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This paper studies the non-Gaussian pseudo maximum likelihood (PML) estimation
of a spatial autoregressive (SAR) model with SAR disturbances. If the spatial weights
matrix M, for the SAR disturbances is normalized to have row sums equal to 1 or
the model reduces to a SAR model with no SAR process of disturbances, the non-
Gaussian PML estimator (NGPMLE) for model parameters except the intercept term
and the variance ag of independent and identically distributed (i.i.d.) innovations
in the model is consistent. Without row normalization of M), the symmetry of
ii.d. innovations leads to consistent NGPMLE for model parameters except 002.
With neither row normalization of M,, nor the symmetry of innovations, a location
parameter can be added to the non-Gaussian pseudo likelihood function to achieve
consistent estimation of model parameters except crg. The NGPMLE with no
added parameter can have a significant efficiency improvement upon the Gaussian
PML estimator and the generalized method of moments estimator based on linear
and quadratic moments. We also propose a non-Gaussian score test for spatial
dependence, which can be locally more powerful than the Gaussian score test.
Monte Carlo results show that our NGPMLE with no added parameter and the score
test based on it perform well in finite samples.

1. INTRODUCTION

The spatial autoregressive (SAR) model, originated in Cliff and Ord (1973, 1981),
is a popular spatial econometric model. It has been applied in a range of fields
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in economics to capture spatial dependence.! In this paper, we consider the non-
Gaussian pseudo maximum likelihood (PML) estimation of the SAR model with
SAR disturbances (SARAR model), with no need to correctly specify the distri-
bution of independent and identically distributed (i.i.d.) innovations in the model.
We provide conditions for the consistency of the non-Gaussian PML estimator
(NGPMLE) and prove its asymptotic distribution. Our applications to several
popular datasets in the spatial econometric literature show some evidence of
nonnormal and leptokurtic innovations for these datasets.? In such situations, our
NGPMLE on the basis of leptokurtic distributions can have significant efficiency
improvements over existing estimators including the Gaussian PML estimator
(GPMLE) (Lee, 2004), and lead to different but more reliable empirical results.
We consider the following SARAR model:

Yn = )"OWnYn +Xn,8() + Un» Un = IOOMnUn +00Vn7 (1)

where 7 is the sample size, Y, = [V,1, - - -, Ynn]) 18 ann x 1 vector of observations on
the dependent variable, X, is an n x k, matrix of exogenous variables, W, = [w), ;]
and M,, = [m, ;] are spatial weights matrices with zero diagonals,’ the innovations
vi’sin V,, = [vy,...,v,] are i.i.d. with mean zero and unit variance, Ao and p, are
scalar spatial dependence parameters, By is a k, x 1 parameter vector, and oy is
a standard deviation (SD) parameter. We formulate an NGPMLE using a chosen
density function for v; that can differ from its true density function. Our results on
the consistency of the NGPMLE for the SARAR model extend those in Newey and
Steigerwald (1997) for conditional heteroskedasticity models, by properly taking
into account spatial dependence.* We show that, when the spatial weights matrix
M,, in the SAR process of disturbances is normalized to have row sums equal to 1,
the NGPMLE for model parameters except the intercept term and the variance
002 of i.i.d. innovations is consistent under regularity conditions; without row
normalization of M,, if the innovations are symmetric, the NGPMLE for model
parameters except 002 is consistent; and with neither row normalization of M,, nor
the symmetry of innovations, a location parameter can be added to the pseudo

IReviews on studies about the class of SAR models can be found in, e.g., Anselin and Bera (1998), Anselin (2010),
and Arbia (2016).

2See Section 5 and the Supplementary Material.

3The zero diagonals of the spatial weights matrices exclude self-influence. It is a normalization condition usually
maintained in the literature (see, e.g., Kelejian and Prucha, 1998; Lee, 2004). Indeed, it is not used in our theoretical
analysis.

40Other studies on the NGPMLE include, among others, Gouriéroux, Monfort, and Trognon (1984), Francq, Lepage,
and Zakotan (2011), Fan, Qi, and Xiu (2014), and Fiorentini and Sentana (2019). The results in Gouriéroux et al.
(1984) are on the basis of a density function f(x,m) or f(x,m, X), where m is the mean and ¥ is the variance of the
distribution. They focus on the exponential family, for which all moments exist. Our analysis does not restrict the
density function to be of the form f(x,m) or f(x,m,X), and we can use a density function which does not have
a finite moment with an order higher than 3. Francq et al. (2011) and Fan et al. (2014) propose modifications
of NGPMLEs for GARCH models with zero conditional mean. Fiorentini and Sentana (2019) propose consistent
NGPMLEs for GARCH models with nonzero conditional mean and for some other location-scale models such as
multivariate regressions.

SWe refer to a matrix with all row sums equal to 1 as a row-normalized matrix hereafter.
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likelihood function to obtain consistent estimators of model parameters except 002.
An important special case of the SARAR model is the SAR model with exogenous
variables but with no SAR process of disturbances. Consistent non-Gaussian PML
estimation of model parameters except 002 only requires an intercept term in
the model. Furthermore, although we only consider SAR models in this paper,
consistent NGPMLEs can also be extended to other spatial econometric models.®
We expect that NGPMLEs for those models can be more efficient than existing
estimation methods.

We prove the /n-consistency and asymptotic normality of our NGPMLE under
the condition that the innovations have a finite third moment, which can allow
for innovations with relatively heavy tails. By contrast, the ./n-consistency of
the GPMLE is established under the existence of a moment of innovations with
an order higher than 4 (Lee, 2004). Furthermore, using numerical integration
and Student’s ¢ distribution to formulate a likelihood function, we show that the
NGPMLE with no added parameter can have a uniform efficiency improvement
upon the GPMLE, and can also have a significantly larger efficiency improvement
than the best generalized method of moments (GMM) estimator on the basis
of linear-quadratic moments (Liu, Lee, and Bollinger, 2010), but the NGPMLE
with an added parameter can be less efficient than the GPMLE. An intuitive
explanation from the non-Gaussian score is that, unlike GPMLE and the best
GMM estimator (BGMME), the NGPMLE with no added parameter does not
restrict the moments to be linear and quadratic in innovations. The NGPMLE
with an added parameter loses some efficiency since one more parameter has
to be estimated. Our Monte Carlo experiments further corroborate the efficiency
improvement of the NGPMLE with no added parameter upon the GPMLE and
BGMME.

We also propose a non-Gaussian score test for spatial dependence in SAR
models, which only requires the restricted NGPMLE. The test statistic generalizes
the Moran [ test statistic that is quadratic in estimated innovations (Moran, 1950).
If the NGPMLE is asymptotically more efficient than the GPMLE, then the non-
Gaussian score test is locally more powerful than the Gaussian score test.

Estimation methods for SAR models include maximum likelihood (ML) (Ord,
1975), generalized spatial two-stage least squares (GS2SLS) (Kelejian and Prucha,
1998), Gaussian PML,” GMM (Lee, 2007),® best GMM, and adaptive estimation
(Robinson, 2010; Lee and Robinson, 2020), among others. GS2SLS is compu-
tationally simpler than ML, Gaussian PML, GMM, and best GMM, but is less
efficient. Like our NGPMLE, the GPMLE does not need the distribution of

OFor example, the matrix exponential spatial specification (LeSage and Pace, 2007), spatial moving average models
(e.g., Haining, 1978; Cliff and Ord, 1981; Fingleton, 2008; Dogan and Tagpinar, 2013), and high-order versions of
those models (e.g., Blommestein, 1983, 1985). See the Supplementary Material for some consistency analysis.
7Exact and high-order properties of the GPMLE are studied in Bao (2013) and Hillier and Martellosio (2018). Gupta
and Robinson (2018) study the GPMLE of SAR models with increasingly many parameters.

8 A related estimation method is the generalized empirical likelihood (Jin and Lee, 2019), which is asymptotically as
efficient as the GMM with the same moments, but can have smaller higher-order bias.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.109.107, on 23 Nov 2024 at 22:21:22, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50266466623000026


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466623000026
https://www.cambridge.org/core

CONSISTENT NON-GAUSSIAN PSEUDO 1123

innovations to be correctly specified, and it is relatively efficient.’ In addition,
whether the NGPMLE or the ML estimator based on nonnormal distributions is
consistent or not is not clear according to the existing literature. Thus, the GPMLE
is popular in practice (see, e.g., Robinson, 2010). However, it can have a significant
efficiency loss compared with the ML estimator, when the innovations are far from
normally distributed (Fan et al., 2014). The adaptive estimation in Robinson (2010)
requires that each unit is influenced aggregately by a significant portion of units
in the population, which is a very stringent condition that may not be reasonable
in some practical circumstances.'’

This paper is organized as follows: In Section 2, we prove the convergence and
asymptotic distribution of the NGPMLE for the SARAR model, and compare its
efficiency with those of the GPMLE and BGMME. In Section 3, the non-Gaussian
score test is investigated. Monte Carlo and application results are reported in
Sections 4 and 5, respectively. Section 6 concludes. Proofs and other materials
are collected in the Appendix and in the Supplementary Material.

2. NGPMLE

Let 6y = [Ao, po, ,36,(702]’ be the true parameter vector in model (1), and let 6 =
[A, 0,8, 0% bea general parameter vector. We consider a density function f(x, 1)
of a random variable with mean zero and unit variance, where 7 is a k, x 1
parameter vector. For example, f (x, ) can be the density function of a standardized
Student’s ¢ distribution with 1 degrees of freedom. The pseudo log-likelihood
function of the SARAR model (1), as if v; had the density function f(v;, 1), is

InLy(y) =Y Inf(vi(6),n) — gln(az) +1n[S, (W[ +1n[R, ()], 2

i=1

where y = [0/, S,(A) = I, — AW,, with I,, being the n-dimensional identity
matrix, R,(p) = I, — pM,, and v;(0) = ée;ﬂRn(p)[Sn()») Y, — X, 8], with e,; being
the ith column of 7,,. We may fix 5 at some particular value or estimate it jointly
with 6. We focus on the case where 7 is estimated jointly with 6, as in Fiorentini
and Sentana (2019). An NGPMLE of y is derived by maximizing InL, (y) in (2).

We first introduce some regularity conditions for later analysis on model (1).

Assumption 1 (Topological space). Let D C R%, ¢; > 1, be a lattice of
(possibly) unevenly placed locations in R. D is infinitely countable and the
distance d(i,j) between any two elements i and j in D is larger than or equal to
a specific positive constant, say 1 without loss of generality. n individual units in
an economy for model (1) are located or living in a region D), C D, where the
cardinality of D, is n.

9t is asymptotically equivalent to a GMM estimator with linear and quadratic moments, where the linear moments
correspond to the instrumental variables estimation of the parameters in the equation on the dependent variable in a
GS2SLS approach.

10This condition is the same as that for the consistency of the ordinary least-squares estimator (Lee, 2002).
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Since the general density function f(x,n) can introduce nonlinearity into the
pseudo log-likelihood function, we require a proper law of large numbers (LLN)
for analysis. We use the LLN for near-epoch-dependent (NED) spatial processes,
developed in Jenish and Prucha (2012). Assumption | maintains some conditions
required for such an LLN. The assumption provides basic settings on individual
units. The minimum distance assumption on individual units corresponds to
increasing domain asymptotics in the spatial literature.''

Let || |loc and || - || be, respectively, the row sum and column sum matrix norms.

Assumption 2 (Basic conditions on model elements). (i) v;’s are i.i.d. with
mean zero and unit variance. (ii) W,, and M,, are nonstochastic matrices such that
sup,, Wy loo < 00 and sup, 1M, |l < o0. (iii) co = max{[xo| sup, [ Walloc, | 00| sup,
1M, ]loo} < 1. (iv) The elements of X,, are uniformly bounded constants.

We consider i.i.d. innovations as in many papers on spatial econometric models.
The uniform boundedness condition on the spatial weights matrices in Assumption
2(ii), originated in Kelejian and Prucha (1998, 1999, 2001), limits the degree of
spatial dependence to be manageable.'> The elements of spatial weights matrices
are often nonnegative in practice, but our theoretical analysis does not require such
an assumption. Assumption 2(iii) implies the nonsingularity of R, = R,,(po) and
S, = S, (Ag) for any n. In Assumption 2(iv), the elements of X, are assumed to be
constants for simplicity, as in Lee (2004)."3

2.1. Consistency
Model (1) can be written as
RnSnY = Ran,BO + 09 Vn~ (3)

Thus, for given Ay and py, (3) is a linear regression model with R,S,Y, being a
vector of observations on the dependent variable and R, X,, being the explanatory
variable matrix. Newey and Steigerwald (1997) establish a set of results on the
consistency of the NGPMLE for coefficients in a conditional heteroskedasticity
model, which nests the linear regression model as a special case. These results
depend on whether the model has an intercept term or whether model innovations
are symmetric.'* The regression (3) may not have an intercept term, but if M, is

T Another commonly used asymptotic method is called infill asymptotics, for which the sample region is fixed and
the growth of the sample size is achieved by sampling points arbitrarily dense in the given region. See Cressie (1993)
and Conley (1999) for more explanations and examples. If f(x,n) is the density function of normal distributions,
then Inf(x,n) is a quadratic function of x. In this special case, asymptotic analysis can be based on the LLN for
linear-quadratic forms (Kelejian and Prucha, 2001); therefore, Assumption | is not needed.

1213 the spatial econometric literature, a spatial weights matrix is often assumed to be bounded in both the row-
and column-sum norms. Later we introduce conditions that imply sup,, || W, || < oo and sup,, [|M, ||| < oo; therefore,
Assumption 2(ii) only involves the row-sum norms of W, and M,,.

13 Alternatively, X,, can be allowed to be stochastic with the existence of certain moments.

14710 gain some intuition on the results, consider the case that the assumed density f is symmetric and non-Gaussian.
As f is not a Gaussian density, the mean of the dependent variable in a linear regression model is generally not a
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row-normalized and X,, contains an intercept term such that X,, = [1,, X3, ], where
1, is an n x 1 vector of ones, then R, X,, = [(1 — po) 1,,, R, X5,] contains an intercept
term. Hence, for given Xy and py, we expect the consistency of the NGPMLE
of some parameters in (3) under some regularity conditions. However, we have
to properly take into account that the spatial dependence parameters A and p are
also estimated. In the following, we provide sufficient conditions for the consistent
NGPMLE of some parameters in (3).

Under regularity conditions, %lnLn(y) — %E[lnL,,(y)] converges to zero uni-
formly on a compact parameter space of y. Suppose that lim,_, %E[lnLn(y)]
is uniquely maximized at some pseudo-true value of y, then the NGPMLE of y
converges to the pseudo-true value in probability under regularity conditions. The
following Assumptions 3 and 4 guarantee that E[InL,(y)] is uniquely maximized
at the pseudo-true value, where some components of the pseudo-true value will
be equal to their true values. Denote = [B;, 851’ in the case that X, contains an
intercept term, where 8, is the parameter for 1,. Accordingly, let By = [Bio, B3] -
For a square matrix A, let vecp(A) be a column vector formed by the diagonal
elements of A. Denote Ay, = MR, Ay, = R,W,S; 'R, Ay, = M,W,ST'R !,
and T,,(t) = R,(0)S,(M)S, 'R, = [1, j(1)] with T = [%, p]'.

Assumption 3 (Identification A). (i) f(x,n) > 0, for any x and », and
Ellnf(v;(8),n)] < oo for all y in its parameter space. (ii) X,R R,X, is
nonsingular. (iii) For any (oj,o3), every element of 1, + «jvecp(Ay,) +
asvecp(Az,) + ajapvecp(As,) is nonzero. (iv) g,(r) > 0, for T # 1y, where
gn(f) = Z:‘L:l ln|tn,ii(1')| - ln|Tn(T)|

Assumption 3(i) is a usual regularity condition. The nonsingularity of X/ R/ R, X,,
in Assumption 3(ii) is for the identification of By. Assumption 3(iii) implies that
1n,ii(7) # 0 for any i and any 7. Note that 7,,(79) = I,,, whose diagonal elements are
all equal to 1. Then the assumption is satisfied at least for 7 close to 7.

Assumption 3(iv) is for the identification of 7. It is a generalized version
of Hadamard’s inequality for positive semidefinite matrices. Lin and Sinnamon
(2020) provide sufficient conditions for Assumption 3(iv), which require all
principal minors of 7,(r) to be nonnegative and to satisfy a Fischer-type
inequality. Alternatively, we could investigate conditions for Assumption 3(iv) in a
neighborhood of 7. Since g,(79) = 0 and @ =0, we have g,(t) > Ofor 7 # 19

in aneighborhood of 7y if 3;‘(’;"8(:9) is positive-definite. Let T, = A}, —diag(A;,) and

T,, = Ay, — diag(Ay,), where diag(A) for a square matrix A denotes a diagonal

natural location parameter of the assumed density. Thus, if f differs from the true density, the consistency of the
NGPMLE of the parameters for the mean is not guaranteed. When the true density is symmetric, the mean, median,
and mode of the dependent variable are equal; thus, the mean and the natural location parameter are the same for f.
It follows that the parameters for the mean can be consistently estimated by the non-Gaussian PML under regularity
conditions. In the case that the true density is asymmetric, if there is no intercept term, the difference between the
mean and the natural location parameter for f leads to the inconsistency of the NGPMLE of the parameters for the
mean. The existence of an intercept in a linear regression model accounts for the difference, so other parameters for
the mean can still be consistently estimated by the non-Gaussian PML.
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a2
matrix formed by the diagonal elements of A. Then % is positive-definite

when W, and M,, are equal, T}, and Ty, are linearly independent, and either W,
is symmetric or it is row-normalized from a symmetric matrix (see Lemma B.1 in
Appendix B).

Assumption 4 (Identification B). Either the following (i) or (if) holds:

(i) (@ M, 1is row-normalized. (b) X, contains an intercept term.
(¢) E[Inf(*™==,71)] —In(0’) has a unique maximum at [0s0, Coo, a1+

(i) (a) v; is symmetrically distributed around zero with unimodal density k(v),
which satisfies that k(v{) < k(v,) for |v{| > |vz]. (b) For each n, f(v,n) =
f(=v,m) and f(vi,m) < f(va,n) for [vi| > |va|. (c) E[Inf (%%, n)] —In(o) has a
unique maximum at [oso, 75,1’

The spatial weights matrix M, can be either row-normalized or not row-
normalized, but a row-normalized M,, facilitates the interpretation of the spatial
dependence parameter p, since it indicates that each element of M,U, is a
weighted average of U, for a nonnegative M,. Thus, spatial weights matrices
are often row-normalized in practice.'> An intercept term is usually included in
the SARAR model in empirical research.'® Assumption 4(i)(c) and (ii)(c) is the
same as Assumptions 2.4 and 2.6 in Newey and Steigerwald (1997), respectively.
Assumption 4(i)(c) strengthens Assumption 4(ii)(c). With a row-normalized M,
and an intercept term in X,,, the term %(aov,' — ) in Assumption 4(i)(c) is equal to
v;(0) evaluated at 6 = [Ag, po, ]_‘)‘—m + Bio, By a?]. Newey and Steigerwald (1997)
provide some insights on Assumption 4(ii)(c). A necessary condition for it is that
E[Inf (%, Neo)] —Ino is uniquely maximized at ¢ = 0. Therefore, f (x, ) should
be chosen such that o, minimizes the Kullback—Leibler distance between the
true innovation density and the pseudo density (;—" f (”gix, Noo)- Such an assumption
holds for the Gaussian likelihood, the likelihood for a standardized Student’s ¢
distribution with more than two degrees of freedom, and a generalized Gaussian
likelihood with Inf(x,n) = —|x|"[['(3/n)/T'(1/19)]"/* 4+ ¢, where c is a constant
and I'(-) denotes the gamma function (Fan et al., 2014). The assumption also
implies that o, is generally different from oy, although it is straightforward to
show that 0, = oy if f(-) is a Gaussian density.!” For the case with symmetric
innovations, Assumption 4(ii)(a) and (b) is the same as Assumption 2.3 in Newey

15 Another reason is that it implies a simple interval of p for the nonsingularity of I, — pM,. See the discussions in,
e.g., Kelejian and Prucha (2010). Some authors prefer not to row-normalize a spatial weights matrix (e.g., Baltagi,
Egger, and Pfaffermayr, 2008).

1610 some rare cases, an intercept term is not included, e.g., when Y,, and X), are normalized to have mean zero. An
example can be found in LeSage (1999, p. 72).

'7Furthermore, 0o00/00 and 1 only depend on the true disturbance distribution and the chosen density function
f(v,n), but do not depend on model characteristics such as spatial weights matrices, exogenous variables, and
parameter values. The o /0q differs from 1 even when the true innovation distribution and the chosen density
function f (v, ) are spherically symmetric. We report the values of 0, /09 for some chosen disturbance distributions
and a density function f(v,n) in the Supplementary Material.
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and Steigerwald (1997). Both the true density function of v; and the assumed
density function f(v,n) are required to be unimodal.

PROPOSITION 1. (i) If Assumptions -3 and 4(i) are satisfied, then E[InL,,(y)]
is uniquely maximized at y, = [\, Po,,Bloo,ﬁéo,Ugo,ﬂ:,o],, where Bioo = Bro +
1(?;0' (ii) If Assumptions 1-3 and 4(ii) are satisfied, then E[InL,(y)] is uniquely
maximized at vz = [ Ao, ,00,,36,(7020, Nl

In the case with arow-normalized M,,, the intercept term and the variance param-
eter are generally not consistently estimated, whereas other model parameters
can be consistently estimated; in the case with symmetric innovations, only the
variance parameter is inconsistently estimated.

Remark 1. For a SAR model with no SAR process of disturbances, i.e., ¥, =
MW, Y, + X, B0+ ooV, a result similar to Proposition 1(i) holds, where Assump-
tion 4(i) reduces to that X,, contains an intercept term and E[Inf(**=, )] —In(0)
has a unique maximum at [0s, 0o, 115, ]'- As M, does not appear in the model,
the condition of a row-normalized M, is irrelevant. For a given Ay, the SAR
model is a linear regression model with the dependent variable S,Y, and the
exogenous variable matrix X,,. It can also be seen as a special case of the SARAR
model with a row-normalized M, and py = 0O; therefore, it is not considered

separately.'®

In the case with neither row normalization of M,, nor the symmetry of inno-
vations, we could add a location parameter « to the non-Gaussian pseudo log-
likelihood function to obtain the modified function'”

i 1
InL,(8) = Y_Inf(v(6) = ~.n) = S In@) +S,M + Rl @)
i=1

where § = [A, p, 8,02 a,1']". This function is formed as if we had the model
Y, = AW, )Y, + X, 0 + U,, where U, = agl, + poM,U, + o¢V,. This model
can be rewritten as R,S,Y, = R,X,B0 + aol, + 0oV, which has an intercept
term. Thus, as the above analysis under Assumption 4(i), we could show that
E[InL,(8)] is uniquely maximized at 84 = [Ao, po, B} 0020, Oloos Na, ] under regularity
conditions.

PROPOSITION 2. If Assumptions -3 and 4(i)(c) are satisfied and R, X,, does
not contain an intercept term, then E[InL, (8)] is uniquely maximized at § = Sa.

18See the Supplementary Material for formal analysis.

19When M,, is row-normalized and X, contains an intercept term, since v;(0) — % = %e;[R,, PISh(W) Y, —XonB2]—
w ,InL,(8) is not uniquely maximized and thus should not be used. When v; is symmetric, InL,, (§) can still be
used to derive an NGPMLE, but there might be efficiency loss. Newey and Steigerwald (1997) study such efficiency
loss for conditional heteroskedasticity models. We do not examine the issue theoretically for SAR models in this
study, but we investigate it by Monte Carlo experiments.
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The identification results in Propositions 1 and 2 are for a finite n. To prove the
convergence of the NGPMLE, we need to strengthen the identification inequalities
to the limit.”

Assumption 5 (Identification for large samples). For the log-likelihood func-
tionInL,(y) in (2), assume that limsup,,_, o, %{E[lnL,,(y)] —E[InL,(y.)]} <0, for
any y # Vs, if Assumption 4(i) holds, and assume that limsup,,_, ., %{E[ln L,(y)]—
E[InL,(y#)]} < O, for any y # y, if Assumption 4(ii) holds. For InL,(§) in (4),
assume that limsup,_, %{E[lnLn(S)] —E[InL,(64)]} <0, for any § # 5.

We introduce more regularity conditions for the analysis on the consistency of
NGPMLEs.

Assumption 6 (Consistency A). (i) S, () is invertible for any A in its parameter
space A and {S,; (1)} is bounded in either the row sum or column sum matrix norm
uniformly on A. Similar conditions hold for R,(p). (ii) The parameter space I of
y is a compact subset of R¥, where k,, is the length of . Similar conditions hold
for § and «.

Assumption 6(i) is required due to the nonlinearity involved in the log Jacobians
In|S,(})| and In|R,(p)| in the pseudo log-likelihood functions. The compactness
of parameter spaces in Assumption 6(ii) is a familiar assumption on extremum
estimators.

Assumption 7 (Consistency B). At least one of the following two conditions (i)
and (ii) is satisfied:

(i) Only individuals whose distances are less than or equal to some specific
constant c_lo may affect each other directly, i.e., w, j and m,, ; can be nonzero only
if d(j, k) < c_lo for any j, k, and n.

(ii) () For every n, the number of columns w, .; of W, with [Ao| D", [wy ;| > co
is less than or equal to some fixed nonnegative integer that does not depend on n,
denoted as N.>! A similar condition holds for M,,. (b) There are constants ; and
7y with 5 > ¢4 such that |w, x| < m1d(j,k) ™™ and |m,, j| < m1d(j, k)", where
¢4 1s in Assumption 1.

Assumption 8 (Consistency C). (i) f(x,n) is differentiable with respect to x
and 7 such that |W| <cp(|x|+1) and II%(,IX’")II < cr(]x|"*r + 1) for some

constant ¢y and ¢, = 0 or 1. (ii) For the ¢, in (i), E(|v;|**?**) < 00, for some ¢ > 0.

Assumptions 7 and 8 are maintained to show the NED properties of some
relevant terms. Assumption 7 on the spatial weights matrices is the same as
Assumption 3 in Xu and Lee (2015) for a SAR Tobit model. Assumption 7(i)
does not allow direct interactions between individuals far from each other. While

201t is common to assume separate identification conditions for a finite » and for large samples in the spatial
econometric literature. See, e.g., Assumption 8 in Xu and Lee (2015).

21The cp here is some positive number smaller than 1, which can be different from that in Assumption 2(iii). We use
co for simplicity as in Xu and Lee (2015).
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Assumption 7(ii)(b) allows any off-diagonal element of spatial weights matrices
to be nonzero, the interaction needs to decay fast enough. Assumption 7(ii)(a)
corresponds to the existence of a limited number of spatial units that can have
large aggregated effects on other spatial units.

Assumption 8(i) covers the case with a bounded W and the case where

|W| < ¢f(|x|+1) for some constant ¢;. The derivative W is bounded for
a smooth enough f(x,n) whose tail behavior is proportional to |x|~%, for a > 1,
or e’ for 0 < a <1 and b > 0. Examples include Student’s ¢ and the logistic
distributions. On the other hand, |W| < ¢s(|x| + 1) for some constant ¢; for a
smooth enough f(x, n) whose tail behavior is proportional to e for0<a<?2
and b > 0. An example is the normal distribution. The condition on Anjen jg also
satisfied for Student’s ¢, logistic, and normal distributions. Depending on whether
) s bounded or | M1 | < ¢4 (|x| + 1), Assumption 8(ii) requires different
moment conditions on v;. With a bounded %, we only need v; to have a finite
moment with the order 2 4 for some ¢ > 0.

Denote the NGPMLEs that maximize InL,(y) and InL,(§) by, respectively, y
and §. The convergence of the NGPMLESs is summarized in the following theorem.

THEOREM 1. Suppose that Assumptions -3 and 5-8 are satisfied.

(1) For the case with a row-normalized M, if Assumption 4(i) is also satisfied,
then y =y, +0,(1).
(ii) For the case with symmetric v;, if Assumption 4(ii) is also satisfied, then y =
v+ 0p(1).
(iii) For the case with neither row-normalization of M,, nor the symmetry of v;, if
Assumption 4(i)(c) is also satisfied and R, X, does not contain an intercept
term, then § = 8y +o0,(1).

2.2. Asymptotic Distributions

The asymptotic distributions of the NGPMLEs can be derived by mean value
theorem expansions of their first-order conditions at the pseudo-true values, and
applying a proper central limit theorem (CLT).

As an example, consider the case with symmetric v;. With the reduced form
Y, =S, "X, Bo+ ooR,, V,), each element of %’:}y’*) is a special case of the general

form

wy = &,A,V, +be, +1,¥, —E(/,A,V,), (5)
A (i, 3 (5% visn00) 1/ A (G,

where &, = I:f(gooa‘;l ’Ioo)’.”, f (,008\;1 7700)] = [¢], U, = [f(%%;l ’Ioo)"“’

U (2L v, noo)
on

is an n X n nonstochastic matrix, b, = [b,;] is an n x 1 vector of constants, and &,

Vi, and W, have zero means (see the proof of Theorem 2). The w, can be shown to

be asymptotically normal by a CLT for martingale difference arrays, as the proof

!
] ¢y = [¥i] with ¢, being a k,;, x 1 vector of constants, A, = [ay,;]
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for the asymptotic normality of linear-quadratic forms of innovations in Kelejian
and Prucha (2001). Such a result is provided in Lemma 6 of Yang and Lee (2017).

We maintain the following assumption for the analysis on the asymptotic
distributions.

Assumption 9 (Asymptotic distributions). (i) yx, Y, and 8y are in the interior
of their respective parameter spaces. (ii) f(x, ) is thrice differentiable with respect

0 2= [x,7'7", such that || 20D | < (a2 + 1) and | 55ED ) < cp(faPe +1)

for each element z; of z, where ¢, = 0 for the case with bounded w, and
¢, = 1 for the case with |W| < ¢s(Jx] + 1), as stated in Assumption 8(i).
(iii) E(|v;]**3) < o0. (iv) If Assumption 7(i) holds, assume that sup, [|S; ! l1 < oo
and sup, R |l < oc.

Assumption 9(i) is a familiar condition required for the 1/n-convergence of
extremum estimators. Assumption 9(ii) contains further smoothness conditions on
f(x,n). Itis similar to Assumption 10 in Xu and Lee (2018), and it is satisfied with
¢, = 0 for Student’s #, logistic, and normal distributions. With Assumption 9(ii),
only a finite third moment of innovations is needed in Assumption 9(iii) for the case
with bounded W'zz As the GPMLE is shown to be /n-consistent only under
the existence of moments of innovations with an order higher than 4, it is possible
that it has a rate of convergence slower than ,/n when innovations only have a finite
third moment. In such a situation, the NGPMLE is certainly more efficient than

the GPMLE by Theorem 2. Assumption 9(i1) and (iii) is maintained to show the

convergence of the Hessian matrices IM nd ILL”,(‘S)
n " ayay’ n_ 9635

of boundedness in the column-sum norm of S and R;, ! is required for asymptotic
distributions as in Kelejian and Prucha (1998) and Lee (2004). It is not required in
the situation of Assumption 7(ii) since it can be directly proved (see Lemma B.6).

Assumption 9(iv)

THEOREM 2. Suppose that Assumptions 1-3 and 5-9 are satisfied.

(i) For the case with a row-normalized M, if Assumption 4(i) is also satisﬁed

then /n(y — vs) 2 N, lim,_, 00 A" 'BA™Y), where A = —1 (d ;LB”;V*))
and B 1 E(dlnLn(V*) (”HLn(V*))
dy
(ii) For the case with symmetrlc v;, if Assumption 4(ii) is also satisfied, then
f()? — va) 2 N(O, lim,_, 00 A7'BA™Y), where A = -1 (M) and

dyady’
1 E(alner(}’#) 8]nLn(}’#))
(iii) For the case with nelther row-normalization of M, nor the symmetry of
v;, if Assumption 4(i)(c) is also satisfied and R,X, does not contain an
) N d .
mtercept term, then /n(6 — 84) — N(0,lim,_, o, A"'BA™Y), where A =

| 13/ 02InLy(5) 1 3lnL,,(8 ) 81nLy(3)
— E(—55) and B =, E( =)

29t is possible to develop formal tests for finiteness of moments of innovations in the SARAR model, which is
beyond the scope of this paper.
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The specific expressions of .4 and 3 are in Appendix A.>* For easy reference,
denote the NGPMLE without added parameter by NGPMLE,, and that with an
added parameter by NGPMLE,. For the special case of a spatial error model with
symmetric innovations, i.e., model (1) with AoW,Y,, omitted and symmetric v;, we
could show that 4 and 5 for NGPMLE, are block diagonal and the NGPMLE, of
B has a more explicit expression, as presented in the following corollary.

COROLLARY 1. For the spatial error model with symmetric v;, the NGPMLE,

EGR) _
W(%X;R;Rn&,) ! where &; =
o AIf(ZEvinoo) og 2 f( 2L v, 100)

L —%%0 _——— gnd &,; = T and the GPMLE and BGMME of

of B has the asymptotic variance lim,_ o

Ooo v 912

B have the asymptotic variance lim,,_, o()z(}lX;R;RnX,,)’l.

By the above corollary, for the spatial error model with symmetric v;, the
BGMME of g has no efficiency improvement over the GPMLE, and the efficiency

of NGPMLE, relative to the GPMLE is determined by the scalar % For the
general SARAR model, A and B are not block diagonal and the estimation of 7
may affect the asymptotic efficiency of the NGPMLE of model parameters. Thus,
it is not easy to compare analytically the efficiencies of the NGPMLE and other

estimators.

2.3. Efficiency Comparisons

In this subsection, we compare the estimation efficiency of our NGPMLE
with those of the GPMLE and BGMME.?* For the asymptotic variance of the
NGPMLE, as the closed form is not available, we compute the asymptotic variance
in Theorem 2 for a given sample size with numerical integration. Student’s ¢
distribution with unknown degrees of freedom is used in deriving the NGPMLE.>

20ne may estimate A and 3 using the expressions in Appendix A for inference purposes. Alternatively, .A can be

22 . 2 H
estimated using 7% % 7% g ;x{;(%/(&)

non-Gaussian score.

, and B can be estimated according to the martingale structure of the

24Various impacts arising from a change in an exogenous explanatory variable, as defined in, e.g., LeSage and Pace
(2009), are functions of the spatial lag parameter Ao and the coefficient on the variable. Then by the delta method, if
the NGPMLE is asymptotically more efficient than other estimators, so are the impact estimators computed with the
NGPMLE than those computed with other estimators. Some efficiency comparisons for impact estimators based on
numerical integration and Monte Carlo experiments are provided in the Supplementary Material. The patterns are the
same as those for estimators. We thank an anonymous referee for the suggestion of considering impact estimators.

251n this study, we have not theoretically considered the choice of distributions used to derive the NGPMLEs. As
suggested in Fan et al. (2014), the distributions can be chosen to minimize the asymptotic variance of the NGPMLE in
Theorem 2. In addition, the NGPMLE and the GPMLE can be aggregated to derive an estimator that is more efficient
than both. A more practical method can be based on diagnostic tests. In the Supplementary Material, we derive some
diagnostic tests such as the normality and excess kurtosis tests of innovations in the SARAR model. Nonnormal
innovations imply that a proper NGPMLE can be more efficient than the GPMLE. If the excess kurtosis test suggests
a positive excess kurtosis, then we can use a leptokurtic distribution such as Student’s ¢ distribution; otherwise,
a platykurtic distribution such as the raised cosine distribution can be used. Our applications imply leptokurtic
distributions of innovations; therefore, we use Student’s ¢ distribution with one parameter, which is relatively simple
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TABLE 1. Models considered for efficiency comparisons.

Row-normalized M, Non-row-normalized M,,
Spatial error model: Symmetric and asymmetric v; —
SARAR model: Asymmetric v; Symmetric and asymmetric v;

The considered models are listed in Table 1. For the SARAR model, the spatial
weights matrix M, is block-diagonal and each diagonal block is based on the matrix
for the study of crimes across 49 districts in Columbus, Ohio, in Anselin (1988); M,,
is either row-normalized or normalized by its spectral radius; W, is set to be equal
to M,,; the exogenous variable matrix X,, contains an intercept term and a standard
normal random variable; the spatial dependence parameters Ay and p, are equal
to 0.4 and 0.2, respectively; the coefficients for X, are set to 1; the true variance
parameter 002 is 0.25; and the sample size is 147. For the case with symmetric
innovations, v; is set to be a mixture of two normal distributions with mean zero,
and for the case with asymmetric innovations, v; is an admissible fourth-order
Gram—Charlier expansion of the standard normal distribution as a function of the
skewness and kurtosis coefficients.”® The settings for the spatial error model are
the same as for the SARAR model, except for the omission of AgW,,Y,,.

2.3.1. Spatial Error Model with a Row-Normalized M,. We first consider
the spatial error model with a row-normalized M,,. Figure 1 reports the results
for both symmetric and asymmetric innovations. We observe that NGPMLE,
improves upon GPMLE in all cases with a nonnormal true disturbance distri-
bution, and the efficiency improvement can be up to about 50%. In the case
with symmetric innovations, BGMME shows almost no efficiency improvement
over GPMLE; in the case with asymmetric innovations, BGMME shows some
efficiency improvement over GPMLE but usually much less than NGPMLE,.
Only in the case with asymmetric innovations and for the parameter §,, BGMME
can be slightly more efficient than NGPMLE,, which occurs when the skewness
coefficient is relatively large and the kurtosis coefficient is small. For the case with
asymmetric innovations, the efficiency of NGPMLE, relative to GPMLE increases
with kurtosis, whereas it is almost not affected by skewness.

2.3.2. SARAR Model with a Row-Normalized M,, and Asymmetric v;. Figure 2
reports the efficiency comparison results for the SARAR model with a row-
normalized M,, and asymmetric innovations. Similar to the results for the spatial

and can have various degrees of excess kurtosis. As pointed out by the Co-Editor and an anonymous referee, using
a sufficiently general family of distributions can lead to efficiency loss because many more parameters are estimated
alongside other model parameters, whereas using diagnostic tests to choose distributions can suffer from the pretesting
issue (e.g., Giles and Giles, 1993). We leave those issues to future study.

26The admissible combinations of the skewness and kurtosis coefficients can be seen from, e.g., Spiring (2011).
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Ratios for p when v; is a mixture of normals Ratios for 8, when v; is a mixture of normals

4 - 4
s 05 s

Ratio of variances Mixing probability Ratio of variances Mixing probability

Ratios for p when v; is the Gram-Charlier expansion of N(0,1) Ratios for 3, when v; is the Gram-Charlier expansion of N(0,1)

0.9
0.8 -
0.7
0.6
05
3

Kurtosis Skewness Kurtosis Skewness

F1GURE 1. Efficiency comparisons of different estimators for the spatial error model with a row-
normalized M,. The lower mesh in each subfigure shows the ratios of the asymptotic variance of
NGPMLE, to that of GPMLE, whereas the upper mesh shows the ratios of the asymptotic variance of

BGMME to that of GPMLE.

Ratios for A Ratios for p Ratios for Gy

Skewness

Kurtosis Skewness Kurtosis Skewness Kurtosis

FiGure 2. Efficiency comparisons of different estimators for the SARAR model with a row-
normalized M, and asymmetric innovations. The v; is an admissible fourth-order Gram—Charlier
expansion of the standard normal distribution as a function of the skewness and kurtosis coefficients.
The lower mesh in each subfigure shows the ratios of the asymptotic variance of NGPMLE, to that of
GPMLE, whereas the upper mesh shows the ratios of the asymptotic variance of BGMME to that of
GPMLE.

error model, NGPMLE, shows a significant efficiency improvement over GPMLE,
and the improvement is much larger than that of BGMME in most cases.

2.3.3. SARAR Model with a Non-Row-Normalized M,. We next consider
the SARAR model with a non-row-normalized M,. When the innovations are
symmetric, we consider NGPMLE, as well as NGPMLE, since both estimators of
A, p, and B, are consistent. Figure 3 shows the results. NGPMLE, is still observed
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Ratios for A Ratios for p Ratios for 3,

05 05 05
10 1 10 1 8 10 1
Ratio of variances Mixing probability  Ratio of variances Mixing probability  Ratio of variances Mixing probability
NGPMLE, vs. GPMLE: A NGPMLE, vs. GPMLE: p NGPMLE, vs. GPMLE: 3,

0.5 0.5
8 101

8 101 8 101

Ratio of variances Mixing probability Ratio of variances Mixing probability Ratio of variances Mixing probability
Fi1GuRre 3. Efficiency comparisons of different estimators for the SARAR model with a non-row-
normalized M,, and symmetric innovations. The v; is a mixture of two normal distributions with mean
zero. For the first three subfigures, the lower mesh in each subfigure shows the ratios of the asymptotic
variance of NGPMLE, to that of GPMLE, whereas the upper mesh shows the ratios of the asymptotic
variance of BGMME to that of GPMLE. For the fourth to sixth subfigures, the mesh in each subfigure

shows the ratios of the asymptotic variance of NGPMLE; to that of GPMLE.

NGPMLE, vs. GPMLE: A NGPMLE, vs. GPMLE: p NGPMLE, vs. GPMLE: 3,

3
4

Skewness Kurtosis Skewness

Kurtosis Skewness Kurtosis

F1GURE 4. Efficiency comparisons of different estimators for the SARAR model with a non-row-
normalized M, and asymmetric innovations. The v; is an admissible fourth-order Gram—Charlier
expansion of the standard normal distribution as a function of the skewness and kurtosis coefficients.
The mesh in each subfigure shows the ratios of the asymptotic variance of NGPMLE, to that of
GPMLE.

to have a significant efficiency improvement over GPMLE, but NGPMLE, only
has smaller variance than that of GPMLE for $,, and its variances for the spatial
dependence parameters A and p are typically much larger than those of GPMLE.
Figure 4 further demonstrates the efficiency loss of NGPMLE, due to an added
parameter, for the case with asymmetric innovations.

To summarize, our experiments based on Student’s ¢ distribution in Sections
2.3.1-2.3.3 show that NGPMLE, has a uniform efficiency improvement upon
GPMLE, which is usually much larger than the efficiency improvement of
BGMME, but NGPMLE,, the NGPMLE with an added parameter, can be less
efficient than GPMLE.
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3. NON-GAUSSIAN SCORE TEST FOR SPATIAL DEPENDENCE

In this section, we propose a score test for spatial dependence based on the non-
Gaussian pseudo log-likelihood function InL,(y) in (2).”’

Consider a test of the null hypothesis that 7o = 0. Let y = [0,0, #/,52,7/'] be the
restricted NGPMLE of y, which is derived by maximizing InL,(y) in (2) with the
restriction T = 0 imposed. The non-Gaussian score test is based on the asymptotic
distribution of \/Lﬁ % Note that

dInL,(p) 1 & dlnf(vi(0),7) L dInf(vi(0), 1)
— =) ————— e WYy, —y —————
ot [ ) 2=,

i=1 i=1

where 6 =[0,0, 8,521, vi(0) = Le,,(Y, — X,p), and V,,(6) = [v;(B),...,v,(0)]'.
A special case of interest is the test for spatial dependence in the spatial

error model. In this case, the test is based on the asymptotic distribution of
—> L ]M e,:M,V, (6) for a spatial weights matrix M,. The statistic

v

> M ! M,lV,l(G) generalizes the quadratic form V) (6)YM,V,(0) for
Moran’s test for spatial dependence, where V! (G)M,, V,,(@) can also be derived
from the Gaussian score (Burridge, 1980).
We may apply the mean value theorem to derive the asymptotic distribution
. v 2
of %ﬁ% under the null hypothesis. Let A = —%E(M) and B =

dydy’
1g(@Inlnlye) 3nla(yec)y 28 For any two subvectors y; and y; of y, denote A,,,, =

e;,ann(é)] ,

n dy ay’
102 InLa(yso) _ 1 dInLy(Yeo) 31nLn(yoo) .
EE(—aylay;O ) and B,,,, = ; E(—5,2>= By e ). Under the null hypothesis

and regularity conditions,

1 alnL,(y) 1 8InL,(yw) lE(azlnLn(Voo)
n

Jno o9t Jn ot Ty,
1 9lnL, . ,
_ AL Lo +op(1) S N(O, lim ABA )
ﬁ a)/ n—oo
where yu 18, 02 N7, Yuso 18 the pseudo-true value of y,, and A = [I, —
.AWMA ] Let A and B be estimators of, respectively, A and B, such that

A=A+ 0,(1) and B=B+ 0,(1) under the null hypothesis. The test statistic
has the form
10InL,(Y) ~ 4+ dlnL,(y
g, = 131 (y)(ABA/)_l n ()/), ©)
n 0t/ at

W= vie) +0p(1)

which is asymptotically chi-square distributed with two degrees of freedom under
the null hypothesis.

27A test based onInL, (8) in (4) is omitted since the last section shows that the resulting NGPMLE can be less efficient
than the GPMLE, and the efficiency of an estimator relates to the power of related tests, as shown in Theorem 3.
28We use Yoo here for simplicity. By 79 = 0 and Theorem 1, y», = [0,0, ﬁlm,ﬂéo,oozc, 4]’ in the case with a row-
normalized M, and y» = [0,0, 8, 0020, 5] in the case with symmetric v;.
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For the asymptotic analysis on,, we assume that the true t in the data generating
process follows the Pitman drift in the following assumption.

Assumption 10 (Pitman drift). 7, = \/L;cf, where ¢, is a 2 x 1 vector of
constants.

THEOREM 3. If Assumptions [1—4 and 5-10 are satisfied, then t, 4
x3(lim,,— 0o ¢, ACABA) ' Ac,), where A = Arp — AWMA;L‘IWAWI and X3| (az)
denotes a noncentral chi-square distribution with a, degrees of freedom and
noncentrality parameter a,.

By Theorem 2 and the partitioned matrix inverse formula, the asymptotic
variance of the NGPMLE 7 has the form Y = lim, oo A"'ABA’A™!. The
noncentrality parameter for the asymptotic noncentral chi-square distribution of
t, is equal to ¢, Y ~'¢c,. Thus, if the NGPMLE of 7 is asymptotically more efficient
than the GPMLE, then the non-Gaussian score test is locally more powerful than
the Gaussian score test.

4. MONTE CARLO

In this section, we implement some Monte Carlo experiments to investigate the
finite-sample performance of the NGPMLE and non-Gaussian score test. As in
Section 2.3, the NGPMLE is derived by assuming Student’s ¢ distribution with
unknown degrees of freedom.

4.1. Estimators

We consider three cases: the SARAR model with a row-normalized M,, and asym-
metric v;, the SARAR model with a non-row-normalized M, and symmetric v;,
and the SAR model with symmetric v;.2? For the SAR model, we also consider the
adaptive estimators proposed in Robinson (2010).?" Parameters for the innovations
correspond to cases where the NGPMLE and BGMME show different levels of
efficiency improvements in Section 2.3. The number of Monte Carlo repetitions is
5,000. Other settings are the same as those in Section 2.3.

Table 2 reports the biases, SDs, and root-mean-squared errors (RMSE) of
various estimators for the SARAR model with a row-normalized M, and asym-
metric innovations. The biases of GPMLE, BGMME, and NGPMLE, are similar
in magnitude. Since the biases are small compared with the SDs, the RMSEs

29For the three cases considered, the identification conditions in Assumption 3 are satisfied. In the Supplementary
Material, we report some Monte Carlo results for the case when Assumption 3 fails. We observe that the NGPMLE for
the spatial dependence parameters and the coefficients on nonintercept exogenous variables still has similar bias as
the GPMLE. Thus, it is possible that the NGPMLE for some model parameters is consistent even when Assumption
3 fails. We leave this question to future research.

30The adaptive estimators do not apply to the SARAR model (Remark 3 on page 9 of Robinson, 2010).
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TABLE 2. Performance of various estimators for the SARAR model with a row-normalized M,, and asymmetric v;.

A p B2
Kurtosis Skewness Bias SD RMSE Bias SD RMSE Bias SD RMSE
Panel A: n =147

6 0.8 GPMLE —0.008 0.076 0.077 —0.025 0.142 0.144 —0.001 0.042 0.042
BGMME —0.006 0.073 0.073 —-0.013 0.143 0.144 0.000 0.040 0.040

NGPMLE, —0.006 0.059 0.060 —-0.018 0.119 0.120 —0.001 0.032 0.032

6 0.05 GPMLE —0.006 0.076 0.076 —0.032 0.141 0.145 —0.002 0.041 0.041
BGMME —0.005 0.078 0.079 —0.017 0.146 0.147 —0.002 0.042 0.042

NGPMLE, —0.004 0.060 0.060 —0.026 0.120 0.123 —0.001 0.033 0.033

4 0.4 GPMLE —0.006 0.076 0.076 —0.029 0.143 0.146 —0.002 0.042 0.042
BGMME —0.005 0.077 0.077 —0.016 0.148 0.149 —0.002 0.042 0.042

NGPMLE, —0.005 0.073 0.074 —0.028 0.140 0.143 —0.002 0.040 0.041

4 0.05 GPMLE —0.008 0.077 0.078 —0.027 0.143 0.145 —0.001 0.042 0.042
BGMME —0.007 0.080 0.081 —0.012 0.148 0.149 —0.001 0.043 0.043

NGPMLE, —0.008 0.075 0.075 —0.026 0.141 0.143 —0.001 0.041 0.041

3.05 0.05 GPMLE —0.008 0.076 0.077 —0.027 0.142 0.144 —0.002 0.042 0.042
BGMME —0.007 0.080 0.080 —0.011 0.147 0.147 —0.002 0.043 0.043

NGPMLE, —0.009 0.079 0.080 —0.026 0.146 0.148 —0.002 0.043 0.043

(continued)
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TABLE 2. (continued)

A o B2

Kurtosis Skewness Bias SD RMSE Bias SD RMSE Bias SD RMSE
Panel B: n =294

6 0.8 GPMLE —0.003 0.052 0.052 —0.012  0.098 0.099 —0.001 0.030 0.030

BGMME —0.003 0.049 0.049 —0.007 0.098 0.098 —0.001 0.028 0.028

NGPMLE, —0.002  0.040 0.040 —0.009 0.082 0.083 —0.001 0.023 0.023

6 0.05 GPMLE —0.003 0.052 0.053 —0.014  0.099 0.100 —0.001 0.029 0.029

BGMME —0.002  0.053 0.053 —0.006  0.101 0.101 —0.001 0.030 0.030

NGPMLE, —0.001 0.041 0.041 —0.012  0.082 0.083 —0.001 0.023 0.023

4 0.4 GPMLE —0.003 0.052 0.052 —-0.013 0.098 0.099 —0.001 0.029 0.029

BGMME —0.003 0.052 0.052 —0.007 0.099 0.099 0.000 0.029 0.029

NGPMLE, —0.003 0.050 0.050 —-0.013 0.096 0.097 —0.001 0.028 0.028

4 0.05 GPMLE —0.004  0.051 0.052 —-0.013 0.099 0.100 —0.001 0.029 0.029

BGMME —0.003 0.052 0.052 —0.006  0.101 0.101 —0.001 0.029 0.029

NGPMLE, —0.003 0.050 0.050 —0.012  0.097 0.098 —0.001 0.028 0.028

3.05 0.05 GPMLE —0.004  0.052 0.052 —0.014  0.098 0.099 0.000 0.029 0.029

BGMME —0.003 0.053 0.053 —0.005 0.099 0.099 —0.001 0.030 0.030

NGPMLE, —0.004  0.055 0.055 —0.013 0.101 0.102 —0.001 0.030 0.030

Notes: The true disturbance distribution is a fourth-order Gram—Charlier expansion of the standard normal distribution as a function of the skewness and kurtosis
coefficients. B, is the coefficient on the nonintercept variable in X,,. Ao = 0.4, po = 0.2, 1o =1, B2o = 1, and 002 =0.25.
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are similar to the SDs. NGPMLE has a smaller SD than GPMLE when the
kurtosis coefficient of innovations is equal to 4 or 6, whereas BGMME only has
a smaller SD for A and 8, when the kurtosis and skewness coefficients are both
the largest, i.e., the kurtosis coefficient is 6 and the skewness coefficient is 0.8.
When the kurtosis coefficient is 3.05 and the skewness coefficient is 0.05 so that
the distribution of innovations is close to the normal distribution, NGPMLE and
BGMME have slightly larger SDs than GPMLE. For NGPMLE, a larger kurtosis
leads to a smaller SD, whereas skewness does not have much impact on the SD.

Table 3 reports the estimation results for the SARAR model with a non-row-
normalized M, and symmetric innovations. In addition to NGPMLE,, GPMLE,
and BGMME, we also consider NGPMLE, to investigate its efficiency loss due
to an added parameter. The patterns for the relative efficiencies of GPMLE,
NGPMLE, and BGMME are similar to those in Table 2. When the disturbance
distribution is a mixture of two normal distributions with mean zero and the ratio
of the variances for the two distributions being close to 1, or when the innovations
follow the normal distribution, NGPMLE and BGMME have slightly larger SDs
than that of GPMLE. While the NGPMLE, of 8, has a smaller SD than that of
GPMLE in some cases, the NGPMLE, of A and p has a significantly larger SD than
that of GPMLE in most cases, which is consistent with the efficiency comparisons
based on numerical integration in Section 2.3.

Estimation results for the SAR model with symmetric innovations are presented
in Table 4. The disturbance distribution is a mixture of two normal distributions
with mean zero. The ratio of variances for the two normal distributions is 10, and
the mixing probability is 0.3.>! We consider two adaptive estimators (AE) proposed
in Robinson (2010): AE, and AE,, where AE, is a bias-corrected version of AE,,.
As in Robinson (2010), we use the polynomial functions (x, ..., x%) or the bounded

functions ( ) to estimate the score function for the AEs. An

(1+x);)1/2’ T (14a)L/2
AE, with (x, ..., x") is denoted by AE,(p, L), and that with ((sz)]/z ey (H;i)m)
is denoted by AE,(b,L). AE, is similarly denoted. We set L to 1, 2, or 4, as
in Robinson (2010). The initial estimate for the AEs is either the NGPMLE or
ordinary least-squares estimate (OLSE). Table 4 shows that, while the biases of
GPMLE, BGMME, and NGPMLE are relatively small, those of AEs can be large.
Some versions of AEs can have smaller SDs than GPMLE, but all AEs have
uniformly larger SDs and RMSEs than NGPMLE.

4.2. Non-Gaussian and Gaussian Score Tests

Tables 5 and 6 report, respectively, the empirical sizes and powers of score tests
for spatial dependence in the SARAR model with a row-normalized M, and
asymmetric innovations. With a nominal size of 5%, the size distortions of the non-
Gaussian and Gaussian score tests are all within 0.5 percentage point. Neither the

31Results for some other parameter settings are reported in the Supplementary Material. The patterns are similar.
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TABLE 3. Performance of various estimators for the SARAR model with a non-
row-normalized M,, and symmetric v;.

A 0 B2
RV Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel A: n = 147

9 GPMLE -0.004 0.064 0.064 —0.046 0.172 0.178 —0.002 0.042 0.042
BGMME —0.003 0.067 0.067 —0.023 0.186 0.188 —0.002 0.042 0.042
NGPMLE, —0.003 0.049 0.049 —0.035 0.146 0.150 —0.001 0.032 0.032
NGPMLE, —0.007 0.080 0.080 —0.038 0.157 0.161 —0.002 0.032 0.032

6 GPMLE  —0.004 0.064 0.064 —0.044 0.171 0.176 —0.001 0.042 0.042
BGMME —0.004 0.069 0.069 —0.022 0.187 0.188 —0.001 0.043 0.043
NGPMLE, —0.003 0.055 0.055 —0.038 0.158 0.162 —0.001 0.036 0.036
NGPMLE, —0.010 0.092 0.093 —0.040 0.175 0.179 —0.002 0.037 0.037

3 GPMLE —-0.002 0.064 0.064 —0.044 0.168 0.173 —0.002 0.042 0.042
BGMME —0.002 0.068 0.068 —0.020 0.181 0.182 —0.002 0.043 0.043
NGPMLE, —0.003 0.062 0.062 —0.041 0.166 0.171 —0.002 0.041 0.041
NGPMLE, —0.010 0.104 0.105 —0.048 0.184 0.191 —0.003 0.041 0.042

1.1 GPMLE —0.005 0.064 0.064 —0.047 0.171 0.178 —0.001 0.042 0.042
BGMME —0.004 0.068 0.068 —0.021 0.184 0.185 —0.001 0.043 0.043
NGPMLE, —0.006 0.068 0.069 —0.045 0.175 0.181 —0.001 0.043 0.043
NGPMLE, —0.009 0.115 0.116 —0.069 0.194 0.206 —0.002 0.047 0.047
Panel B: n =294

9 GPMLE —0.002 0.044 0.044 —0.024 0.115 0.118  0.000 0.030 0.030
BGMME —0.001 0.045 0.045 —0.013 0.119 0.119  0.000 0.030 0.030
NGPMLE, —0.001 0.034 0.034 —0.018 0.097 0.099 0.000 0.023 0.023
NGPMLE, —0.004 0.055 0.055 —0.018 0.109 0.110 —0.001 0.023 0.023

6 GPMLE —0.002 0.044 0.044 —0.021 0.117 0.119  0.000 0.030 0.030
BGMME —0.002 0.045 0.045 —0.009 0.120 0.121  0.000 0.030 0.030
NGPMLE, —0.002 0.038 0.038 —0.017 0.108 0.109  0.000 0.025 0.025
NGPMLE, —0.005 0.061 0.061 —0.018 0.119 0.121 —0.001 0.026 0.026

3 GPMLE —-0.002 0.044 0.044 —0.021 0.118 0.119  0.000 0.029 0.029
BGMME —0.002 0.045 0.045 —0.009 0.121 0.121  0.000 0.030 0.030
NGPMLE, —0.002 0.042 0.042 —0.021 0.117 0.119  0.000 0.028 0.028
NGPMLE, —0.006 0.071 0.071 —0.022 0.132 0.133 —0.001 0.029 0.029

1.1 GPMLE  -0.001 0.044 0.044 —0.022 0.115 0.117  0.000 0.029 0.029
BGMME —0.001 0.045 0.045 —0.009 0.118 0.118  0.000 0.029 0.029
NGPMLE, —0.002 0.044 0.044 —0.022 0.117 0.119  0.000 0.029 0.029
NGPMLE, 0.000 0.084 0.084 —0.043 0.152 0.158 —0.001 0.032 0.032

(continued)
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TABLE 3. (continued)

A 0 B2
RV Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel C: Normal innovations, n = 147

GPMLE  —0.004 0.063 0.064 —0.046 0.172 0.179 —0.001 0.042 0.042
BGMME —0.004 0.068 0.068 —0.021 0.186 0.187 —0.001 0.044 0.044
NGPMLE, —0.005 0.071 0.071 —0.045 0.179 0.184 —0.001 0.043 0.043
NGPMLE, —0.008 0.113 0.113 —0.069 0.197 0.208 —0.002 0.051 0.051

Panel D: Normal innovations, n = 294

GPMLE  —0.001 0.044 0.044 —0.024 0.117 0.119  0.000 0.029 0.029
BGMME —0.001 0.045 0.045 —0.010 0.120 0.120  0.000 0.030 0.030
NGPMLE, —0.002 0.046 0.046 —0.023 0.118 0.121  0.000 0.030 0.030
NGPMLE, —0.003 0.088 0.088 —0.041 0.151 0.157 —0.001 0.033 0.033

Notes: For Panels A and B, the true disturbance distribution is a mixture of two normal distributions
with mean zero. The mixing probability of the two normal distributions is set to 0.3. “RV” denotes
the ratio of variances of the two distributions. 5 is the coefficient on the nonintercept variable in X,.
20 =04, po =02, Bio =1, Boo = 1, and o} = 0.25.

Gaussian score test nor the non-Gaussian score test dominates each other in terms
of size distortions. For the empirical powers, we observe that the non-Gaussian
score test is uniformly more powerful than the Gaussian score test, except for the
case when the innovations are very close to be normally distributed. The power of
each test increases as Ao or pg increases.

5. EMPIRICAL APPLICATION

In this section, we apply our NGPMLE to the well-known Harrison and Rubinfeld
(1978) hedonic pricing data from the Boston Standard Metropolitan Statistical
Area with 506 observations.*” This dataset is popular in the spatial econometric
literature. It has been used in textbooks such as LeSage (1999), LeSage and Pace
(2009), and Arbia (2014).

Following LeSage (1999, p. 78), we estimate an SARAR model, where the
dependent variable is the log median value of owner-occupied homes in $1,000’s,
and the explanatory variables include crime rate (CRIM), proportion of area
zoned with large lots (ZN), proportion of nonretail business areas (INDUS),
location contiguous to the Charles River (CHAS), squared levels of nitrogen oxides
(NOX?), squared average number of rooms (RM?), proportion of structures built
before 1940 (AGE), weighted distances to the employment centers (DIS), an index

32 Available at http:/lib.stat.cmu.edu/datasets/. Gilley and Pace (1996) corrected several miscoded observations and
Pace and Gilley (1997) added the location of each tract in latitude and longitude. In the Supplementary Material, we
also apply our NGPMLE to the crime dataset with 49 observations in Anselin (1988) and to the presidential election
dataset with 3, 107 observations in Pace and Barry (1997).
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TABLE 4. Performance of various estimators for the SAR model with symmetric

Vi.
A B2
Bias SD RMSE Bias SD RMSE
GPMLE —0.010 0.055 0.055 0.000 0.042 0.042
BGMME —0.008 0.055 0.056 —0.002 0.042 0.042
NGPMLE, —0.007 0.043 0.044 0.000 0.032 0.032
AEs with GPMLE as the initial estimate
AE;(p, 1) 0.100 0.066 0.120 —0.010 0.043 0.044
AE,(b,1) 0.078 0.053 0.094 —0.008 0.034 0.035
AEy(p, 1) 0.327 0.105 0.343 —0.031 0.050 0.059
AE, (b, 1) 0.229 0.080 0.243 —0.023 0.038 0.044
AE,(p,2) 0.095 0.067 0.116 —0.010 0.044 0.045
AE,;(b,2) 0.075 0.054 0.092 —0.008 0.035 0.036
AE;(p,2) 0.308 0.103 0.325 —0.030 0.050 0.059
AEy(b,2) 0.222 0.080 0.236 —0.022 0.039 0.045
AE;(p,4) 0.074 0.062 0.096 —0.008 0.042 0.042
AE,(b,4) 0.060 0.063 0.087 —0.006 0.042 0.042
AEy(p,4) 0.235 0.088 0.251 —0.023 0.045 0.051
AEy(b,4) 0.189 0.086 0.207 —0.018 0.044 0.048
AEs with OLSE as the initial estimate
AE,(p,1) 0.044 0.060 0.074 —0.005 0.042 0.042
AE, (b, 1) 0.022 0.048 0.053 —0.003 0.033 0.034
AE,(p, 1) 0.318 0.109 0.336 —0.030 0.050 0.058
AE (b, 1) 0.206 0.081 0.222 —0.020 0.037 0.043
AE;(p,2) 0.041 0.061 0.074 —0.005 0.043 0.044
AE,(b,2) 0.021 0.050 0.054 —0.003 0.035 0.035
AEy(p,2) 0.298 0.108 0.317 —0.029 0.050 0.058
AEy(b,2) 0.199 0.081 0.215 —0.020 0.039 0.043
AE,;(p,4) 0.018 0.059 0.061 —0.003 0.041 0.041
AE,(b,4) 0.013 0.060 0.061 —0.002 0.042 0.042
AE;(p,4) 0.214 0.089 0.232 —0.021 0.044 0.049
AE,(b,4) 0.170 0.085 0.190 —0.017 0.044 0.047

Notes: The true disturbance distribution is a mixture of two normal distributions with mean zero. The
ratio of variances for the two normal distributions is 10, and the mixing probability is 0.3. B is the
coefficient on the nonintercept variable in X,,. Ag = 0.4, po = 0.2, 10 =1, B0 = 1, and o“g =0.25.
The sample size is 147.
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TABLE 5. Empirical sizes of score tests for spatial dependence in the SARAR
model with a row-normalized M,, and asymmetric v;.

n=147 n =294
Kurtosis Skewness GPMLE NGPMLE, GPMLE NGPMLE,
6 0.8 0.051 0.051 0.048 0.049
6 0.05 0.047 0.044 0.052 0.051
4 04 0.048 0.047 0.045 0.046
4 0.05 0.056 0.051 0.049 0.047
3.05 0.05 0.046 0.049 0.045 0.046

Notes: The nominal size is 5%. The true disturbance distribution is a fourth-order Gram—Charlier
expansion of the standard normal distribution as a function of the skewness and kurtosis coefficients.
Bio=1, B0 =1 and o =0.25.

of accessibility (RAD), property tax rate (TAX), pupil-teacher ratio (PTRATIO),
black population proportion (B), and lower status population proportion (LSTAT).
All variables are normalized to have mean zero and unit variance as in LeSage
(1999). The spatial weights matrix W, is a first-order continuity matrix and row-
normalized. The M, is set to equal W,,.

Table 7 reports the empirical results. We carry out several diagnostic tests.
First, a normality test of innovations rejects the null of normal innovations at
the 1% level. With nonnormal innovations, the GPMLE will lose efficiency
compared to a true ML estimator. We further test skewness and excess kurtosis
of innovations.*> While the null hypothesis of zero skewness is not rejected at
any usual significance level, the null hypothesis of zero excess kurtosis is rejected
at the 1% level. The estimated kurtosis coefficient is 5.751. These results show
some evidence of symmetric and leptokurtic innovations for this dataset. GPMLE,
BGMME, and NGPMLE have the same sign for each model parameter except the
coefficient on INDUS, but their differences in magnitude can be relatively large.**
For example, for the variable AGE, BGMME is about 60% larger in magnitude
than GPMLE, whereas NGPMLE is more than three times that of GPMLE. The
standard errors (SEs) of BGMME are very close to those of GPMLE, whereas
the SEs of NGPMLE are about 30% smaller than those of GPMLE. Due to the
differences in the estimates and SEs, for the variables NOX? and AGE, we observe
different results on coefficient significance from different estimation methods. For
the coefficient on NOX2, GPMLE and BGMME are significant at the 1% level,
whereas NGPMLE is significant only at the 10% level; for the coefficient on AGE,
GPMLE is not significant at any usual significance level, BGMME is significant

33 All the test statistics are derived in the Supplementary Material. The normality test is a special case of that for
the SARAR model with parametric heteroskedasticity in Jin, Lee, and Yang (2022), which follows the Lagrange
multiplier principle as in Jarque and Bera (1980). We present it in the Supplementary Material for completeness. The
skewness and excess-kurtosis tests are on the basis of the delta method, as in Godfrey and Orme (1991).

34we only consider the NGPMLE with no added parameter, since the NGPMLE with an added parameter does not
perform well in Monte Carlo experiments.
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TABLE 6. Empirical powers of score tests for spatial dependence in the SARAR
model with a row-normalized M,, and asymmetric v;.

l=0 po=0
Kurtosis Skewness p0=0.1 pp=0.2 pp=03 X=0.1 20=0.2 10 =0.3
Panel A: n =147
6 0.8 GPMLE 0.114  0.330 0.663 0.259 0.784 0.982
NGPMLE, 0.144 0436 0.794 0.369 0918 0.998
6 0.05 GPMLE 0.106 0330 0.673 0.255 0.777 0.983
NGPMLE, 0.128 0.420 0.789 0.355  0.909 0.996
4 04 GPMLE 0.111  0.321  0.656 0.254  0.779  0.985
NGPMLE, 0.119 0.340 0.679 0.272  0.800 0.990
4 0.05 GPMLE 0.112  0.340 0.666 0.261  0.789  0.982

NGPMLE, 0.119 0352 0.684 0275 0.798  0.985
3.05 0.05 GPMLE 0.103  0.328 0.653 0259 0.772  0.984
NGPMLE, 0.104 0.328 0.652 0260 0.772  0.983

Panel B: n =294

6 0.8 GPMLE 0.171  0.598  0.929 0473 0974 1.000
NGPMLE, 0.237 0.738  0.978 0.661  0.998  1.000
6 0.05 GPMLE 0.182  0.589  0.928 0478  0.980  1.000
NGPMLE, 0237 0.714 0.977 0.660  0.998  1.000
4 04  GPMLE 0.182  0.601 0.933 0470 0972  1.000
NGPMLE, 0.190 0.623 0.941 0.498  0.977  1.000
4 0.05 GPMLE 0.176  0.587  0.931 0463 0975 1.000

NGPMLE, 0.188 0.608  0.940 0491 0982  1.000
3.05 0.05 GPMLE 0.174  0.591  0.927 0479 0977  1.000
NGPMLE, 0.175 0.589  0.925 0478 0976  1.000

Notes: The true disturbance distribution is a fourth-order Gram—Charlier expansion of the standard
normal distribution as a function of the skewness and kurtosis coefficients. 8190 = 1, B0 = 1, and
2
oy =0.25.
0

at the 5% level, whereas NGPMLE is significant at the 1% level. These differences
in coefficient significance also carry over to impact measures such as the average
total, direct, and indirect impacts, which we report in the Supplementary Material.
Overall, the application shows that more efficient estimation methods for the
SARAR model can be valuable in practice.

6. CONCLUSIONS

This study considers the non-Gaussian PML estimation of the SARAR model.
If the spatial weights matrix M, in the SAR process of disturbances is row-
normalized or the model reduces to the SAR model with no SAR process of
disturbances, the NGPMLE for model parameters except the intercept term and the
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TABLE 7. Empirical results for the hedonic pricing data.

GPMLE BGMME NGPMLE
Estimate  SE Estimate  SE Estimate SE
A 0.188**  0.060 0.267**  0.055 0.121%** 0.044
0 0.626***  0.061 0.612***  0.062 0.673*** 0.048
CRIM —0.187*** 0.023 —0.177** 0.023 —0.166*** 0.015
ZN 0.065**  0.031 0.063**  0.031 0.046** 0.021
INDUS 0.016 0.046 —0.001 0.046 0.001 0.031
CHAS —0.007 0.021 —0.010 0.021 —-0.014 0.014
NOX? —0.191"* 0.055 —0.310*** 0.055 —-0.071* 0.038
RM? 0.199**  0.024 0.193** 0.024 0.415%** 0.016
AGE —0.046 0.036 —0.074*  0.037 —0.161*** 0.025
DIS —0.256*** 0.055 —0.207*** 0.055 —0.172%** 0.039
RAD 0.342***  0.061 0.387*** 0.061 0.202%** 0.041
TAX —0.259*** 0.057 —0.234** 0.057 —0.213%** 0.038
PTRATIO —0.127*** 0.030 —0.103** 0.030 —0.079*** 0.021
B 0.119*** 0.026 0.131*** 0.026 0.152%** 0.018
LSTAT —0.378"* 0.035 —0.373** 0.035 —0.155%** 0.023

Test for normality of innovations:
Test statistic: 67.742; p-value: 0.000.

Test for skewness of innovations:
Test statistic: 0.755; p-value: 0.450; estimated skewness coefficient = 0.267.

Test for excess kurtosis of innovations:
Test statistic: 4.115; p-value: 0.000; estimated kurtosis coefficient = 5.751.

Notes: *,**, and *** denote significance at, respectively, the 10%, 5%, and 1% levels.

variance parameter o2 is consistent. If M,, is not row-normalized but innovations
are symmetric, the NGPMLE for model parameters except o2 is consistent. With
neither row-normalization of M, nor the symmetry of innovations, a location
parameter can be added to the non-Gaussian pseudo log-likelihood function to
obtain consistent estimation of model parameters except o2. We formally prove
the convergence and asymptotic normality of the NGPMLE. An advantage of
the NGPMLE is that it can have a significant efficiency improvement upon the
GPMLE and BGMME. We also propose a non-Gaussian score test for spatial
dependence, which is locally more powerful than the Gaussian score test when
the NGPMLE is more efficient than the GPMLE. Using Student’s ¢ distribution
to formulate the non-Gaussian likelihood function, our numerical integration and
Monte Carlo results show that the NGPMLE with no added parameter can have
a significant efficiency improvement upon the GPMLE and BGMME, but the
NGPMLE with an added parameter can be less efficient than the GPMLE. The
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1146 FEI JIN AND YUQIN WANG

non-Gaussian score test based on the NGPMLE with no added parameter is more
powerful than the Gaussian score test in finite samples. Therefore, we recommend
the use of the NGPMLE with no added parameter and the non-Gaussian score test
based on it when they are applicable.

APPENDIX A. Expressions for Asymptotic Variances

In this appendix, we present the expressions for asymptotic variances of NGPMLEs in
Theorem 2.

A.1. Row-Normalized M,
For model (1) with a row-normalized M, the NGPMLE maximizes InL,(y) in (2).

Note that v;(04) = —vl + (%Occv, where ¢, = —Uio(l —00)(B1o0o — B10)- Denote ¢1; =
00 31Hf(v,'§9*), Noo) Loi = C1ivi+ 1, L3 = — alﬂf(Vi(B*)»noo) Laj = (TO 821nf("’t(0*) Uoc)
Oco v ’ ’ o av?

82 Inf (v; (6s), 3 Inf(vi(8s), _
Lsi = % nf(g;}v(an) 7700), Loi = nfi()vn(”) Noo) , D, = RanS lR [dn,ij], Zn =

MRy = [z, j). On = 55 RaWaSy ' X0 = [guil, and ¢ = — 50 (Broo = B10). By Assump-

tion 4(i)(c), E(gj;) = 0, for j = 1,2,3. For any two subvectors d; and &, of 4, let Bs,s, =
L, ' L,l InLy, (yx

1E(M8 n (V*))and Asis, = lE(a aglag}’ )

For the expression of 3, using the reduced form of Y,, we have M =

dlnL,
= i1 nibti — iy niib2i — Doy §1i 2t . V) 7’(’”* =-YL ICﬂzl,

n n 311’1L( ) 1 n ! D/ 3lnL( _
Do niib2i — 2oie S1i 2jtiZnifV)s %y* — 55 iz 1§1zX Ryei, 736"27/* =

1 dlnL,
_zago :1:1 (evg1i+¢2i), and % =— i=l £3;. Then,

BM—*E(Cll)Z‘]m‘F E(chzz»qudnu+ E<;2,>Z Z it E@u)ZZ v
i=1 i=1 i=1 i=1 j#i

n
+ % Z Z dn, ijdn,ji

i=1 j#i
1 2N/ 2 /
= E(¢{)0,0n+ p E(£1i62i) 9@, veen (Dn)
[ 2 / | / [}
+ ~[B(e) ~ B(c7,) — lveep/ (D)veen (D) + —EQ ) t(D}Dy) + (D),
, |
Bip = L B0, 10+ ~ B@1i6a)IQveen Zn) +cp tr(Dy)]
n n
1 , 1 1
+ ~[E(e3) B¢ — 1veen (Du)veen (Zn) + ~ BT (D}, Zn) + ~ tr(DaZ).

Bip = iy BT QuRuXn + 5 EG1ic2)veeD Ou)RuXa, Byor = gr [ EGT) +
E(1i02010p1n + ﬁ[CvE(fliQi) + EQ)IuDn), By = LE@55)0)1n
+ LE(6i¢}) (D),
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Bpp = Cﬁ E({],) + E(flz@z)tr(zn) +- [E({zl) E({lzl) — 1lvecp' (Zn)veep (Zn)
, 1
+- LB () () + ~(Z)),

Bpp = 75 E(;ll)l RuXn + 7o BQ1i020)veeD (Z)RnXn, B,y2 = ;—@[ch(c%,-) +
B1i620] + 3,0r [ch@hcz,)+E(;2,)]tr(zn) Bon = cpE(G138}) + L E(02i8}) tr(Zn).
Bgg = zE(CI,-)X;R/Ran, Bg,> = [ch(Cl,) + E(¢1i001X, Ry 10, Bgy =
n},OX’R’l E(nicgl-), By = @[ch(c“) + 260 E(G1i0) + B@3)), B2, =
@[CVE({ligéi) +E(¢2:83)] and By = E(£3¢3))-

dlnL,(y)

For the expression of A, using the explicit form of ooy in the Supplementary
Material and the reduced form of Y;,, we have

1 ; 2 /
Aig. = ~E(54) 0 On+ ~E(Gaivi) @y veen (Dn)
1 1 !
+ ;[E(§4ivi2) —E(g47)Iveep (Dp)veep (Dy) + - E4) (D}, Dp) + n ;.
cp , 1 /
.A)xp = ; E(§4i)Qn Ip+ ; E(§4ivi)[aneCD Zn) + B tr(Dp)]
1 / 1 !
+ ;[E(iniz) —E(@ap)Iveep’ (Dn)veen (Zn) + — E(¢4) r(Dy,Zy) + ~ te(DnZp),
1 1
Arp = —E(64)) O RnXn + — E(Caivi)veep (Dn)RuXn,
noyg nog
1 1
Ay g2 = > [evE(@) + B Oy In + 5 [ev E@aiv) +E@v}) + (D),
2no s, 2nox
1_ ., 1
.AM; = ; E({s,)Q;z In+ ; E(ViCS/i) tr(Dp),
2 2cp
App = cgB(@ai) + —= BG4 tr(Zn)
1 1 !
+ ;[E({4ivi2) —E(g4i)Iveep (Zp)veen (Zn) + - E(L4) tr(Z),Zn) + n r(Zy),

App = "—ﬁE(gi)l/Rnxn + s B(Gavi)veep/ (Zn)RnXn, A,p2 = ;’—é[ch@m) +
Bl + 57 e BCami) + ECav 2>+1]tr(zn) Apy = cpE(L) + L Emigd) tr(Zy),
App = —E(%)X/R RnXp, Aﬁ(,z = 5mor o v E@a) + B IX R, 1n. Agy =
X Ry E(gSi), Ap2gr = 74 [ch<¢4,) +2ch<§4,v,> +E@) + 11 Ay, =
307 [ovE(E3) +E(ig)], and Ay = E(Ge).

A.2. Symmetric v;

As in the last subsection, the NGPMLE in this case maximizes InL;(y) in (2). In this and
the next subsections, let ¢1; to Zg; be as defined in the last subsection except that v;(0*) is
replaced by —vl Itis shown in the proof of Theorem 2 that E(gj;) =0, forj = 1,2,3. Then

Downloaded from https://www.cambridge.org/core. IP address: 18.191.109.107, on 23 Nov 2024 at 22:21:22, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50266466623000026


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466623000026
https://www.cambridge.org/core
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the expressions of A and B are the same as those in the last subsection, except the additional
restrictions ¢, = 0 and cg= 0.

With symmetric v;, it is shown in the proof of Corollary 1 that E(¢1;42;) =0, E(£1;437) =
0, E(¢44vi) =0, and E(¢5;) = 0. Then Aﬁp =0, Aﬁaz =0, .A/gn =0, Bﬁp =0, B,Baz =0,
and Bg, = 0.

In the case that 7o = 0, D, = W, and Z, = M,,. As W,, and M), have zero diagonals,
vecp(Dy) = 0, vecp(Z,) = 0, tr(Dy) = 0, and tr(7,;) = 0. Then some components of A
and B can be simplified accordingly. In particular, Apoz =0, Apy =0, Bpaz =0, and
By =0.

A.3. Non-Row-Normalized M,, and Asymmetric v;

In this case, the NGPMLE maximizes InLy,(5) in (4). By Assumption 4(i)(c), E(¢;) =
0, for j = 1,2,3. The expressions of Bs 5, = 1E(Malnb’(é#)) and As;s, =

1 9%InL,(8s)
E( 38198,
and cg = 0in the corresponding expressions in Appendix A.1. The remaining components

of B are By = 'wo E(é“h)inn + 500 E(Clzsz)U(Dn) Bap = mfo E(1i62i) tr(Zy),
Bup = 77 BGT) 1hRuXns B2 = z%z‘c 5 -Gy EG) +E@i)): Baa = 7 BET).
and By, = Gio E(£1;¢5,). The remaining components of A are Ay; = %E({M)Q;ln +
LE(wmr(Dn), Agp = ﬁE(cm-vi)tr(zn), Ao = éE(ni)l;Rnxn, A

) +E@4v)]. Aga = g E(¢47), and Agy = 5 E(82).

ini ~ = _Ux
) for 81 and §, not containing « can be derived by imposing ¢, = G‘zf

ac? =

APPENDIX B. Lemmas

The following Lemma B.1 provides more primitive conditions for g;(r) > 0att #tgina
neighborhood of 7, where g, (7) is in Assumption 3. The matrices T, and T, below are
defined after Assumption 3.

LEMMA B.1. Suppose that W, = My, and that Ty,, and Ty, are linearly independent. If
Wy, is symmetric or is row-normalized from a symmetric matrix, then g,(t) > 0 at T # 19
in a neighborhood of t.

9%gn(10)
dtot’

definite, which requires that tr(T ) >0, tr( 2n) > 0, and tr(T )tr(T%n) > tr2(T1nT2n), by
some calculation.

If W, is symmetric, with W, = My, it is obvious that T, and Ty, are symmetric Then
tr(T]%) = tr(T’ Tjy) > 0, for j = 1,2. By the Cauchy-Schwarz inequality, tr(Tln)tr( )

Proof. As explained below Assumption 3, we need to show that is positive-

tr(T{ W1 (T nTZn) > tr2(T1 WTon) = tr2(T1nT2,,). The inequality is strict when T, and
Ty, are linearly independent, which also implies that tr(T/%l) >0, forj=1,2.

If W, is row-normalized from a symmetric matrix such that W, = H,A,, where
Hy = diag(1/(e), Anln), ... 1/(€lyAnln)) and Ay is symmetric, let By = Hy/*AHy/*
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and C,(A) = I, — ABy. Then B, and C,(}) are symmetric and satisfy B, C,(A) =
Ca()By. We have Sy(1) = Hy/*CaHy, 12, A1y = HyAy - Hy* Cy (o) Hy, ' =
Hy2BaCy (o) Hy, 12, and Az, = Hy'* Cotpo)Hy % - Hudn - 2 € o)y
H,/zcn 1(p YH,, 12 H,ll/anC;l(ko)Hn_lﬂ. For n x n matrices Ej, and Ep,, if
E», is diagonal, then diag(Ej,Ea,) = diag(E1n)Ea,. Thus, Tj, = Hy/’D H,,_ 172,
Ty, = H1/2D2nH‘1/2 and Ty, Tan = Hy'>D1,DanHy /%, where Dy, = BaC' (pg) —
dlag(Bn " (po)) and Dy, = B,C 1()»0) — diag(B,C,; (Ao)) are symmetrlc Thus
tr(T]n) = tr(Djzn) = tr(D’ Djy) > 0, for Jj = 1,2. Furthermore, tr(T )tr( ) = tr(D 1)
tr(D}) = tr(D’lnDln)tr(Danzn) > (D), Dap) = tr?(T1,T2,) by the Cauchy-Schwarz
inequality. The inequality is strict when D,, and Dy, are linearly independent, i.e., T, and
Ty, are linearly independent, which also implies that tr(T]%l) >0, forj=1,2. |

LEMMA B.2. For j = 1,...,1, let Aj,, be n x n nonstochastic matrices that are
bounded in the row-sum norm, and let Ujy = [ujp, 1, ..., ujp, n) be n x 1 vectors such that

_ U &
supi,j’nE(|ujn,i|“/) < 00, for aj > 1. Then sup,;nE[(l_[jl':1 |e;”.Ajntn|) =13

Proof. This is a special case of Lemma 1(ii) in Jin and Lee (2019). O

LEMMA B.3. Suppose that h(x) is a scalar function, v;’s in Vy, = [v1,...,vs]
are i.i.d. with mean zero and variance ag, An = lay,jl and By = by j] are n x n
nonstochastic matrices that are bounded in both the row- and column-sum norms,
and E(|v;|*V) < oo and E(Ih(v )| < oo, for some ¢, > 0 and ch > 0 Then ¢y, —
E(c1p) = op(l) if - 1 + —y < 1, and cp, — E(cpy) = 0p(1) lf s T < 1, where

Cln = ﬁ i=1h("z)(Zj:]‘ln,z]V])(Zk:l by, ikvk) and CZn = n i=1h(Vz)
Qi an,ijv))-

Proof. This lemma is proved by an LLN for martingale differences. The details are in
the Supplementary Material. |

LEMMA B.4. Suppose that Ap = lay,jjl is an n X n nonstochastic matrix that is
bounded in both the row- and column-sum norms; b, = [byi] is an n x 1 vector
of uniformly bounded constants; en = [€yi], Vo = [vyil, and Wy = [Yy;] are n x 1
random vectors with mean zero; [€,j,Vni, Vnil, for i = 1,...,n, are independent; and
sup; , E(lenivni*™) +sup; , B(lenil ™) +sup; ,, E(vyi 2T +sup; , E(il ™) < 00, for
some 1 > 0. Let wp = &,ApVy + b, ¥y —E(e),AnVy) and aén = var(wy). If infy, %cruz)n >0,

then 22 % N(O,1).
Proof. This lemma is a special case of Lemma 6 in Yang and Lee (2017). (]

LEMMA B.5. Suppose that Assumption 1 holds. Let each of Ap = lay ] and
By = |by,ij] be one of the matrices Wp, Mp, Ry, and Sp. Denote Cp = ApBy =
[Cn,l:/']' Ifllmr_>oo supi,n Zj:d(i,j)>r |a,,’ [/| =0, hmr_>oo supi‘n Zj:d(i,j)>r |bn’ ’/l =0, and
sup,, [[Anlloo +sup, [|Brlleo < 00, then limy— oo SUup; Zj:d(i,j)>r |an]| =0.
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Proof. As ¢, jj = }_| an,ikbn,kj»

sup Z cn,ij| < sup Z Z lan, ikbn, k]

B jdG j)>r L0 G d(ij)>rk:d(,k)>r/2

+sup Z Z |an, ikbn, kj]

LG (i) > rk:dG, k) <r/2

n n
<supd lagikl Y Ibagilsup Y lan il Y Ibal

LI p=1 Jjid@G, k)y>r/2 L1 kd(i k)>r/2 j=1
<suplldnllcosup D Ibuijl+sup Y lanil-suplBalloc,
n knj. a.k>r/2 L1 e d (i k> 12

where the second inequality holds because d(i,j) > r and d(j, k) < r/2 imply that d(i,k) >
r/2. Thus, limy— oo SUP; , . 4(i.jy>r In. ijl = 0. d

For any matrix A = lajj], denote abs(A) = [|a,-j|].

LEMMA B.6. (i) If Assumptions | and 2(iii) hold, then supn||5n_1||oo < oo and
sup,, [|R; oo < 00. (id) If Assumptions 1, 2(ii), and 7 hold, then limy—s 0 SUP; 1 2 d(i,j)>r
Wi, 1 = O, iy 00 SUP; y X jyr 17, ] = O, 5UP, | Warlly < 00, and sup, [Mall1 <
oo. (i) If Assumptions 1, 2(ii) and (iii), and 7(ii) hold, then supn||S;]||1 < 00 and
sup,, |R; 1 l1 < oc.

Proof. (i) As [AWalloo < co < 1, Sp1 = 322,(aoWn)X. Thus, by the triangle
inequality, sup, 1S, ! floo < sup, 3220 (120 Walloo)* < 352 ck = ﬁ < 00. Similarly,
sup,, IR !loo < 0. _

(if) Under Assumption 7(i), wy, ;; = 0 if d(i,j) > do. Then lim,— oo sup; , Z/:d(i,/)>r
[Wp,ijl = 0. By Lemma A.1 in Jenish and Prucha (2009), |{j: k < d(i.j) < k+ 1}| <
ck’@=1 for k > 1, and some constant ¢ > 0, where |A| for a set A denotes its cardinal-

. [do]+1
ity. Then sup,, [Wnll; = Sup; Ziid(i,j)fc_lo W, ijl < Sup; Zk:ol Zi:kgd(i,j)<k+1 Cw =

ccy Z]Ed:o]lH k=1 < 0o, where ¢y = sup,, [Wylloo < oo under Assumption 2(ii) and [ZZO]
is the smallest integer that is nongreater than dy.

Under Assumption 7(ii), supi,an:d(i,j)>r|Wn,ij| < sup,-,,,Z,‘i‘;[r] Zj:ksd(i,j)<k+1
(Wi, il < Supi,nZ]C(X):[r] D jk<d(ij)<k+1 1K < Z/?o:[r] cmkCd—m = As 71y > ¢y,
Z,‘?ilcmkcd_m_l < oco. Then limy 00 ) for, cmk¢a=m=1 = 0. It follows that
limy— 00 SUD; 5 2 ja(ijy > Wn,ijl = 0. Similarly, sup,, [[Wall1 = sup; » 2. g jy=1Wn,ijl <
2 ekl < o0,

The results on M, can be similarly proved.

(#if) Under the maintained assumptions, we have ||A6[abs(Wn)]l II1 < max{IN, l}a)cf)_l,
where @ = |Ag|sup, [Wnll; < 0o, as in the proof of Lemma 1 of Xu and Lee (2015).
The only difference is that our upper bound max{IN, 1}a>cf)_1 has cé_l instead of Cl_l,
where ¢ is the upper bound of the compact parameter space of A. Since we have a
linear SAR process, there is no need to introduce ¢ and the proof is similar. Then
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sup,, 1S 1l1 < sup,, Z,?io(llkownlll)k <c1+>X2, kc’é_l) < oo for some constant c.
Similarly, sup,, ||R,71 Il < oo. O

LEMMA B.7. Under Assumptions 1, 2(i)—(iii), and 7, {e;”.A,,Vn} is Lp-NED on
(V1. ....vn), where Ay is either S; VRV, WyST R, MyuS R, or WM, S, 'R

Proof. As [AgWallow < co < 1, S5 = 322, (RoWa)¥. Then abs(S; ) <* 322,
[abs(AOWn)]k <* [I, — abs(AoW,)1~!, where A, <* B, for two n x n matrices
Ap = lap,j] and By = [by, ;] means that ay ;; < by j; for any i,j. Since the proof
of Proposition 1 in Xu and Lee (2015, p. 274) shows that [/, — abs()»OWn)]_1
satisfies lim;— o SUPi,an:d(i,j)>r|€;1i[ln — abs(AOWn)]_lenjl = 0 under Assumptions
1, 2(iii), and 7, we also have lim,_; SuPi,an:d(i,j)>r|e,/1isr71"nj| = 0. Similarly,
lim,— 00 SuPi,an:d(i,j)>r|e;liRrTlenj| = 0. By Lemma B.6, lim/— o0 SUp; , > . (i, jy>r
|wn’,-j| =0,limy— 0 sup; Zj:d(i,j)>r |mn,ij| =0, sup,, ||S;1 lloo < 00, and sup,, ||R,71 loo <
oo. Thus, by Lemma B.5, lim,— o supi,nZj:d(i,j)w[abs(An)],'j =0, where A, is either
STIRTY, WS IR, MuS; R, or WM, S, R, 1. Hence, by Proposition 1 in Jenish
and Prucha (2012), {¢},;AnVn} is Ly-NED on {v(, ..., vp}. O

APPENDIX C. Proofs

For the following proofs of Propositions 1 and 2, denote W,;(0) = o()e;l In(T)Vn —
ooVily,ii(t) + e;liRn(p)[Sn(A)S;anﬁo — X, B], which does not depend on v;. As Y, =
S (X o+ 00R;; Vi), vi(0) = 2W,i(0) + Logvity, i (7).

Proof of Proposition 1. (i) We first prove the result under Assumption 4(i). As Ty, (7) =

In+(po—P)A1n+ (Ao — M)A, + (o — p) (ko — A)A3y,, under Assumption 3(iii), 7, ;;(t) #0
for any i and t. Since M, is row-normalized, R;1, = (1 — pg)1,. Then the nonsingu-

larity of R, implies that pg # 1. Denote Q(o, B1,7) = E[lnf(2u=1=0)B1=P10) ,)y) _
%IH(UZ), Opi = m:ﬁ’ and B n; = P10 — m‘yni(@l Since E[Inf (2% )] —
%ln(crz) is uniquely maximized at (000, %0, o0)s Q(0, B1,1) is uniquely maximized at

(0005 Bloos Noo)s Where Bioo = Blo+ 1019;;0 . Let E_;(-) be the conditional expectation given

V1s.-e Viz1, Vi+1, ..., vn. Then,

n n 5
E(lnL,(y)] = ZE{Efi[lnf(Vi(Q)ﬂ?)]} - Eln((f )+ 1Sy (M) +1n Ry (p)|

i=1

=Y EIQ(Oui» Br.ni M1 — Y_ Il ii(D)| +1n1Sy ()] +In Ry (p)]

i=1 i=1

< 1Q(000, Bloos 100) = D _In [t ii(T) | +1n[S, 0| +1n | Ru(p))| (C.1)
izl

=nQ(0o0, Bloos Noo) — Zln 20,5 ()| +1In [Ty (T)| +1n[Sy| +In[Ry|
i=1

<E[nLy(yx)], (C.2)
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where (C.1) uses the property that Q(o, B1,7) is uniquely maximized at (000, B100s Moo)
and (C.2) uses the assumption that In |7, (7)| < ?:1 In|t, ;;(t)|. The inequality in (C.2)
is strict if T # 7o. With © = 1, we have Ty, (1) = I, 1, ;i(r) = 1, 0y = 0, and By p; =
Bio— ﬁe;ik,,xn Bo—B) =B — ﬁe;”.RnXZn (Bao — Ba2). Since R, X, has full column
rank, B pi # Ploo for some i if By # Boo. Thus, with T = 7, the inequality in (C.1) is
strict if (B2,0,1) # (820,000, N0 )- It follows that E[InL, ()] is uniquely maximized at
¥ = yx. (if) We next prove the result under Assumption 4(ii). Because v;’s are symmetrically
distributed around zero with unimodal density, by Lemma A in Newey and Steiger-
wald (1997), E[Inf(v;(6), )] = E(E_;[Inf(v;(6),m1} < E{E_i[Inf(Zvit, 5(x), )]} =
E[lnf(%vitn, ii(t),n)], where the inequality is strict if W,;(0) # 0. Denote Q(o,n) =

Ellnf(%2%,7)] —  In(0'?). Then,

n n
ElInLy ()] = 3 Qopim = Y Inliy ()] +1n[Sy(0)| +In [Ru ()| (€3)
i=1 i=1
n
<nQ(000,Moo) — Zlﬂ 1,3 (D +1n S (M) |+ In| Ry (p) (C4)
i=1
<EllnLy (), C5)

where (C.4) uses the assumption that Q(o,n) is uniquely maximized at (oo, o), and
(C.5) uses the assumption that In|7,(7)| < 7=1 In|t, ;;(t)| as in the proof for (i) above.
Furthermore, the inequality in (C.5) is strict if t # 79. With T = 1, the inequality in
(C.4)is strictif (0, n) # (000, Noo)- With (7,0,1) = (79, 000, o), We have Ty, (t) = I, and
W, (0)= e;iRan (Bo — B)- Since R, X, has full column rank, with (7,0, 1) = (70, 000, Noo)»
the inequality in (C.3) is strict if 8 # By. Hence, E[InL,(y)] is uniquely maximized
at yg. (]

Proof of Proposition 2. Denote Q(c,e,n) = E[Inf(Z%=% )] — %ln(az), Opi =

and oy = %’(”r()e) Then,

tn.i?(f)’
n
EllnL,(8)1 =Y E{E_;[Inf(vi(6) - g )]} - glnwz) +1n1S, (W) +1n Ry (p)]

i=1

=Y BIQ(0nini ] — Y _ Ity ii()| +1n[Sy ()| +In|Ry (p)]|

i=1 i=1

n
< 1Q(000, @00, No0) = ) Il i ()] +10[Sy ()| +In|Ru ()] (C.6)
1?1
= nQ (000, @00, M) = Y_ Ity i ()| +1n | T ()| +1n [S| +In | Ry
i=1

<E[nL, (4], (C.7

where (C.6) uses the property that Q,(o,®,n) is uniquely maximized at (00, @00, oo)
and (C.7) uses the assumption that In |7, (7)| < ;’:1 In|t, ;;(t)|. The inequality in (C.7)
is strict if T # 79. With T = 19, we have T, (1) = I, 1, ;;(t) = 1, op; = 0, and ay; =
o— e; ,-Ran (Bo — B). Since R, X, has full column rank and does not contain an intercept
term, «,; # oo for some i if B # Bg. Thus, with T = 7, the inequality in (C.6) is strict
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if (B,0,a,1m) # (B0, 000, %0, Neo)- It follows that E[InL,(5)] is uniquely maximized at
8 = 4. a

Proof of Theorem 1. We only prove the convergence of y in the case with symmetric
v;, since the proofs for other cases are similar. As ¥, = S;l (XnBo +00R,71 Vi), Ru(p) =
Ry + (pg — p)M,,, and S, (A) = Sy, + (A9 — A) W), we have

Rn(p)[Sn(W) Yy — X1
= 00V + (o — DR WSy X o +00(ho — MR WaSy 'Ry Vi + RuXa(Bo — B)
+00(p0 — PIMuRy Vi + (0 — ) (g — WM WSy ' X o
+00(p0 — ) (Ao = WIMu WSy, 'Ry Vi + (00 — 0)MunXn(Bo — B).

Under Assumption 2(iii), by Lemma B.6, R;; ! and S;;! are bounded in the row-sum norm.
As W, and M;, are also bounded in the row-sum norm, so are the products of Wy, M;,, R;l,
and S With sup; E(Jv;|>+2¢+) < 00 in Assumption 8(ii), v;(6) = L/ .Ru(0)[Sn(2)Yn —
XpPBlisuniformly L(547,,4) bounded by Lemma B.2. Furthermore, by Lemma B.7, {v;(0)}
is Lp-NED on {vy....,vy}. With | 22L& | < (1| 41) for ¢; = 0 in Assumption 8(D),
ie., W is bounded, by Proposition 2 of Jenish and Prucha (2012), Inf(v;(0),n) is
L>-NED on {vq,...,v,}; on the other hand, with |W| < Cf(|x|c' 4+ 1) forc; =1 1in
Assumption 8(i), by Lemma A.4 in Xu and Lee (2015), Inf (v;(6), n) is uniformly L,-NED
on {vy,...,v,}. By the mean value theorem, Inf(v;(0),n) = Inf(0,n) + inw),
where c is some constant between 0 and 1. Thus, with sup; E(|v; |2+20'+‘) < 00, Inf(v;(0),n)
is uniformly L, bounded by Lemma B.2. It follows by the LLN in Theorem 1 of Jenish and
Prucha (2012) that 1 InL,(y) — LE[InL,(y)] = 0p(1).

We next prove that 1 5 InLy(y) is stochastically equicontinuous (SE) and %E[Ln(y)] is

equicontinuous. With | 31nf (x’ | < cr(lxlr 4+ 1),

1_|dlnL o~ 1 _
L TR - T S @)1 4 11 el Ra (00 Wrlal + WSy 1L (C8)
n no i1 n

where SLE | [[v(0)[ + 11|}, Rn(p) W ¥ul = O(1) by Y, = ;' (X B0 +00R; ' Vi)
and Lemma B.2, and lltr[Wn 1()»)]l = O(1) since sup,, |[Wyllco < 00 by Assumption
2(ii), sup,, [[Wyll; < oo by Lemma B.6 and S, 1()L) is bounded in either the row- or
column-sum norm. Thus, LE|Xa) | — o(1) ang 12L) — o)1) As ov;(0)
is linear in every element of 6 and the parameter space of y is compact, by (C.8),
Esupycp |1 2@ — 0(1) and sup, o |1 2000 =

ments y; of y, Esupyer |- 1 0lnL”(y)| O(1) and SUpy er |1 dlnL"(y)| Op(1). Hence,

Op(1). Similarly, for other ele-

Esup,cr |2 BI“L"(V) I = O(1) and sup,cp || 1210 (V) I = Op(1). By Lemma 3.6 in

Newey and McFadden(1994) Esup, o || 4 21k (V) || O(1) implies that I%W
1 E(M) Therefore, by the mean value theorem and Theorem 21.10 in Davidson
(1994), 7 InLy(y) is SE, and 1 7 E[Ln(y)] is equicontinuous.

The pointwise convergence %lnLn(y) - %E[lnLn(y)] = 0p(1) and the SE of % InL,(y)

imply that SUpy er I% InL,(y)— %E[lnLn(y)]| =o0p(1). As % E[lnL,(y)] is equicontinuous
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and lim,— %E[lnLn(y)] is uniquely maximized at y = y4, we have p = yg +0p(1)
(White, 1994, Theorem 3.4). O

Proof of Theorem 2. We only prove the asymptotic distribution of y in the case with
symmetric v;, and omit similar proofs for other cases. By the mean value theorem, 0 =

L) _ dInLa(ve) | 3%InL,(7)
ay - ay dyady’

(¥ — y#), where 7 lies between y and y4. Then,

. 192InL,(7)\~! 1 dInLy(ys)
)= - R C.9
NOIES (n Ty ) oy (C9)
. 19%InL, 92InL, . 10%InL, 92InL,
We prove that (i) 1 323)/(7/) 1 BI;BV(V#) +op(1)and (i) 12 8[;3)/(2/#) =3 E( ar;/ay(}/#))
1 92 InLy(7) _ 1 9% InLy (vy)
+0p(1) so that 5, Tyoy + E( 53y’ ) +op(1).

2
For (i), we prove that every element of %% is SE under Assumption 9(ii) and

3 .
(iii). With ||Wn < ¢/ (V@)1 + 1) in Assumption 9(ii), we could show that
supy, cr |l % [ = Op(1), where y; is the jth element of y. As an example, consider
03 InLy(y) 93 lnf(vz(9) m 3 P
5 3. Z (€, Rn(0)WnYn]® =20 {[WaS; (W),

3 .
where |W| < c[]vi(®)]3 + 1]. With the reduced form ¥, = S;!(X,B0 +
3
ooR; V) and E(lv;[33¢) < oo, %% = Op(1) by Lemma B.2. As v;(0) =
ée;iRn(p)[Sn()\)Yn — Xpp] is linear in each element of [A,p, 8’1, {S; ()} is bounded
in either the row-sum or column-sum norm uniformly on the parameter space of A and I is

compact, sup, cr | ; |+ 1 0% lgi;,(y) | = Op(1). Hence, (i) holds by the mean value theorem.

We prove (if) by Lemma B.3. As an example, consider

10%InLy(r) 1 o 821nf(“°v,,noo)

—1\2
n 922 nago ( RanYn) —*tr[(Wn )71

i=1

PInf(Z2vines) . 3 Inf (2 v 110c)

Under Assumption 9(ii), o is either bounded or | o2 | <

2 32 Inf (2 v; neo)
Cf(s—g|v,-|2—|— 1). In the latter case, as supiE(lvi|4+‘) < 00, E[|%l2+‘/2] < 00.
oo

Then, using Y, = S;l (XnBo +00R;1 V) and supiE(|vi|2+2c'+‘) < 00, where ¢; = 0 for
32 Inf( 2y, 921 i
w and ¢; = 1 for the case with |Ml <

2 2

[of 1 92InL, 10”InL
Cff(igh’i 3):1(}/#) E(n 3),:(}/#))

oo

S . . 3%InL, —1_1 3InL,

With (i) and (ii), by (C.9), V(7 = yg) = =(3 B Spe®) ™! - Bnlnd 4o, (1),
Under Assumption 4(ii), E[Inf (?vi + ¢,n)] is uniquely maximized at ¢ = 0 for any o
and 7, by Lemma A in Newey and Steigerwald (1997). Then E(¢y;) = 0, where ¢j; =
g I (GEviineo)
=V - 90 @ 77
Ooo av

the case with bounded

|2+ 1), we have = 0p(1) by Lemma B.3.

. By Assumption 4(ii)(c), E(¢p;) = 0and E(¢3;) = 0, where ¢p; = ¢1;vi+1

dInf (G2 i o) ¢ dInLy(ys)
ay

and {3; = - Hence, every element o is a special case of the
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general linear-quadratic form w,, in Lemma B.4. By Assumptions 2(ii) and 9(iv) and Lemma
B.6, the involved matrices S,TIR_ WaS,, lR_ MnS,le,Tl, and W,,M,,S,TIR;l in wy, are
AInf (2 vi,noc)

bounded in both the row- and column-sum norms. As |[——%>——| < Cf(|:—°vi|cf +
oo
dnf( Ly,
1) and sup; E(|v;|?*2¢+) < 0o, we have E[|W 2/ (4] < o0 and
l I 15
E[|M|2+20r+l] <ooforc;=0o0r1.As ||M|| <c f(| 00 vl|l+0z+1)

Anf (72 v, 10c)
an

and sup; B(|v;|*2¢F) < oo, E[|| [2+/(+¢)] < 0o, Then Lemma B.4

implies that }%’}’/(W 4 N(O, limy_ o B), where B = 1 E(M dlnLn(V#))
Hence, «/n(P — y#) 4 N(O, limy—s 00 A~ BA™1), where A= —1 - B( i g;/%”;y#)) O
Proof of Corollary 1. We first prove that: (i) E(¢1;¢2;) = 0, (i) E(¢1;¢3) = 0,
(iii) E(&44v;) = 0; and (iv) E(¢s;) = 0, where ¢1; to ¢s; are defined in Appendix A.2 and
they satisfy E(¢1;) = 0, E(¢{p;) =0, and E(¢3;) = 0, as shown in the proof of Theorem 2.
(i) Note that for any even function /i (v) of v, hy (v) = hi(|v|) = hy (vz), where hy(z) =
hy (zl/ 2y, forz>0.Thena symmetrically distributed v; is also spherically symmetric (Fang,
Kotz, and Ng, 1990, p. 35). Define g(c, ) =f(c /2, 1), for ¢ > 0, so thatf (v, n) f(|v| n) =

3lng(~9-12,neo)
1 is 8 » Moo
g2, ). Then Af0) _ 5 dlng(%n), dE(inf Sr-MILED D YR S am—
Let v; = |v;| - ;. It follows that |v;| and @; are 1ndependent (Fang et al., 1990, p.

2

02
o4 01“8(08 Vi Too) 23
30). Then E(¢1;6:) = E[¢1;(61vi + D] = E(Cllvl) = fE[( 9c vl =
2 2
% 2 %0 2
454 Blng(fOV- Noo) e dlng(—5-vi,noo)
%E[(*)%P @] = %E[(“g,#)%w 1E(@?). Since 0 =
E(v3>—1~:(|vl|3 @) =E(vil*) E(@}), E(w3)—0 Thus, E(¢1;52i) =0.
(72 (72
ng, A&V 100) 3Ing(—-v2. 7o)

(ii) 2}3(4“1#:31') =2 E(j’g’#w ‘ T) =
20y < PECEVE m00) DIng( 407 ) 20y o A8CEVE 100 IIng(Er nec)
2 e o Ivil - i) = 5.2 E( 5 b ib
E(w;) =0, where we use E(w;) =0 implied by 0 = E(v;) = E(|v;|) E(w;).

dlnf(.n) _ Blng(vz,r]) 92 lnf(v,n) 2Ing(v:,n) .2 dlng(vZ, n)

(iit) As Fm = ac 92 =4 o2 v+ 2 3¢ . Then

2
leng( v ,Noo) ) Blng({r—ov.z,noo)
404 20, o2 i
B(gyivi) = — o B(——— v?)—émigg vi) =0.
. ) dlng(V2, 921 921 2
(i) As nf(v L ) n‘%(;) Dy, ;IJ,;(; D =2 nf-(avn -y, Then E(Zs;) = 2

azlng( V7 noo)
E(——5— ) = 0

By (i)—(iv) and Appendix A, we have Ag, =0, -AﬁaZ =0, A, =0,B8g, =0, Bﬁaz =0,
and Bg; = 0. Hence, for the spatial error model, by Theorem 1, the asymptotic variance
of the NGPMLE § is 1imn_>ooA/gﬂlB,3ﬂA/;/§ - 1im,,_>oo[n;7 E(840) X R, Rp X1~ -
og B()
[E(Z4)]? "1

éE(zﬁ)X;R;Rnxn ~ [é E(L4i) X R RpXn] ™! = Timy o0 (LX) R R X)L
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The GPMLE is a special case of the NGPMLE with f(v,n) = Le_vz/z and ogo =

V2
crg Then, for the GPMLE, ¢1; = —v;, {4; = 1, and the asymptotic variance for § is
lim,— 00 0 (nX;lR;,R,,X,,)_l. The BGMME of B has the same asymptotic variance as
the GPMLE, by Corollary 3 in Liu et al. (2010). (|

Proof of Theorem 3. We could show that y = yoo 4+ 0p(1) as the proof of Theorem 2.

InLyG) _ dinlu(yn) _ 92Inly@) | PInLa@)
Yy Vu dy ot N Yudyy Yu

Yuoo)s where v, = [1), ¥,00]’ and 7 lies between y and yoo. Thus, /n(Yu — Yuco) =
) _
(1 i 111L”(V)) 1( 1L 3InLu(ys) _ 197 InLa(y) - /nty). As in the proof of Theorem

By the mean value theorem, 0 =

n 9yudy, N7 n 3yu3r/
2InL, (7 InLy(yu InLy(y
2, we could show that %aa;,iay(;y) = (aa; 3}(}/)) + op(1) and }Q% =
2
%E(%)—}—OP(I).HWCQ
. 1 8%InL,(yp)\ 1
«/E(Vu_)/uoo):_<*E7n,n>
n Ayudyy
1 9InLy(yn) 1 _/92InLy(yn)
x [ — —7E( ) r] ). C.10
I:«/ﬁ E " 97207’ Vnt, +0p( ) ( )
Similarly,
1 9InL,(7) 1 dlnLy(ys) 19*InLy(7) 10%1InL,(7) .
Jnoodt T U ot n 9tat’ Vi + 9Ty, V= uoo),
(C.11)
an an n ]Ln an n
where 1 L) _ 1 g @2I0laGu)y 4o (l)andlaanay(y) 1p@hn 0)) 1 0p (1).
Plugging (C.10) into (C.11) yields }W A \}EM \/ﬁtn +op(1).
Since 1n M — N(0, lim;,—, o I3), the result in the proposition follows. O

SUPPLEMENTARY MATERIAL

Fei Jin and Yuqin Wang (2023): Supplement to “Consistent non-Gaussian pseudo
maximum likelihood estimators of spatial autoregressive models,” Econometric
Theory Supplementary Material. To view, please visit: https://doi.org/10.1017/
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REFERENCES

Anselin, L. (1988) Spatial Econometrics: Methods and Models. Kluwer Academic Publishers.

Anselin, L. (2010) Thirty years of spatial econometrics. Papers in Regional Science 89, 3-25.

Anselin, L. & A. Bera (1998) Spatial dependence in linear regression models with an introduction to
spatial econometrics. In A. Ullah and D.E. Giles (eds.), Handbook of Applied Economic Statistics,
pp. 237-289. Marcel Dekker.

Arbia, G. (2014) A Primer for Spatial Econometrics with Applications in R. Springer.

Arbia, G. (2016) Spatial econometrics: A broad view. Foundations and Trends in Econometrics 8,
145-265.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.109.107, on 23 Nov 2024 at 22:21:22, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50266466623000026


https://doi.org/10.1017/S0266466623000026
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466623000026
https://www.cambridge.org/core

CONSISTENT NON-GAUSSIAN PSEUDO 1157

Baltagi, B.H., P. Egger, & M. Pfaffermayr (2008) Estimating regional trade agreement effects on FDI
in an interdependent world. Journal of Econometrics 145, 194-208.

Bao, Y. (2013) Finite-sample bias of the QMLE in spatial autoregressive models. Econometric Theory
29, 68-88.

Blommestein, H. (1983) Specification and estimation of spatial dependence: A discussion of alternative
strategies for spatial economic modelling. Regional Science and Urban Economics 13, 251-270.
Blommestein, H. (1985) Elimination of circular routes in spatial dynamic regression equations.

Regional Science and Urban Economics 15, 121-130.

Burridge, P. (1980) On the Cliff-Ord test for spatial autocorrelation. Journal of the Royal Statistical
Society, Series B 42, 107-108.

Cliff, A. & J.K. Ord (1973) Spatial Autocorrelation. Pion.

Clift, A. & J.K. Ord (1981) Spatial Process: Models and Applications. Pion.

Conley, T.G. (1999) GMM estimation with cross sectional dependence. Journal of Econometrics 92,
1-45.

Cressie, N. (1993) Statistics for Spatial Data. Wiley.

Davidson, J. (1994) Stochastic Limit Theory: An Introduction for Econometricians. Oxford University
Press.

Dogan, O. & S. Taspmar (2013) GMM estimation of spatial autoregressive models with moving
average disturbances. Regional Science and Urban Economics 43, 903-926.

Fan, J., L. Qi, & D. Xiu (2014) Quasi-maximum likelihood estimation of GARCH models with heavy-
tailed likelihoods. Journal of Business & Economic Statistics 32, 178-191.

Fang, K.T., S. Kotz, & K.W. Ng (1990) Symmetric Multivariate and Related Distributions. Chapman
and Hall.

Fingleton, B. (2008) A generalized method of moments estimator for a spatial panel model with an
endogenous spatial lag and spatial moving average errors. Spatial Economic Analysis 3, 27-44.

Fiorentini, G. & E. Sentana (2019) Consistent non-Gaussian pseudo maximum likelihood estimators.
Journal of Econometrics 213, 321-358.

Francq, C., G. Lepage, & J.M. Zakoian (2011) Two-stage non Gaussian QML estimation of
GARCH models and testing the efficiency of the Gaussian QMLE. Journal of Econometrics 165,
246-257.

Giles, J.A. & D.E. Giles (1993) Pre-test estimation and testing in econometrics: Recent developments.
Journal of Economic Surveys 7, 145-197.

Gilley, O.W. & R.K. Pace (1996) On the Harrison and Rubinfeld data. Journal of Environmental
Economics and Management 31, 403—405.

Godfrey, L.G. & C.D. Orme (1991) Testing for skewness of regression disturbances. Economics Letters
37,31-34.

Gouriéroux, C., A. Monfort, & A. Trognon (1984) Pseudo maximum likelihood methods: Theory.
Econometrica 52, 681-700.

Gupta, A. & P.M. Robinson (2018) Pseudo maximum likelihood estimation of spatial autoregressive
models with increasing dimension. Journal of Econometrics 202, 92-107.

Haining, R.P. (1978) The moving average model for spatial interaction. Transactions of the Institute of
British Geographers 3, 202-225.

Harrison, D.J. & D.L. Rubinfeld (1978) Hedonic housing prices and the demand for clean air. Journal
of Environmental Economics and Management 5, 81-102.

Hillier, G. & F. Martellosio (2018) Exact and higher-order properties of the MLE in spatial autoregres-
sive models, with applications to inference. Journal of Econometrics 205, 402—422.

Jarque, C.M. & A K. Bera (1980) Efficient tests for normality, homoscedasticity and serial indepen-
dence of regression residuals. Economics Letters 6, 255-259.

Jenish, N. & I.R. Prucha (2009) Central limit theorems and uniform laws of large numbers for arrays
of random fields. Journal of Econometrics 150, 86-98.

Jenish, N. & LR. Prucha (2012) On spatial processes and asymptotic inference under near-epoch
dependence. Journal of Econometrics 170, 178—190.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.109.107, on 23 Nov 2024 at 22:21:22, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50266466623000026


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466623000026
https://www.cambridge.org/core

1158 FEI JIN AND YUQIN WANG

Jin, F. & L.F. Lee (2019) GEL estimation and tests of spatial autoregressive models. Journal of
Econometrics 208, 585-612.

Jin, F,, L.F. Lee, & K. Yang (2022) Best Linear and Quadratic Moments for Spatial Econometric Models
and an Application to Spatial Interdependence Patterns of Employment Growth in US Counties.
Working paper, School of Economics, Fudan University.

Kelejian, HH. & LR. Prucha (1998) A generalized spatial two-stage least squares procedure for
estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate
Finance and Economics 17, 99-121.

Kelejian, H.H. & LR. Prucha (1999) A generalized moments estimator for the autoregressive parameter
in a spatial model. International Economic Review 40, 509-533.

Kelejian, H.H. & I.R. Prucha (2001) On the asymptotic distribution of the Moran /Itest statistic with
applications. Journal of Econometrics 104, 219-257.

Kelejian, H.H. & I.R. Prucha (2010) Specification and estimation of spatial autoregressive models with
autoregressive and heteroskedastic disturbances. Journal of Econometrics 157, 53-67.

Lee, J. & P.M. Robinson (2020) Adaptive inference on pure spatial models. Journal of Econometrics
216, 375-393.

Lee, L.F. (2002) Consistency and efficiency of least squares estimation for mixed regressive, spatial
autoregressive models. Econometric Theory 18, 252-2717.

Lee, L.F. (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spatial autore-
gressive models. Econometrica 72, 1899-1925.

Lee, L.F. (2007) GMM and 2SLS estimation of mixed regressive, spatial autoregressive models.
Journal of Econometrics 137, 489-514.

LeSage, J. & R.K. Pace (2009) Introduction to Spatial Econometrics. Chapman & Hall/CRC.

LeSage, J.P. (1999) Spatial Econometrics. Department of Economics, University of Toledo.

LeSage, J.P. & R.K. Pace (2007) A matrix exponential spatial specification. Journal of Econometrics
140, 190-214.

Lin, M. & G. Sinnamon (2020) Revisiting a sharpened version of Hadamard’s determinant inequality.
Linear Algebra and its Applications 606, 192-200.

Liu, X., L.F. Lee, & C.R. Bollinger (2010) An efficient GMM estimator of spatial autoregressive
models. Journal of Econometrics 159, 303-319.

Moran, P.A.P. (1950) Notes on continuous stochastic phenomena. Biometrika 35, 255-260.

Newey, W.K. & D. McFadden (1994) Large sample estimation and hypothesis testing. In R.F. Engle,
D.L. McFadden (eds.), Handbook of Econometrics, vol. 4, Ch. 36, pp. 2111-2245. Elsevier.

Newey, W.K. & D.G. Steigerwald (1997) Asymptotic bias for quasi-maximum-likelihood estimators
in conditional heteroskedasticity models. Econometrica 65, 587-599.

Ord, K. (1975) Estimation methods for models of spatial interaction. Journal of the American
Statistical Association 70, 120-126.

Pace, R.K. & R. Barry (1997) Quick computation of spatial autoregressive estimators. Geographical
Analysis 29, 232-246.

Pace, R.K. & O.W. Gilley (1997) Using the spatial configuration of the data to improve estimation.
The Journal of Real Estate Finance and Economics 14, 333-340.

Robinson, PM. (2010) Efficient estimation of the semiparametric spatial autoregressive model. Journal
of Econometrics 157, 6-17.

Spiring, F. (2011) The refined positive definite and unimodal regions for the Gram—Charlier and
Edgeworth series expansion. Advances in Decision Sciences 2011, Article no. 463097.

White, H. (1994) Estimation, Inference and Specification Analysis. Cambridge University Press.

Xu, X. & L.F. Lee (2015) Maximum likelihood estimation of a spatial autoregressive Tobit model.
Journal of Econometrics 188, 264-280.

Xu, X. & L.F. Lee (2018) Sieve maximum likelihood estimation of the spatial autoregressive Tobit
model. Journal of Econometrics 203, 96—112.

Yang, K. & L.F. Lee (2017) Identification and QML estimation of multivariate and simultaneous
equations spatial autoregressive models. Journal of Econometrics 196, 196-214.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.109.107, on 23 Nov 2024 at 22:21:22, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50266466623000026


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466623000026
https://www.cambridge.org/core

	1 INTRODUCTION
	2 NGPMLE
	2.1 Consistency
	2.2 Asymptotic Distributions
	2.3 Efficiency Comparisons
	2.3.1 Spatial Error Model with a Row-Normalized Mn
	2.3.2 SARAR Model with a Row-Normalized Mn and Asymmetric vi
	2.3.3 SARAR Model with a Non-Row-Normalized Mn


	3 NON-GAUSSIAN SCORE TEST FOR SPATIAL DEPENDENCE
	4 MONTE CARLO
	4.1 Estimators
	4.2 Non-Gaussian and Gaussian Score Tests

	5 EMPIRICAL APPLICATION
	6 CONCLUSIONS
	APPENDIX A Expressions for Asymptotic Variances
	A.1 Row-Normalized Mn
	A.2 Symmetric vi
	A.3 Non-Row-Normalized Mn and Asymmetric vi

	APPENDIX B Lemmas
	APPENDIX C Proofs

