(0)

n ,Hn, Jn, Ln,Un) LD converges to
(X(0), X(0),H, J, L,U), to prove the finite-dimensional LD convergence it suffices to prove
that

lim
l→∞ lim sup

n→∞
P(|�(l)

n (t) −�n(t)|> ε)1/b2
n = 0. (3.65)

Let

�̂(l)
n (s, t) = 1

bn
√

n

Ân(s)∑
i=1

∞∑
j=1

1{s(l)
j−1≤t} 1{τ̂n,i∈(s(l)

j−1,s
(l)
j ]}

(
1{ηi∈(t−τ̂n,i,t−s(l)

j−1]}

− (F(t − s(l)
j−1) − F(t − τ̂n,i))

)
.
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By (3.28) and (3.64),
�n(t) −�(l)

n (t) = �̂(l)
n (t, t). (3.66)

Let Fn(s) represent the complete σ -algebra generated by the random variables τ̂n,j ∧ τ̂n,Ân(s)+1
and ηj∧Ân(s), where j ∈N. By Part 4 of Lemma C.1 in [21], with t held fixed, the process

(�̂(l)
n (s, t), s ∈R+) is an Fn-locally square-integrable martingale. Its measure of jumps is

μ(l)
n ([0, s], �) =

Ân(s)∑
i=1

∞∑
j=1

1{s(l)
j−1≤t} 1{τ̂n,i∈(s(l)

j−1,s
(l)
j ]}

(
1{(1−(F(t−s(l)

j−1)−F(t−τ̂n,i))/(bn
√

n)∈�}

1{ηi∈(t−τ̂n,i,t−s(l)
j−1]} + 1{(−(F(t−s(l)

j−1)−F(t−τ̂n,i))/(bn
√

n)∈�} 1{ηi 
∈(t−τ̂n,i,t−s(l)
j−1]}

)
,

where � ⊂R \ {0}. Accordingly, the Fn-predictable measure of jumps is

ν(l)
n ([0, s], �) =

Ân(s)∑
i=1

∞∑
j=1

1{s(l)
j−1≤t} 1{τ̂n,i∈(s(l)

j−1,s
(l)
j ]}

(
1{(1−(F(t−s(l)

j−1)−F(t−τ̂n,i))/(bn
√

n)∈�}

(F(t − s(l)
j−1) − F(t − τ̂n,i)) + 1{−(F(t−s(l)

j−1)−F(t−τ̂n,i))/(bn
√

n)∈�} (1 − (F(t − s(l)
j−1) − F(t − τ̂n,i)))

)
.

For α ∈R, as on p. 214 in [19], define the stochastic cumulant

G(l)
n (α, s) =

∫ s

0

∫
R

(eαx − 1 − αx)ν(l)
n (ds′, dx)

=
Ân(s)∑
i=1

∞∑
j=1

1{s(l)
j−1≤t} 1{τ̂n,i∈(s(l)

j−1,s
(l)
j ]}

(
(eα(1−(F(t−s(l)

j−1)−F(t−τ̂n,i)))/(bn
√

n)

− 1 − α

bn
√

n
(1 − (F(t − s(l)

j−1) − F(t − τ̂n,i))))(F(t − s(l)
j−1) − F(t − τ̂n,i))

+ (e−α(F(t−s(l)
j−1)−F(t−τ̂n,i))/(bn

√
n) − 1

+ α

bn
√

n
(F(t − s(l)

j−1) − F(t − τ̂n,i)))(1 − (F(t − s(l)
j−1) − F(t − τ̂n,i)))

)
. (3.67)

The associated stochastic exponential is defined by

E (l)
n (α, s) = eG(l)

n (α,s)
∏

0<s′≤s

(1 +�G(l)
n (α, s′))e−�G(l)

n (α,s′), (3.68)

where �G(l)
n (s′) represents the jump of G(l)

n (s′′) with respect to s” evaluated at s′′ = s′ and
the product is taken over the jumps. By Lemma 4.1.1 on p. 294 in [19], the process(
eαb2

n�̂
(l)
n (s,t))En(αb2

n, s)−1, s ∈R+
)

is a well-defined local martingale, so that, for any stopping
time τ ,

Eeαb2
n�̂

(l)
n (τ,t))E (l)

n (αb2
n, τ )−1 ≤ 1.
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Lemma 3.2.6 on p. 282 in [19] and (3.68) imply that, for α > 0 and γ > 0,

P(sups∈[0,t]�̂
(l)
n (s, t) ≥ ε) ≤ eαb2

n(γ−ε) + P(E (l)
n (αb2

n, t) ≥ eαb2
nγ )

≤ eαb2
n(γ−ε) + P(G(l)

n (αb2
n, t) ≥ αb2

nγ ). (3.69)

By (3.67),

G(l)
n (αb2

n, t) ≤ Ân(t)

(
sup|y|≤1

(
eαbny/

√
n − 1 − α

bny√
n

)
supj

(
F(t − s(l)

j−1) − F(t − s(l)
j )
)

+ supjsup
y∈[F(t−s(l)

j ),F(t−s(l)
j−1)]

(
e−αbny/

√
n − 1 + α

bn√
n

y

))
.

As n/b2
n(eαbny/

√
n − 1 − αbny/

√
n) → α2y2/2 uniformly on bounded intervals, Ân(t)/n →μt

super-exponentially as n → ∞, and supj(sl
j − sl

j−1) → 0 as l → ∞, it follows that

lim
l→∞ lim sup

n→∞
P(G(l)

n (αb2
n, t) ≥ αb2

nγ )1/b2
n = 0,

which implies, thanks to (3.69), that

lim sup
l→∞

lim sup
n→∞

P(sups∈[0,t]�̂
(l)
n (s, t) ≥ ε)1/b2

n ≤ eα(γ−ε).

Picking γ < ε and sending α to ∞ shows that the latter left-hand side equals zero. A similar
argument proves the convergence

lim
l→∞ lim sup

n→∞
P(sups∈[0,t](− �̂(l)

n (s, t)) ≥ ε)1/b2
n = 0.

Recalling (3.66) yields the convergence (3.65).

Theorem 4 has thus been proved. In order to obtain the assertion of Theorem 3, note that
−K has the same idempotent distribution as K and invoke the continuous mapping principle in
(3.30), which applies by Lemma B.2 in [21].

The proof of Theorem 2 proceeds along similar lines. First we prove an analogue of
Theorem 3 to the effect that if the random variables Xn(0) LD converge to an idempotent
variable X(0), then the processes Xn LD converge to the idempotent process X that solves the
following analogue of (3.2):

X(t) = (1 − F0(t))X(0) + √
q0 W0(F0(t)) +

∫ t

0

(
1 − F(t − s)

)
σ Ẇ(s) ds

+
∫
R

2+
1{x+s≤t} K̇(F(x), λs) dF(x) λ ds. (3.70)

The proof is a simpler version of the proof of Theorem 3. Essentially, one replaces Ân with
An and μ with λ. A key element of the proof of Theorem 3 is the property, asserted in the
statement of Lemma 3, that Ân(t)/n →μt super-exponentially in probability. This property
takes some effort to establish. Its counterpart for the infinite-server queue is that An(t)/n → λt
super-exponentially in probability; this is a direct consequence of the hypotheses.
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In some more detail, since, in analogy with (2.2),

Qn(t) = Q(0)
n (t) + An(t) −

∫ t

0

∫ t

0
1{x+s≤t} d

An(s)∑
i=1

1{ηi≤x},

grouping terms appropriately and recalling (2.12) yields

1

n
Qn(t) − q(t) =

(
1

n
Qn(0) − q0

)
(1 − F0(t)) + 1

n
An(t) − λt −

∫ t

0

(
1

n
An(t − s) − λ(t − s)

)
dF(s)

+ 1

n

Qn(0)∑
i=1

( 1{η(0)
i >t} − (1 − F0(t))) −

∫
R

2+
1{x+s≤t} d

An(s)∑
i=1

(
1{ηi≤x} − F(x)).

On introducing

Yn(t) =
√

n

bn

(
An(t)

n
− λt

)
,

X
(0)
n (t) = 1

bn
√

n

Qn(0)∑
i=1

( 1{η(0)
i >t} − (1 − F0(t))),

Hn(t) = Yn(t) −
∫ t

0
Yn(t − s) dF(s),

Un(x, t) = 1

bn
√

n

An(t)∑
i=1

(
1{ηi≤x} − F(x)

)
,

and

�n(t) = −
∫
R

2+
1{x+s≤t} dUn(x, s),

we obtain the following analogue of (3.30):

Xn(t) = (1 − F0(t))Xn(0) + X
(0)
n (t) + Hn(t) +�n(t). (3.71)

The hypotheses imply that Yn LD converges to σW, with the notation of the proof of
Theorem 3 being reused. Since, in analogy with (3.38), Un(x, t) = Kn(F(x), An(t)/n) and
An(t)/n converges to λt super-exponentially in probability, the process Un LD converges
to U, where U(x, t) = K(F(x), λt). Furthermore, similarly to Lemma 4, it is proved that

(Xn(0), X
(0)
n ,Un, Ln) LD converges to (X(0), X

(0)
,U, L), where X

(0)
(t) = √

q0W0(F0(t)) and
L(x, t) = B(F(x), λt). Put together, these properties imply the analogue of Theorem 4: that

(Xn(0), X
(0)
n ,Hn, �n) LD converges to (X(0), X

(0)
,H, �), where

H(t) = σW(t) − σ

∫ t

0
W(t − s) dF(s) = σW(t) − σ

∫ t

0
(1 − F(t − s)) Ẇ(s) ds

and

�(t) = −
∫
R

2+
1{x+s≤t} dU(x, s) = −

∫
R

2+
1{x+s≤t} K̇(F(x), λs) dF(x) λds.

An application of the continuous mapping principle to (3.71) concludes the proof.
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4. Evaluating the deviation functions

This section is concerned with solving for IQ
x0 (q) and I

Q
q0,x0

(q).

Theorem 5. Suppose that the CDF F is an absolutely continuous function and IQ
x0 (q)<∞.

Then q is absolutely continuous, (q̇(t) − ∫ t
0 q̇(s) 1{q(s)>0} F′(t − s) ds, t ∈R+) ∈L2(R+), the

infimum in (2.5) is attained uniquely, and

IQ
x0

(q) = 1

2

∫ ∞

0
p̂(t)

(
q̇(t) −

∫ t

0
q̇(s) 1{q(s)>0} F′(t − s) ds + (β − x−

0 )F0
′(t)
)

dt,

where p̂(t) represents the unique L2(R+)-solution p(t) of the Fredholm equation of the second
kind

(μ+ σ 2)p(t) = q̇(t) −
∫ t

0
q̇(s) 1{q(s)>0} F′(t − s) ds + (β − x−

0 )F0
′(t)

+ σ 2
∫ ∞

0
F′(|s − t|)p(s) ds − σ 2

∫ ∞

0

∫ s∧t

0
F′(s − r) F′(t − r) dr p(s) ds, (4.1)

with q̇, F0
′, and F’ denoting derivatives.

Proof. Writing∫
R

2+
1{x+s≤t} k̇(F(x), μs) dF(x)μ ds =

∫ t

0

∫ F(t−s)

0
k̇(x, μs) dxμ ds, (4.2)

we see that the equation (2.6) is of the form

q(t) = f (t) +
∫ t

0
q(t − s)+ dF(s), t ∈R+,

with the functions f (t) and F(t) being absolutely continuous. The function q(t) is absolutely
continuous by Lemma 8. In addition, (4.2) implies that, almost everywhere (a.e.),

d

dt

∫
R

2+
1{x+s≤t} k̇(F(x), μs) dF(x)μ ds =

∫ t

0
k̇(F(s), μ(t − s))F′(s)μds. (4.3)

The infimum in (2.5) is attained uniquely by coercitivity and strict convexity of the function
being minimised; cf. [5, Proposition II.1.2]. Differentiation in (2.6) with the account of (4.3)
implies that, a.e.,

ẇ0(F0(t))F0
′(t) + σ ẇ(t) −

∫ t

0
F′(t − s)σ ẇ(s) ds +

∫ t

0
k̇(F(s), μ(t − s))F′(s)μ ds

−
(

q̇(t) −
∫ t

0
q̇(s) 1{q(s)>0} F′(t − s) ds + (β − x−

0 )F0
′(t)
)

= 0.

Introduce the map

�: (ẇ0, ẇ, k̇) →
(

ẇ0(F0(t))F0
′(t) + σ ẇ(t) −

∫ t

0
F′(t − s)σ ẇ(s) ds

+
∫ t

0
k̇(F(s), μ(t − s))F′(s)μ ds, t ∈R+

)
.
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Since F0
′(t) is bounded by (2.1), � maps V =L2([0, 1]) ×L2(R+) ×L2([0, 1] ×R+) to

L2(R+). For instance, using the fact that
∫∞

0 F′(s) ds = 1, we have

∫ ∞

0

(∫ t

0
F′(t − s)ẇ(s) ds

)2
dt ≤

∫ ∞

0

∫ t

0
F′(t − s)ẇ(s)2 ds dt =

∫ ∞

0
ẇ(s)2 ds<∞

and

∫ ∞

0

(∫ t

0
k̇(F(s), μ(t − s))F′(s)μds

)2
dt ≤

∫ ∞

0

∫ t

0
k̇(F(s), μ(t − s))2F′(s)μ2ds dt

=μ2
∫ ∞

0

∫ 1

0
k̇(x, t)2dx dt<∞.

The method of Lagrange multipliers, more specifically, [5, Proposition III.5.2] with Y =
L2(R+) and the set of nonnegative functions as the cone C, yields

IQ
x0

(q) = supp∈L2(R+) inf
(ẇ0,ẇ,k̇)∈L2([0,1])

×L2(R+)×L2([0,1]×R+)

(1

2

∫ 1

0
ẇ0(x)2 dx + 1

2

∫ ∞

0
ẇ(t)2 dt

+ 1

2

∫ ∞

0

∫ 1

0
k̇(x, t)2 dx dt +

∫ ∞

0
p(t)

(
q̇(t) + F′(t)x+

0 + (β − x−
0 )F0

′(t)

−
∫ t

0
q̇(s) 1{q(s)>0} F′(t − s) ds − ẇ0(F0(t))F0

′(t) − σ ẇ(t) +
∫ t

0
F′(t − s)σ ẇ(s) ds

−
∫ t

0
k̇(F(s), μ(t − s))F′(s)μ ds

)
dt
)

. (4.4)

Minimising in (4.4) yields, with ( ˙̂w0(t), ˙̂w(t), ˙̂k(x, t)), being optimal,

˙̂w0(x) − p(F−1
0 (x)) = 0,

˙̂w(t) − σp(t) + σ

∫ ∞

0
p(t + s)F′(s) ds = 0,

˙̂k(x, t) − p(
t

μ
+ F−1(x)) = 0.

(For the latter, note that

∫ ∞

0
p(t)

∫ t

0
k̇(F(s), μ(t − s))F′(s)μds dt =

∫ ∞

0

∫ ∞

s
p(t)k̇(F(s), μ(t − s))F′(s)μ dt ds

=
∫ ∞

0

∫ ∞

0
p(t + s)k̇(F(s), μt)F′(s)μ dt ds =

∫ ∞

0

∫ 1

0
p(

t

μ
+ F−1(x))k̇(x, t) dx dt.)
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Hence,

IQ
x0

(q) = supp∈L2(R+)

( ∫ ∞

0
p(t)

(
q̇(t) −

∫ t

0
q̇(s) 1{q(s)>0} F′(t − s) ds + (β − x−

0 )F0
′(t)
)

dt

− 1

2

( ∫ ∞

0
p(s)2F0

′(s) ds +
∫ ∞

0
(σp(t) − σ

∫ ∞

0
p(t + s)F′(s) ds)2 dt

+μ

∫ ∞

0

∫ ∞

0
p(t + s)2 F′(s)ds dt

))
.

Noting that ∫ ∞

0
p(s)2F0

′(s) ds +μ

∫ ∞

0

∫ ∞

0
p(t + s)2 F′(s)ds dt =μ

∫ ∞

0
p(s)2 ds (4.5)

yields

IQ
x0

(q) = supp∈L2(R+)

( ∫ ∞

0
p(t)

(
q̇(t) −

∫ t

0
q̇(s) 1{q(s)>0} F′(t − s) ds + (β − x−

0 )F0
′(t)
)

dt

− 1

2

(
μ

∫ ∞

0
p(s)2 ds +

∫ ∞

0
(σp(t) − σ

∫ ∞

0
p(t + s)F′(s) ds)2 dt

))
. (4.6)

The existence and uniqueness of a maximiser in (4.6) follows from Proposition II.1.2 in [5]
because the expression in the supremum tends to −∞ as ‖p‖L2(R+) → ∞. Varying p in (4.6)
implies (4.1). As the maximiser in (4.6) is unique, so is an L2(R+)-solution of the Fredholm
equation.

It is noteworthy that the integral operator on L2(R+) with kernel

K̃(t, s) = F′(|s − t|) −
∫ s∧t

0
F′(s − r) F′(t − r) dr

is not generally either Hilbert–Schmidt or compact, so the existence and uniqueness of p̂(t) is
not a direct consequence of the general theory.

The numerical solution of Fredholm equations, such as (4.1), is discussed at quite some
length in the literature; see, e.g., [3] and references therein. For instance, the collocation
method with a basis of ‘hat’ functions may be tried: for i ∈N and n ∈N, let ti = i/n and
�i(t) = (1 − |t − ti|) 1{ti−1≤t≤ti}, with t0 = 0. Then an approximate solution is

pn(t) =
n2∑

i=1

pn(ti)�i(t),

where the pn(ti), i = 1, . . . , n2, satisfy the linear system

(μ+ σ 2)pn(ti) − σ 2
n2∑

j=1

pn(tj)
∫ n2

0
K̃(ti, s)�j(s) ds

= q̇(ti) −
∫ ti

0
q̇(s) 1{q(s)>0} F′(ti − s) ds + (β − x−

0 )F0
′(ti).

For more background, see [3].
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The evaluation of I
Q
q0,x0

is carried out similarly:

I
Q
q0,x0

(q) = supp∈L2(R+) inf
(ẇ0,ẇ,k̇)∈L2([0,1])

×L2(R+)×L2([0,1]×R+)

(1

2

∫ 1

0
ẇ0(x)2 dx + 1

2

∫ ∞

0
ẇ(t)2 dt

+ 1

2

∫ ∞

0

∫ 1

0
k̇(x, t)2 dx dt +

∫ ∞

0
p(t)

(
q̇(t) + x0F0

′(t) − √
q0ẇ0(F0(t))F0

′(t) − σ ẇ(t)

+
∫ t

0
F′(t − s)σ ẇ(s) ds −

∫ t

0
k̇(F(s), λ(t − s))F′(s) λ ds

)
dt
)

.

The infimum is attained at (ẇ
0
(t), ẇ(t), k̇(x, t)) such that

ẇ
0
(x) − √

q0p(F−1
0 (x)) = 0,

ẇ(t) − σp(t) + σ

∫ ∞

0
p(t + s)F′(s) ds = 0,

k̇(x, t) − p(
t

λ
+ F−1(x)) = 0.

Consequently, taking into account (2.1) and (4.5), we have

I
Q
q0,x0

(q) = supp∈L2(R+)
(∫ ∞

0
p(t)(q̇(t) + x0F0

′(t)) dt − 1

2

(
q0μ

∫ ∞

0
p(s)2 (1 − F(s)) ds

+ λ

∫ ∞

0
p(s)2F(s) ds +

∫ ∞

0
(σp(t) − σ

∫ ∞

0
p(t + s)F′(s) ds)2 dt

))

= 1

2

∫ ∞

0
p(t)(q̇(t) + x0F0

′(t)) dt,

with p(t) being the L2(R+)-solution p(t) to the Fredholm equation of the second kind

(q0μ(1 − F(t)) + λF(t) + σ 2)p(t) = q̇(t) + x0F′
0(t) + σ 2

∫ ∞

0
K̃(t, s)p(s) ds.

Appendix A. Large-deviation convergence and idempotent processes

This section reviews the basics of LD convergence and idempotent processes; see, e.g.,
[19]. Let E represent a metric space. Let P(E) denote the power set of E. The set function

: P(E) → [0, 1] is said to be a deviability if 
(E) = supy∈E
({y}), E ⊂ E, where the func-
tion
(y) =
({y}) is such that supy∈E
(y) = 1 and the sets {y ∈ E:
(y) ≥ γ } are compact for
all γ ∈ (0, 1]. (One can also refer to
 as a maxi-measure or an idempotent probability.) A devi-
ability is a tight set function in the sense that infK∈K(E) 
(E \ K) = 0, where K(E) stands for
the collection of compact subsets of E. If � is a directed set and Fξ , ξ ∈�, is a net of closed
subsets of E that is nonincreasing with respect to the partial order on � by inclusion, then

( ∩ξ∈� Fξ ) = limξ∈� 
(Fξ ). A property pertaining to elements of E is said to hold 
-a.e. if
the value of 
 of the set of elements that do not have this property equals 0.
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A function f from E to metric space E′ is called an idempotent variable. The idempo-
tent distribution of the idempotent variable f is defined as the set function 
 ◦ f −1(�) =

(f ∈ �), � ⊂ E′. If f is the canonical idempotent variable defined by f (y) = y, then it has

 as its idempotent distribution. The continuous images of deviabilities are deviabilities; i.e.,
if f : E → E′ is continuous, then 
 ◦ f −1 is a deviability on E

′. Furthermore, this property
extends to the situation where f : E → E′ is strictly Luzin, i.e., continuous when restricted
to the set {y ∈ E:
(y) ≥ γ }, for arbitrary γ ∈ (0, 1]. Thus, the idempotent distribution of a
strictly Luzin idempotent variable is a deviability. More generally, f is said to be a Luzin
idempotent variable if the idempotent distribution of f is a deviability. If f = (f1, f2), with
fi assuming values in E′

i, then the (marginal) idempotent distribution of f1 is defined by

f1 (y′

1) =
(f1 = y′
1) = supy: f1(y)=y′

1

(y). The idempotent variables f1 and f2 are said to be

independent if 
(f1 = y′
1, f2 = y′

2) =
(f1 = y′
1)
(f2 = y′

2) for all (y′
1, y′

2) ∈ E′
1 × E′

2, so the
joint distribution is the product of the marginal ones. Independence of finite collections of
idempotent variables is defined similarly.

A sequence Qn of probability measures on the Borel σ -algebra of E is said to large-deviation
(LD) converge at rate rn to deviability
 if for every bounded continuous non-negative function
f on E

lim
n→∞

(∫
E

f (x)n Qn(dx)

)1/rn

= supx∈Ef (x)
(x).

Equivalently, one may require that limn→∞ Qn(�)1/rn =
(�) for every Borel set � such that

 of the interior of � and 
 of the closure of � agree. If the sequence Qn LD converges
to 
, then 
(y) = limδ→0 lim infn→∞ (Qn(Bδ(y))1/rn = limδ→0 lim supn→∞ (Qn(Bδ(y))1/rn ,
for all y ∈ E, where Bδ(y) represents the open ball of radius δ about y. (Closed balls
may be used as well.) The sequence Qn is said to be exponentially tight of order rn if
infK∈K(E) lim supn→∞ Qn(E \ K)1/rn = 0. If the sequence Qn is exponentially tight of order
rn, then there exists a subsequence Qn′ that LD converges at rate rn′ to a deviability. Any such

deviability will be referred to as a large-deviation (LD) limit point of Qn. Given Ẽ ⊂ E, the
sequence Qn is said to be Ẽ-exponentially tight if it is exponentially tight and 
̃(E \ Ẽ) = 0,
for any LD limit point 
̃ of Qn.

It is immediate that 
 is a deviability if and only if I(x) = − ln
(x) is a tight deviation
function, i.e., the sets {x ∈ E: I(x) ≤ γ } are compact for all γ ≥ 0 and infx∈E I(x) = 0, and that
the sequence Qn LD converges to 
 at rate rn if and only if it obeys the LDP for rate rn with
deviation function I, i.e., lim infn→∞ (1/rn) ln Qn(G) ≥ − infx∈G I(x) for all open sets G, and
lim supn→∞ (1/rn) ln Qn(F) ≤ − infx∈F I(x) for all closed sets F.

LD convergence of probability measures can be also expressed as LD convergence in distri-
bution of the associated random variables to idempotent variables. A sequence {Xn, n ∈N} of
random variables with values in E′ is said to LD converge in distribution at rate rn as n → ∞ to
an idempotent variable X with values in E′ if the sequence of the probability laws of the Xn LD
converges at rate rn to the idempotent distribution of X. If the random variables X′

n and X′′
n are

independent, X′
n LD converges to X’, and X′′

n LD converges to X”, then the sequence (X′
n, X′′

n )
LD converges to (X’,X”) and X’ and X” are independent. If a sequence {Qn, n ∈N} of proba-
bility measures LD converges to a deviability 
, then one has LD convergence in distribution
of the canonical idempotent variables. A continuous mapping principle holds: if the random
variables Xn LD converge at rate rn to an idempotent variable X and f : E′ → E′′ is a contin-
uous function, then the random variables f (Xn) LD converge at rate rn to f (X), where E′′ is a
metric space. The following version of Slutsky’s theorem holds; see, e.g., [19, Lemma 3.1.42,
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p. 275]. Certainly, a direct proof along the lines of the argument in [4, Chapter 1, Theorem 4.1]
is possible.

Theorem 6. Suppose that E′ and E′′ are separable metric spaces. Let Yn be random variables
with values in E

′′, and let a ∈ E′′. If the sequence Xn LD converges to X and Yn → a super-
exponentially in probability for rate rn, i.e., P(d(Yn, a)> ε)1/rn → 0 for arbitrary ε > 0, then
the sequence (Xn, Yn) LD converges at rate rn to (X,a) in E′ × E′′, where d denotes the metric
on E′′.

A collection (Xt, t ∈R+) of idempotent variables on E is called an idempotent process. The
functions (Xt(y), t ∈R+) for various y ∈ E are called trajectories (or paths) of X. Idempotent
processes are said to be independent if they are independent as idempotent variables with val-
ues in the associated function spaces. The concepts of idempotent processes with independent
and/or stationary increments mimic those for stochastic processes. Since this paper deals with
stochastic processes having right-continuous trajectories with left-hand limits, the underlying
space E may be assumed to be a Skorokhod space D(R+,Rm), for suitable m.

Suppose Xn = (Xn(t), t ∈R+) is a sequence of stochastic processes that assume values in
metric space E′ with metric d’ and have right-continuous trajectories with left-hand limits. The
sequence Xn is said to be exponentially tight of order rn if the sequence of the distributions of
Xn as measures on the Skorokhod space D(R+,E′) is exponentially tight of order rn. It is said
to be C-exponentially tight if any LD limit point is the law of an idempotent process with
continuous trajectories, i.e., 
(D(R+,E′) \C(R+,E′)) = 0, whenever 
 is an LD limit point
of the laws of Xn.

The method of finite-dimensional distributions for LD convergence of stochastic processes
is summarised in the next theorem [16]. The proof mimics the one used in weak convergence
theory.

Theorem 7. If, for all tuples t1 < t2 < . . . < tl with the ti coming from a dense subset of R+,
the sequence (Xn(t1), . . . , Xn(tl)) LD converges in R

l at rate rn to (X(t1), . . . , X(tl)) and the
sequence Xn is C-exponentially tight of order rn, then X is a continuous-path idempotent
process and the sequence Xn LD converges in D(R+,E′) at rate rn to X.

The form of the conditions in the next theorem, which is essentially due to [7], is at odds
with what is common in weak convergence theory, so a proof is warranted, although the
argument is standard.

Theorem 8. Suppose E′ is, in addition, complete and separable. The sequence Xn is C-
exponentially tight of order rn if and only if the following hold:

(i) the sequence Xn(t) is exponentially tight of order rn for all t from a dense subset of R+,
and

(ii) for all ε > 0 and L> 0,

lim
δ→0

lim sup
n→∞

supt∈[0,L]P(sups∈[0,δ]d′(Xn(t + s), Xn(t))> ε)1/rn = 0. (A.1)

Proof. The necessity of the conditions follows from the continuity of the projection map-
ping and the continuous mapping principle. The sufficiency is proved next. For L> 0, δ > 0
and X from the Skorokhod space D(R+,E′), let

wL(X, δ) = supt,s∈[0,L]: |t−s|≤δd′(X(t), X(s)).
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Since

P(wL(Xn, δ)> ε) ≤ P(
�L/δ�⋃
i=0

{3supt∈[iδ,(i+1)δ]∩[0,L]d′(Xn(t), Xn(iδ))> ε})

≤
�L/δ�∑
i=0

P(3supt∈[iδ,(i+1)δ]∩[0,L]d′(Xn(t), Xn(iδ))> ε)

≤ (�L

δ
� + 1)supt∈[0,L]P(sups∈[t,t+δ]d′(Xn(s), Xn(t))>

ε

3
),

the hypotheses imply that

lim
δ→0

lim sup
n→∞

P(wL(Xn, δ)> ε)1/rn = 0. (A.2)

Let
w′

L(X, δ) = inf
0=t0<t1<...<tk=L:

tj−tj−1>δ

max
j=1,...,k

supu,v∈[tj−1,tj)d
′(X(u), X(v)).

Since w′
L(X, δ) ≤ wL(X, 2δ), provided δ < L/2, by (A.2),

lim
δ→0

lim sup
n→∞

P(wL
′(Xn, δ)> ε)1/rn = 0. (A.3)

As each Xn is a member of the Skorokhod space D(R+,E′),

lim
δ→0

P(wL
′(Xn, δ)> ε) = 0,

so, by (A.3),
lim
δ→0

supnP(w′
L(Xn, δ)> ε)1/rn = 0.

Let {t1, t2, . . .} represent a dense subset of R+ such that Xn(t1), Xn(t2), . . . are exponentially
tight of order rn. Since E′ is complete and separable, every probability measure on E′ is tight,
so it may be assumed that there exist compact subsets K1,K2, . . . such that, for all n,

P(Xn(ti) /∈ Ki)
1/rn <

ε

2i
, i ∈N.

Choose positive δ1, δ2, . . . such that

P(wL
′(Xn, δi)>

1

2i
)1/rn <

ε

2i
, i ∈N.

The set

A =
⋂
i∈N

{X: w′
L(X, δi) ≤ 1

2i
, X(ti) ∈ Ki}

has compact closure (see, e.g., [10, Theorem A2.2, p. 563]), and

P(Xn /∈ A)1/rn ≤
∞∑

i=1

P(w′
L(Xn, δi)>

1

2i
)1/rn +

∞∑
i=1

P(Xn(ti) /∈ Ki)
1/rn < 2ε.
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Thus, the sequence Xn is exponentially tight of order rn in D(R+,E′). Let 
 represent a devi-
ability on D(R+,E′) that is an LD limit point of the distributions of Xn. It is proved next that

(X) = 0 if X is a discontinuous function. Suppose X has a jump at t, i.e., d′(X(t), X(t − ))> 0.
Let ρ denote a metric in D(R+,E′). It may be assumed that if ρ(X′, X)< δ, then there
exists a continuous nondecreasing function λ(t) such that sups≤t+1d′(X′(λ(s)), X(s))< δ and
sups≤t+1|λ(s) − s|< δ; see, e.g., [6, 9]. Then, assuming that 2δ < t and δ < 1, we have
infs′∈[s−δ,s+δ] d′(X(s′), X(s))< δ, where s ∈ [0, t + 1]. Note that

d′(X(t), X(t − )) ≤ d′(X(t), X′(s1)) + d(X′(s1), X′(t)) + d′(X′(t), X′(s2))

+ d′(X′(s2), X(s3)) + d′(X(s3), X(t − )),

so that, with s1 ∈ [t − δ, t + δ] such that d′(X′(s1), X(t))< δ, s3 ∈ [t − δ, t] such that
d′(X(s3), X(t − ))< δ, and s2 ∈ [s3 − δ, s3 + δ] such that d′(X′(s2), X(s3))< δ, we have

d′(X(t), X(t − ))< 3δ + 2sups∈[t−2δ,t+δ]d(X′(s), X′(t)),

which implies that, for δ small enough,

sups∈[t−2δ,t+δ]d′(X′(s), X′(t))> d′(X(t), X(t − ))

3
.

Since

sups∈[t−2δ,t+δ]d′(X′(s), X′(t)) ≤ sups∈[t,t+δ]d′(X′(s), X′(t))

+ sups∈[t−2δ,t−δ]d′(X′(s), X′(t)) + sups∈[t−δ,t]d′(X′(s), X′(t))

≤ sups∈[t,t+δ]d′(X′(s), X′(t)) + sups∈[t−2δ,t−δ]d′(X′(s), X′(t − 2δ))

+ sups∈[t−δ,t]d′(X′(s), X′(t − δ)) + d′(X′(t − δ), X′(t − 2δ)) + 2d′(X′(t), X′(t − δ)),

for ε = d′(X(t), X(t − ))/18,

P(ρ(Xn, X)< δ) ≤ P(sups∈[t,t+δ]d′(Xn(s), Xn(t))> ε)

+ P(sups∈[t−2δ,t−δ]d′(Xn(s), Xn(t − 2δ))> ε)

+ P(sups∈[t−δ,t]d′(Xn(s), Xn(t − δ))> ε).

Therefore, assuming L ≥ t and rn ≥ 1,

P(ρ(Xn, X)< δ)1/rn ≤ P(sups∈[t,t+δ]d′(Xn(s), Xn(t))> ε)1/rn

+ P(sups∈[t−δ,t]d′(Xn(s), Xn(t − δ))> ε)1/rn

+ P(sups∈[t−2δ,t−δ]d′(Xn(s), Xn(t − 2δ))> ε)1/rn

≤ 3supt′∈[0,L]P(sups∈[0,δ]d′(Xn(t′ + s), Xn(t′))> ε)1/rn .
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Since

(X) = lim

δ→0
lim inf
n→∞ P(ρ(Xn, X)< δ)1/rn ,

(A.1) implies that 
(X) = 0.

The discussion below concerns the properties of the idempotent processes that feature
prominently in the paper. All the processes assume values in R. The standard Wiener idem-
potent process, denoted by W = (W(t), t ∈R+), is defined as an idempotent process with
idempotent distribution


W (w) = exp

(
− 1

2

∫ ∞

0
ẇ(t)2 dt

)
,

provided w = (w(t), t ∈R+) ∈D(R+,R) is absolutely continuous and w(0) = 0, and 
W (w) =
0 otherwise. It is straightforward to show that W has stationary independent increments. The
restriction to [0, t] produces a standard Wiener idempotent process on [0, t] which is specified
by the idempotent distribution 
W

t (w) = exp
(−1/2

∫ t
0 ẇ(s)2 ds

)
. The Brownian bridge idem-

potent process on [0, 1], denoted by W0 = (W0(x), x ∈ [0, 1]), is defined as an idempotent
process with the idempotent distribution


W0
(w0) = exp

(
− 1

2

∫ 1

0
ẇ0(x)2 dx

)
,

provided w0 = (w0(x), x ∈ [0, 1]) ∈D([0, 1],R) is absolutely continuous and w0(0) = w0(1) =
0, and 
W0

(w0) = 0 otherwise. The Brownian sheet idempotent process on [0, 1] ×R+
denoted by (B(x, t), x ∈ [0, 1], t ∈R+) is defined as a two-parameter idempotent process with
the distribution


B(b) = exp

(
− 1

2

∫
[0,1]×R+

ḃ(x, t)2 dx dt

)
,

provided b = (b(x, t), x ∈ [0, 1], t ∈R+) is absolutely continuous with respect to the Lebesgue
measure on [0, 1] ×R+ and b(x, 0) = b(0, t) = 0, and 
B(b) = 0 otherwise. The Kiefer
idempotent process on [0, 1] ×R+, denoted by (K(x, t), x ∈ [0, 1], t ∈R+), is defined as a
two-parameter idempotent process with the idempotent distribution


K(k) = exp
(−1

2

∫
[0,1]×R+

k̇(x, t)2 dx dt
)
,

provided k = (k(x, t), x ∈ [0, 1], t ∈R+) is absolutely continuous with respect to the Lebesgue
measure on [0, 1] ×R+ and k(0, t) = k(1, t) = k(x, 0) = 0, and 
K(k) = 0 otherwise. It is
considered as an element of D(R+,D([0, 1],R+)). Furthermore, as the deviabilities that
the idempotent processes W, W0, B, and K have discontinuous paths are equal to zero,
these idempotent processes can be considered as having paths from C(R+,R), C([0, 1],R),
C(R+,C([0, 1],R)), and C(R+,C([0, 1],R)), respectively. Being LD limits of their stochastic
prototypes, the idempotent processes introduced here have similar properties, as summarised
in the next lemma.

Lemma 7.

(i) For x> 0, the idempotent process (B(x, t)/
√

x, t ∈R+) is a standard Wiener idempotent
process.
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(ii) For t> 0, (K(x, t)/
√

t, x ∈ [0, 1]) is a Brownian bridge idempotent process. For x ∈
(0, 1), the idempotent process (K(x, t)/

√
x(1 − x), t ∈R+) is a standard Wiener idem-

potent process.

(iii) The Kiefer idempotent process can be written as

K(x, t) = −
∫ x

0

K(y, t)

1 − y
dy + B(x, t), x ∈ [0, 1], (A.4)

where B(x,t) is a Brownian sheet idempotent process. Conversely, if B(x,t) is a Brownian
sheet idempotent process and (A.4) holds, then K(x,t) is a Kiefer idempotent process.
Similarly,

W0(x) = −
∫ x

0

W0(y)

1 − y
dy + W ′(x), x ∈ [0, 1],

where W’(x) is a standard Wiener idempotent process.

Proof. Parts 1 and 2 are elementary. For instance,




((
K(x, t)√

t
, x ∈ [0, 1]

)
= (w0(x), x ∈ [0, 1])

)

= supk: k(x,t)=√
tw0(x),x∈[0,1] exp

(
− 1

2

∫
R+

∫ 1

0
k̇(x, s)2 dx ds

)
.

An application of the Cauchy–Schwarz inequality shows that the optimal k is

k(x, s) = s ∧ t√
t

w0(x).

As for (K(x, t)/
√

x(1 − x), t ∈R+), the optimal trajectory (k(y, t), y ∈ [0, 1]) to get to
w(t)

√
x(1 − x) at x is

k(y, t) =

⎧⎪⎨
⎪⎩

w(t)
√

x(1 − x)
y

x
if y ∈ [0, x],

w(t)
√

x(1 − x)
1 − y

1 − x
if y ∈ [x, 1].

To prove Part 3, it suffices to show that if

k(x, t) = −
∫ x

0

k(y, t)

1 − y
dy + b(x, t), (A.5)

with k and b being absolutely continuous and with 
B(b)> 0, then k(1, t) = 0 and

∫ ∞

0

∫ 1

0
k̇(x, t)2 dx dt =

∫ ∞

0

∫ 1

0
ḃ(x, t)2 dx dt. (A.6)

Solving (A.5) yields, for x< 1,

k(x, t) = (1 − x)
∫ x

0

by(y, t)

1 − y
dy, (A.7)
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where by(y, t) = ∫ t
0 ḃ(s, y) ds. By the Cauchy–Schwarz inequality,

|
∫ x

0

by(y, t)

1 − y
dy| ≤

√∫ x

0

1

(1 − y)2
dy

√∫ 1

0
by(y, t)2dy ≤

√
t√

1 − x

√∫
[0,1]×R+

ḃ(y, s)2 dy ds.

It follows that k(x, t) → 0 as x → 1, provided 
B(b)> 0.

Let kt(x, t) = ∫ x
0 k̇(y, t) dy. We show first that if 
B(b)> 0, then, a.e.,

1

1 − x
kt(x, t)2 → 0 as x → 1. (A.8)

Given arbitrary a> 0, by (A.7),

kt(x, t)2

1 − x
= (1 − x)

(∫ x

0

ḃ(y, t) dy

1 − y

)2 ≤ 2(1 − x)a2
(∫ x

0

dy

1 − y

)2

+ 2(1 − x)
∫ x

0

dy

(1 − y)2

∫ x

0
ḃ(y, t)2 1{|ḃ(y,t)|>a} dy

≤ 2(1 − x)|ln (1 − x)|2a2 + 2
∫ x

0
ḃ(y, t)2 1{|ḃ(y,t)|>a} dy.

Since
∫ 1

0 ḃ(y, t)2 dy<∞ a.e., the latter right-hand side tends to 0 a.e., as x → 1 and a → ∞.
Next we prove (A.6). By (A.5),∫ ∞

0

∫ 1

0
ḃ(x, t)2 dx dt =

∫ ∞

0

∫ 1

0

(
k̇(x, t)2 + 2k̇(x, t)

kt(x, t)

1 − x
+
(

kt(x, t)

1 − x

)2
)

dx dt. (A.9)

Integration by parts with the account of (A.8) yields, for almost all t,∫ 1

0
k̇(x, t)

kt(x, t)

1 − x
dx = −

∫ 1

0
kt(x, t)

(
k̇(x, t)

1 − x
+ kt(x, t)

(1 − x)2

)
dx,

so that ∫ 1

0
k̇(x, t)

kt(x, t)

1 − x
dx = −1

2

∫ 1

0

kt(x, t)2

(1 − x)2
dx.

Recalling (A.9) implies (A.6).

Appendix B. A nonlinear renewal equation

This section is concerned with the properties of the equation

g(t) = f (t) +
∫ t

0
g(t − s)+ dF(s), t ∈R+. (B.1)

It is assumed that f (t) is a locally bounded measurable function and that F(t) is a continuous
distribution function on R+ with F(0) = 0. The existence and uniqueness of an essentially
locally bounded solution g(t) to (B.1) follows from Lemma B.2 in [21].

Lemma 8. If the functions f and F are absolutely continuous with respect to Lebesgue measure,
then the function g is absolutely continuous too.
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Proof. Use Picard iterations. Let g0(t) = f (t) and

gk(t) = f (t) +
∫ t

0
gk−1(t − s)+ dF(s). (B.2)

The functions gk are seen to be continuous. Let ε > 0, T > 0, and 0 ≤ t0 ≤ t1 ≤ . . .≤ tl ≤ T .
Since gk → g locally uniformly (see [21, Lemma B.1]), the function g is continuous and
supksupt∈[0,T]|gk(t)| ≤ M for some M> 0. Note that

|
∫ ti

0
gk−1(ti − s)+ dF(s) −

∫ ti−1

0
gk−1(ti−1 − s)+ dF(s)|

≤
∫ ti

ti−1

|gk−1(ti − s)| dF(s) +
∫ T

0
1{s≤ti−1} |gk−1(ti − s) − gk−1(ti−1 − s)| dF(s). (B.3)

Let

ψ(δ) = sup0≤t0≤t1≤...≤tl≤T{
l∑

i=1

|f (ti) − f (ti−1)| + M
l∑

i=1

|F(ti) − F(ti−1)|:
l∑

l=1

(ti − ti−1) ≤ δ}

and

φk(δ) = sup0≤t0≤t1≤...≤tl≤T{
l∑

i=1

|gk(ti) − gk(ti−1)|:
l∑

l=1

(ti − ti−1) ≤ δ}.

By (B.2) and (B.3), for k ≥ 1,

φk(δ) ≤ψ(δ) + φk−1(δ)F(T). (B.4)

Let

φ(δ) = sup0≤t0≤t1≤...≤tl≤T{|g(ti) − g(ti−1)|:
l∑

l=1

(ti − ti−1) ≤ δ}.

Suppose that F(T)< 1. Since gk → g locally uniformly, as k → ∞, φk(δ) → φ(δ). Letting k →
∞ in (B.4) implies that φ(δ) ≤ψ(δ)/(1 − F(T)), so that φ(δ) → 0, as δ→ 0. Hence g(t) is
absolutely continuous on [0, T]. Next, as in [21], write, for t ∈ [0, T],

g(t + T) = f (t + T) +
∫ t+T

t
g(t + T − s) dF(s) +

∫ t

0
g(t + T − s) dF(s).

By what has been proved, the sum of the first two terms on the right-hand side is an absolutely
continuous function of t on [0, T]. The preceding argument implies that g(t + T) is absolutely
continuous in t on [0, T]. Iterating the argument proves the absolute continuity of g(t) on R+.
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