A NEW SUM–PRODUCT ESTIMATE IN PRIME FIELDS

CHANGHAO CHEN, BRYCE KERR $^{\boxtimes}$ and ALI MOHAMMADI

(Received 11 December 2018; accepted 10 January 2019; first published online 24 May 2019)

Abstract

We obtain a new sum–product estimate in prime fields for sets of large cardinality. In particular, we show that if $A \subseteq \mathbb{F}_p$ satisfies $|A| \leq p^{64/117}$ then max $\{|A \pm A|, |AA|\} \geq |A|^{39/32}$. Our argument builds on and improves some recent results of Shakan and Shkredov ['Breaking the 6/5 threshold for sums and products improves some recent results of Shakan and Shkredov ['Breaking the 6/5 threshold for sums and products modulo a prime', Preprint, 2018, $arXiv:1806.07091v1$] which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P \subseteq A + A$. Our main novelty comes from reducing the estimation of $E^+(P)$ to a point–plane incidence bound of Rudnev ['On the number of incidences between points and planes in three dimensions', *Combinatorica* 38(1) (2017), 219–254] rather than a point–line incidence bound used by Shakan and Shkredov.

2010 *Mathematics subject classification*: primary 11T99; secondary 05B10. *Keywords and phrases*: sum–product estimate, additive combinatorics.

1. Introduction

Let *p* be a prime number and \mathbb{F}_p the finite field of order *p*. Given a subset $A \subseteq \mathbb{F}_p$, define the sum set and product set of *A* respectively by $A + A = \{a + b : a, b \in A\}$ and $AA = \{ab : a, b \in A\}$. The sum–product theorem in \mathbb{F}_p due to Bourgain, Katz and Tao [\[2\]](#page-11-0) states that for $0 < \varepsilon < 1$ there exists $\delta > 0$ such that if $p^{\varepsilon} < |A| < p^{1-\varepsilon}$ then

$$
\max\{|AA|, |A+A|\} \geq |A|^{1+\delta}.\tag{1.1}
$$

Glibichuk and Konyagin [\[7\]](#page-11-1) have shown that the condition $p^{\varepsilon} < |A|$ may be dropped.
The sum product problem was first considered by Erdős and Szemerédi [4] over

The sum–product problem was first considered by Erdős and Szemerédi [[4\]](#page-11-2) over the integers. Their work led to the conjecture that for any $\varepsilon > 0$ and any finite subset $A \subseteq \mathbb{R}$,

$$
\max\{|AA|, |A+A|\} \gg |A|^{2-\varepsilon},
$$

with an implied constant depending only on ε . The sharpest sum–product result over $\mathbb R$ is due to Shakan [\[18\]](#page-12-0).

The first and second author were supported by ARC Grant DP170100786.

c 2019 Australian Mathematical Publishing Association Inc.

By a construction due to Garaev [\[6\]](#page-11-3), for any $N \leq p$ there exists a subset $A \subseteq \mathbb{F}_p$ with $|A| = N$ such that

$$
\max\{|A+A|, |AA|\} \ll p^{1/2} N^{1/2},\tag{1.2}
$$

so the Erdős–Szemerédi conjecture cannot be true in full generality in \mathbb{F}_p . We expect this conjecture to be true in \mathbb{F}_p if we restrict to sets of sufficiently small cardinality, and an active field of research seeks to determine the largest possible δ such that [\(1.1\)](#page-0-0) holds. The first explicit sum–product result in \mathbb{F}_p is due to Garaev [\[5\]](#page-11-4), and there have been several improvements (see [\[1,](#page-11-5) [8,](#page-11-6) [10,](#page-12-1) [15\]](#page-12-2)). Roche-Newton, Rudnev and Shkredov [\[14\]](#page-12-3) made a major breakthrough based on Rudnev's point–plane incidence bound [\[16\]](#page-12-4) by showing that if $|A| \le p^{5/8}$ then

$$
\max\{|A + A|, |AA|\} \gg |A|^{6/5}.\tag{1.3}
$$

The idea of applying geometric incidence estimates to sum–product problems is due to Elekes [\[3\]](#page-11-7). Stevens and de Zeeuw [\[22\]](#page-12-5) gave a different proof of the estimate (1.3) using their point–line incidence bound. Recently, Shakan and Shkredov [\[19,](#page-12-6) Theorem 1.3] have broken the $6/5$ barrier for the sum–product problem over \mathbb{F}_p and shown that

$$
\max\{|A \pm A|, |AA|\} \gtrsim |A|^{6/5 + 4/305}, \quad |A| \le p^{3/5}.
$$
 (1.4)

We note that their condition $|A| \le p^{3/5}$ can be extended to $|A| \le p^{2/3}$ (see Remark [3.7](#page-4-0))
for more details). For sets of smaller cardinality, the estimate (1.4) has recently been for more details). For sets of smaller cardinality, the estimate (1.4) has recently been improved by Rudnev, Shakan and Shkredov [\[17\]](#page-12-7) who showed that

$$
\max\{|A \pm A|, |AA|\} \gtrsim |A|^{11/9}, \quad |A| \le p^{18/35}.\tag{1.5}
$$

The argument of Rudnev, Shakan and Shkredov [\[17\]](#page-12-7) uses geometric incidence estimates to establish recursive inequalities for generalised energies $E_{\alpha}^{+}(A)$ as a function of α , where $E_{\alpha}^{+}(A)$ is defined as in [\(3.1\)](#page-2-0). The estimate [\(1.5\)](#page-1-2) is deduced from
an inequality involving F^+ (A) where the exponent 4/3 grises naturally as a fixed point an inequality involving $E_{4/3}^{+}(A)$ where the exponent 4/3 arises naturally as a fixed point
of the recursion. See also [12] for variations on the sum-product theorem, including of the recursion. See also $[12]$ for variations on the sum–product theorem, including of the recursion. See also $[12]$ for variations on the sum–product theorem, including sharper results for the few sums, many products problem, [\[13\]](#page-12-9) for the few products many sums problem, and [\[11\]](#page-12-10) for various other results related to expanders in prime fields.

In this paper we obtain a new sum–product estimate over \mathbb{F}_p which improves on the estimates [\(1.4\)](#page-1-1) and [\(1.5\)](#page-1-2) for sets of cardinality in the range $p^{18/35} \le |A| \le p^{64/117}$. Our proof builds on techniques from $[19]$ which use the eigenvalue method (see $[20]$) to reduce to estimating a fourth moment energy $E_4^+(A, B)$ and the additive energy $E^+(P)$
of some subset $P \subseteq A + A$. Shakan and Shkredov reduce both $F^+(A, B)$ and $F^+(P)$ to of some subset $P \subseteq A + A$. Shakan and Shkredov reduce both $E_4^+(A, B)$ and $E^+(P)$ to the point–line incidence bound of Stevens and de Zeeuw and our improvement comes the point–line incidence bound of Stevens and de Zeeuw and our improvement comes from estimating $E^+(P)$ via Rudnev's point–plane incidence bound.

Asymptotic notation. For positive real numbers *X* and *Y*, we use $X \ll Y$ and $Y \gg X$ to imply the existence of an absolute constant $C > 0$ such that $X \le CY$. We also use $X \le Y$ and *Y* \geq *X* to mean that there exists an absolute constant *C* > 0 such that *X* $\ll (\log X)^{C}$ *Y*.

2. Main results

Our first result provides an improvement on the sum–product estimate of Shakan and Shkredov [\[19,](#page-12-6) Theorem 1.3].

THEOREM 2.1. *Suppose* $A \subset \mathbb{F}_p$ *satisfies* $|A| \leq p^{64/117}$. *Then*

$$
\max\{|A \pm A|, |AA|\} \gtrsim |A|^{39/32}.
$$

For comparison with the estimate [\(1.4\)](#page-1-1), we note that

$$
\frac{39}{32} = \frac{6}{5} + \frac{4}{305} + \frac{11}{1952}.
$$

In the case of the difference set we obtain an estimate of the same strength with weaker conditions on the cardinality of *A*.

THEOREM 2.2. *Suppose* $A \subset \mathbb{F}_p$ *satisfies* $|A| \ll p^{32/55}$ *. Then* max{ $|A - A|$, $|AA|$ } $\ge |A|^{39/32}$

We can obtain sharper estimates for iterated sumsets. The case $k = 3$ below agrees with an estimate of Roche-Newton, Rudnev and Shkredov [\[14,](#page-12-3) Corollary 12].

THEOREM 2.3. Let $k \geq 3$ *be an integer and suppose* $A \subseteq \mathbb{F}_p$ *satisfies*

$$
|A| \le p^{(4-3 \times 2^{-k})/(7-16 \times 2^{-k})}
$$

Then

$$
\max\{|kA|, |AA|\} \gtrsim |A|^{(5-2^{3-k})/(4-3\times 2^{1-k})}
$$

3. Preliminaries

Given subsets $A, B \subseteq \mathbb{F}_p$, let

$$
r_{A \pm B}(x) = |\{(a, b) \in A \times B : a \pm b = x\}|
$$

and for any real number *k* define

$$
E_k^+(A, B) = \sum_{x \in A - B} r_{A - B}(x)^k.
$$
 (3.1)

We write simply $E_k^+(A)$ instead of $E_k^+(A, A)$ and use $E^+(A, B)$ to denote $E_2^+(A, B)$, which
we refer to as the additive energy hetween 4 and R. Note that if k is a natural number we refer to as the additive energy between *A* and *B*. Note that if *k* is a natural number, then $E_k^+(A, B)$ counts the number of solutions to the equations

$$
a_1 - b_1 = \cdots = a_k - b_k, \quad a_1, \ldots, a_k \in A, \ b_1, \ldots, b_k \in B.
$$

We sometimes write \sum_{x} to represent $\sum_{x \in \mathbb{F}_p}$ for convenience when the context is clear. For $A \subset \mathbb{F}_p$, we let $A(x)$ denote the characteristic function of A. We can write $r_{A+B}(x)$ as the convolution of functions *A* and *B*, that is, $r_{A+B}(x) = (A * B)(x)$. The following lemma is due to Shkredov [\[20,](#page-12-11) Proposition 31] (see also [\[19,](#page-12-6) Lemma 6.1]).

LEMMA 3.1. *For any subset* $A \subset \mathbb{F}_p$ *and any* $P \subset A - A$,

$$
\left(\sum_{x \in P} r_{A-A}(x)\right)^8 \le |A|^8 E_4^+(A) E^+(P).
$$

Similarly, for any $P \subset A + A$,

$$
\left(\sum_{x \in P} r_{A+A}(x)\right)^8 \le |A|^8 E_4^+(A)E^+(P).
$$

We also require a third moment estimate of Konyagin and Rudnev [\[9,](#page-12-12) Corollary 10]. LEMMA 3.2. *For any subset* $A ⊂ F_p$ *,*

$$
\frac{|A|^8}{|A-A|} \ll E_3^+(A)E^+(A, A-A).
$$

Next, we recall a variation of the Plünnecke–Ruzsa inequality, which can be found in [\[8\]](#page-11-6).

LEMMA 3.3. Let $X, B_1, \ldots, B_k \subseteq \mathbb{F}_p$. Then for any ϵ with $0 < \epsilon < 1$ there exists a subset $X' \subseteq X$ with $|X'| \geq (1 - \epsilon)|X|$ *, such that*

$$
|X' + B_1 + \cdots + B_k| \ll_{\epsilon,k} \frac{|X + B_1| \cdots |X + B_k|}{|X|^{k-1}}.
$$

The following point–line incidence bound is due to Stevens and de Zeeuw [\[22\]](#page-12-5) (see also [\[21,](#page-12-13) Lemma 12]).

LEMMA 3.4. Let $P = X \times Y$ be a subset of \mathbb{F}_p^2 and L be a collection of lines in \mathbb{F}_p^2 . Then $I(P, L) \ll |X|^{3/4} |Y|^{1/2} |L|^{3/4} + |L| + |P| + p^{-1} |L||P|.$

Remark 3.5. Using Lemma [3.4](#page-3-0) and a technique due to Elekes [\[3\]](#page-11-7), as outlined in [\[22,](#page-12-5) Corollary 9], one recovers estimate [\(1.3\)](#page-1-0) for any set *A* ⊂ \mathbb{F}_p under the condition $|A| \ll p^{5/7}$. It is worth noting that this improves on the condition $|A| \le p^{5/8}$, which was obtained in $[14]$ and $[22]$. Furthermore, by (1.2) , it is easy to see that this condition is optimal up to some constant.

The following lemma is due to Shakan and Shkredov [\[19,](#page-12-6) Proposition 3.1] and is based on Lemma [3.4.](#page-3-0) We note that their condition on the cardinality $|A| < p^{3/5}$ can be extend to $|A| < n^{2/3}$ and we provide details of this extension extend to $|A| < p^{2/3}$ and we provide details of this extension.

LEMMA 3.6. Let
$$
A \subset \mathbb{F}_p
$$
 satisfy $|A| < p^{2/3}$. Then for any subset $B \subset \mathbb{F}_p$,

$$
E_4^+(A, B) \le |B|^3 |AA|^2 |A|^{-1}.
$$

Proof. Define $D_{\tau} = \{x \in A - B : \tau \leq r_{A-B}(x) < 2\tau\}$. Taking a dyadic decomposition of $r_{A-B}(x)$, there exists a real number τ such that

$$
E_4^+(A, B) = \sum_x r_{A-B}(x)^4 \lesssim \tau^4 |D_\tau|,\tag{3.2}
$$

and

$$
\tau|D_{\tau}| \ll |A||B|, \quad \tau^2|D_{\tau}| \ll E^+(A, B). \tag{3.3}
$$

Consider the set of points $P = D_\tau \times AA$ and the set of lines $L = \{ \ell_{a,b} : a \in A, b \in B \}$ where $\ell_{a,b}$ = {(*x*, *y*) ∈ \mathbb{F}_p^2 : *y* = (*x* + *b*)*a*}. For any *a* ∈ *A* and *b* ∈ *B*,

$$
|\ell_{a,b} \cap P| \geq \sum_{a_1 \in A} \mathbf{1}_{D_\tau}(a_1 - b).
$$

Thus

$$
I(P,L) = \sum_{a \in A, b \in B} |\ell_{a,b} \cap P| \ge \sum_{a \in A} \sum_{a_1 \in A, b \in B} \mathbf{1}_{D_{\tau}}(a_1 - b) = \sum_{a \in A} \sum_{x \in D_{\tau}} r_{A-B}(x) \gg |A||D_{\tau}|\tau.
$$

Combining this with Lemma [3.4,](#page-3-0) we conclude that

$$
|A||D_{\tau}|\tau \ll |D_{\tau}|^{3/4} |AA|^{1/2} (|A||B|)^{3/4} + |D_{\tau}||AA| + |A||B| + p^{-1} |D_{\tau}||AA||A||B|.
$$
 (3.4)

We proceed on a case-by-case basis depending on which term in (3.4) dominates.

Suppose the first term dominates, so that

$$
|A||D_{\tau}|\tau \ll |D_{\tau}|^{3/4} |AA|^{1/2} (|A||B|)^{3/4}.
$$

This gives the desired result after substituting in [\(3.2\)](#page-4-2).

Suppose the second term in [\(3.4\)](#page-4-1) dominates. This implies $|A||D_{\tau}|\tau \ll |D_{\tau}||AA|$, and hence $\tau \ll |AA|/|A|$. From [\(3.3\)](#page-4-3) and the trivial bound $E^+(A, B) \le |A||B|^2$ \overline{a}

$$
\tau^4|D_\tau| = \tau^2 E^+(A, B) \ll |B|^2 |AA|^2 |A|^{-1}
$$

If the third term in [\(3.4\)](#page-4-1) dominates, then $\tau|D_{\tau}| \ll |B|$, so that using the trivial bound $\tau \le \min\{|A|, |B|\}$, we obtain

$$
\tau^4|D_\tau| = \tau^3 \tau|D_\tau| \ll |B|^3|A| \ll |B|^3|AA|^2|A|^{-1}.
$$

Finally, consider when the last term in (3.4) dominates, so that

$$
p\tau \ll |B||AA|.\tag{3.5}
$$

If $\tau \le |AA||B||A|^{-3/2}$, then

$$
|D_{\tau}|\tau^4 = |D_{\tau}|\tau^2\tau^2 \ll |A|^2|B||AA|^2|B|^2|A|^{-3},
$$

which gives the desired result. Otherwise, suppose $\tau > |AA||B||A|^{-3/2}$. Combined with [\(3.5\)](#page-4-4), this implies that $p|AA||B||A|^{-3/2} \ll |B||AA|$ and contradicts our assumption [−]3/² . Combined $|A| < p^{2/3}$ e de la construcción de la constru
En la construcción de la construcc Remark 3.7. Combining Lemma [3.6](#page-3-1) with [\[19,](#page-12-6) Theorem 2.5] leads to the same sum– product estimate as [\[19,](#page-12-6) Theorem 1.3] with the weaker condition $|A| < p^{2/3}$.

Using Hölder's inequality and Lemma 3.6 we obtain the following third moment estimate which will be used in the proof of Theorem [2.2.](#page-2-1)

LEMMA 3.8. *For any subset* $A \subset \mathbb{F}_p$ *satisfying* $|A| < p^{2/3}$ *,*

$$
E_3^+(A) \le |AA|^{4/3}|A|^2.
$$

PROOF. Writing

$$
E_3^+(A) = \sum_{x} r_{A-A}(x)^{8/3+1/3}
$$

and applying Hölder's inequality and Lemma [3.6](#page-3-1) gives

$$
E_3^+(A) \le E_4^+(A)^{2/3} (|A||A|)^{1/3} \lesssim (|AA|^2|A|^2)^{2/3} |A|^{2/3},
$$

which is the desired result.

The following lemma is due to Roche-Newton *et al.* [\[14,](#page-12-3) Theorem 6] and is based on Rudnev's point–plane incidence bound [\[16\]](#page-12-4).

LEMMA 3.9. *Let X*, *Y*, *Z* ⊂ \mathbb{F}_p *and let M* = max{|*X*|, |*YZ*|}. *Suppose that* $|X||Y||YZ|$ ≤ p^2 . *Then Then*

$$
E^{+}(X,Z) \ll (|X||YZ|)^{3/2}|Y|^{-1/2} + M|X||YZ||Y|^{-1}.
$$

COROLLARY 3.10. Let $A \subset \mathbb{F}_p$. If $|A \pm A||A A||A| \ll p^2$ then

$$
E^+(A, A \pm A) \ll (|A \pm A||AA|)^{3/2}|A|^{-1/2}.
$$

Proof. We consider only $A + A$; a similar argument applies to $A - A$. Applying Lemma [3.9](#page-5-0) with $X = A + A$ and $Y = Z = A$ gives

$$
E^+(A, A+A) \ll (|A+A||AA|)^{3/2}|A|^{-1/2} + |A+A|^2|AA||A|^{-1} + |A+A||AA|^2|A|^{-1}.
$$

Observe that for any subset $A \subset \mathbb{F}_p$,

$$
(|A + A||AA|)^{3/2}|A|^{-1/2} \ge \max\{|A + A|^2|AA||A|^{-1}, |A + A||AA|^2|A|^{-1}\},\
$$

from which the desired result follows.

COROLLARY 3.11. Let $A \subseteq \mathbb{F}_p$. If $|A|^2 |AA| \ll p^2$ then

$$
E^+(A) \ll |AA|^{3/2}|A|.
$$

In the proof of Theorem 2.3 , we use the following iterative inequality for higherorder energies.

LEMMA 3.12. *For an integer k* ≥ 2 *and a subset A* ⊆ \mathbb{F}_q *, let T_k(A) count the number of solutions to the equation*

$$
a_1 + \cdots + a_k = a_{k+1} + \cdots + a_{2k}, \quad a_1, \ldots, a_{2k} \in A.
$$

If A satisfies

$$
|A| |(k-1)A| |AA| \le p^2,
$$
\n(3.6)

then

$$
T_{k}(A) \lesssim |A|^{k-3/2} T_{k-1}(A)^{1/2} |AA|^{3/2} + |A|^{2k-3} |AA| + \frac{T_{k-1}(A)|AA|^2}{|A|}.
$$

Proof. For $\lambda \in (k-1)A$, we define
 $r(\lambda) = |\{(a_1, \dots, a_{k-1})\}$

$$
r(\lambda) = |\{(a_1, \ldots, a_{k-1}) \in A \times \cdots \times A : a_1 + \cdots + a_{k-1} = \lambda\}|.
$$

Then

$$
T_k(A) = \sum_x (A * r)(x)^2.
$$

Now we take a dyadic decomposition for *r*. For an integer $j \ge 1$, let

$$
J(j) = \{ \lambda \in (k-1)A \ : 2^{j-1} \le r(\lambda) < 2^j \}.
$$

Then

$$
(A * r)(x) \ll \sum_{1 \le j \le \log |A|} 2^{j} (A * J(j))(x).
$$

By the Cauchy–Schwarz inequality,

$$
(A * r)(x)^{2} \lesssim \sum_{1 \leq j \leq \log|A|} 2^{2j} (A * J(j))(x)^{2}.
$$

Thus

$$
T_k(A) \lesssim \sum_{1 \le j \le \log|A|} \sum_{x} 2^{2j} (A * J(j))(x)^2
$$

and there exists some i_0 with $1 \le i_0 \le \log |A|$ such that

$$
T_k(A) \lesssim 2^{2i_0} E^+(A, J(i_0)).\tag{3.7}
$$

By Lemma [3.9,](#page-5-0)

$$
E^{+}(A, J(i_0)) \ll (|J(i_0)||AA|)^{3/2}|A|^{-1/2} + \max\{|J(i_0)|, |AA|\}|J(i_0)||AA||A|^{-1},
$$
(3.8)

provided $|J(i_0)||A||AA| \le p^2$. This condition is satisfied by [\(3.6\)](#page-6-0) and the inclusion $J(i_0) \subset (k-1)A$ By (3.7) and (3.8) *J*(i_0) ⊆ ($k - 1$)*A*. By [\(3.7\)](#page-6-1) and [\(3.8\)](#page-6-2),

$$
T_k(A) \leq \frac{(2^{i_0}|J(i_0)|)(2^{i_0}|J(i_0)|^{1/2})|AA|^{3/2}}{|A|^{1/2}} + \frac{(2^{2i_0}|J(i_0)|^2)|AA|}{|A|} + \frac{(2^{2i_0}|J(i_0)|)|AA|^2}{|A|}.
$$

Since $2^{i_0}|J(i_0)| \ll |A|^{(k-1)}$ and $2^{2i_0}|J(i_0)| \ll T_{k-1}(A)$,

$$
T_k(A) \lesssim |A|^{k-3/2} T_{k-1}(A)^{1/2} |AA|^{3/2} + |A|^{2k-3} |AA| + \frac{T_{k-1}(A)|AA|^2}{|A|},
$$

which completes the proof. \Box

4. Proof of Theorem [2.1](#page-2-3)

We consider the case $A + A$; a similar argument applies to $A - A$. Assuming A satisfies

$$
|A| \le p^{64/117},\tag{4.1}
$$

we consider two cases. Suppose first that

$$
|A + A|^2 |AA| \ll p^2.
$$
 (4.2)

By Lemma [3.3,](#page-3-2) we can identify a subset $B \subset A$ satisfying

$$
|B| \gg |A|
$$
 and $|B + B + B| \ll \frac{|A + A|^2}{|A|}.$ (4.3)

By (4.3) , in order to prove Theorem [2.1,](#page-2-3) it is sufficient to show that

$$
\max\{|B + B|, |BB|\} \gtrsim |B|^{39/32}
$$

Let

$$
P = \left\{ x \in B + B : r_{B+B}(x) \ge \frac{1}{2} \frac{|B|^2}{|B+B|} \right\},\tag{4.4}
$$

so that

$$
\sum_{x \in P} r_{B+B}(x) \gg |B|^2
$$

 $|B|^8 \ll E_4^+(B)E^+(P)$

Applying Lemma [3.1,](#page-2-4)

and, by Lemma [3.6,](#page-3-1)

$$
|B|^6 \lesssim |BB|^2 E^+(P). \tag{4.5}
$$

It remains to consider $E^+(P)$. Recalling [\(4.4\)](#page-7-1), we see that for any $x \in \mathbb{F}_p$,

$$
\frac{|B|^2}{|B+B|}P(x) \ll (B*B)(x)
$$

and hence

$$
(P * P)(x) \ll \frac{|B + B|}{|B|^2} (B * B * P)(x).
$$

Thus

$$
E^{+}(P) = \sum_{x} (P*P)(x)^{2} \le \frac{|B+B|^{2}}{|B|^{4}} \sum_{x} (B*B*P)(x)^{2}.
$$

Taking a dyadic decomposition for the function $(B * P)(x)$, there exists some real number Δ satisfying $1 \leq \Delta \leq |B|$ such that, defining

$$
T = \{x \in B + P : \Delta \le (B * P)(x) < 2\Delta\},
$$

we have

$$
\sum_{x} (P * P)(x)^{2} \le \frac{|B + B|^{2}}{|B|^{4}} \Delta^{2} \sum_{x} (B * T)(x)^{2} = \frac{|B + B|^{2}}{|B|^{4}} \Delta^{2} E^{+}(B, T).
$$

Since $T \subseteq B + B + B$, by [\(4.2\)](#page-7-2) and [\(4.3\)](#page-7-0),

$$
|B||B + B + B||BB| \ll p^2,
$$

and hence, by Lemma [3.9,](#page-5-0)

$$
E^+(B,T) \ll |T|^{3/2} |BB|^{3/2} |B|^{-1/2} + |T|^2 |BB||B|^{-1} + |T||BB|^2 |B|^{-1}.
$$

This gives

$$
\sum_{x} (P * P)(x)^{2} \le \frac{|B + B|^{2}}{|B|^{4}} (\Delta |T|) (\Delta |T|^{1/2}) |BB|^{3/2} |B|^{-1/2}
$$

+
$$
\frac{|B + B|^{2}}{|B|^{4}} (\Delta |T|)^{2} |BB| |B|^{-1} + \frac{|B + B|^{2}}{|B|^{4}} (\Delta^{2} |T|) |BB|^{2} |B|^{-1}.
$$

Since ∆|*T*| \ll |*B*||*P*|, ∆²|*T*| \ll *E*⁺(*B*, *P*) and *P* ⊆ *B* + *B*, this simplifies to

$$
E^{+}(P) \le \frac{|B + B|^3|BB|^{3/2}E^{+}(B, B + B)^{1/2}}{|B|^{7/2}} + \frac{|B + B|^4|BB|}{|B|^3} + \frac{|B + B|^2|BB|^2E^{+}(B, B + B)}{|B|^5}.
$$
 (4.6)

We proceed on a case-by-case basis depending on which term in (4.6) dominates. Suppose first that

$$
E^{+}(P) \leq \frac{|B + B|^3|BB|^{3/2}E^{+}(B, B + B)^{1/2}}{|B|^{7/2}}.
$$

Assumption [\(4.2\)](#page-7-2) implies that the conditions of Corollary [3.10](#page-5-1) are satisfied and

$$
E^+(P) \lesssim \frac{|B + B|^{15/4} |BB|^{9/4}}{|B|^{15/4}}.
$$

Combining with [\(4.5\)](#page-7-3),

$$
|B|^{39} \lesssim |B + B|^{15} |BB|^{17},
$$

which gives the required result.

Suppose next that

$$
E^+(P) \lesssim \frac{|B + B|^4|BB|}{|B|^3}
$$

Combining with [\(4.5\)](#page-7-3),

$$
|B|^9 \lesssim |B+B|^4|BB|^3,
$$

which gives a better bound than 39/32.

Finally, suppose

$$
E^{+}(P) \le \frac{|B + B|^2|BB|^2 E^{+}(B, B + B)}{|B|^5}
$$

By Corollary [3.10,](#page-5-1)

$$
E^+(P) \lesssim \frac{|B + B|^{7/2} |BB|^{7/2}}{|B|^{11/2}},
$$

and hence, by (4.5) ,

$$
|B|^{23} \lesssim |B+B|^7|BB|^{11},
$$

oof in the case $|A + A|^2 |AA| \leq p^2$ giving a better bound than 39/32. This finishes the proof in the case $|A + A|^2 |AA| \le$
Suppose next that $|A + A|^2 |AA| \ge p^2$. By [\(4.1\)](#page-7-4), $|A + A|^2 |AA| \ge |A|^{117/32}$ and hence

$$
\max\{|A + A|, |AA|\} \geq |A|^{39/32},
$$

which completes the proof.

5. Proof of Theroem [2.2](#page-2-1)

Suppose *A* satisfies

$$
|A| \leqslant p^{32/55}.\tag{5.1}
$$

We consider two cases. Suppose first that $|A - A||AA|A| \le p^2$. By Lemma [3.2,](#page-3-3) Lemma 3.8 and Corollary 3.10 Lemma [3.8](#page-5-2) and Corollary [3.10,](#page-5-1)

$$
\frac{|A|^8}{|A-A|} \ll (|A|^2|AA|^{4/3})(|A-A|^{3/2}|AA|^{3/2}|A|^{-1/2}),
$$

which reduces to $|A - A|^{15} |AA|^{17} \gg |A|^{39}$ and gives the required result. On the other hand, if $|A - A||AA||A| \ge p^2$, then by [\(5.1\)](#page-9-0), $|A - A||AA| \ge |A|^{39/16}$ as required.

6. Proof of Theorem [2.3](#page-2-2)

Suppose *A* satisfies

$$
|A| \le p^{(4-3 \times 2^{-k})/(7-16 \times 2^{-k})}.
$$
\n(6.1)

We again consider two cases. Suppose first that

$$
|A||(k-1)A||AA| \le p^2.
$$
 (6.2)

We fix an integer $k \geq 3$ and consider two subcases. Suppose first that for all integers *j* with $3 \leq j \leq k$,

$$
|A|^{j-3/2}T_{j-1}(A)^{1/2}|AA|^{3/2}\geq \max\bigg\{|A|^{2j-3}|AA|,\frac{T_{j-1}(A)|AA|^2}{|A|}\bigg\}.
$$

By [\(6.2\)](#page-9-1) and Lemma [3.12,](#page-5-3) this implies that for each *j* with $3 \le j \le k$,

$$
T_j(A) \lesssim |A|^j \bigg(\frac{|AA|}{|A|}\bigg)^{3/2} T_{j-1}(A)^{1/2}
$$

and, by induction on *j*,

$$
T_k(A) \lesssim |A|^{k + (k-1)/2 + \dots + (k-j+1)/2^{j-1}} \left(\frac{|AA|}{|A|}\right)^{(3/2)(1+1/2 + \dots + 1/2^{j-1})} T_{k-j}(A)^{1/2^j}
$$

Taking $j = k - 2$ and using Corollary [3.11,](#page-5-4)

$$
T_k(A) \lesssim |A|^{k + (k-1)/2 + \dots + 3/2^{k-3}} \left(\frac{|AA|}{|A|}\right)^{(3/2)(1 + 1/2 + \dots + 1/2^{k-3})} E^+(A)^{1/2^{k-2}}
$$

$$
\lesssim |A|^{2k - 5 + 2^{3-k}} |AA|^{3(1 - 2^{1-k})}.
$$
 (6.3)

For $x \in \mathbb{F}_p$, let

$$
r_{A,k}(x) = |\{(x_1, \ldots, x_k) \in A^k : x_1 + \cdots + x_k = x\}|.
$$

Then

$$
|A|^k = \sum_x r_{A,k}(x).
$$

By the Cauchy–Schwarz inequality,

$$
|A|^{2k} \leqslant |kA|T_k(A),
$$

since

$$
\sum_{x} r_{A,k}(x)^2 = T_k(A).
$$

Applying [\(6.3\)](#page-10-0),

$$
|A|^{5-2^{3-k}} \lesssim |kA| |AA|^{3-3 \times 2^{1-k}},
$$

which implies

$$
\max\{|kA|, |AA|\} \gtrsim |A|^{(5-2^{3-k})/(4-3\times 2^{1-k})}.\tag{6.4}
$$

Suppose next that there exists some *j* with $3 \le j \le k$ such that

$$
|A|^{j-3/2}T_{j-1}(A)^{1/2}|AA|^{3/2} \le \max\Big\{|A|^{2j-3}|AA|, \frac{T_{j-1}(A)|AA|^2}{|A|}\Big\}.
$$

If

$$
|A|^{2j-3}|AA| \geq \frac{T_{j-1}(A)|AA|^2}{|A|},
$$

then, by Lemma [3.12,](#page-5-3)

$$
T_j(A) \lesssim |A|^{2j-3} |AA|.
$$

Using the Cauchy–Schwarz inequality as before,

$$
|A|^{2j} \lesssim |A|^{2j-3} |jA||AA|,
$$

which implies

$$
\max\{|kA|, |AA|\} \gtrsim |A|^{3/2}
$$

and is better than (6.4) . If

$$
\frac{T_{j-1}(A)|AA|^2}{|A|} \ge |A|^{2j-3}|AA|,
$$

then

$$
T_j(A) \le \frac{T_{j-1}(A)|AA|^2}{|A|} \le |A|^{2j-7}|AA|^2 E^+(A),
$$

and hence, by Corollary [3.11,](#page-5-4)

$$
T_j(A) \leq |A|^{2j-6} |AA|^{7/2}.
$$

This implies that

 $|A|^6 \le |jA||AA|^{7/2}$

and hence

$$
\max\{|kA|, |AA|\} \gtrsim |A|^{4/3},
$$

which is better than (6.4) .

Suppose next that $|A||(k-1)A||AA| \geq p^2$. By [\(6.1\)](#page-9-2),

$$
|(k-1)A||AA| \geq |A|^{2(5-2^{3-k})/(4-3\times 2^{1-k})},
$$

which completes the proof.

References

- [1] J. Bourgain and M. Z. Garaev, 'On a variant of sum-product estimates and explicit exponential sum bounds in prime fields', *Math. Proc. Cambridge Philos. Soc.* 146(1) (2009), 1–21.
- [2] J. Bourgain, N. Katz and T. Tao, 'A sum-product estimate in finite fields and their applications', *Geom. Funct. Anal.* 14 (2004), 27–57.
- [3] G. Elekes, 'On the number of sums and products', *Acta Arith.* 81 (1997), 365–367.
- [4] P. Erdős and E. Szemerédi, 'On sums and products of integers', in: *Studies in Pure Mathematics. To the memory of Paul Turán* (Birkhäuser, Basel, 1983), 213-218.
- [5] M. Z. Garaev, 'An explicit sum-product estimate in F*p*', *Int. Math. Res. Not. IMRN* 2007 (2007), Article ID 11, 11 pages.
- [6] M. Z. Garaev, 'The sum-product estimate for large subsets of prime fields', *Proc. Amer. Math. Soc.* 136 (2008), 2735–2739.
- [7] A. A. Glibichuk and S. V. Konyagin, 'Additive properties of product sets in fields of prime order', in: *Additive Combinatorics*, CRM Proceedings and Lecture Notes, 43 (American Mathematical Society, Providence, RI, 2007), 279–286.
- [8] N. H. Katz and C. Y. Shen, 'A slight improvement to Garaev's sum product estimate', *Proc. Amer. Math. Soc.* 136 (2008), 2499–2504.

- [9] S. V. Konyagin and M. Rudnev, 'On new sum-product type estimates', *SIAM J. Discrete Math.* 27(2) (2013), 973–990.
- [10] L. Li, 'Slightly improved sum-product estimates in fields of prime order', *Acta Arith.* 147 (2011), 153–160.
- [11] B. Murphy, O. Roche-Newton and I. Shkredov, 'Variations of the sum-product problem', *SIAM J. Discrete Math.* 29(1) (2015), 514–540.
- [12] B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev and I. D. Shkredov, 'New results on sumproduct type growth over fields', Preprint, 2017, [arXiv:1702.01003.](http://www.arxiv.org/abs/1702.01003)
- [13] B. Murphy, M. Rudnev, I. Shkredov and Y. Shteinikov, 'On the few products, many sums problem', Preprint, 2017, [arXiv:1712.0041v1.](http://www.arxiv.org/abs/1712.0041v1)
- [14] O. Roche-Newton, M. Rudnev and I. D. Shkredov, 'New sum-product type estimates over finite fields', *Adv. Math.* 293 (2016), 589–605.
- [15] M. Rudnev, 'An improved sum-product inequality in fields of prime order', *Int. Math. Res. Not. IMRN* 2012(16) (2012), 3693–3705.
- [16] M. Rudnev, 'On the number of incidences between points and planes in three dimensions', *Combinatorica* 38(1) (2017), 219–254.
- [17] M. Rudnev, G. Shakan and I. Shkredov, 'Stronger sum-product inequalities for small sets', Preprint, 2018, [arXiv:1808.08465.](http://www.arxiv.org/abs/1808.08465)
- [18] G. Shakan, 'On higher energy decomposition and the sum-product phenomenon', *Math. Proc. Came. Phil. Soc.*, to appear.
- [19] G. Shakan and I. D. Shkredov, 'Breaking the 6/5 threshold for sums and products modulo a prime', Preprint, 2018, [arXiv:1806.07091v1.](http://www.arxiv.org/abs/1806.07091v1)
- [20] I. D. Shkredov, 'Energies and structure of additive sets', *Electron. J. Combin.* 21(3) (2014), 1–53.
- [21] I. D. Shkredov, 'On asymptotic formulae in some sum-product questions', Preprint, 2018, [arXiv:1802.09066.](http://www.arxiv.org/abs/1802.09066)
- [22] S. Stevens and F. de Zeeuw, 'An improved point-line incidence bound over arbitrary fields', *Bull. Lond. Math. Soc.* 49(5) (2017), 842–858.

CHANGHAO CHEN, Department of Pure Mathematics,

University of New South Wales, Sydney, NSW 2052, Australia e-mail: changhao.chen@unsw.edu.au

BRYCE KERR, Department of Pure Mathematics,

University of New South Wales, Sydney, NSW 2052, Australia e-mail: bryce.kerr@unsw.edu.au

ALI MOHAMMADI, School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia e-mail: alim@maths.usyd.edu.au