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Scanning transmission electron microscopy (STEM) is an important tool in the study of microstructures 

and ultimately a wide range of material and chemical systems. Quantitatively describing these 

microstructures with advanced artificial intelligence (AI) techniques has recently become an emerging 

and impactful area of research in the materials domain [1]. Sophisticated new models and algorithms are 

being developed to automate the task of image characterization, bypassing the need for expensive 

manual analysis and enabling the discovery of new and unexpected features within an image. However, 

typical AI workflows use large libraries of labeled data to train specialized networks toward specific 

tasks, e.g., segmentation of a specific material class. One serious challenge for AI in this area is the lack 

of high-quality, well curated training data. Additionally, the need to instantly adapt to changing imaging 

conditions, length scales, detectors, aberrations, and materials systems is a top priority for materials 

characterization and a challenge for specialized AI. 

 

We explore the topic of few-shot or low-shot learning (FSL) techniques in the context of creating 

adaptable AI designed for flexibility in both analytics and data acquisition. FSL, as the name suggests, 

uses little to no data in training and nearly eliminates the laborious task of data annotation. We have 

observed success with FSL for flexible segmentation of STEM image data, leading to powerful data-

driven opportunities for microstructural characterization for materials discovery and design [2,3,4]. We 

will discuss the potential for FSL techniques to draw upon multiple imaging and spectroscopic data 

streams simultaneously, in a multimodal framework shown in Figure 1, for improved interpretability and 

enhanced latent signature detection [5].  
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Figure 1. Framework for electron microscopy image segmentation using a chipping scheme as in [4] 

with extensions for multimodal data. The image is chipped into smaller pieces and chips, along with 

supports, are encoded. Corresponding data, shown here as energy-dispersive X-ray spectroscopy (EDS) 

spectra, are encoded separately. Encoded sources are fused before an entropy step resulting in chip level 

classification. 
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