
The cascade to complexity: modeling
the evolution of first-of-a-kind
systems in problem-solving design
processes
Torben Beernaert 1,2,3, Pascal Etman 2, Maarten de Bock3 and
Marco de Baar 1,2

1Dutch Institute For Fundamental Energy Research (DIFFER), Eindhoven, The Netherlands
2Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven,
The Netherlands
3ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance
Cedex, France

Abstract
First-of-a-kind engineered systems often burst with complexity – a major cause of project
budget and time overruns. Our particular concern is the structural complexity of nuclear
fusion devices, which is determined by the amount and entanglement of components.We seek
to understand how this complexity rises during the development phase and how to manage
it. This paper formulates a theory around the interplay between a problem-solving design
process and an evolving designmodel. The design process introduces new elements that solve
problems but also increase the quantifiable complexity of themodel. Those elementsmay lead
to new problems, extending the design process. We capture these causal effects in a hierarchy
of problems and introduce two metrics of the impact of design decisions on complexity. By
combining and incorporating the Function-Behavior-Structure (FBS) paradigm, we create a
new problem-solving method. This method frames formulation, synthesis and analysis
activities as transitions from problems to solutions.We demonstrate ourmethod for a nuclear
fusion measurement system. Exploring different design trajectories leads to alternative design
models with varying degrees of complexity. Furthermore, we visualize the time-evolution of
complexity during the design process. Analysis of individual design decisions emphasizes the
high impact of early design decisions on the final system complexity.

Keywords: Complexity, Model-based systems engineering, Function-behavior-structure
modelling, Engineering design, Nuclear fusion

1. Introduction
Nuclear fusion is among the largest research and development (R&D) projects.
ITER, the first-of-a-kind experimental fusion reactor, currently under construction
in the south of France, is one of the most complex machines in the world. We are
concerned with the structural complexity of this machine, which relates to the
amount, diversity and entanglement of technologies that need to be developed and
integrated (Federici et al. 2016). Cost and duration of such R&D projects depend
highly on these aspects. It is in the designers’ best interest to manage structural

Received 10 May 2023
Revised 10 July 2024
Accepted 12 July 2024

Corresponding author
Pascal Etman;
L.F.P.Etman@tue.nl

© The Author(s), 2024. Published by
Cambridge University Press. This is
an Open Access article, distributed
under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/
4.0), which permits unrestricted
re-use, distribution and
reproduction, provided the original
article is properly cited.

Des. Sci., vol. 10, e28
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2024.27

1/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://orcid.org/0009-0000-7111-1435
https://orcid.org/0000-0003-0439-250X
https://orcid.org/0000-0003-4515-3468
mailto:L.F.P.Etman@tue.nl
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2024.27
https://doi.org/10.1017/dsj.2024.27

complexity. But this requires the answer to a fundamental question: How does this
kind of complexity manifest itself during the design process? Structural complexity
– hereafter simply referred to as complexity – is the main focus of this paper.

Uncertainty related to technical performance might be an important driver of
complexity. In early development stages, designers have to make conceptual design
decisions with only preliminary knowledge about their future implications (Simpson
et al. 1998; Tan, Otto, &Wood 2017). Committing to decisions is necessary, however,
to advance the engineering project. In the 18s-year-long conceptual design stage of
ITER, the project had generated around 4,000 scientific publications. This number
had reached 25,000 only 15 years after the conceptual design review. It seems that
knowledge output sharply increases toward late design stages.

Unfortunately, a solution trajectory that is promising in early stages may give
rise to new problems in later development. Such problems could have been avoided
if the right knowledge was available at the time. However, instead of revising an
earlier decision, designers have a tendency to solve such problems by adding more
design elements (Adams et al. 2021). Those elements will contribute to complexity,
further increasing the likelihood of problem propagation (Eckert, Clarkson, &
Zanker 2004; Watson et al. 2019).

Mirror technology is a characteristic example of the exploratory nature of R&D.
Modern fusion devices are equipped with many optical measurement systems that
feature metallic mirrors in close proximity to the fusion plasma (Costley et al.
2005). The hostile environment causes multiple problems that have led to the
addition of novel solutions: Extreme temperatures are managed through cooling
systems (Salewski et al. 2008), while newly developed cleaning systems remove any
optical contamination (Leipold et al. 2016; Ushakov et al. 2020; Stephan et al.
2021). But analysis shows that together, these cooling and cleaning systems will
lead to an electrical grounding problem. This problem can be resolved by adding
yet another element: a notch filter (Dmitriev et al. 2019). The complexity of the
system, in terms of number of components and interactions, has grown signifi-
cantly in this design trajectory.

We need a deeper understanding of how we can effectively solve unexpected
problems. Even under extreme uncertainty, it is good practice to solve the right
problem with a minimal amount of complexity. Our aim is to support designers in
making complexity-conscious design decisions, by studying the following ques-
tions:

• Which prior design decisions have led to the manifestation of a particular design
problem?

• Can we observe and control the complexity of an engineered system over time?
• How has each design decision contributed to complexity?

We seek to answer these questions via a newly proposed theoretical basis for the
manifestation of design problems. The theory revolves around a model of the
designed system that is subject to a series of design decisions. Each design decision
adds new elements, thus expanding the model. We mathematically formulate two
metrics that capture each decision’s contribution to complexity. The theory is then
specialized with the Function-Behavior-Structure (FBS) ontology, to create a
systematic problem-solving method. We demonstrate this method for a nuclear
fusion optical measurement system, illustrating system-level decision-making and
complexity management.

2/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

We start this paper with a literature background on design problems and
solutions, how to represent products and systems, techniques to manage complex-
ity, definitions of complexity, dependency structure matrices and relevant appli-
cations of systems engineering in nuclear fusion. We then define the core ideas of
this work by presenting our general theory of manifesting problems and complex-
ity. In the following section, we frame the theory in the FBS ontology. The final
section of this work comprises the demonstrations.

2. Background
Summers & Shah (2010) distinguish three aspects of design: the design problem,
the design process and the design product. We refer to the latter as the design
solution. It is this solution that seems to exhibit an ever-increasing complexity, and
somehow new design problems seem to manifest themselves in it.

The design problem is a statement of needs, requirements and objectives, which
in practice is often ambiguous and ill-structured (Jonassen, Strobel, & Lee 2006). It
is therefore commonplace for designers themselves to interpret and formulate
design problems (Daly et al. 2018). Problem exploration is an important aspect of
the design process (Martinec et al. 2021; Obieke, Milisavljevic-Syed, & Han 2021)
and even requires the generation of potential solutions (Zhang&Ma 2021). Indeed,
it seems natural that problems and solutions coevolve over time (Dorst 2019).
However, we have not seen systematic methods that trace arising problems during
the design process.

There are varying ideas about what happens in the design process, but most of
them have converged into three simple, yet powerful, notions: Function, Behavior
and Structure (FBS) (Gero 1990; Umeda et al. 1990). Function is what the product
is used for, structure is what it is, and behavior is what it does (Gero & Kannen-
giesser 2004). The FBS ontology has been at the basis of modern systematic
engineering design approaches (Pahl et al. 2007), helping engineers to define
essential design steps. One example is synthesis, the transition from function to
a structure that is recurring throughout literature (Brunetti & Golob 2000; Mathias
et al. 2011; Drave et al. 2020; Ramsaier et al. 2020).

Most current-day solutions are too complex to be viewed as a product of a
single function, a single behavior and a single structure. They are better represented
as systems, i.e., arrangements of interdependent products with multiple functions,
behaviors and structures. Thewidely acceptedV-model specifically defines decom-
position and integration activities to manage the holistic systems engineering
process (Forsberg & Mooz 1991).

A system’s complexity is dependent in part on its architecture: a mapping
between functions and physical components (Ulrich 1995). Designing an archi-
tecture is often framed as a single-level decision problem, for example, by function-
means analysis (Johannesson & Claesson 2005), and can therefore only explore a
limited solution space. Recent developments have moved to architecture design as
amultilevel decision problem (Bussemaker, Ciampa, &Nagel 2020; Panarotto et al.
2022). Thesemethods systematically generate diverse system architectures that can
be further analyzed and optimized. However, these works neither quantify com-
plexity nor analyze the contribution of each decision to the properties of an
architecture.

3/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

In practice, large-scale engineering projects have to deal with more terms than
just function, behavior and structure. Complexity in such projects is also a product
of stakeholders, requirements and many nontechnical factors (Watson et al. 2019;
Yang et al. 2019). Particularly in R&D of complex physical systems, budget and
schedule are dominated by modeling, prototyping and verification procedures.

A modern way to deal with such heterogeneous complexity is Model-Based
Systems Engineering (MBSE). MBSE envelopes techniques that apply models as
central, ‘single source of truth’ artifacts that formalize heterogeneous and multi-
disciplinary design information. The model can be inspected through viewpoints
that provide relevant information to stakeholders, whether they are in physics,
engineering, construction or procurement.Whenwe speak of amodelM, wemean
the most abstract representation of a design that includes, but is not limited to, a
system architecture.We refer to Estefan (2007) and Dickerson &Mavris (2013) for
a complete overview of MBSE development, and to Madni & Sievers (2018) for a
recent status quo of the field.

Systems theory is at the basis ofMBSE. It models a system asM¼ E,Rð Þ, with E
a set of entities andR a collection of relations onE (Lin 1999).We refer toE andR as
design elements. Depending on the modeling paradigm, elements may represent
components, requirements, use cases, functions, variables, etc. The model M¼
E,Rð Þ connects systems engineering to network theory, by interpreting a system as
a network with nodes E and edges R. This representation has enabled Sinha & de
Weck (2013) to implement network metrics in a mathematical definition of
structural complexity:

ξ Mð Þ¼
XN
i¼1

αiþ
XN
i¼1

XN
j¼1

βijAij

 !
ε Að Þ
N

, (1)

where N ¼ ∣E∣ is the number of nodes in the network, αi is the scalar internal
complexity of node ei ∈E, βij is the scalar complexity of edge ei,ej

� �
∈R, A is the

binary adjacency matrix of the network and ε Að Þ is the matrix energy. If node ei
represents a subsystem, its internal complexity αi may be acquired by applying
Equation (1) recursively. Otherwise, the complexity αi could be assessed via
Technology Readiness Levels (TRLs) (Sinha & de Weck 2013). The matrix energy
represents the ‘intricateness’ of the network structure and can be obtained through
singular value decomposition (Klema&Laub 1980). So in Equation (1), complexity
is determined by the number and internal complexity of the individual nodes and
edges, and the structure of the network. Determining values for α and β is out of the
scope of this work, so we assume 1 where possible.

Potts, Johnson, & Bullock (2020) argue that, while Equation (1) ‘is certainly a
useful representation of an engineered system for systems engineers, the complex-
ity of this representation is not necessarily the complexity of the system itself’.
Indeed, complexity can have many attributes, many of which are qualitative and
intangible (Watson et al. 2019). Even experienced systems engineers find it hard to
agree on the definition and importance of complexity (Potts et al. 2020).

Notwithstanding, Equation (1) has found some useful applications. Albeit in
very limited samples, Sinha & de Weck (2013) have observed that development
costs increase super-linearly with ξ . Raja, Kokkolaras, & Isaksson (2019) have used
this metric for analysis of integrated load-carrying structures in an aerospace
application. For a recent overview of other commonly used patterns and metrics

4/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

in network-based analysis of engineered systems, we refer to Paparistodimou et al.
(2020).

Finally, it is worth highlighting advances in Dependency Structure Matrix
(DSM) modeling techniques to manage complexity. A DSM is a matrix represen-
tation of a network model that can be analyzed, organized and annotated to reveal
critical aspects of complex problems (Eppinger & Browning 2012) and has been an
important tool in the study of complex architectures (Browning 2016; Wilschut
et al. 2018). Hamraz et al. (2013) have combinedDSMs and the FBS ontology into a
tool for multi-domain change management.

How are the above systems engineering methods represented in nuclear fusion
development? Most attention seems to be on requirements engineering (Cinque
et al. 2020), and axiomatic design, a systematic design method (Suh 1990;
Di Gironimo et al. 2015; Marzullo et al. 2017; Lanzotti et al. 2023).

We find only little work on system architectures: Grossetti et al. (2018) use
MBSE to define the architecture of heating and current drives;Moscato et al. (2022)
evaluate the functional performance of various conceptual tokamak cooling sys-
tems; Dongiovanni et al. (2018) have documented the systematic architectural
design of a neutron diagnostic subsystem, explicitly accounting for complexity; and
Beernaert et al. (2022) have used a system architecture as a framework to organize
multiparty engineering collaborations. All are affected by complexity, although
none of these works actively reduce it.

We identify a gap at the intersection of various fields. Problems and solutions
seem to coevolve during the design process, but there is nomethod to formalize the
dynamics of problem causality. Techniques proposed by Bussemaker et al. (2020)
and Panarotto et al. (2022) can generate diverse system architectures from a
multistage decision framework. However, they are unable to define the contribu-
tion of each decision to an architecture and do not include the evolution of
problems, solutions and complexity in time.

The question of complexity remains at the heart of nuclear fusion development.
Applications of system architecture techniques in nuclear fusion are sparse, but
there seems to be a growing awareness of their benefits (Wolff et al. 2018). Being
able to trace complexity as the design process unfolds will benefit the nuclear fusion
project on all levels.

We have begun to address these gaps in previous work, by proposing a method
to formalize problem manifestation and their impacts on engineering models
(Beernaert et al. 2021). We continue this research by including the FBS ontology
in our method. This leads to a more practical, systematic design method that we
demonstrate for a nuclear fusion application.

3. Theory of problem-solving
This section constitutes the main contribution of this paper, introducing a novel
theory of the relation between complexity and a problem-solving design process.

First, wemust define the dynamics of amodel-based design trajectory. LetMt be
a system designmodel, and observe its expansion over discrete time steps t. Refer to
Figure 1. In this sequence of model instances, every transition from Mt to Mtþ1

represents a problem-solving design process that addresses a problem p and adds
elements as a solution s. The collection of problems and solutions encountered in

5/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

this sequence are denoted as P and S, respectively. ModelM0 represents the context
of the system to be designed and defines the root design problem.

We define each of these design processes d∈D by a tuple d¼ p, s, tð Þ. We refer
to p as a local design problem and to s as a local design solution. Both p and s are sets
of design elements, i.e., subsets ofM. The time at which d is implemented is t. We
assume an incremental design sequence, i.e., only a single d can be implemented
at t. Design process d implies a mapping from problem to solution:

d : p! s: (2)

We assume that both problem and solution can be defined in terms of design
elements, such as requirements, components and parameters. The problem elem-
ents p are already present in the model before the design process, so p⊆Mt . The
solution, however, is described in newly generated elements. The model is
expanded to cover these solution elements: Mtþ1 ¼Mt ∪ s. We can also write
Mt as the union of an initial modelM0 and the outcome of all design processes that
have been implemented until time t:

Mt ¼M0 ∪ s j p, s, tdð Þ∈D and td ≤ tf g: (3)

Note thatM0 and s are sets of design elements, such thatMt becomes the union of
design elements: Mt ¼M0 ∪ s1 ∪ s2 ∪ … ∪ st .

A key assumption in our theory is the neutrality of design elements: An element
does not in itself imply a design problem or a design solution. In fact, we build this
theory on the presumption that a single element can be both a problem and a
solution at the same time.

What is a solution for one process may well become a problem for another.
Consider the chain of processes depicted in Figure 2. An initial modelM0 exhibits
some design problem that is the input of a problem-solving process d1 ¼ p1, s1, t1

� �
.

The outcome of that process adds new elements to the model, expanding it to
M1 ¼M0 ∪ s1. However, in a subsequent stage, those added elements pose a new
problem p2 that should be solved by d2. But evenM2 is not free of problems, and the
design process has to continue.

We adopt the following vocabulary, so that these dynamics can be properly
framed. All problems, except initial problems, manifest themselves as a result of a
design decision. We distinguish defined and discovered problems, depending on
the conditions for their manifestation. If the designer anticipated the problem
manifestation when making the decision, and made the decision in awareness of
that manifestation, we say that the problem has been defined by the designer.
Conversely, if the designer did not anticipate the problem, we say that the problem

Figure 1. A model expands over three subsequent design processes. Model Mt is a
subset of any subsequent models M > t .

6/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

has been discovered. Defined problems manifest themselves relatively soon after a
design decision – or simultaneously – while discovered problems manifest them-
selves at a later stage. Defined problems are not necessarily bad, as they can help
designers in decomposing and tracing the design process. We presume, however,
that discovered problems usually impact the design negatively, since by definition
theywere not accounted for in decision-making. This does notmean, however, that
a discovered problem can always be avoided.

When discovering a problem, we can do either of two things. We can solve the
problem by introducing new elements, continuing the chain and increasing
the design complexity. The other option – which may be more elegant – is to
avoid the problem by reconsidering an earlier design step. If we repeat process d1
and consider a different outcome (i.e., s01 instead of s1), we are on a different design
trajectory where problems p2 and p3 are potentially avoided. This is visualized by
design process d01 ¼ p1, s

0
1

� �
at some time increment when a different trajectory is

adopted. Note that in Figure 2, the time t of design process d is omitted.
Our modeling method is developed to identify and analyze cause–effect rela-

tions between problem-solving processes. The input data that are required from
designers include the problems that were encountered, in terms of design elements;
the solutions that were designed, also in terms of design elements; and the intended
mappings between them, which solution solves which problem.

3.1. Problem causality

We define that problem p is caused by solution s if solution s has introduced any
element that is describing problem p. This is easily identified as a non-empty

Problem
manifestation

Model
expansion

Figure 2. Design as a sequence of problem-solving processes. Each arrow represents
one process as the mapping from a problem to a solution, both in terms of design
elements of amodelM. Each process contains themanifestation of a design problem,
and the expansion of the design model with the design elements from a newly
generated solution. It can happen that a new problem manifests itself due to those
elements, which extends the sequence.

7/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

intersection of those sets. We use the arrow notation to signify that p manifests
itself due to s. The manifestation relations from solutions and the problem are
collected in the set Q, where each q∈Q is a tuple s,pð Þ and:

q : s! p ⇔ s ∩ p≠ ;: (4)

Figure 3 introduces the problem hierarchy, the causal structure of the design
process that represents both design decisions and problem manifestations. This
kind of graph, a directed acyclic graph, is necessary to study cause–effect relations
(Rötzer et al. 2022).

The problem hierarchy H¼ EH ,RHð Þ is a tuple of nodes EH and relations RH .
Problems and solutions form the nodes of the graph: EH ¼ P ∪ S. They are
visualized as triangles pointing upward and downward, respectively. The relations
are design processes and manifestations: RH ¼D ∪ Q. A solid arrow from a
problem to a solution signifies a design process, see Equation (2). As Figure 3
indicates, a single solution can cause multiple problems. A dashed arrow from a
solution to a problem signifies manifestation, see Equation (4).

A node’s vertical position in the hierarchy represents its rank that can be
obtained through partial ordering (Wallis 2012). Problems that do not manifest
themselves due to any design decision have rank 1 and are called root problems.
These are visualized at the top of the hierarchy. Problems that occur downstream,
i.e., manifest themselves due to a series of decisions, have a high rank and are placed
at the bottom of the hierarchy.

Alternative outcome

Rank 1

Rank 2

Rank 3

New problem

Avoided problem

Figure 3. Two similar problem hierarchies represent how alternative decision-making leads to different
design trajectories. Hierarchy B shows that p5 is avoided by selecting an alternative solution to p3, at the cost of
a new manifesting problem p6. The resulting design models are derived from Equation (3): MA ¼
∪ M0, s1, s2, s3A, s4, s5Af g and MB ¼∪ M0, s1, s2, s3B, s4, s6Bf g.

8/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

The problem hierarchy will be a helpful tool in design space exploration. It
compactly visualizes the design reasoning steps that have led designers to a
particular solution set. Critical decisions, those that lead to many problems, stand
out at the top of the hierarchy.

Problem hierarchy A in Figure 3 could be a formalization of the mirror
technology design process, given as an example in the introduction to this paper,
if we interpret that:

• p1 is the need to route light in proximity to the fusion plasma;
• s1 is the use of a metallic mirror, a response to p1;
• p2 is the risk of an overheating mirror, a direct consequence of s1;
• p3 is the problem of mirror surface contamination, also a consequence of s1;
• s2 represents a liquid cooling system, addressing p2;
• s3 represents a cleaning system, addressing p3;
• p4 is a problem only related to the cooling system, e.g., water leaks;
• s4 addresses the water leak problem through the use of dedicated seals;
• p5 is the electrical grounding issue that arises from the combination of the cooling
system s2 and the cleaning system s3; and

• s5 is the notch filter that is proposed to resolve p5.

This visual representation emphasizes the far-reaching, and potentially under-
estimated, consequences of the decision to use metallic mirrors.

The formal description of the problem hierarchy H¼ EH ,RHð Þ allows us to
define various sets that will support subsequent analyses. For any node h∈EH ,
we can collect all adjacent input and output nodes in sets X hð Þ and Y hð Þ,
respectively:

X hð Þ¼ h0 ∈ EH j h0 ! hð Þ∈RHf g (5)

and

Y hð Þ¼ h0 ∈ EH j h! h0ð Þ∈RHf g: (6)

For example, node s2 in hierarchy A of Figure 3 has a single input node and two
output nodes: X s2ð Þ¼ p2

� �
and Y s2ð Þ¼ p4,p5

� �
. We furthermore define the

recursive sets X∞ hð Þ as the nodes that can reach h, and Y∞ hð Þ as the nodes that
can be reached from h:

X∞ hð Þ¼ ∪
h0 ∈X hð Þ

h0f g∪X∞ h0ð Þð Þ (7)

and

Y∞ hð Þ¼ ∪
h0 ∈Y hð Þ

h0f g ∪ Y∞ h0ð Þð Þ: (8)

For example, that same node s2 can be reached from the three nodes X∞ s2ð Þ¼
p1, s1,p2
� �

and can reach the four nodes Y∞ ¼ p4, s4,p5, s5A
� �

The sets X∞ and Y∞ are essential to understand the precedents and conse-
quences of the way designers solve problems. Now that we have formalized the
dynamics of problem-solving, we can investigate its relation to the complexity of
the design model.

9/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

3.2. Complexity

We can use Equation (1) to calculate the complexity of the model as the design
process unfolds. If the complexity of any networkmodelM can be written as ξ Mð Þ,
then we can substitute Equation (3) to define complexity as a function of time:

ξ Mtð Þ¼ ξ M0 ∪ s j p, s, tdð Þ∈D and td ≤ tf gð Þ: (9)

Note that solutions s are sets of model elements.
Equation (9) can be used to plot the whole system’s complexity development

over a sequence of design iterations. But what can this tell us about the contribution
of each individual design process d?

It is helpful to introduce three sections of the modelM, as a function of design
process d¼ pd , sd , td

� �
. First, there isM� dð Þ, the subset of design elements that has

led to the problem pd . The elements in M� dð Þ are added by the solutions in
X∞ pd
� �

, i.e., those solutions that have led up to pd :

M� dð Þ¼M0 ∪ X∞ pd
� �

: (10)

Second, there is Mþ dð Þ, which adds the design elements that are generated by
process d:

Mþ dð Þ¼M� dð Þ ∪ sd: (11)

Finally, we can add the design elements that are generated by follow-up processes,
for which process d is partly responsible. These are the processes that deal with the
problems that manifest themselves due to sd :

Mþþ dð Þ¼Mþ dð Þ ∪ Y∞ sdð Þ: (12)

We use the collections M� dð Þ,Mþ dð Þ andMþþ dð Þ to characterize the evolu-
tion of the complexity as a function of the design choices. We define two impact
factors as

IL dð Þ¼ ξ Mþ dð Þð Þ� ξ M� dð Þð Þ (13)

and

IG dð Þ¼ ξ Mþþ dð Þð Þ� ξ M� dð Þð Þ: (14)

The local complexity impact IL is the difference in system complexity before
and after d and therefore reflects the direct contribution of solution sd . But what
about knock-on effects? If sd is a ‘bad’ design that leads to many problems, and
solving those problems would lead to more complexity, we would like to retrace
those effects to d. The global complexity impact IG does this, by adding the
complexity that was added due to manifested problems.

In practice, designers do not know beforehand whether a particular design
decision will lead to undesired problems. Such effects are easily underestimated.
Only in later stages will the true gravity of early-stage decisions appear (Tan
et al. 2017). This is nicely captured in IG, since this metric depends on Y∞ dð Þ.
This set increases as more and more downstream problems are solved. There-
fore, IG will increase over time. An illustration is provided in the demonstration
section.

10/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

If we view complexity ξ as just another attribute that depends on the design, the
theory becomes more widely applicable. We can replace complexity ξ by any
attribute X that depends on the design model, and Equations (9)–(14) can still be
applied. Considering, for example, the various Design-for-X studies, the theory
presented above allows traceability of any performance indicator over time and can
distill desired and undesired contributions of individual design decisions.

We have introduced a theory of how design models develop through a series of
problem-solving processes. Problems that manifest themselves due to a prior
decision can be easily identified by overlapping design elements. This dynamic
defines how themodelM develops over time and for different solution alternatives.
Additions to the model cause its complexity to increase, as is captured in two
derived network metrics.

3.3. Algorithmic approach

We summarize the theory presented into an algorithmic problem-solving method.
The following steps include problem identification, causal analysis, complexity
assessments and design revisions. They are intended to guide designers through the
various decision branches in the design process.

1. Initialize design model and problem hierarchy. Initialize the problem hier-
archy H¼ EH ,RHð Þ. The nodes of H are EH ¼ P ∪ S, with problems P¼; and
solutions S¼;. The relations ofH areRH ¼D ∪ Q, with design processesD¼;
and manifestations Q¼;.

2. Discover a design problem. Analyze the design model M. Can a design
problem be discovered in M?

Yes!Describe the discovered problem p in terms of design elements ofM and add it
to the set of design problems: p⊆M and P¼ P ∪ pf g. Continue with Step 3.

No ! The design is finished.

3. Trace problem causality. The elements in p might have been introduced by earlier
solutions. The causal relations between earlier solutions and the problem p can be
identified mathematically and added to Q:

Q¼Q ∪ s,pð Þ j s∈ S and s ∩ p≠ ;f g:

4. Avoid the problem. Investigate whether revising an earlier decision could
circumvent
p. First, collect the root problems Pr that have led to the manifestation of p. This
collection is Pr ¼ P ∩ X∞ pð Þ. The problems Pr were addressed in an earlier
design stage with limited knowledge about their consequences, namely, in
design processes Dr ¼ p0, s0, t0ð Þ∈D j p0 ∈Prf g. Given the current knowledge,
is there a good alternative to the outcome of any dr ∈Dr that could avoid p?

Yes! Retrace the design trajectory to dr by executing Step *. Then, shift from p to p0

and continue with Step 5.

No ! Continue with Step 5.

11/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

5. Add a solution. Generate a set of solution candidates, express them in terms of
design elements and make a selection. Formalize a new design process d¼
p, s, tð Þ for the selected candidate s at current time t. Add the solution s to the
model and to the problem hierarchy. If s implies follow-up problems that must
be managed, add these defined problems Pd to the set P. Update the sets as
follows:

M¼M ∪ s,

S¼ S ∪ sf g,
D¼D ∪ df g and

P¼ P ∪ pd ∈Pd j pd ⊆ M
� �

:

6. Evaluate earlier decisions. The addition of s and the corresponding increase in
complexity are a consequence of earlier decisions. It is likely that the complexity
was not accounted for when those decisions were made. Therefore, we recom-
mend to evaluate the complexity contribution of prior design processes in the
problem hierarchy. The design processes that have indirectly caused the com-
plexity in s are given by Dr ¼ p0, s0, t0ð Þ∈D j s0 ∈X∞ sð Þf g. For each process
dr ∈Dr , compute complexity metrics IL drð Þ and IG drð Þ. The local IL drð Þ is the
complexity impact that was expected at time t0, while the global IG drð Þ repre-
sents the actual impact at this moment. Therefore, a process that underesti-
mated future complexity impact at time t0 is indicated by IG drð Þ≫ IL drð Þ. Given
the current complexity impact of decision dr , could you revise that decision?

Yes! Retrace the design trajectory to dr by executing Step *. Then, shift from p to p0

and continue with Step 5.

No ! Continue with Step 7.

7. Address open problems. The problems Pd that were defined in Step 5 need to
be addressed. Defined but unaddressed problems are given by
Po ¼ p∈P j Y pð Þ¼ ;f g. Are there any open problems, i.e., is Po non-empty?

Yes ! Shift to an open problem po ∈Po and continue with Step 3.

No ! Continue with Step 2.

* Retrace design trajectory. Steps 4 and 6 can remove some processes from the
design trajectory. Any design elements inM associated with those processes need
to be removed, and the problem hierarchy needs to be updated. To retrace the
trajectory to design process d¼ p, s, tð Þ, update the sets:

M¼M∖ ∪ S ∩ Y∞ sð Þð Þ,
S¼ S∖Y∞ sð Þ,
P¼P∖Y∞ sð Þ,
D¼ p0, s0, t0ð Þ∈D j s0 ∈ Sf gand
Q¼ s0,p0ð Þ∈Q j p0 ∈ Pf g:

where the backslash symbol ∖ð Þ is the set difference operator, i.e., A∖B¼
a∈A j a∉Bf g. Return to the respective step.

12/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

4. Function-behavior-structure
The above theory can in principle use any network model M. We will now frame
the theory in a specific modeling paradigm, popularized in design science: FBS. So
far we have been using the terms problem, solution, design element and design
process in a rather general sense. In this section, we will make these terms specific
for the FBS paradigm.

Our ideas are based on the situated FBS framework by Gero & Kannengiesser
(2004). This framework contains ten specific classes of design elements and twenty
design processes between those elements. While this level of detail provides an
insightful contribution to design science, a simplified interpretation will be suffi-
cient for the scope of ourwork. The original situated FBS framework is visualized in
Figure 4.

Our simplified interpretation disregards the requirements as separate design
elements. Furthermore, we combine the design elements from different contexts

Figure 4. The situated FBS framework classifies design elements as requirements,
functions, structures and behaviors. Subsets of these elements play a particular role in
different contexts: the external world, the interpreted world and the expected world.
Arrows between elements represent twenty classes of a design process (Gero &
Kannengiesser 2004).

13/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

into functions (Fe, Fi, Fei), structures (Se, Si, Sei) and behaviors (Be, Bi, Bei). This
leads us to a simpler model of design, where there are only three possible processes:
formulation is the transition from behavior to function, process 16 in Figure 4;
synthesis is the transition from function to structure, processes 10 and 11 in
Figure 4; and analysis is the transition from structure to behavior, process 14 in
Figure 4.

Our theory frames each of these processes as a mapping from problem to
solution. Most designers start with formulating an intent to influence the behavior
of a given system. The formulation process df therefore takes a behavioral problem
pf as an input and provides a functional solution sf as an output. Once a functional
specification is established, designers generate the components that will perform
functionality. This synthesis process ds takes a functional problem ps as an input
and provides a structural solution ss as an output. Finally, designers analyze the
generated parts to determine their behavior in the working environment. The
analysis process da therefore takes a structural problem pa as an input and provides
a behavioral solution sa as an output. Our framing of the situated FBS framework
has led to a cycle of problem-solving, visualized in Figure 5. In the upcoming
demonstration section, we will use the colors blue to indicate function, orange to
indicate structure and green to indicate behavior.

Problems cannot and should not always be avoided: The outcome of a
formulation will always need to be synthesized, and the outcome of a synthesis
will always need to be analyzed. Hence, we would classify synthesis and analysis
problems as defined problems. However, the problems we would want to avoid
are those that manifest when an analysis discovers undesired behavior. Those
discovered problems would need to be addressed in another formulation-
synthesis-analysis cycle. This cycle only ends after an analysis shows no new
design problems.

In the remainder of this section, we will introduce a network representation of
FBS design elements, i.e., nodes and edges of M. Then we propose which of these
elements we use to describe which class of problem and solution. Finally, we
explain how to visualize an FBS network in a product DSM.

Synthesis

AnalysisFormulation

Function Structure

Behavior

Figure 5. Three FBS problem-solving processes form an iterative design cycle. The
overlapping input and output of two processes signifies a causal problem manifest-
ation.

14/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

4.1. Network representation

We derive from the situated FBS framework a network model with three classes of
nodes and six classes of edges. Figure 6 shows these design elements. We will refer
to sets of nodes by single letters and to sets of edges by double letters.

Nodes in our FBS model represent functions F, structures C and behaviors B.
We use the letter C for structures, in order to avoid confusion with the set of
solutions S. Functions are the tasks that the design should perform, structures are
its physical components and behaviors are the physical phenomena it exhibits. In
the words of Gero &Kannengiesser (2004): Function describes what a design is for,
structure describes what it is and behavior describes what it does.

Edges between nodes of the same class are either functional FF, structural CC
or behavioral BB dependencies. A functional dependency is directed, specifying
that one function requires another function; a structural dependency specifies the
common geometrical features of two objects; and a behavioral dependency speci-
fies the coupling between physical phenomena. Structural and behavioral depend-
encies are often modeled as undirected edges.

This leaves us with three mappings between nodes of different classes. The
mappings FC define which function is performed by which structure, and the
mappings CB define which structure exhibits which behavior. Finally, the map-
pings FB define which function is intended to influence which behavior. We
consider the latter as a functional dependency between the behavior of an existing
component and the function of a to-be-designed component. For example, the
function of a new cooling system (e.g., ‘extract heat’) is to influence the behavior of
an existing camera (e.g., ‘thermodynamics’).

As such, design model M is the union of the sets:

M¼ ∪ F,B,C,FF,BB,CC,FB,FC,CBf g: (15)

Each node is a description of function, behavior or structure that can in itself
contain various design statements on what is desired or what is expected. As such,
functional, behavioral or structural requirements can be part of any of these
respective nodes.

Performs

Exhibits

Structure

Behavior

Influences

Function
Functional

dependency

Behavioral

dependency

Structural

dependency

Figure 6. An FBS network model contains three classes of nodes and six classes of
edges.

15/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

4.2. Problems and solutions

We can now allocate the nodes and edges of our network model to the problems
and solutions of our problem-solving cycle:

• The formulation problem pf is about expressing the behavior B of a contextual
system that needs to be changed or improved. The undesired behavior may also
arise from interactions between behaviors, BB.

• The formulation solution sf is defined in terms of new functions F that need to be
introduced, the functional dependencies FF and FB indicating which behavior of
the contextual system is to be changed by the new functions.

• The synthesis problem ps is expressed in exactly the terms of a formulation
solution: the desired new functionalities F and dependencies FF and FB. These
three sets of design elements need to be implemented by structural features.

• The synthesis solution ss consists of the newly generated components C, the
newly introduced structural dependencies CC and the mapping between func-
tions and components FC.

• The analysis problem pa is to derive the behavior of a set of components C and
component dependencies CC.

• The analysis solution sa consists of the discovered behavior B and behavioral
dependencies BB of the system in design, as well as the attribution of behavior to
components CB.

Table 1 summarizes the analogy between the situated FBS framework and our
interpretation in problem-solving.

4.3. Visualization

We have already introduced the general problem hierarchy in Figure 3 to support
designers in their decision-making process. In the case of FBS modeling, the

Table 1. Employing the situated FBS framework (Gero & Kannengiesser 2004) in our problem-solving
theory has led to a network model with nodes F, B and C, and edges FF, BB, CC, FB, FC and BC.
Design processes 10, 11, 14 and 16 are interpreted as three problem-solving processes and defined in
terms of the network model

Situated FBS Problem-solving

Model

Function Fe, Fi, Fei Function F, FF
Behavior Be, Bi, Bei Behavior B, BB
Structure Se, Si, Sei Structure C, CC
Requirements R –

– Mappings FB, FC, CB

Process

Process 16
Formulation df pf ,sf , t

� �
, with problem

pf B,BBð Þ and solution sf F,FF,FBð Þ

Processes 10 and 11
Synthesis ds ps, ss, t

� �
, with problem ps F,FF,FBð Þ

and solution ss C,CC,FCð Þ

Process 14
Analysis da pa, sa, t

� �
, with problem pa C,CCð Þ

and solution sa B,BB,CBð Þ

16/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

problems and solutions of the hierarchy will represent either formulation, synthe-
sis or analysis.

Additionally, designers need to inspect their FBS model at different times and
for alternative decisions. There aremany possibilities to visualize such amodel, but
we propose to use a product DSM (Eppinger & Browning 2012).

The product DSM represents a system as the arrangement of components and
their interfaces. We project functional, structural and behavioral dependencies
from our FBS model onto this DSM. The leading elements on the axes of the DSM
are structural elementsC. Structural interfacesCC connect two structural elements
and therefore appear as symmetric off-diagonal entries in the DSM.

Functional and behavioral dependencies FF, FB andBB do not directly connect
to structural elements. They do, however, connect indirectly.

If two components (c1 and c2) are each related to a function (c1 ! f 1 and
c2 ! f 2), and those functions have a mutual dependency (f 1 ! f 2), then we can
presume that there is a functional dependency between the two components
(c1 ! c2). The presumed directed dependency can then be visualized in the product
DSM. Behavioral dependencies are derived in the sameway but yield an undirected
dependency in the DSM. Figure 7 visualizes this process.

What practical advice would our method give to designers that use the FBS
paradigm? The problem hierarchy will show a recurring sequence of formulation,
synthesis and analysis problems. This should motivate designers to avoid down-
stream problems. Revising a synthesis process could lead to geometrical reshaping
or even the use of another technology. Reanalyzing a structural system could lead
to a more accurate understanding of a behavioral problem. Finally, reformulating
function to change a problem-solving intent might allow other solution architec-
tures.

In this section, we have specialized our general theory for the FBS modeling
paradigm. Next we demonstrate how the proposed method can be used in a fusion
diagnostics-related design problem.

5. Demonstration
The Visible Spectroscopy Reference System (VSRS) is one of the diagnostic
subsystems to be integrated in ITER. The VSRS is an optical diagnostic system

Function

Structure Structure

Function

Behavior Behavior

Structure A

Functional

Behavioral

Structural

Structure B

Structure C

Structure D

S
tr

u
ct

u
re

 A

S
tr

u
ct

u
re

 B

S
tr

u
ct

u
re

 C

S
tr

u
ct

u
re

 D

Figure 7. Left: Behavioral and functional dependencies are projected to their respect-
ive structures. Right: Proposed DSM to visualize the functional, behavioral and
structural interfaces between structures. The DSM visualizes that A is a highly
integrative component and that B and C form a cohesive module.

17/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

that has the role of collecting light emitted by the high-temperature plasma where
the fusion process occurs and conducting real-time spectroscopic measurements.
These measurements then provide data on the state of the plasma that can be used
for machine protection and plasma control. Such functionalities are indispensable
for operating ITER.

The VSRS generally consists of three kinds of components that implement a
range of technologies: optical elements, such as mirrors, fibers and windows;
measurement devices including a polychromator and multiple spectrometers;
and electronic devices comprising data processors, analog and digital controllers
and network equipment. Figure 8 gives a simple sketch of the VSRS.

In the following sections, we treat two problems. First, with a rather minimal
view of the VSRS we show how alternative decisions lead to alternative problems
and alternative design models. Second, we increase the granularity of the models.
This allows us to focus on the development of the system over time, and we can
identify those decisions that have most contributed to its complexity.

5.1. A simple model

This simple model of the VSRS design captures a very typical problem in low-
maturity systems development. It revolves around a single critical synthesis
decision: whether to use a glass fiber or a metallic mirror to transport light. At
this point in time, the designer lacks detailed knowledge about any downstream
issues that may occur but has to make a preliminary decision nevertheless. If in the
future a problem is discovered, the designer quickly needs to assess the impact of
revising the earlier decision. How can our method help the designer?

Let us first define an initial model M0 from which to explore our alternative
design trajectories. Suppose that the designer has selected the metallic mirror: case
A. We break down the development process into the six subsequent formulation,
synthesis and analysis processes

Mirrors 1-8
Shutter

Support rails

Actuators, left to right:
Shutter pneumatics, RF matchbox, Hexapod stage

Bioshield
(concrete block to stop neutrons)

Optical fibre bundle Optical equipment
(Calibration sources, auxiliary cameras, ...)

Optical measurement devices
(Polychromator, spectrometers)

Viewing dump
(optical target)

Control equipment

Data processors

Figure 8. The Visible Spectroscopy Reference System (VSRS) is an optical measurement system in ITER.
From left to right: The toroidal fusion chamber emits a pink light. That light is relayed through a sequence of
eight mirrors. An optical fiber bundle transports the light to a separate building with normal environmental
conditions. The light is analyzed by a polychromator and multiple spectrometers and processed by electronic
equipment. The remaining components fulfill auxiliary functionalities, such as controlling a shutter, cleaning
the mirrors in-vacuum and aligning and calibrating optics.

18/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

DA ¼
df p1, s1,1
� �

df p4, s4,4
� �

ds p2, s2,2
� �

ds p5, s5,5
� �

da p3, s3,3
� �

da p6, s6,6
� �

8><
>:

9>=
>; (16)

where d p, s, tð Þ defines process d in terms of a design problem p, a design solution s
and the time t when the process occurred. The elements of M0 and the processes
and solutions in DA are visualized in Figure 9.

These processes represent two FBS cycles, as shown in Figure 5. We can use
Equation (4) to derive problem causality. This reveals a linear problem hierarchy
without branches.We refer to this problem hierarchy as the nominal solution path,
shown in Figure 10.

After this series of decisions, Equation (3) dictates that the FBS model is the
union of all the nodes and edges shown in Figure 9. Equation (9) quantifies the
complexity of the system as ξ ¼ 277. At this point, the designer is discontent,
particularly because of the burden of developing an auxiliary cooling system. This
was not anticipated.

Seeing the importance of their earlier decisions, the designer is triggered to
think of an alternative solution. A glass fiber bundle is a working principle that can
transport light and could therefore be used instead of a metallic mirror. This
decision is part of the synthesis process p2 ! s2. An alternative path opens up at p2:
case B. The designer explores this path through the processes

Analysis

Synthesis

FormulationFormulation

Synthesis

Analysis

Transport light

Mirror

Analyze light

Camera

Fusion

plasma

Fusion

plasma

Mirror

Nuclear fusion

Heating

Deformation

Reflection

Mirror

Nuclear fusion

Transport light

Analyze light

Nuclear fusion

Heating

Heating

Extract heat

Extract heat

Cooling

system

Cooling

system

Mirror

Cooling

system

Thermodynamics

Heating

Causes

Fusion

plasma Controller

Plasma control

Plasma control

Transport light

Analyze light

Nuclear fusion

Plasma control

Controller Mirror

Heating

Extract heat

Nuclear fusion
Plasma control

Causes

Causes

Causes

Causes

Figure 9. Six problem-solving processes have led to the nominal VSRS design. We discover five causality
relations that indicate a linear decision-making sequence.

19/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

DB ¼
df p1, s1,1
� �

ds p2, s
0
2,2

� �
da p03, s

0
3,3

� �
8><
>:

9>=
>;: (17)

Figure 11 defines the model elements of this alternative solution path.
The new mapping p2 ! s02 reflects the decision to implement a fiber bundle

instead of a mirror to transport light. Analyzing that system (p03 ! s03) shows new
behavior regarding optical transmission and darkening. In contrast to the mirror,
the fiber bundle is not sensitive to thermal displacements that affect its optical
behavior. However, glass fibers tend to darken over time when placed in a
radioactive environment. This may pose a problem in the future. This example
clearly demonstrates how the follow-up complexity of a cooling system can be
limited by avoiding an identified problem.

Alternative solution path

Nominal solution path

Figure 10. The problem hierarchy shows relations between functional (blue), behavioral (green) and
structural (orange) problems and solutions. After a nominal development path, a shorter solution path is
discovered by reconsidering the solution to p2: to use a fiber bundle instead of a metallic mirror.

Synthesis

Analysis

Transport light

Fibre bundle

Analyze light

Camera

Fusion

plasma

Nuclear fusion

Darkening

Optical

transmission

Fibre bundle

Transport light

Analyze light

Nuclear fusion

Plasma control

Controller

Fusion

plasma

Fibre bundle

Causes

Figure 11. The problem-solving processes of an alternative development path. Using
a fiber bundle instead of a metallic mirror leads to a shorter development and a
simpler architecture.

20/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

The problem hierarchy is now significantly shorter, see Figure 10. The DSM
representation of both alternative solution paths in Figure 12 shows that the
cooling system is not anymore in the design. Also, the complexity of this design
is considerably less than before: ξ ¼ 127.

There may still be unidentified problems ahead, but for now the designer has
more confidence in the fiber bundle solution s02. The rejectedmirror solution s2 can
still play an important role in design justification. In large development projects,
multiple alternative solutions are actually explored in parallel. Our approach can
play a supporting role in such efforts.

We have visualized the chain of decisions that has led to the current design,
realized the potential of revising an early decision, systematically explored an
alternative solution and automatically generated its corresponding design model.
Now let’s focus on the development of complexity over time.

5.2. A larger model

This demonstration revolves around a much larger FBS model, comprising
71 nodes (20 functional, 18 structural and 33 behavioral) and 134 edges. The
model was set up after the conceptual design phase through informal interviews
with a system expert. We framed the major design decisions up to that point in
terms of formulation, synthesis and analysis processes.

Table A.2 in the Appendix shows the 21 processes that were established, ranked
in order of occurrence in the development process. Thus each t¼ 1,2,… represents
a time step when both a problem was identified and a solution was generated.
Going through each individual process, the expert explained in detail the objectives
and risks of the problem that was identified, and the contents of the solution that
was provided.We then defined each problem and solution in FBS design elements.
The problems are defined in the Appendix, in Table A.3, and the solutions in
Table A.4. The initial model is given in Table A.1, and Table A.5 lists all the nodes
in the model by name.

In the following sections, we present the results obtained by our method. First,
we show the identified problem hierarchy, then we discuss the time-evolution of
complexity and we finish this section by generating intermediate design models.

5.2.1. Problem hierarchy
The nodes of the problem hierarchy are given by problems P and solutions S, both
of which are specified in Tables A.3 and A.4. The edges of the problem hierarchy
consist of problem-solving dependencies P! S and causal dependencies S! P.

Mirror

Camera

Fusion plasma

Functional

Behavioral

Structural

Cooling system

Controller

Fibre bundle

Camera

Fusion plasma

Controller

Figure 12. TwoDSMs represent the outcome of two solution paths with architectural
design alternatives: one using a mirror (left) and one using a fiber bundle (right).

21/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

Problem-solving dependencies are also specified by the designer (Table A.2), so we
only need to derive the set of causal dependencies S! P to finalize the problem
hierarchy. Equation (4) identifies 20 of these dependencies. Figure 12 shows the
resulting hierarchy.

The hierarchy ranks design decisions from essential (top) to supportive
(bottom). It shows us three levels of FBS processes, i.e., subsequent formulation,
synthesis and analysis. The level 1 design process brings us from p1 to s3 and
captures the basic design decisions to solve the root problem. The level 2 processes
go from p4, p7 and p10 to s6, s9, s12 and s15, dealing with the consequences of our
initial design. Finally, level 3 processes deal with leftover problems p15 and p18. The
visualization will support designers in identifying high-level opportunities for low-
level problem avoidance.

5.2.2. Complexity
One of our primary objectives was to monitor the evolution of complexity during
the VSRS development process. Refer to Figure 13. We do this by evaluating
Equation (9) for every t in Table A.2. At every time step, there is a new solution
that increases the complexity (see also Figure 2). The left plot of Figure 14 shows the
resulting development of complexity over time. We see a steady increase in
complexity as more and more design decisions are made.

A secondary objective is to identify the contribution of individual processes to
complexity. In the right plot of Figure 14, we present the development of the global
complexity impact IG (Equation 14) of three solutions: s1, s7 and s10. You will find
that these processes are in characteristic places of the problem hierarchy, Figure 13.
The lines represent how the IG of each process was evaluated at different points in
time.

The evolution of the global complexity impact IG of solution s1 is represented by
the blue line. Solution s1 is the outcome of the first design process and therefore
appears at the top of the problem hierarchy. The hierarchy shows that all subse-
quent problems (in)directly manifest themselves from this outcome. The com-
plexity of every other solution is accounted for in the IG of solution s1, which is why
the curve closely follows the trend of the overall complexity. As these solutions are
added to the model, the plot shows that solution s1 has a bigger and bigger
contribution to complexity.

The global complexity impact of solution s10 as a function of time is represented
by the red line. We see that this solution added some elements at t¼ 10 but caused
only a single problem. Because solution s10 is not responsible for any of the
complexity added at t > 12, the line flattens. Note that this can be verified by the
position in the problem hierarchy.

Finally, the IG of solution s7 is represented by the green line. This solution
follows a similar trend to solution s10: The curve flattens after some initial
complexity, indicating closure of one branch of development. But then, unexpect-
edly, problem p14 was identified. A second increase in IG shows that the decisions
made in solution s7 lead to more complexity than initially thought.

We conclude from these graphs that it is solution s1, obviously, that has the
highest impact on the system. This is in line with claims that costs, schedule and
technical performance of engineering projects are mostly determined by early-

22/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

stage decision-making. The course of solution s10 is an indication of good decisions
that do not impact complexity in later stages. However, the second increase in IG of
solution s7 should serve as a warning: This process has caused an unforeseen
problem.

Solving an overheating problem through

measuring and controlling the plasma

Implementing level 1 functionality through

optical components

Analysis shows thermal, optical

and mechanical behavior

Three behavioral problems emerge. Left to right:

Mirror deformation, mirror contamination,

and optical properties change over lifetime.

Four support functionalities are proposed.

Level 2 support systems are synthesized. Left to right:

Alignment, cleaning, shutter, and calibration system

Analysis leads to behavior of support systems.

The cleaning and calibration system behavior is coupled.

Two behavioral problems emerge.

Left: Shutter actuation problem

Right: Retroreflector contamination

Level 3 support systems are synthesized:

A shutter drivetrain and a shutter protector.

Analysis updates the behavior of the system.

No more problems emerge: the design is finished.

Level 1

Level 2

Level 3

Figure 13. Problem hierarchy of the VSRS design process. Green, blue and orange nodes, respectively,
represent behavioral, functional and structural problems and solutions. The problems and solutions are
numbered in order of appearance in the design process, as listed in Table A.2. In the following section, the
three highlighted solutions will be analyzed in greater depth.

23/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

5.2.3. Model expansion
We know now how the complexity of the VSRS has developed over time. Inspect-
ing the design model at different stages will give us complementary insight into
how its architecture grows. We have made three product DSM snapshots at the
beginning, middle and end of the development process. Figure 15 compares
these DSMs.

We see that the initial DSM contains no functional interfaces. It represents the
initial design problem as a behavioral one, before any design intent is formulated.
Over time, more components and interfaces contribute to complexity.

The DSMs also show that the modularity of the design changes over time.
Consider the differences between thematrix in themiddle and the one on the right.
The computer c6 was initially placed in a module with five other components.
However, at a later stage the computer became more centrally connected and was
thereforemoved to the bus. Thismeant that the heating beam c1, the spectrometers
c5 and the light source c12 could be removed from the module as well and are now

Figure 14. Left: Growth of system complexity over the development process, as computed from Equation (9).
Right: Contribution of three characteristic processes, evaluated over time by the global complexity impact
(Equation 14). The close similarity between the black line in the left plot and the blue line in the right plot
indicates that solution 1 has been highly influential in the evolution of complexity. The difference between
these lines is the complexity that can be attributed to the initial model M0.

Figure 15. Product DSMs representing the VSRS at the beginning (t¼ 0), middle (t¼ 11) and end (t¼ 21) of
the development process.

24/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

more independent. Finally, the rightmostmatrix introducesmore components that
form new modules.

Architectural changes in the technical system often have a large impact on the
developing organization and its strategies. Analyzing architectural patterns
through time provides a systematic means to adapt, for example, by redistributing
responsibilities and redefining organizational structures.

6. Closing remarks
Designers can only solve problems effectively if provided with the right tools and
techniques. In this paper, we took aim at the case of arising problems. These often
unexpected problems appear in late design stages of solution search as a conse-
quence of earlier decisions. We observe that solving such problems can lead to
undesired system complexity and, unfortunately, more problems. Our objective is
to show designers the cause–effect relations in their decision-making process. This
will motivate them to try to avoid problems and complexity by reconsidering a
prior design decision.

We have presented a theoretical basis for the interplay between problems and
solutions.We consider both problems and solutions as elements of a designmodel,
and formalize two causal relations: First, as a conscious design process, a solution
adds elements to the model in order to solve a problem. Second, a problem
manifests itself due to a solution if that solution has added an element that also
represents a problem. We visualize these relations in a problem hierarchy. We
furthermore introduce two impact factors that quantify the contribution of each
decision to the complexity of the design.

Our theory of problem-solving is then merged with the FBS paradigm. The
result is a systematic problem-solvingmethod that specializes design processes and
problem causality: formulation, synthesis and analysis are the specific design
processes that connect functional, behavioral and structural problems and solu-
tions. These elements are visualized in a product DSM. Instances of this DSM can
be automatically generated to explore the time-evolution of alternative solution
paths.

We have illustrated our design method in two cases of the VSRS, an optical
measurement system for nuclear fusion reactors. A simple example with six design
steps shows how two alternative solution paths lead to different manifesting
problems and different system complexity. The following demonstration contains
21 design steps and focuses on the evolution of the system through time. We are
able to monitor the growing complexity throughout the design process and can
assess the impact of each individual decision on the overall complexity.

Nuclear fusion reactors are already complex enough, while the search for a
viable implementation of this technology is still ongoing. Similar complexity
cascades arise also in many other first-of-a-kind development projects in big
science and engineering. Let us try to avoid unnecessary problems and manage
their complexity.

Acknowledgements
We express our sincere gratitude to the ITER Port Plugs and Diagnostics Depart-
ment, for providing access to the Interface Database. We would also like to thank

25/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

the anonymous reviewers of this journal for their constructive feedback, which has
led to significant improvements to this paper.

Nomenclature
M Design model consisting of design elements
E Entities of a design model
R Relations of a design model
ξ Structural complexity, a scalar attribute of a design model
D Set of design processes, each processmapping a problem into a solution
P Set of design problems
S Set of design solutions
H Problem hierarchy, representing the causal structure of the design

process by problems and solutions
X hð Þ Set of input nodes to node h∈H
X∞ hð Þ Set of nodes from which through hierarchy H node h∈H can be

reached
Y hð Þ Set of output nodes from node h∈H
Y∞ hð Þ Set of nodes that can be reached through hierarchy H departing from

node h∈H
IL dð Þ Local complexity impact due to design process d∈D
IG dð Þ Global complexity impact due to design process d∈D
F Functions of a system
B Behaviors of a system
C Structural components of a system

Disclaimer
The views and opinions expressed herein do not necessarily reflect those of the
ITER Organization.

References
Adams, G. S., Converse, B. A., Hales, A. H., & Klotz, L. E. (2021). People systematically

overlook subtractive changes. Nature 592(7853), 258–261; doi:10.1038/s41586-021-
03380-y.

Beernaert, T., Etman, P., De Bock, M., Classen, I., & De Baar, M. (2021). Tracing the
emergence of design problems and their impacts on the complexity of engineering
solutions. Proceedings of the Design Society 1, 3229–3238. doi:10.1017/pds.2021.584.

Beernaert, T., Etman, P., De Bock, M., De Baar, M., & Classen, I. (2022). Challenges of
big-science: A matrix-based interface model to manage technical integration risks in
multi-organizational engineering projects. In DS 121: Proceedings of the 24th Inter-
national DSM Conference (DSM 2022), Eindhoven, The Netherlands, October, 11–13,
2022, pp. 1–10. The Design Society; doi:10.35199/dsm2022.01.

Browning, T. R. (2016). Design structure matrix extensions and innovations: A survey and
new opportunities. IEEE Transactions on Engineering Management, 63(1), 27–52; doi:
10.1109/TEM.2015.2491283.

26/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1038/s41586-021-03380-y
https://doi.org/10.1038/s41586-021-03380-y
https://doi.org/10.1017/pds.2021.584
https://doi.org/10.35199/dsm2022.01
https://doi.org/10.1109/TEM.2015.2491283
https://doi.org/10.1017/dsj.2024.27

Brunetti, G., &Golob, B. (2000). A feature-based approach towards an integrated product
model including conceptual design information. Computer-Aided Design, 32(14),
877–887; doi:10.1016/S0010-4485(00)00076-2.

Bussemaker, J. H., Ciampa, P. D., & Nagel, B. (2020). System architecture design space
exploration: An approach to modeling and optimization. In AVIAA Aviation 2020
Forum; doi:10.2514/6.2020-3172.

Cinque, M., De Tommasi, G., De Vries, P. C., Fucci, F., Zabeo, L., Ambrosino, G.,
Bremond, S., Gomez, I., Karkinsky, D., Mattei, M., Nouailletas, R., Pironti, A.,
Rimini, F. G., Snipes, J. A., Treutterer, W., & Walker, M. L. (2020). Management of
the ITER PCS design using a system-engineering approach. IEEE Transactions on
Plasma Science 48(6), 1768–1778; doi:10.1109/TPS.2019.2945715.

Costley, A. E., Sugie, T., Vayakis, G., &Walker, C. I. (2005). Technological challenges of
ITER diagnostics. Fusion Engineering and Design 74, 109–119; doi:10.1016/j.
fusengdes.2005.08.026.

Daly, S. R.,McKilligan, S., Studer, J. A.,Murray, J. K., & Seifert, C. M. (2018). Innovative
solutions through innovated problems. International Journal of Engineering Education
34(2(B)), 695–707.

Di Gironimo, G., Lanzotti, A., Marzullo, D., Esposito, G., Carfora, D., & Siuko, M.
(2015). Iterative and participative axiomatic design process in complex mechanical
assemblies: Case study on fusion engineering. International Journal on Interactive
Design and Manufacturing (IJIDeM) 9(4), 325–338; doi:10.1007/s12008-015-0270-7.

Dickerson, C. E., &Mavris, D. (2013). A brief history of models and model based systems
engineering and the case for relational orientation. IEEE Systems Journal 7(4), 581–592;
doi:10.1109/JSYST.2013.2253034.

Dmitriev, A. M., Babinov, N. A., Bazhenov, A. N., Bukreev, I. M., Elets, D. I., Filimonov,
V. V., Koval, A. N.,Kueskiev, G. S., Litvinov, A. E.,Mikhin, E. E., Razdobarin, A. G.,
Samsonov, D. S., Senitchenkov, V. A., Solovei, V. A., Terechenko, I. B., Tolstyakov,
S. Y., Varshavchik, L. A., Chernakov, P. V., Chernakov, A. P., Chernakov, A. P.,
Tugarionov, S. N., Shigin, P. A., Leipold, F.,Reichle, R.,Walsh,M.&Pflug, A. (2019).
RF plasma cleaning of water-cooled mirror equipped with notch filter based on shorted
lambda/4 line. Fusion Engineering and Design 146, 1390–1393; doi:10.1016/j.fusen
gdes.2019.02.090.

Dongiovanni, D. N., Esposito, B., Marocco, D., & Marzullo, D. (2018). Design space
exploration for architecture selection: Radial Neutron Camera nuclear fusion diagnostic
study case. Fusion Engineering and Design 137, 378–389; doi:10.1016/j.fusengdes.
2018.10.020.

Dorst, K. (2019). Co-evolution and emergence in design. Design Studies 65, 60–77; doi:
10.1016/j.destud.2019.10.005.

Drave, I., Rumpe, B., Wortmann, A., Berroth, J., Hoepfner, G., Jacobs, G., Spuetz, K.,
Zerwas, T., Guist, C., & Kohl, J. (2020). Modeling mechanical functional architectures
in SysML. In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, pp. 79–89. IEEE; doi:10.1145/3365438.
3410938.

Eckert, C., Clarkson, P. J., & Zanker, W. (2004). Change and customisation in complex
engineering domains. Research in Engineering Design 15(1), 1–21; doi:10.1007/s00163-
003-0031-7.

Eppinger, S. D., & Browning, T. R. (2012). Design Structure Matrix Methods and Appli-
cations (1st ed.). MIT Press.

Estefan, J. A. (2007). Survey of model-based systems engineering (MBSE) methodologies.
INCOSE MBSE Focus Group 25(8).

27/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1016/S0010-4485(00)00076-2
https://doi.org/10.2514/6.2020-3172
https://doi.org/10.1109/TPS.2019.2945715
https://doi.org/10.1016/j.fusengdes.2005.08.026
https://doi.org/10.1016/j.fusengdes.2005.08.026
https://doi.org/10.1007/s12008-015-0270-7
https://doi.org/10.1109/JSYST.2013.2253034
https://doi.org/10.1016/j.fusengdes.2019.02.090
https://doi.org/10.1016/j.fusengdes.2019.02.090
https://doi.org/10.1016/j.fusengdes.2018.10.020
https://doi.org/10.1016/j.fusengdes.2018.10.020
https://doi.org/10.1016/j.destud.2019.10.005
https://doi.org/10.1145/3365438.3410938
https://doi.org/10.1145/3365438.3410938
https://doi.org/10.1007/s00163-003-0031-7
https://doi.org/10.1007/s00163-003-0031-7
https://doi.org/10.1017/dsj.2024.27

Federici, G., Bachmann, C., Biel, W., Boccaccini, L., Cismondi, F., Ciattaglia, S., Cole-
man, M.,Day, C.,Diegele, E., Franke, T., Grattarola, M.,Hurzlmeier, H., Ibarra, A.,
Loving, A.,Maviglia, F.,Meszaros, B.,Morlock, C., Rieth, M., Shannon, M., Taylor,
N., Tran, M. Q., You, J. H.,Wenninger, R. & Zani, L. (2016). Overview of the design
approach and prioritization of R&D activities towards an EU DEMO. Fusion Engin-
eering and Design 109–111, 1464–1474; doi:10.1016/j.fusengdes.2015.11.050.

Forsberg, K., & Mooz, H. (1991). The relationship of system engineering to the project
cycle. INCOSE International Symposium 1(1), 57–65; doi:10.1002/j.2334-5837.1991.
tb01484.x.

Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. AI
Magazine 11(4), 26–36.

Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure
framework. Design Studies 25(4), 373–391; doi:10.1016/j.destud.2003.10.010.

Grossetti, G., Brown, R., Franke, T., Gafert, J., Galliara, T., Jenkins, I., Mantel, N.,
Strauß, D., Tran, M. Q., &Wenninger, R. (2018). Systems engineering perspective to
the integration of the heating and current drive system in the EU DEMO: Analysis of
requirements and functions. Fusion Engineering and Design 136, 53–57; doi:10.1016/j.
fusengdes.2017.12.023.

Hamraz, B., Caldwell, N. H. M., Wynn, D. C., & Clarkson, P. J. (2013). Requirements-
based development of an improved engineering changemanagementmethod. Journal of
Engineering Design 24(11), 765–793; doi:10.1080/09544828.2013.834039.

Johannesson, H., & Claesson, A. (2005). Systematic product platform design: A combined
function-means and parametric modeling approach. Journal of Engineering Design 16
(1), 25–43; doi:10.1080/09544820512331325247.

Jonassen, D., Strobel, J., & Lee, C. B. (2006). Everyday problem solving in engineering:
Lessons for engineering educators. Journal of Engineering Education 95(2), 139–151;
doi:10.1002/j.2168-9830.2006.tb00885.x.

Klema, V., & Laub, A. (1980). The singular value decomposition: Its computation and some
applications. IEEE Transactions on Automatic Control 25(2), 164–176; doi:10.1109/
TAC.1980.1102314.

Lanzotti, F. G.,Marzullo, D., Imbriani, V.,Mazzone, G., You, J.-H., & Di Gironimo, G.
(2023). Requirements management in master model development: A case study in
fusion engineering. In Advances on Mechanics, Design Engineering and Manufacturing
IV (eds. S. Gerbino, A. Lanzotti, M. Martorelli, R. M. Buil, C. Rizzi, & L. Roucoules),
pp. 466–478. Springer International Publishing; doi:10.1007/978-3-031-15928-2_41.

Leipold, F., Reichle, R., Vorpahl, C.,Mukhin, E. E.,Dmitriev, A. M., Razdobarin, A. G.,
Samsonov, D. S.,Marot, L.,Moser, L., Steiner, R., &Meyer, E. (2016). Cleaning of first
mirrors in ITER by means of radio frequency discharges. Review of Scientific Instru-
ments 87(11), 11D439; doi:10.1063/1.4962055.

Lin, Y. (1999). General Systems Theory: AMathematical Approach (Softcover reprint of the
hardcover 1st edition). Springer Science +BusinessMedia, LLC; doi:10.1007/978-0-306-
46962-6.

Madni, A.M., & Sievers, M. (2018). Model-based systems engineering: Motivation, current
status, and research opportunities. Systems Engineering 21(3), 172–190; doi:10.1002/
sys.21438.

Martinec, T., Škec, S., Lukačević, F., & Štorga, M. (2021). Modelling proportions and
sequences of operations in team design activities. Proceedings of the Design Society 1:
ICED 21, 2187–2196; doi:10.1017/pds.2021.480.

Mathias, J., Eifler, T., Engelhardt, R., Kloberdanz, H., & Bohn, A. (2011). Selection of
physical effects based on disturbances and robustness ratios in the early phases of robust

28/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1016/j.fusengdes.2015.11.050
https://doi.org/10.1002/j.2334-5837.1991.tb01484.x
https://doi.org/10.1002/j.2334-5837.1991.tb01484.x
https://doi.org/10.1016/j.destud.2003.10.010
https://doi.org/10.1016/j.fusengdes.2017.12.023
https://doi.org/10.1016/j.fusengdes.2017.12.023
https://doi.org/10.1080/09544828.2013.834039
https://doi.org/10.1080/09544820512331325247
https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1109/TAC.1980.1102314
https://doi.org/10.1109/TAC.1980.1102314
https://doi.org/10.1007/978-3-031-15928-2_41
https://doi.org/10.1063/1.4962055
https://doi.org/10.1007/978-0-306-46962-6
https://doi.org/10.1007/978-0-306-46962-6
https://doi.org/10.1002/sys.21438
https://doi.org/10.1002/sys.21438
https://doi.org/10.1017/pds.2021.480
https://doi.org/10.1017/dsj.2024.27

design. In DS 68-5: Proceedings of the 18th International Conference on Engineering
Design (ICED 11), Impacting Society through Engineering Design, 5: Design for X/Design
to X. The Design Society.

Marzullo, D., Bachmann, C., Coccorese, D.,Di Gironimo, G.,Mazzone, G., & You, J. H.
(2017). Systems engineering approach for pre-conceptual design of DEMO divertor
cassette. Fusion Engineering and Design, 124, 649–654; doi:10.1016/j.fusengdes.
2017.02.017.

Moscato, I.,Barucca, L.,Bubelis, E.,Caruso, G.,Ciattaglia, S.,Ciurluini, C.,DelNevo, A.,
Di Maio, P. A., Giannetti, F., Hering, W., Lorusso, P., Martelli, E., Narcisi, V.,
Norrman, S.,Pinna, T.,Perez-Martin, S.,Quartararo, A., Szogradi,M.,Tarallo, A., &
Vallone, E. (2022). Tokamak cooling systems and power conversion system options.
Fusion Engineering and Design 178, 113093; doi:10.1016/j.fusengdes.2022.113093.

Obieke, C. C., Milisavljevic-Syed, J., & Han, J. (2021). Data-driven creativity: Computa-
tional problem-exploring in engineering design. Proceedings of the Design Society 1:
ICED 21, 831–840; doi:10.1017/pds.2021.83.

Pahl, G., Beitz, W., Feldhusen, J., &Grote, K. H. (2007). Engineering Design: A Systematic
Approach (3rd ed.). Springer.

Panarotto,M.,Kipouros, T.,Brahma, A., Isaksson,O., StrandhTholin,O., &Clarkson, J.
(2022). Using DSMs in functionally driven explorative design experiments – An
automation approach. InDS 121: Proceedings of the 24th International DSMConference
(DSM 2022), Eindhoven, The Netherlands, October, 11–13, 2022, pp. 68–77. The Design
Society; doi:10.35199/dsm2022.08.

Paparistodimou, G.,Duffy, A.,Whitfield, R. I.,Knight, P., &Robb,M. (2020). A network
science-based assessment methodology for robust modular system architectures during
early conceptual design. Journal of Engineering Design 31(4), 179–218; doi:
10.1080/09544828.2019.1686469.

Potts, M. W., Johnson, A., & Bullock, S. (2020). Evaluating the complexity of engineered
systems: A framework informed by a user case study. Systems Engineering 23(6),
707–723. doi:10.1002/sys.21558.

Potts, M. W., Sartor, P. A., Johnson, A., & Bullock, S. (2020). Assaying the importance of
system complexity for the systems engineering community. Systems Engineering 23(5),
579–596; doi:10.1002/sys.21550.

Raja, V., Kokkolaras, M., & Isaksson, O. (2019). A simulation-assisted complexity metric
for design optimization of integrated architecture aero-engine structures. Structural and
Multidisciplinary Optimization 60(1), 287–300; doi:10.1007/s00158-019-02308-5.

Ramsaier,M., Stetter, R.,Till,M., &Rudolph, S. (2020). Abstract physics representation of
a balanced two-wheel scooter in graph-based design languages. Proceedings of theDesign
Society: DESIGN Conference 1, 1057–1066; doi:10.1017/dsd.2020.32.

Rötzer, S., Schweigert-Recksiek, S., Thoma, D., & Zimmermann, M. (2022). Attribute
dependency graphs: Modelling cause and effect in systems design.Design Science 8, e27;
doi:10.1017/dsj.2022.20.

Salewski, M.,Meo, F., Bindslev, H., Furtula, V., Korsholm, S. B., Lauritzen, B., Leipold,
F., Michelsen, P. K., Nielsen, S. K., & Nonbøl, E. (2008). Investigation of first mirror
heating for the collective Thomson scattering diagnostic in ITER. Review of Scientific
Instruments 79(10), 10E729; doi:10.1063/1.2956961.

Simpson, T. W., Rosen, D., Allen, J. K., &Mistree, F. (1998). Metrics for assessing design
freedom and information certainty in the early stages of design. Journal of Mechanical
Design 120(4), 628–635; doi:10.1115/1.2829325.

29/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1016/j.fusengdes.2017.02.017
https://doi.org/10.1016/j.fusengdes.2017.02.017
https://doi.org/10.1016/j.fusengdes.2022.113093
https://doi.org/10.1017/pds.2021.83
https://doi.org/10.35199/dsm2022.08
https://doi.org/10.1080/09544828.2019.1686469
https://doi.org/10.1002/sys.21558
https://doi.org/10.1002/sys.21550
https://doi.org/10.1007/s00158-019-02308-5
https://doi.org/10.1017/dsd.2020.32
https://doi.org/10.1017/dsj.2022.20
https://doi.org/10.1063/1.2956961
https://doi.org/10.1115/1.2829325
https://doi.org/10.1017/dsj.2024.27

Sinha, K., & de Weck, O. L. (2013). A network-based structural complexity metric for
engineered complex systems. In 2013 IEEE International Systems Conference (SysCon),
pp. 426–430. IEEE; doi:10.1109/SysCon.2013.6549917.

Stephan, U., Steinke, O., Ushakov, A., Verlaan, A., de Bock, M., Moser, L., Maniscalco,
M. P., van Beekum, E., & Verhoeff, P. (2021). RF circuit analysis for ITER visible
spectroscopy reference system first mirror plasma cleaning. Fusion Engineering and
Design 168, 112654; doi:10.1016/j.fusengdes.2021.112654.

Suh, N. P. (1990). The Principles of Design. Oxford University Press.

Summers, J. D., & Shah, J. J. (2010). Mechanical engineering design complexity metrics:
Size, coupling, and solvability. Journal of Mechanical Design 132(2), 021004; doi:
10.1115/1.4000759.

Tan, J. J. Y., Otto, K. N., &Wood, K. L. (2017). Relative impact of early versus late design
decisions in systems development. Design Science 3, e12; doi:10.1017/dsj.2017.13.

Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Research
Policy 24(3), 419–440; doi:10.1016/0048-7333(94)00775-3.

Umeda, Y., Takeda, H., Tomiyama, T., & Yoshikawa, H. (1990). Function, behaviour, and
structure. Applications of Artificial Intelligence in Engineering 1, 177–193.

Ushakov, A., Verlaan, A., Stephan, U., Steinke, O., de Bock, M., Maniscalco, M. P., &
Verhoeff, P. (2020). ITER visible spectroscopy reference system first mirror plasma
cleaning in radio-frequency gas discharge – circuit design and plasma effects. Fusion
Engineering and Design 154, 111546; doi:10.1016/j.fusengdes.2020.111546.

Wallis, W. D. (2012). A Beginner’s Guide to Discrete Mathematics. Birkhäuser Boston; doi:
10.1007/978-0-8176-8286-6.

Watson, M., Anway, R., McKinney, D., Rosser, L. A., & MacCarthy, J. (2019). Appre-
ciative methods applied to the assessment of complex systems. INCOSE International
Symposium 29(1), 448–477; doi:10.1002/j.2334-5837.2019.00614.x.

Wilschut, T., Etman, L. F. P., Rooda, J. E., & Vogel, J. A. (2018). Multi-level function
specification and architecture analysis using ESL: A lock renovation pilot study. In
Proceedings of the ASME 2018 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. IDETC/CIE 2018, Quebec,
Canada. ASME; doi:10.1115/DETC2018-85191.

Wolff, D., Brown, R., Curson, P., Ellis, R.,Galliara, T., &Harris, M. (2018). Early lessons
from the application of systems engineering at UKAEA (May 2017). IEEE Transactions
on Plasma Science 46(5), 1725–1734; doi:10.1109/TPS.2018.2819726.

Yang, Q., Yang, N., Browning, T. R., Jiang, B., & Yao, T. (2019). Clustering product
development project organization from the perspective of social network analysis. IEEE
Transactions on Engineering Management 69, 2482–2496; doi:10.1109/
TEM.2019.2939398.

Zhang, W., & Ma, J. (2021). Designing in complexity: How solution conjectures inform
problem exploration. Proceedings of the Design Society 1: ICED 21, 1153–1162; doi:
10.1017/pds.2021.115.

30/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1109/SysCon.2013.6549917
https://doi.org/10.1016/j.fusengdes.2021.112654
https://doi.org/10.1115/1.4000759
https://doi.org/10.1017/dsj.2017.13
https://doi.org/10.1016/0048-7333(94)00775-3
https://doi.org/10.1016/j.fusengdes.2020.111546
https://doi.org/10.1007/978-0-8176-8286-6
https://doi.org/10.1002/j.2334-5837.2019.00614.x
https://doi.org/10.1115/DETC2018-85191
https://doi.org/10.1109/TPS.2018.2819726
https://doi.org/10.1109/TEM.2019.2939398
https://doi.org/10.1109/TEM.2019.2939398
https://doi.org/10.1017/pds.2021.115
https://doi.org/10.1017/dsj.2024.27

Appendix
This appendix contains the information of the detailed VSRS demonstration. The
design process departs from the initial model in Table A.1. Table A.2 defines the
subsequent design steps asmappings between a problem and a solution. Tables A.3
and A.4 define those problems and solutions, respectively, in terms of FBS nodes
and edges. Table A.5 lists these functional, structural and behavioral nodes by
name.

Table A.1. The initial model of the VSRS consists only of structural and behavioral elements C and B

Nodes Edges

c1, c2, c3 c1,c2ð Þ, c2,c3ð Þ
b1, b2, b3, b4 b1,b2ð Þ, b2,b3ð Þ, b2,b4ð Þ c1,b1ð Þ, c2,b2ð Þ, c3,b3ð Þ, c2,b4ð Þ, c2,b5ð Þ

Table A.2. Problem-solving processes in the development of the VSRS

t Problem Solution Design activity

1 p1 s1 Formulation

2 p2 s2 Synthesis

3 p3 s3 Analysis

4 p4 s4 Formulation

5 p5 s5 Synthesis

6 p6 s6 Analysis

7 p7 s7 Formulation

8 p8 s8 Synthesis

9 p9 s9 Analysis

10 p10 s10 Formulation

11 p11 s11 Synthesis

12 p12 s12 Analysis

13 p4 s13 Formulation

14 p13 s14 Synthesis

15 p14 s15 Analysis

16 p15 s16 Formulation

17 p16 s17 Synthesis

18 p17 s18 Analysis

19 p18 s19 Formulation

20 p19 s20 Synthesis

21 p20 s21 Analysis

31/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

Table A.3. Definition of all design problems in the development of the VSRS

Problem Nodes Edges

p1 b1, b2, b3 b1,b2ð Þ, b2,b3ð Þ
p2 f 1, f 2, f 3 f 1, f 2

� �
, f 2, f 3
� �

, f 3,b1
� �

, b4, f 1
� �

p3 c4, c5, c6 c1,c6ð Þ, c4,c5ð Þ, c5,c6ð Þ, c2,c4ð Þ
p4 b5, b7, b8 b5,b7ð Þ, b8,b7ð Þ
p5 f 7 f 7,b7

� �
p6 c9 –

p7 b12 –

p8 f 11, f 12, f 13, f 14 f 11, f 12
� �

, f 12, f 1
� �

, f 1, f 13
� �

, f 13, f 1
� �

, f 2, f 14
� �

, f 14,b12
� �

, f 7, f 13
� �

p9 c12, c13, c4, c5 c4,c13ð Þ, c4,c12ð Þ, c6,c12ð Þ, c5,c6ð Þ, c4,c5ð Þ
p10 b6, b8 b8,b6ð Þ
p11 f 4, f 5, f 6 f 4, f 5

� �
, f 5, f 6
� �

, f 6,b6
� �

p12 c6, c7, c8, c4 c4,c7ð Þ, c7,c8ð Þ, c6,c8ð Þ
p13 f 15, f 16, f 17, f 18, f 19 f 15, f 16

� �
, f 16, f 18
� �

, f 17, f 19
� �

, f 18, f 19
� �

, f 19,b8
� �

p14 c14, c15, c16, c17, c13,c4 c14,c15ð Þ, c15,c4ð Þ, c17,c4ð Þ, c16,c17ð Þ, c4,c13ð Þ
p15 b16 –

p16 f 8, f 9, f 10 f 8, f 9
� �

, f 9, f 10
� �

, f 10,b16
� �

p17 c6, c9, c11, c10 c6,c11ð Þ, c11,c10ð Þ, c9,c10ð Þ
p18 b32 –

p19 f 20 f 20,b32
� �

p20 c18, c13 c13,c18ð Þ

32/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

Table A.4. Definition of all design solutions in the development of the VSRS

Solution Nodes Edges

s1 f 1, f 2, f 3 f 1, f 2
� �

, f 2, f 3
� �

, f 3,b1
� �

, b4, f 1
� �

s2 c4, c5, c6 c2,c4ð Þ, c4,c5ð Þ, c5,c6ð Þ, c4, f 1
� �

, c5, f 2
� �

, c6, f 3
� �

, c1,c6ð Þ
s3 b8, b9, b6, b5, b7,

b10, b11, b12
c2,b5ð Þ, b9,b6ð Þ, b8,b6ð Þ, b8,b7ð Þ, b5,b7ð Þ, b9,b4ð Þ, b8,b11ð Þ, b10,b11ð Þ,
b10,b12ð Þ, c4,b9ð Þ, c4,b6ð Þ, c4,b8ð Þ, c4,b7ð Þ, c5,b10ð Þ, c5,b11ð Þ, c6,b12ð Þ

s4 f 7 f 7,b7
� �

s5 c9 c9,c4ð Þ, c9, f 7
� �

, c9,c2ð Þ
s6 b16, b22 c9,b16ð Þ, c9,b22ð Þ, b16,b22ð Þ, b7,b22ð Þ
s7 f 11, f 12, f 13, f 14 f 11, f 12

� �
, f 12, f 1
� �

, f 1, f 13
� �

, f 13, f 1
� �

, f 2, f 14
� �

, f 14,b12
� �

, f 7, f 13
� �

s8 c12, c13 c6, f 11
� �

, c12, f 12
� �

, c13, f 13
� �

, c6, f 14
� �

, c6,c12ð Þ, c4,c12ð Þ, c4,c13ð Þ, c13,c9ð Þ
s9 b23, b24, b25 c12,b23ð Þ, c13,b24ð Þ, c6,b25ð Þ, b23,b8ð Þ, b23,b25ð Þ, b8,b24ð Þ, b10,b25ð Þ,

b16,b24ð Þ
s10 f 4, f 5, f 6 f 4, f 5

� �
, f 5, f 6
� �

, f 6,b6
� �

s11 c7, c8 c8, f 5
� �

, c6, f 4
� �

, c6,c8ð Þ, c7,c8ð Þ, c4,c7ð Þ, c7, f 6
� �

s12 b13, b14, b15 c7,b14ð Þ, c6,b13ð Þ, c8,b15ð Þ, b14,b15ð Þ, b13,b15ð Þ, b14,b4ð Þ
s13 f 15, f 16, f 17, f 18,f 19 f 15, f 16

� �
, f 16, f 18
� �

, f 17, f 19
� �

, f 18, f 19
� �

, f 19,b8
� �

s14 c14, c15, c16, c17 c14, f 15
� �

, c15, f 16
� �

, c16, f 17
� �

, c4, f 18
� �

, c17, f 19
� �

, c14,c15ð Þ, c15,c4ð Þ,
c17,c4ð Þ, c16,c17ð Þ

s15 b26, b27, b28, b29,
b30, b31, b32

c14,b26ð Þ, c15,b27ð Þ, c16,b28ð Þ, c17,b29ð Þ, c4,b30ð Þ, c4,b31ð Þ, c13,b32ð Þ,
b26,b27ð Þ, b27,b30ð Þ, b30,b29ð Þ, b28,b29ð Þ, b29,b31ð Þ, b32,b31ð Þ

s16 f 8, f 9, f 10 f 8, f 9
� �

, f 9, f 10
� �

, f 10,b16
� �

s17 c10, c11 c6, f 8
� �

, c11, f 9
� �

, c10, f 10
� �

, c6,c11ð Þ, c11,c10ð Þ, c9,c10ð Þ
s18 b17, b18, b19, b20,b21 c6,b17ð Þ, c11,b18ð Þ, c11,b21ð Þ, c10,b19ð Þ, c10,b20ð Þ, b16,b19ð Þ, b19,b20ð Þ,

b19,b18ð Þ, b18,b21ð Þ, b17,b21ð Þ
s19 f 20 f 20,b32

� �
s20 c18 c18, f 20

� �
, c13,c18ð Þ

s21 b33 c18,b33ð Þ, b33,b32ð Þ

33/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

Table A.5. Functions f , structures c and behaviors b of the VSRS

f 1 Transport light f 8 Control shutter f 15 Generate voltage

f 2 Analyze light f 9 Generate force f 16 Transport power

f 3 Raise warning f 10 Transport force f 17 Inject gas

f 4 Determine setpoint f 11 Control light source f 18 Ignite plasma

f 5 Generate signal f 12 Generate reference light f 19 Erode mirror

f 6 Move mirror f 13 Return light f 20 Protect reflector

f 7 Block path f 14 Estimate reflectivity – –

c1 Heating beam c7 Stepper motor c13 Reflector

c2 Plasma c8 Actuator controlbox c14 RF generator

c3 Reactor wall c9 Shutter c15 Electrical feedthrough

c4 Optics c10 Mechanical feedthrough c16 Gas valves

c5 Spectrometers c11 Pneumatic actuator c17 Cleaning plasma

c6 Computers c12 Calibrated light source c18 Garage

b1 Beam injection b12 Spectroscopy analysis b23 Gas discharge

b2 Shinethrough b13 Alignment algorithm b24 Reflection

b3 Melting b14 Electromagnetics b25 Reference comparison

b4 Nuclear fusion b15 Electronics b26 Electronics

b5 Impurity transport b16 Motion b27 Conduction

b6 Displacement b17 Shutter control b28 Pneumatics

b7 Particle deposition b18 Pneumatics b29 Plasma dynamics

b8 Reflection b19 Motion b30 Charge

b9 Heating b20 Vacuum leaking b31 Erosion

b10 Photodetection b21 Valve movement b32 Redeposition

b11 Dispersion b22 Blocking b33 Particle blocking

34/34

https://doi.org/10.1017/dsj.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.27

	The cascade to complexity: modeling the evolution of first-of-a-kind systems in problem-solving design processes
	1. Introduction
	2. Background
	3. Theory of problem-solving
	3.1. Problem causality
	3.2. Complexity
	3.3. Algorithmic approach

	4. Function-behavior-structure
	4.1. Network representation
	4.2. Problems and solutions
	4.3. Visualization

	5. Demonstration
	5.1. A simple model
	5.2. A larger model
	5.2.1. Problem hierarchy
	5.2.2. Complexity
	5.2.3. Model expansion

	6. Closing remarks
	Acknowledgements
	Nomenclature
	Disclaimer
	References
	Appendix

