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This paper studies the non-Gaussian pseudo maximum likelihood (PML) estimation
of a spatial autoregressive (SAR) model with SAR disturbances. If the spatial weights
matrix Mn for the SAR disturbances is normalized to have row sums equal to 1 or
the model reduces to a SAR model with no SAR process of disturbances, the non-
Gaussian PML estimator (NGPMLE) for model parameters except the intercept term
and the variance σ 2

0 of independent and identically distributed (i.i.d.) innovations
in the model is consistent. Without row normalization of Mn, the symmetry of
i.i.d. innovations leads to consistent NGPMLE for model parameters except σ 2

0 .
With neither row normalization of Mn nor the symmetry of innovations, a location
parameter can be added to the non-Gaussian pseudo likelihood function to achieve
consistent estimation of model parameters except σ 2

0 . The NGPMLE with no
added parameter can have a significant efficiency improvement upon the Gaussian
PML estimator and the generalized method of moments estimator based on linear
and quadratic moments. We also propose a non-Gaussian score test for spatial
dependence, which can be locally more powerful than the Gaussian score test.
Monte Carlo results show that our NGPMLE with no added parameter and the score
test based on it perform well in finite samples.

1. INTRODUCTION

The spatial autoregressive (SAR) model, originated in Cliff and Ord (1973, 1981),
is a popular spatial econometric model. It has been applied in a range of fields
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CONSISTENT NON-GAUSSIAN PSEUDO 1121

in economics to capture spatial dependence.1 In this paper, we consider the non-
Gaussian pseudo maximum likelihood (PML) estimation of the SAR model with
SAR disturbances (SARAR model), with no need to correctly specify the distri-
bution of independent and identically distributed (i.i.d.) innovations in the model.
We provide conditions for the consistency of the non-Gaussian PML estimator
(NGPMLE) and prove its asymptotic distribution. Our applications to several
popular datasets in the spatial econometric literature show some evidence of
nonnormal and leptokurtic innovations for these datasets.2 In such situations, our
NGPMLE on the basis of leptokurtic distributions can have significant efficiency
improvements over existing estimators including the Gaussian PML estimator
(GPMLE) (Lee, 2004), and lead to different but more reliable empirical results.

We consider the following SARAR model:

Yn = λ0WnYn +Xnβ0 +Un, Un = ρ0MnUn +σ0Vn, (1)

where n is the sample size, Yn = [yn1, . . . ,ynn]′ is an n×1 vector of observations on
the dependent variable, Xn is an n×kx matrix of exogenous variables, Wn = [wn,ij]
and Mn = [mn,ij] are spatial weights matrices with zero diagonals,3 the innovations
vi’s in Vn = [v1, . . . ,vn]′ are i.i.d. with mean zero and unit variance, λ0 and ρ0 are
scalar spatial dependence parameters, β0 is a kx × 1 parameter vector, and σ0 is
a standard deviation (SD) parameter. We formulate an NGPMLE using a chosen
density function for vi that can differ from its true density function. Our results on
the consistency of the NGPMLE for the SARAR model extend those in Newey and
Steigerwald (1997) for conditional heteroskedasticity models, by properly taking
into account spatial dependence.4 We show that, when the spatial weights matrix
Mn in the SAR process of disturbances is normalized to have row sums equal to 1,5

the NGPMLE for model parameters except the intercept term and the variance
σ 2

0 of i.i.d. innovations is consistent under regularity conditions; without row
normalization of Mn, if the innovations are symmetric, the NGPMLE for model
parameters except σ 2

0 is consistent; and with neither row normalization of Mn nor
the symmetry of innovations, a location parameter can be added to the pseudo

1Reviews on studies about the class of SAR models can be found in, e.g., Anselin and Bera (1998), Anselin (2010),
and Arbia (2016).
2See Section 5 and the Supplementary Material.
3The zero diagonals of the spatial weights matrices exclude self-influence. It is a normalization condition usually
maintained in the literature (see, e.g., Kelejian and Prucha, 1998; Lee, 2004). Indeed, it is not used in our theoretical
analysis.
4Other studies on the NGPMLE include, among others, Gouriéroux, Monfort, and Trognon (1984), Francq, Lepage,
and Zakoïan (2011), Fan, Qi, and Xiu (2014), and Fiorentini and Sentana (2019). The results in Gouriéroux et al.
(1984) are on the basis of a density function f (x,m) or f (x,m,�), where m is the mean and � is the variance of the
distribution. They focus on the exponential family, for which all moments exist. Our analysis does not restrict the
density function to be of the form f (x,m) or f (x,m,�), and we can use a density function which does not have
a finite moment with an order higher than 3. Francq et al. (2011) and Fan et al. (2014) propose modifications
of NGPMLEs for GARCH models with zero conditional mean. Fiorentini and Sentana (2019) propose consistent
NGPMLEs for GARCH models with nonzero conditional mean and for some other location-scale models such as
multivariate regressions.
5We refer to a matrix with all row sums equal to 1 as a row-normalized matrix hereafter.
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1122 FEI JIN AND YUQIN WANG

likelihood function to obtain consistent estimators of model parameters except σ 2
0 .

An important special case of the SARAR model is the SAR model with exogenous
variables but with no SAR process of disturbances. Consistent non-Gaussian PML
estimation of model parameters except σ 2

0 only requires an intercept term in
the model. Furthermore, although we only consider SAR models in this paper,
consistent NGPMLEs can also be extended to other spatial econometric models.6

We expect that NGPMLEs for those models can be more efficient than existing
estimation methods.

We prove the
√

n-consistency and asymptotic normality of our NGPMLE under
the condition that the innovations have a finite third moment, which can allow
for innovations with relatively heavy tails. By contrast, the

√
n-consistency of

the GPMLE is established under the existence of a moment of innovations with
an order higher than 4 (Lee, 2004). Furthermore, using numerical integration
and Student’s t distribution to formulate a likelihood function, we show that the
NGPMLE with no added parameter can have a uniform efficiency improvement
upon the GPMLE, and can also have a significantly larger efficiency improvement
than the best generalized method of moments (GMM) estimator on the basis
of linear-quadratic moments (Liu, Lee, and Bollinger, 2010), but the NGPMLE
with an added parameter can be less efficient than the GPMLE. An intuitive
explanation from the non-Gaussian score is that, unlike GPMLE and the best
GMM estimator (BGMME), the NGPMLE with no added parameter does not
restrict the moments to be linear and quadratic in innovations. The NGPMLE
with an added parameter loses some efficiency since one more parameter has
to be estimated. Our Monte Carlo experiments further corroborate the efficiency
improvement of the NGPMLE with no added parameter upon the GPMLE and
BGMME.

We also propose a non-Gaussian score test for spatial dependence in SAR
models, which only requires the restricted NGPMLE. The test statistic generalizes
the Moran I test statistic that is quadratic in estimated innovations (Moran, 1950).
If the NGPMLE is asymptotically more efficient than the GPMLE, then the non-
Gaussian score test is locally more powerful than the Gaussian score test.

Estimation methods for SAR models include maximum likelihood (ML) (Ord,
1975), generalized spatial two-stage least squares (GS2SLS) (Kelejian and Prucha,
1998), Gaussian PML,7 GMM (Lee, 2007),8 best GMM, and adaptive estimation
(Robinson, 2010; Lee and Robinson, 2020), among others. GS2SLS is compu-
tationally simpler than ML, Gaussian PML, GMM, and best GMM, but is less
efficient. Like our NGPMLE, the GPMLE does not need the distribution of

6For example, the matrix exponential spatial specification (LeSage and Pace, 2007), spatial moving average models
(e.g., Haining, 1978; Cliff and Ord, 1981; Fingleton, 2008; Doğan and Taşpınar, 2013), and high-order versions of
those models (e.g., Blommestein, 1983, 1985). See the Supplementary Material for some consistency analysis.
7Exact and high-order properties of the GPMLE are studied in Bao (2013) and Hillier and Martellosio (2018). Gupta
and Robinson (2018) study the GPMLE of SAR models with increasingly many parameters.
8A related estimation method is the generalized empirical likelihood (Jin and Lee, 2019), which is asymptotically as
efficient as the GMM with the same moments, but can have smaller higher-order bias.
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CONSISTENT NON-GAUSSIAN PSEUDO 1123

innovations to be correctly specified, and it is relatively efficient.9 In addition,
whether the NGPMLE or the ML estimator based on nonnormal distributions is
consistent or not is not clear according to the existing literature. Thus, the GPMLE
is popular in practice (see, e.g., Robinson, 2010). However, it can have a significant
efficiency loss compared with the ML estimator, when the innovations are far from
normally distributed (Fan et al., 2014). The adaptive estimation in Robinson (2010)
requires that each unit is influenced aggregately by a significant portion of units
in the population, which is a very stringent condition that may not be reasonable
in some practical circumstances.10

This paper is organized as follows: In Section 2, we prove the convergence and
asymptotic distribution of the NGPMLE for the SARAR model, and compare its
efficiency with those of the GPMLE and BGMME. In Section 3, the non-Gaussian
score test is investigated. Monte Carlo and application results are reported in
Sections 4 and 5, respectively. Section 6 concludes. Proofs and other materials
are collected in the Appendix and in the Supplementary Material.

2. NGPMLE

Let θ0 = [λ0,ρ0,β
′
0,σ

2
0 ]′ be the true parameter vector in model (1), and let θ =

[λ,ρ,β ′,σ 2]′ be a general parameter vector. We consider a density function f (x,η)

of a random variable with mean zero and unit variance, where η is a kη × 1
parameter vector. For example, f (x,η) can be the density function of a standardized
Student’s t distribution with η degrees of freedom. The pseudo log-likelihood
function of the SARAR model (1), as if vi had the density function f (vi,η), is

lnLn(γ ) =
n∑

i=1

ln f
(
vi(θ),η

)− n

2
ln(σ 2)+ ln |Sn(λ)|+ ln |Rn(ρ)|, (2)

where γ = [θ ′,η′]′, Sn(λ) = In − λWn with In being the n-dimensional identity
matrix, Rn(ρ) = In −ρMn, and vi(θ) = 1

σ
e′

niRn(ρ)[Sn(λ)Yn −Xnβ], with eni being
the ith column of In. We may fix η at some particular value or estimate it jointly
with θ . We focus on the case where η is estimated jointly with θ , as in Fiorentini
and Sentana (2019). An NGPMLE of γ is derived by maximizing lnLn(γ ) in (2).

We first introduce some regularity conditions for later analysis on model (1).

Assumption 1 (Topological space). Let D ⊂ R
cd , cd ≥ 1, be a lattice of

(possibly) unevenly placed locations in R
cd . D is infinitely countable and the

distance d(i,j) between any two elements i and j in D is larger than or equal to
a specific positive constant, say 1 without loss of generality. n individual units in
an economy for model (1) are located or living in a region Dn ⊂ D, where the
cardinality of Dn is n.

9It is asymptotically equivalent to a GMM estimator with linear and quadratic moments, where the linear moments
correspond to the instrumental variables estimation of the parameters in the equation on the dependent variable in a
GS2SLS approach.
10This condition is the same as that for the consistency of the ordinary least-squares estimator (Lee, 2002).
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1124 FEI JIN AND YUQIN WANG

Since the general density function f (x,η) can introduce nonlinearity into the
pseudo log-likelihood function, we require a proper law of large numbers (LLN)
for analysis. We use the LLN for near-epoch-dependent (NED) spatial processes,
developed in Jenish and Prucha (2012). Assumption 1 maintains some conditions
required for such an LLN. The assumption provides basic settings on individual
units. The minimum distance assumption on individual units corresponds to
increasing domain asymptotics in the spatial literature.11

Let ‖·‖∞ and ‖·‖1 be, respectively, the row sum and column sum matrix norms.

Assumption 2 (Basic conditions on model elements). (i) vi’s are i.i.d. with
mean zero and unit variance. (ii) Wn and Mn are nonstochastic matrices such that
supn ‖Wn‖∞ < ∞ and supn ‖Mn‖∞ < ∞. (iii) c0 ≡ max{|λ0|supn ‖Wn‖∞,|ρ0|supn
‖Mn‖∞} < 1. (iv) The elements of Xn are uniformly bounded constants.

We consider i.i.d. innovations as in many papers on spatial econometric models.
The uniform boundedness condition on the spatial weights matrices in Assumption
2(ii), originated in Kelejian and Prucha (1998, 1999, 2001), limits the degree of
spatial dependence to be manageable.12 The elements of spatial weights matrices
are often nonnegative in practice, but our theoretical analysis does not require such
an assumption. Assumption 2(iii) implies the nonsingularity of Rn ≡ Rn(ρ0) and
Sn ≡ Sn(λ0) for any n. In Assumption 2(iv), the elements of Xn are assumed to be
constants for simplicity, as in Lee (2004).13

2.1. Consistency

Model (1) can be written as

RnSnYn = RnXnβ0 +σ0Vn. (3)

Thus, for given λ0 and ρ0, (3) is a linear regression model with RnSnYn being a
vector of observations on the dependent variable and RnXn being the explanatory
variable matrix. Newey and Steigerwald (1997) establish a set of results on the
consistency of the NGPMLE for coefficients in a conditional heteroskedasticity
model, which nests the linear regression model as a special case. These results
depend on whether the model has an intercept term or whether model innovations
are symmetric.14 The regression (3) may not have an intercept term, but if Mn is

11Another commonly used asymptotic method is called infill asymptotics, for which the sample region is fixed and
the growth of the sample size is achieved by sampling points arbitrarily dense in the given region. See Cressie (1993)
and Conley (1999) for more explanations and examples. If f (x,η) is the density function of normal distributions,
then ln f (x,η) is a quadratic function of x. In this special case, asymptotic analysis can be based on the LLN for
linear-quadratic forms (Kelejian and Prucha, 2001); therefore, Assumption 1 is not needed.
12In the spatial econometric literature, a spatial weights matrix is often assumed to be bounded in both the row-
and column-sum norms. Later we introduce conditions that imply supn ‖Wn‖1 < ∞ and supn ‖Mn‖1 < ∞; therefore,
Assumption 2(ii) only involves the row-sum norms of Wn and Mn.
13Alternatively, Xn can be allowed to be stochastic with the existence of certain moments.
14To gain some intuition on the results, consider the case that the assumed density f is symmetric and non-Gaussian.
As f is not a Gaussian density, the mean of the dependent variable in a linear regression model is generally not a
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CONSISTENT NON-GAUSSIAN PSEUDO 1125

row-normalized and Xn contains an intercept term such that Xn = [1n,X2n], where
1n is an n×1 vector of ones, then RnXn = [(1−ρ0)1n,RnX2n] contains an intercept
term. Hence, for given λ0 and ρ0, we expect the consistency of the NGPMLE
of some parameters in (3) under some regularity conditions. However, we have
to properly take into account that the spatial dependence parameters λ and ρ are
also estimated. In the following, we provide sufficient conditions for the consistent
NGPMLE of some parameters in (3).

Under regularity conditions, 1
n lnLn(γ ) − 1

n E[lnLn(γ )] converges to zero uni-
formly on a compact parameter space of γ . Suppose that limn→∞ 1

n E[lnLn(γ )]
is uniquely maximized at some pseudo-true value of γ , then the NGPMLE of γ

converges to the pseudo-true value in probability under regularity conditions. The
following Assumptions 3 and 4 guarantee that E[lnLn(γ )] is uniquely maximized
at the pseudo-true value, where some components of the pseudo-true value will
be equal to their true values. Denote β = [β1,β

′
2]′ in the case that Xn contains an

intercept term, where β1 is the parameter for 1n. Accordingly, let β0 = [β10,β
′
20]′.

For a square matrix A, let vecD(A) be a column vector formed by the diagonal
elements of A. Denote A1n = MnR−1

n , A2n = RnWnS−1
n R−1

n , A3n = MnWnS−1
n R−1

n ,
and Tn(τ ) = Rn(ρ)Sn(λ)S−1

n R−1
n = [tn,ij(τ )] with τ = [λ,ρ]′.

Assumption 3 (Identification A). (i) f (x,η) > 0, for any x and η, and
E[ln f (vi(θ),η)] < ∞ for all γ in its parameter space. (ii) X′

nR′
nRnXn is

nonsingular. (iii) For any (α1,α2), every element of 1n + α1vecD(A1n) +
α2vecD(A2n) + α1α2vecD(A3n) is nonzero. (iv) gn(τ ) > 0, for τ 
= τ0, where
gn(τ ) = ∑n

i=1 ln |tn,ii(τ )|− ln |Tn(τ )|.
Assumption 3(i) is a usual regularity condition. The nonsingularity of X′

nR′
nRnXn

in Assumption 3(ii) is for the identification of β0. Assumption 3(iii) implies that
tn,ii(τ ) 
= 0 for any i and any τ . Note that Tn(τ0) = In, whose diagonal elements are
all equal to 1. Then the assumption is satisfied at least for τ close to τ0.

Assumption 3(iv) is for the identification of τ0. It is a generalized version
of Hadamard’s inequality for positive semidefinite matrices. Lin and Sinnamon
(2020) provide sufficient conditions for Assumption 3(iv), which require all
principal minors of Tn(τ ) to be nonnegative and to satisfy a Fischer-type
inequality. Alternatively, we could investigate conditions for Assumption 3(iv) in a
neighborhood of τ0. Since gn(τ0) = 0 and ∂gn(τ0)

∂τ
= 0, we have gn(τ ) > 0 for τ 
= τ0

in a neighborhood of τ0 if ∂2gn(τ0)

∂τ∂τ ′ is positive-definite. Let T1n = A1n −diag(A1n) and
T2n = A2n − diag(A2n), where diag(A) for a square matrix A denotes a diagonal

natural location parameter of the assumed density. Thus, if f differs from the true density, the consistency of the
NGPMLE of the parameters for the mean is not guaranteed. When the true density is symmetric, the mean, median,
and mode of the dependent variable are equal; thus, the mean and the natural location parameter are the same for f.
It follows that the parameters for the mean can be consistently estimated by the non-Gaussian PML under regularity
conditions. In the case that the true density is asymmetric, if there is no intercept term, the difference between the
mean and the natural location parameter for f leads to the inconsistency of the NGPMLE of the parameters for the
mean. The existence of an intercept in a linear regression model accounts for the difference, so other parameters for
the mean can still be consistently estimated by the non-Gaussian PML.
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1126 FEI JIN AND YUQIN WANG

matrix formed by the diagonal elements of A. Then ∂2gn(τ0)

∂τ∂τ ′ is positive-definite
when Wn and Mn are equal, T1n and T2n are linearly independent, and either Wn

is symmetric or it is row-normalized from a symmetric matrix (see Lemma B.1 in
Appendix B).

Assumption 4 (Identification B). Either the following (i) or (ii) holds:

(i) (a) Mn is row-normalized. (b) Xn contains an intercept term.
(c) E[ln f ( σ0vi−α

σ
,η)]− ln(σ ) has a unique maximum at [σ∞,α∞,η′∞]′.

(ii) (a) vi is symmetrically distributed around zero with unimodal density k(v),
which satisfies that k(v1) ≤ k(v2) for |v1| ≥ |v2|. (b) For each η, f (v,η) =
f (−v,η) and f (v1,η) < f (v2,η) for |v1| > |v2|. (c) E[ln f ( σ0vi

σ
,η)]− ln(σ ) has a

unique maximum at [σ∞,η′∞]′.

The spatial weights matrix Mn can be either row-normalized or not row-
normalized, but a row-normalized Mn facilitates the interpretation of the spatial
dependence parameter ρ, since it indicates that each element of MnUn is a
weighted average of Un for a nonnegative Mn. Thus, spatial weights matrices
are often row-normalized in practice.15 An intercept term is usually included in
the SARAR model in empirical research.16 Assumption 4(i)(c) and (ii)(c) is the
same as Assumptions 2.4 and 2.6 in Newey and Steigerwald (1997), respectively.
Assumption 4(i)(c) strengthens Assumption 4(ii)(c). With a row-normalized Mn

and an intercept term in Xn, the term 1
σ
(σ0vi −α) in Assumption 4(i)(c) is equal to

vi(θ) evaluated at θ = [λ0,ρ0,
α

1−ρ0
+β10,β

′
20,σ

2]′. Newey and Steigerwald (1997)
provide some insights on Assumption 4(ii)(c). A necessary condition for it is that
E[ln f ( σ0vi

σ
,η∞)]− lnσ is uniquely maximized at σ = σ∞. Therefore, f (x,η) should

be chosen such that σ∞ minimizes the Kullback–Leibler distance between the
true innovation density and the pseudo density σ0

σ
f ( σ0x

σ
,η∞). Such an assumption

holds for the Gaussian likelihood, the likelihood for a standardized Student’s t
distribution with more than two degrees of freedom, and a generalized Gaussian
likelihood with ln f (x,η) = −|x|η[(3/η)/(1/η)]η/2 + c, where c is a constant
and (·) denotes the gamma function (Fan et al., 2014). The assumption also
implies that σ∞ is generally different from σ0, although it is straightforward to
show that σ∞ = σ0 if f (·) is a Gaussian density.17 For the case with symmetric
innovations, Assumption 4(ii)(a) and (b) is the same as Assumption 2.3 in Newey

15Another reason is that it implies a simple interval of ρ for the nonsingularity of In −ρMn. See the discussions in,
e.g., Kelejian and Prucha (2010). Some authors prefer not to row-normalize a spatial weights matrix (e.g., Baltagi,
Egger, and Pfaffermayr, 2008).
16In some rare cases, an intercept term is not included, e.g., when Yn and Xn are normalized to have mean zero. An
example can be found in LeSage (1999, p. 72).
17Furthermore, σ∞/σ0 and η∞ only depend on the true disturbance distribution and the chosen density function
f (v,η), but do not depend on model characteristics such as spatial weights matrices, exogenous variables, and
parameter values. The σ∞/σ0 differs from 1 even when the true innovation distribution and the chosen density
function f (v,η) are spherically symmetric. We report the values of σ∞/σ0 for some chosen disturbance distributions
and a density function f (v,η) in the Supplementary Material.
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CONSISTENT NON-GAUSSIAN PSEUDO 1127

and Steigerwald (1997). Both the true density function of vi and the assumed
density function f (v,η) are required to be unimodal.

PROPOSITION 1. (i) If Assumptions 1–3 and 4(i) are satisfied, then E[lnLn(γ )]
is uniquely maximized at γ∗ = [λ0,ρ0,β1∞,β ′

20,σ
2∞,η′∞]′, where β1∞ = β10 +

α∞
1−ρ0

. (ii) If Assumptions 1–3 and 4(ii) are satisfied, then E[lnLn(γ )] is uniquely

maximized at γ# = [λ0,ρ0,β
′
0,σ

2∞,η′∞]′.

In the case with a row-normalized Mn, the intercept term and the variance param-
eter are generally not consistently estimated, whereas other model parameters
can be consistently estimated; in the case with symmetric innovations, only the
variance parameter is inconsistently estimated.

Remark 1. For a SAR model with no SAR process of disturbances, i.e., Yn =
λ0WnYn +Xnβ0 +σ0Vn, a result similar to Proposition 1(i) holds, where Assump-
tion 4(i) reduces to that Xn contains an intercept term and E[ln f ( σ0vi−α

σ
,η)]− ln(σ )

has a unique maximum at [σ∞,α∞,η′∞]′. As Mn does not appear in the model,
the condition of a row-normalized Mn is irrelevant. For a given λ0, the SAR
model is a linear regression model with the dependent variable SnYn and the
exogenous variable matrix Xn. It can also be seen as a special case of the SARAR
model with a row-normalized Mn and ρ0 = 0; therefore, it is not considered
separately.18

In the case with neither row normalization of Mn nor the symmetry of inno-
vations, we could add a location parameter α to the non-Gaussian pseudo log-
likelihood function to obtain the modified function19

lnLn(δ) =
n∑

i=1

ln f
(

vi(θ)− 1

σ
α,η

)
− n

2
ln(σ 2)+ ln |Sn(λ)|+ ln |Rn(ρ)|, (4)

where δ = [λ,ρ,β ′,σ 2,α,η′]′. This function is formed as if we had the model
Yn = λ0WnYn + Xnβ0 + Un, where Un = α01n + ρ0MnUn + σ0Vn. This model
can be rewritten as RnSnYn = RnXnβ0 + α01n + σ0Vn, which has an intercept
term. Thus, as the above analysis under Assumption 4(i), we could show that
E[lnLn(δ)] is uniquely maximized at δ# = [λ0,ρ0,β

′
0,σ

2∞,α∞,η′∞]′ under regularity
conditions.

PROPOSITION 2. If Assumptions 1–3 and 4(i)(c) are satisfied and RnXn does
not contain an intercept term, then E[lnLn(δ)] is uniquely maximized at δ = δ#.

18See the Supplementary Material for formal analysis.
19When Mn is row-normalized and Xn contains an intercept term, since vi(θ)− α

σ
= 1

σ
e′

niRn(ρ)[Sn(λ)Yn −X2nβ2]−
(1−ρ)β1+α

σ
, lnLn(δ) is not uniquely maximized and thus should not be used. When vi is symmetric, lnLn(δ) can still be

used to derive an NGPMLE, but there might be efficiency loss. Newey and Steigerwald (1997) study such efficiency
loss for conditional heteroskedasticity models. We do not examine the issue theoretically for SAR models in this
study, but we investigate it by Monte Carlo experiments.
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1128 FEI JIN AND YUQIN WANG

The identification results in Propositions 1 and 2 are for a finite n. To prove the
convergence of the NGPMLE, we need to strengthen the identification inequalities
to the limit.20

Assumption 5 (Identification for large samples). For the log-likelihood func-
tion lnLn(γ ) in (2), assume that limsupn→∞

1
n {E[lnLn(γ )]−E[lnLn(γ∗)]} < 0, for

any γ 
= γ∗, if Assumption 4(i) holds, and assume that limsupn→∞
1
n {E[lnLn(γ )]−

E[lnLn(γ#)]} < 0, for any γ 
= γ#, if Assumption 4(ii) holds. For lnLn(δ) in (4),
assume that limsupn→∞

1
n {E[lnLn(δ)]−E[lnLn(δ#)]} < 0, for any δ 
= δ#.

We introduce more regularity conditions for the analysis on the consistency of
NGPMLEs.

Assumption 6 (Consistency A). (i) Sn(λ) is invertible for any λ in its parameter
space � and {S−1

n (λ)} is bounded in either the row sum or column sum matrix norm
uniformly on �. Similar conditions hold for Rn(ρ). (ii) The parameter space  of
γ is a compact subset of Rkγ , where kγ is the length of γ . Similar conditions hold
for δ and κ .

Assumption 6(i) is required due to the nonlinearity involved in the log Jacobians
ln |Sn(λ)| and ln |Rn(ρ)| in the pseudo log-likelihood functions. The compactness
of parameter spaces in Assumption 6(ii) is a familiar assumption on extremum
estimators.

Assumption 7 (Consistency B). At least one of the following two conditions (i)
and (ii) is satisfied:

(i) Only individuals whose distances are less than or equal to some specific
constant d̄0 may affect each other directly, i.e., wn,jk and mn,jk can be nonzero only
if d(j,k) ≤ d̄0 for any j, k, and n.

(ii) (a) For every n, the number of columns wn,·j of Wn with |λ0|∑n
i=1 |wn,ij| > c0

is less than or equal to some fixed nonnegative integer that does not depend on n,
denoted as N.21 A similar condition holds for Mn. (b) There are constants π1 and
π2 with π2 > cd such that |wn,jk| ≤ π1d(j,k)−π2 and |mn,jk| ≤ π1d(j,k)−π2 , where
cd is in Assumption 1.

Assumption 8 (Consistency C). (i) f (x,η) is differentiable with respect to x
and η such that | ∂ ln f (x,η)

∂x | ≤ cf (|x|ct +1) and ‖ ∂ ln f (x,η)

∂η
‖ ≤ cf (|x|1+ct +1) for some

constant cf and ct = 0 or 1. (ii) For the ct in (i), E(|vi|2+2ct+ι) < ∞, for some ι > 0.

Assumptions 7 and 8 are maintained to show the NED properties of some
relevant terms. Assumption 7 on the spatial weights matrices is the same as
Assumption 3 in Xu and Lee (2015) for a SAR Tobit model. Assumption 7(i)
does not allow direct interactions between individuals far from each other. While

20It is common to assume separate identification conditions for a finite n and for large samples in the spatial
econometric literature. See, e.g., Assumption 8 in Xu and Lee (2015).
21The c0 here is some positive number smaller than 1, which can be different from that in Assumption 2(iii). We use
c0 for simplicity as in Xu and Lee (2015).
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CONSISTENT NON-GAUSSIAN PSEUDO 1129

Assumption 7(ii)(b) allows any off-diagonal element of spatial weights matrices
to be nonzero, the interaction needs to decay fast enough. Assumption 7(ii)(a)
corresponds to the existence of a limited number of spatial units that can have
large aggregated effects on other spatial units.

Assumption 8(i) covers the case with a bounded ∂ ln f (x,η)

∂x and the case where

| ∂ ln f (x,η)

∂x | ≤ cf (|x|+1) for some constant cf . The derivative ∂ ln f (x,η)

∂x is bounded for
a smooth enough f (x,η) whose tail behavior is proportional to |x|−a, for a ≥ 1,
or e−b|x|a , for 0 < a ≤ 1 and b > 0. Examples include Student’s t and the logistic
distributions. On the other hand, | ∂ ln f (x,η)

∂x | ≤ cf (|x|+1) for some constant cf for a
smooth enough f (x,η) whose tail behavior is proportional to e−b|x|a , for 0 < a ≤ 2
and b > 0. An example is the normal distribution. The condition on ∂ ln f (x,η)

∂η
is also

satisfied for Student’s t, logistic, and normal distributions. Depending on whether
∂ ln f (x,η)

∂x is bounded or | ∂ ln f (x,η)

∂x | ≤ cf (|x|+1), Assumption 8(ii) requires different

moment conditions on vi. With a bounded ∂ ln f (x,η)

∂x , we only need vi to have a finite
moment with the order 2+ ι for some ι > 0.

Denote the NGPMLEs that maximize lnLn(γ ) and lnLn(δ) by, respectively, γ̂

and δ̂. The convergence of the NGPMLEs is summarized in the following theorem.

THEOREM 1. Suppose that Assumptions 1–3 and 5–8 are satisfied.

(i) For the case with a row-normalized Mn, if Assumption 4(i) is also satisfied,
then γ̂ = γ∗ +op(1).

(ii) For the case with symmetric vi, if Assumption 4(ii) is also satisfied, then γ̂ =
γ# +op(1).

(iii) For the case with neither row-normalization of Mn nor the symmetry of vi, if
Assumption 4(i)(c) is also satisfied and RnXn does not contain an intercept
term, then δ̂ = δ# +op(1).

2.2. Asymptotic Distributions

The asymptotic distributions of the NGPMLEs can be derived by mean value
theorem expansions of their first-order conditions at the pseudo-true values, and
applying a proper central limit theorem (CLT).

As an example, consider the case with symmetric vi. With the reduced form
Yn = S−1

n (Xnβ0 +σ0R−1
n Vn), each element of ∂ lnLn(γ#)

∂γ
is a special case of the general

form

ωn = ε′
nAnVn +b′

nεn +1′
n�n −E(ε′

nAnVn), (5)

where εn =
[

∂f (
σ0
σ∞ v1,η∞)

∂v , . . . ,
∂f (

σ0
σ∞ vn,η∞)

∂v

]′ ≡ [εi], �n =
[

∂f (
σ0
σ∞ v1,η∞)

∂η
, . . . ,

∂f (
σ0
σ∞ vn,η∞)

∂η

]′
cη ≡ [ψi] with cη being a kη × 1 vector of constants, An = [an,ij]

is an n×n nonstochastic matrix, bn = [bni] is an n×1 vector of constants, and εn,
Vn, and �n have zero means (see the proof of Theorem 2). The ωn can be shown to
be asymptotically normal by a CLT for martingale difference arrays, as the proof
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1130 FEI JIN AND YUQIN WANG

for the asymptotic normality of linear-quadratic forms of innovations in Kelejian
and Prucha (2001). Such a result is provided in Lemma 6 of Yang and Lee (2017).

We maintain the following assumption for the analysis on the asymptotic
distributions.

Assumption 9 (Asymptotic distributions). (i) γ∗, γ#, and δ# are in the interior
of their respective parameter spaces. (ii) f (x,η) is thrice differentiable with respect

to z = [x,η′]′, such that ‖ ∂2 ln f (x,η)

∂z∂z′ ‖ ≤ cf (|x|2ct +1) and ‖ ∂3 ln f (x,η)

∂z∂z′∂zi
‖ ≤ cf (|x|3ct +1)

for each element zi of z, where ct = 0 for the case with bounded ∂ ln f (x,η)

∂x , and

ct = 1 for the case with | ∂ ln f (x,η)

∂x | ≤ cf (|x| + 1), as stated in Assumption 8(i).
(iii) E(|vi|3ct+3) < ∞. (iv) If Assumption 7(i) holds, assume that supn ‖S−1

n ‖1 < ∞
and supn ‖R−1

n ‖1 < ∞.

Assumption 9(i) is a familiar condition required for the
√

n-convergence of
extremum estimators. Assumption 9(ii) contains further smoothness conditions on
f (x,η). It is similar to Assumption 10 in Xu and Lee (2018), and it is satisfied with
ct = 0 for Student’s t, logistic, and normal distributions. With Assumption 9(ii),
only a finite third moment of innovations is needed in Assumption 9(iii) for the case
with bounded ∂ ln f (x,η)

∂x .22 As the GPMLE is shown to be
√

n-consistent only under
the existence of moments of innovations with an order higher than 4, it is possible
that it has a rate of convergence slower than

√
n when innovations only have a finite

third moment. In such a situation, the NGPMLE is certainly more efficient than
the GPMLE by Theorem 2. Assumption 9(ii) and (iii) is maintained to show the

convergence of the Hessian matrices 1
n

∂2 lnLn(γ̂ )

∂γ ∂γ ′ and 1
n

∂2 lnLn(δ̂)

∂δ∂δ′ . Assumption 9(iv)

of boundedness in the column-sum norm of S−1
n and R−1

n is required for asymptotic
distributions as in Kelejian and Prucha (1998) and Lee (2004). It is not required in
the situation of Assumption 7(ii) since it can be directly proved (see Lemma B.6).

THEOREM 2. Suppose that Assumptions 1–3 and 5–9 are satisfied.

(i) For the case with a row-normalized Mn, if Assumption 4(i) is also satisfied,

then
√

n(γ̂ − γ∗)
d−→ N(0, limn→∞A−1BA−1), where A = − 1

n E(
∂2 lnLn(γ∗)

∂γ ∂γ ′ )

and B = 1
n E(

∂ lnLn(γ∗)

∂γ

∂ lnLn(γ∗)

∂γ ′ ).
(ii) For the case with symmetric vi, if Assumption 4(ii) is also satisfied, then√

n(γ̂ − γ#)
d−→ N(0, limn→∞A−1BA−1), where A = − 1

n E(
∂2 lnLn(γ#)

∂γ ∂γ ′ ) and

B = 1
n E(

∂ lnLn(γ#)

∂γ

∂ lnLn(γ#)

∂γ ′ ).
(iii) For the case with neither row-normalization of Mn nor the symmetry of

vi, if Assumption 4(i)(c) is also satisfied and RnXn does not contain an

intercept term, then
√

n(δ̂ − δ#)
d−→ N(0, limn→∞A−1BA−1), where A =

− 1
n E(

∂2 lnLn(δ#)

∂δ∂δ′ ) and B = 1
n E(

∂ lnLn(δ#)

∂δ

∂ lnLn(δ#)

∂δ′ ).

22It is possible to develop formal tests for finiteness of moments of innovations in the SARAR model, which is
beyond the scope of this paper.
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CONSISTENT NON-GAUSSIAN PSEUDO 1131

The specific expressions of A and B are in Appendix A.23 For easy reference,
denote the NGPMLE without added parameter by NGPMLEo, and that with an
added parameter by NGPMLEa. For the special case of a spatial error model with
symmetric innovations, i.e., model (1) with λ0WnYn omitted and symmetric vi, we
could show that A and B for NGPMLEo are block diagonal and the NGPMLEo of
β has a more explicit expression, as presented in the following corollary.

COROLLARY 1. For the spatial error model with symmetric vi, the NGPMLEo

of β has the asymptotic variance limn→∞
σ 2

0 E(ξ2
1i)

[E(ξ2i)]2 ( 1
n X′

nR′
nRnXn)

−1, where ξ1i =
σ0
σ∞

∂ ln f (
σ0
σ∞ vi,η∞)

∂v and ξ2i = − σ 2
0

σ 2∞
∂2 ln f (

σ0
σ∞ vi,η∞)

∂v2 , and the GPMLE and BGMME of

β have the asymptotic variance limn→∞ σ 2
0 ( 1

n X′
nR′

nRnXn)
−1.

By the above corollary, for the spatial error model with symmetric vi, the
BGMME of β has no efficiency improvement over the GPMLE, and the efficiency

of NGPMLEo relative to the GPMLE is determined by the scalar
E(ξ2

1i)

[E(ξ2i)]2 . For the
general SARAR model, A and B are not block diagonal and the estimation of η

may affect the asymptotic efficiency of the NGPMLE of model parameters. Thus,
it is not easy to compare analytically the efficiencies of the NGPMLE and other
estimators.

2.3. Efficiency Comparisons

In this subsection, we compare the estimation efficiency of our NGPMLE
with those of the GPMLE and BGMME.24 For the asymptotic variance of the
NGPMLE, as the closed form is not available, we compute the asymptotic variance
in Theorem 2 for a given sample size with numerical integration. Student’s t
distribution with unknown degrees of freedom is used in deriving the NGPMLE.25

23One may estimate A and B using the expressions in Appendix A for inference purposes. Alternatively, A can be

estimated using − 1
n

∂2 lnLn(γ̂ )
∂γ ∂γ ′ or − 1

n
∂2 lnLn(δ̂)

∂δ∂δ′ , and B can be estimated according to the martingale structure of the
non-Gaussian score.
24Various impacts arising from a change in an exogenous explanatory variable, as defined in, e.g., LeSage and Pace
(2009), are functions of the spatial lag parameter λ0 and the coefficient on the variable. Then by the delta method, if
the NGPMLE is asymptotically more efficient than other estimators, so are the impact estimators computed with the
NGPMLE than those computed with other estimators. Some efficiency comparisons for impact estimators based on
numerical integration and Monte Carlo experiments are provided in the Supplementary Material. The patterns are the
same as those for estimators. We thank an anonymous referee for the suggestion of considering impact estimators.
25In this study, we have not theoretically considered the choice of distributions used to derive the NGPMLEs. As
suggested in Fan et al. (2014), the distributions can be chosen to minimize the asymptotic variance of the NGPMLE in
Theorem 2. In addition, the NGPMLE and the GPMLE can be aggregated to derive an estimator that is more efficient
than both. A more practical method can be based on diagnostic tests. In the Supplementary Material, we derive some
diagnostic tests such as the normality and excess kurtosis tests of innovations in the SARAR model. Nonnormal
innovations imply that a proper NGPMLE can be more efficient than the GPMLE. If the excess kurtosis test suggests
a positive excess kurtosis, then we can use a leptokurtic distribution such as Student’s t distribution; otherwise,
a platykurtic distribution such as the raised cosine distribution can be used. Our applications imply leptokurtic
distributions of innovations; therefore, we use Student’s t distribution with one parameter, which is relatively simple
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1132 FEI JIN AND YUQIN WANG

Table 1. Models considered for efficiency comparisons.

Row-normalized Mn Non-row-normalized Mn

Spatial error model: Symmetric and asymmetric vi —

SARAR model: Asymmetric vi Symmetric and asymmetric vi

The considered models are listed in Table 1. For the SARAR model, the spatial
weights matrix Mn is block-diagonal and each diagonal block is based on the matrix
for the study of crimes across 49 districts in Columbus, Ohio, in Anselin (1988); Mn

is either row-normalized or normalized by its spectral radius; Wn is set to be equal
to Mn; the exogenous variable matrix Xn contains an intercept term and a standard
normal random variable; the spatial dependence parameters λ0 and ρ0 are equal
to 0.4 and 0.2, respectively; the coefficients for Xn are set to 1; the true variance
parameter σ 2

0 is 0.25; and the sample size is 147. For the case with symmetric
innovations, vi is set to be a mixture of two normal distributions with mean zero,
and for the case with asymmetric innovations, vi is an admissible fourth-order
Gram–Charlier expansion of the standard normal distribution as a function of the
skewness and kurtosis coefficients.26 The settings for the spatial error model are
the same as for the SARAR model, except for the omission of λ0WnYn.

2.3.1. Spatial Error Model with a Row-Normalized Mn. We first consider
the spatial error model with a row-normalized Mn. Figure 1 reports the results
for both symmetric and asymmetric innovations. We observe that NGPMLEo

improves upon GPMLE in all cases with a nonnormal true disturbance distri-
bution, and the efficiency improvement can be up to about 50%. In the case
with symmetric innovations, BGMME shows almost no efficiency improvement
over GPMLE; in the case with asymmetric innovations, BGMME shows some
efficiency improvement over GPMLE but usually much less than NGPMLEo.
Only in the case with asymmetric innovations and for the parameter β2, BGMME
can be slightly more efficient than NGPMLEo, which occurs when the skewness
coefficient is relatively large and the kurtosis coefficient is small. For the case with
asymmetric innovations, the efficiency of NGPMLEo relative to GPMLE increases
with kurtosis, whereas it is almost not affected by skewness.

2.3.2. SARAR Model with a Row-Normalized Mn and Asymmetric vi. Figure 2
reports the efficiency comparison results for the SARAR model with a row-
normalized Mn and asymmetric innovations. Similar to the results for the spatial

and can have various degrees of excess kurtosis. As pointed out by the Co-Editor and an anonymous referee, using
a sufficiently general family of distributions can lead to efficiency loss because many more parameters are estimated
alongside other model parameters, whereas using diagnostic tests to choose distributions can suffer from the pretesting
issue (e.g., Giles and Giles, 1993). We leave those issues to future study.
26The admissible combinations of the skewness and kurtosis coefficients can be seen from, e.g., Spiring (2011).
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Figure 1. Efficiency comparisons of different estimators for the spatial error model with a row-
normalized Mn. The lower mesh in each subfigure shows the ratios of the asymptotic variance of
NGPMLEo to that of GPMLE, whereas the upper mesh shows the ratios of the asymptotic variance of
BGMME to that of GPMLE.

Figure 2. Efficiency comparisons of different estimators for the SARAR model with a row-
normalized Mn and asymmetric innovations. The vi is an admissible fourth-order Gram–Charlier
expansion of the standard normal distribution as a function of the skewness and kurtosis coefficients.
The lower mesh in each subfigure shows the ratios of the asymptotic variance of NGPMLEo to that of
GPMLE, whereas the upper mesh shows the ratios of the asymptotic variance of BGMME to that of
GPMLE.

error model, NGPMLEo shows a significant efficiency improvement over GPMLE,
and the improvement is much larger than that of BGMME in most cases.

2.3.3. SARAR Model with a Non-Row-Normalized Mn. We next consider
the SARAR model with a non-row-normalized Mn. When the innovations are
symmetric, we consider NGPMLEo as well as NGPMLEa since both estimators of
λ, ρ, and β2 are consistent. Figure 3 shows the results. NGPMLEo is still observed
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1134 FEI JIN AND YUQIN WANG

Figure 3. Efficiency comparisons of different estimators for the SARAR model with a non-row-
normalized Mn and symmetric innovations. The vi is a mixture of two normal distributions with mean
zero. For the first three subfigures, the lower mesh in each subfigure shows the ratios of the asymptotic
variance of NGPMLEo to that of GPMLE, whereas the upper mesh shows the ratios of the asymptotic
variance of BGMME to that of GPMLE. For the fourth to sixth subfigures, the mesh in each subfigure
shows the ratios of the asymptotic variance of NGPMLEa to that of GPMLE.

Figure 4. Efficiency comparisons of different estimators for the SARAR model with a non-row-
normalized Mn and asymmetric innovations. The vi is an admissible fourth-order Gram–Charlier
expansion of the standard normal distribution as a function of the skewness and kurtosis coefficients.
The mesh in each subfigure shows the ratios of the asymptotic variance of NGPMLEa to that of
GPMLE.

to have a significant efficiency improvement over GPMLE, but NGPMLEa only
has smaller variance than that of GPMLE for β2, and its variances for the spatial
dependence parameters λ and ρ are typically much larger than those of GPMLE.
Figure 4 further demonstrates the efficiency loss of NGPMLEa due to an added
parameter, for the case with asymmetric innovations.

To summarize, our experiments based on Student’s t distribution in Sections
2.3.1–2.3.3 show that NGPMLEo has a uniform efficiency improvement upon
GPMLE, which is usually much larger than the efficiency improvement of
BGMME, but NGPMLEa, the NGPMLE with an added parameter, can be less
efficient than GPMLE.
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CONSISTENT NON-GAUSSIAN PSEUDO 1135

3. NON-GAUSSIAN SCORE TEST FOR SPATIAL DEPENDENCE

In this section, we propose a score test for spatial dependence based on the non-
Gaussian pseudo log-likelihood function lnLn(γ ) in (2).27

Consider a test of the null hypothesis that τ0 = 0. Let γ̌ = [0,0,β̌ ′,σ̌ 2,η̌′]′ be the
restricted NGPMLE of γ , which is derived by maximizing lnLn(γ ) in (2) with the
restriction τ = 0 imposed. The non-Gaussian score test is based on the asymptotic
distribution of 1√

n
∂ lnLn(γ̌ )

∂τ
. Note that

∂ lnLn(γ̌ )

∂τ
=

[
− 1

σ̌

n∑
i=1

∂ ln f (vi(θ̌),η̌)

∂v
e′

niWnYn, −
n∑

i=1

∂ ln f (vi(θ̌),η̌)

∂v
e′

niMnVn(θ̌)

]′
,

where θ̌ = [0,0,β̌ ′,σ̌ 2]′, vi(θ̌) = 1
σ̌

e′
ni(Yn − Xnβ̌), and Vn(θ̌) = [v1(θ̌), . . . ,vn(θ̌)]′.

A special case of interest is the test for spatial dependence in the spatial
error model. In this case, the test is based on the asymptotic distribution of

−∑n
i=1

∂ lnLn(vi(θ̌),η̌)

∂v e′
niMnVn(θ̌) for a spatial weights matrix Mn. The statistic

−∑n
i=1

∂ lnLn(vi(θ̌),η̌)

∂v e′
niMnVn(θ̌) generalizes the quadratic form V ′

n(θ̌)MnVn(θ̌) for

Moran’s I test for spatial dependence, where V ′
n(θ̌)MnVn(θ̌) can also be derived

from the Gaussian score (Burridge, 1980).
We may apply the mean value theorem to derive the asymptotic distribution

of 1√
n

∂ lnLn(γ̌ )

∂τ
under the null hypothesis. Let A = − 1

n E(
∂2 lnLn(γ∞)

∂γ ∂γ ′ ) and B =
1
n E(

∂ lnLn(γ∞)

∂γ

∂ lnLn(γ∞)

∂γ ′ ).28 For any two subvectors γ1 and γ2 of γ , denote Aγ1γ2 =
− 1

n E(
∂2 lnLn(γ∞)

∂γ1∂γ ′
2

) and Bγ1γ2 = 1
n E(

∂ lnLn(γ∞)

∂γ1

∂ lnLn(γ∞)

∂γ ′
2

). Under the null hypothesis

and regularity conditions,

1√
n

∂ lnLn(γ̌ )

∂τ
= 1√

n

∂ lnLn(γ∞)

∂τ
+ 1

n
E
(∂2 lnLn(γ∞)

∂τ∂γ ′
u

)√
n(γ̌u −γu∞)+op(1)

= �
1√
n

∂ lnLn(γ∞)

∂γ
+op(1)

d−→ N
(

0, lim
n→∞�B�′

)
,

where γu = [β ′,σ 2,η′]′, γu∞ is the pseudo-true value of γu, and � = [I2, −
AτγuA−1

γuγu
]. Let �̂ and B̂ be estimators of, respectively, � and B, such that

�̂ = � + op(1) and B̂ = B + op(1) under the null hypothesis. The test statistic
has the form

tn = 1

n

∂ lnLn(γ̌ )

∂τ ′ (�̂B̂�̂′)−1 ∂ lnLn(γ̌ )

∂τ
, (6)

which is asymptotically chi-square distributed with two degrees of freedom under
the null hypothesis.

27A test based on lnLn(δ) in (4) is omitted since the last section shows that the resulting NGPMLE can be less efficient
than the GPMLE, and the efficiency of an estimator relates to the power of related tests, as shown in Theorem 3.
28We use γ∞ here for simplicity. By τ0 = 0 and Theorem 1, γ∞ = [0,0,β1∞,β ′

20,σ
2∞,η′∞]′ in the case with a row-

normalized Mn, and γ∞ = [0,0,β ′
0,σ

2∞,η′∞]′ in the case with symmetric vi.
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1136 FEI JIN AND YUQIN WANG

For the asymptotic analysis on tn, we assume that the true τ in the data generating
process follows the Pitman drift in the following assumption.

Assumption 10 (Pitman drift). τn = 1√
n
cτ , where cτ is a 2 × 1 vector of

constants.

THEOREM 3. If Assumptions 1–4 and 5–10 are satisfied, then tn
d−→

χ2
2 (limn→∞ c′

τ�(�B�′)−1�cτ ), where � = Aττ −AτγuA−1
γuγu

Aγuτ and χ2
a1

(a2)

denotes a noncentral chi-square distribution with a1 degrees of freedom and
noncentrality parameter a2.

By Theorem 2 and the partitioned matrix inverse formula, the asymptotic
variance of the NGPMLE τ̂ has the form ϒ = limn→∞ �−1�B�′�−1. The
noncentrality parameter for the asymptotic noncentral chi-square distribution of
tn is equal to c′

τϒ
−1cτ . Thus, if the NGPMLE of τ is asymptotically more efficient

than the GPMLE, then the non-Gaussian score test is locally more powerful than
the Gaussian score test.

4. MONTE CARLO

In this section, we implement some Monte Carlo experiments to investigate the
finite-sample performance of the NGPMLE and non-Gaussian score test. As in
Section 2.3, the NGPMLE is derived by assuming Student’s t distribution with
unknown degrees of freedom.

4.1. Estimators

We consider three cases: the SARAR model with a row-normalized Mn and asym-
metric vi, the SARAR model with a non-row-normalized Mn and symmetric vi,
and the SAR model with symmetric vi.29 For the SAR model, we also consider the
adaptive estimators proposed in Robinson (2010).30 Parameters for the innovations
correspond to cases where the NGPMLE and BGMME show different levels of
efficiency improvements in Section 2.3. The number of Monte Carlo repetitions is
5,000. Other settings are the same as those in Section 2.3.

Table 2 reports the biases, SDs, and root-mean-squared errors (RMSE) of
various estimators for the SARAR model with a row-normalized Mn and asym-
metric innovations. The biases of GPMLE, BGMME, and NGPMLEo are similar
in magnitude. Since the biases are small compared with the SDs, the RMSEs

29For the three cases considered, the identification conditions in Assumption 3 are satisfied. In the Supplementary
Material, we report some Monte Carlo results for the case when Assumption 3 fails. We observe that the NGPMLE for
the spatial dependence parameters and the coefficients on nonintercept exogenous variables still has similar bias as
the GPMLE. Thus, it is possible that the NGPMLE for some model parameters is consistent even when Assumption
3 fails. We leave this question to future research.
30The adaptive estimators do not apply to the SARAR model (Remark 3 on page 9 of Robinson, 2010).
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Table 2. Performance of various estimators for the SARAR model with a row-normalized Mn and asymmetric vi.

λ ρ β2

Kurtosis Skewness Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel A: n = 147

6 0.8 GPMLE −0.008 0.076 0.077 −0.025 0.142 0.144 −0.001 0.042 0.042

BGMME −0.006 0.073 0.073 −0.013 0.143 0.144 0.000 0.040 0.040

NGPMLEo −0.006 0.059 0.060 −0.018 0.119 0.120 −0.001 0.032 0.032

6 0.05 GPMLE −0.006 0.076 0.076 −0.032 0.141 0.145 −0.002 0.041 0.041

BGMME −0.005 0.078 0.079 −0.017 0.146 0.147 −0.002 0.042 0.042

NGPMLEo −0.004 0.060 0.060 −0.026 0.120 0.123 −0.001 0.033 0.033

4 0.4 GPMLE −0.006 0.076 0.076 −0.029 0.143 0.146 −0.002 0.042 0.042

BGMME −0.005 0.077 0.077 −0.016 0.148 0.149 −0.002 0.042 0.042

NGPMLEo −0.005 0.073 0.074 −0.028 0.140 0.143 −0.002 0.040 0.041

4 0.05 GPMLE −0.008 0.077 0.078 −0.027 0.143 0.145 −0.001 0.042 0.042

BGMME −0.007 0.080 0.081 −0.012 0.148 0.149 −0.001 0.043 0.043

NGPMLEo −0.008 0.075 0.075 −0.026 0.141 0.143 −0.001 0.041 0.041

3.05 0.05 GPMLE −0.008 0.076 0.077 −0.027 0.142 0.144 −0.002 0.042 0.042

BGMME −0.007 0.080 0.080 −0.011 0.147 0.147 −0.002 0.043 0.043

NGPMLEo −0.009 0.079 0.080 −0.026 0.146 0.148 −0.002 0.043 0.043

(continued)

use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0266466623000026

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 18.191.109.107, on 23 N

ov 2024 at 22:21:22, subject to the Cam
bridge Core term

s of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466623000026
https://www.cambridge.org/core


11
3

8
F
E

I
J

IN
A

N
D

Y
U

Q
IN

W
A

N
G

Table 2. (continued)

λ ρ β2

Kurtosis Skewness Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel B: n = 294

6 0.8 GPMLE −0.003 0.052 0.052 −0.012 0.098 0.099 −0.001 0.030 0.030

BGMME −0.003 0.049 0.049 −0.007 0.098 0.098 −0.001 0.028 0.028

NGPMLEo −0.002 0.040 0.040 −0.009 0.082 0.083 −0.001 0.023 0.023

6 0.05 GPMLE −0.003 0.052 0.053 −0.014 0.099 0.100 −0.001 0.029 0.029

BGMME −0.002 0.053 0.053 −0.006 0.101 0.101 −0.001 0.030 0.030

NGPMLEo −0.001 0.041 0.041 −0.012 0.082 0.083 −0.001 0.023 0.023

4 0.4 GPMLE −0.003 0.052 0.052 −0.013 0.098 0.099 −0.001 0.029 0.029

BGMME −0.003 0.052 0.052 −0.007 0.099 0.099 0.000 0.029 0.029

NGPMLEo −0.003 0.050 0.050 −0.013 0.096 0.097 −0.001 0.028 0.028

4 0.05 GPMLE −0.004 0.051 0.052 −0.013 0.099 0.100 −0.001 0.029 0.029

BGMME −0.003 0.052 0.052 −0.006 0.101 0.101 −0.001 0.029 0.029

NGPMLEo −0.003 0.050 0.050 −0.012 0.097 0.098 −0.001 0.028 0.028

3.05 0.05 GPMLE −0.004 0.052 0.052 −0.014 0.098 0.099 0.000 0.029 0.029

BGMME −0.003 0.053 0.053 −0.005 0.099 0.099 −0.001 0.030 0.030

NGPMLEo −0.004 0.055 0.055 −0.013 0.101 0.102 −0.001 0.030 0.030

Notes: The true disturbance distribution is a fourth-order Gram–Charlier expansion of the standard normal distribution as a function of the skewness and kurtosis
coefficients. β2 is the coefficient on the nonintercept variable in Xn. λ0 = 0.4, ρ0 = 0.2, β10 = 1, β20 = 1, and σ 2

0 = 0.25.
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CONSISTENT NON-GAUSSIAN PSEUDO 1139

are similar to the SDs. NGPMLE has a smaller SD than GPMLE when the
kurtosis coefficient of innovations is equal to 4 or 6, whereas BGMME only has
a smaller SD for λ and β2 when the kurtosis and skewness coefficients are both
the largest, i.e., the kurtosis coefficient is 6 and the skewness coefficient is 0.8.
When the kurtosis coefficient is 3.05 and the skewness coefficient is 0.05 so that
the distribution of innovations is close to the normal distribution, NGPMLE and
BGMME have slightly larger SDs than GPMLE. For NGPMLE, a larger kurtosis
leads to a smaller SD, whereas skewness does not have much impact on the SD.

Table 3 reports the estimation results for the SARAR model with a non-row-
normalized Mn and symmetric innovations. In addition to NGPMLEo, GPMLE,
and BGMME, we also consider NGPMLEa to investigate its efficiency loss due
to an added parameter. The patterns for the relative efficiencies of GPMLE,
NGPMLEo and BGMME are similar to those in Table 2. When the disturbance
distribution is a mixture of two normal distributions with mean zero and the ratio
of the variances for the two distributions being close to 1, or when the innovations
follow the normal distribution, NGPMLE and BGMME have slightly larger SDs
than that of GPMLE. While the NGPMLEa of β2 has a smaller SD than that of
GPMLE in some cases, the NGPMLEa of λ and ρ has a significantly larger SD than
that of GPMLE in most cases, which is consistent with the efficiency comparisons
based on numerical integration in Section 2.3.

Estimation results for the SAR model with symmetric innovations are presented
in Table 4. The disturbance distribution is a mixture of two normal distributions
with mean zero. The ratio of variances for the two normal distributions is 10, and
the mixing probability is 0.3.31 We consider two adaptive estimators (AE) proposed
in Robinson (2010): AEa and AEb, where AEb is a bias-corrected version of AEa.
As in Robinson (2010), we use the polynomial functions (x, . . . ,xL) or the bounded
functions ( x

(1+x2)1/2 , . . . ,
xL

(1+x2)L/2 ) to estimate the score function for the AEs. An

AEa with (x, . . . ,xL) is denoted by AEa(p,L), and that with ( x
(1+x2)1/2 , . . . ,

xL

(1+x2)L/2 )

is denoted by AEa(b,L). AEb is similarly denoted. We set L to 1, 2, or 4, as
in Robinson (2010). The initial estimate for the AEs is either the NGPMLE or
ordinary least-squares estimate (OLSE). Table 4 shows that, while the biases of
GPMLE, BGMME, and NGPMLE are relatively small, those of AEs can be large.
Some versions of AEs can have smaller SDs than GPMLE, but all AEs have
uniformly larger SDs and RMSEs than NGPMLE.

4.2. Non-Gaussian and Gaussian Score Tests

Tables 5 and 6 report, respectively, the empirical sizes and powers of score tests
for spatial dependence in the SARAR model with a row-normalized Mn and
asymmetric innovations. With a nominal size of 5%, the size distortions of the non-
Gaussian and Gaussian score tests are all within 0.5 percentage point. Neither the

31Results for some other parameter settings are reported in the Supplementary Material. The patterns are similar.
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1140 FEI JIN AND YUQIN WANG

Table 3. Performance of various estimators for the SARAR model with a non-
row-normalized Mn and symmetric vi.

λ ρ β2

RV Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel A: n = 147

9 GPMLE −0.004 0.064 0.064 −0.046 0.172 0.178 −0.002 0.042 0.042

BGMME −0.003 0.067 0.067 −0.023 0.186 0.188 −0.002 0.042 0.042

NGPMLEo −0.003 0.049 0.049 −0.035 0.146 0.150 −0.001 0.032 0.032

NGPMLEa −0.007 0.080 0.080 −0.038 0.157 0.161 −0.002 0.032 0.032

6 GPMLE −0.004 0.064 0.064 −0.044 0.171 0.176 −0.001 0.042 0.042

BGMME −0.004 0.069 0.069 −0.022 0.187 0.188 −0.001 0.043 0.043

NGPMLEo −0.003 0.055 0.055 −0.038 0.158 0.162 −0.001 0.036 0.036

NGPMLEa −0.010 0.092 0.093 −0.040 0.175 0.179 −0.002 0.037 0.037

3 GPMLE −0.002 0.064 0.064 −0.044 0.168 0.173 −0.002 0.042 0.042

BGMME −0.002 0.068 0.068 −0.020 0.181 0.182 −0.002 0.043 0.043

NGPMLEo −0.003 0.062 0.062 −0.041 0.166 0.171 −0.002 0.041 0.041

NGPMLEa −0.010 0.104 0.105 −0.048 0.184 0.191 −0.003 0.041 0.042

1.1 GPMLE −0.005 0.064 0.064 −0.047 0.171 0.178 −0.001 0.042 0.042

BGMME −0.004 0.068 0.068 −0.021 0.184 0.185 −0.001 0.043 0.043

NGPMLEo −0.006 0.068 0.069 −0.045 0.175 0.181 −0.001 0.043 0.043

NGPMLEa −0.009 0.115 0.116 −0.069 0.194 0.206 −0.002 0.047 0.047

Panel B: n = 294

9 GPMLE −0.002 0.044 0.044 −0.024 0.115 0.118 0.000 0.030 0.030

BGMME −0.001 0.045 0.045 −0.013 0.119 0.119 0.000 0.030 0.030

NGPMLEo −0.001 0.034 0.034 −0.018 0.097 0.099 0.000 0.023 0.023

NGPMLEa −0.004 0.055 0.055 −0.018 0.109 0.110 −0.001 0.023 0.023

6 GPMLE −0.002 0.044 0.044 −0.021 0.117 0.119 0.000 0.030 0.030

BGMME −0.002 0.045 0.045 −0.009 0.120 0.121 0.000 0.030 0.030

NGPMLEo −0.002 0.038 0.038 −0.017 0.108 0.109 0.000 0.025 0.025

NGPMLEa −0.005 0.061 0.061 −0.018 0.119 0.121 −0.001 0.026 0.026

3 GPMLE −0.002 0.044 0.044 −0.021 0.118 0.119 0.000 0.029 0.029

BGMME −0.002 0.045 0.045 −0.009 0.121 0.121 0.000 0.030 0.030

NGPMLEo −0.002 0.042 0.042 −0.021 0.117 0.119 0.000 0.028 0.028

NGPMLEa −0.006 0.071 0.071 −0.022 0.132 0.133 −0.001 0.029 0.029

1.1 GPMLE −0.001 0.044 0.044 −0.022 0.115 0.117 0.000 0.029 0.029

BGMME −0.001 0.045 0.045 −0.009 0.118 0.118 0.000 0.029 0.029

NGPMLEo −0.002 0.044 0.044 −0.022 0.117 0.119 0.000 0.029 0.029

NGPMLEa 0.000 0.084 0.084 −0.043 0.152 0.158 −0.001 0.032 0.032

(continued)
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Table 3. (continued)

λ ρ β2

RV Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel C: Normal innovations, n = 147

GPMLE −0.004 0.063 0.064 −0.046 0.172 0.179 −0.001 0.042 0.042

BGMME −0.004 0.068 0.068 −0.021 0.186 0.187 −0.001 0.044 0.044

NGPMLEo −0.005 0.071 0.071 −0.045 0.179 0.184 −0.001 0.043 0.043

NGPMLEa −0.008 0.113 0.113 −0.069 0.197 0.208 −0.002 0.051 0.051

Panel D: Normal innovations, n = 294

GPMLE −0.001 0.044 0.044 −0.024 0.117 0.119 0.000 0.029 0.029

BGMME −0.001 0.045 0.045 −0.010 0.120 0.120 0.000 0.030 0.030

NGPMLEo −0.002 0.046 0.046 −0.023 0.118 0.121 0.000 0.030 0.030

NGPMLEa −0.003 0.088 0.088 −0.041 0.151 0.157 −0.001 0.033 0.033

Notes: For Panels A and B, the true disturbance distribution is a mixture of two normal distributions
with mean zero. The mixing probability of the two normal distributions is set to 0.3. “RV” denotes
the ratio of variances of the two distributions. β2 is the coefficient on the nonintercept variable in Xn.
λ0 = 0.4, ρ0 = 0.2, β10 = 1, β20 = 1, and σ 2

0 = 0.25.

Gaussian score test nor the non-Gaussian score test dominates each other in terms
of size distortions. For the empirical powers, we observe that the non-Gaussian
score test is uniformly more powerful than the Gaussian score test, except for the
case when the innovations are very close to be normally distributed. The power of
each test increases as λ0 or ρ0 increases.

5. EMPIRICAL APPLICATION

In this section, we apply our NGPMLE to the well-known Harrison and Rubinfeld
(1978) hedonic pricing data from the Boston Standard Metropolitan Statistical
Area with 506 observations.32 This dataset is popular in the spatial econometric
literature. It has been used in textbooks such as LeSage (1999), LeSage and Pace
(2009), and Arbia (2014).

Following LeSage (1999, p. 78), we estimate an SARAR model, where the
dependent variable is the log median value of owner-occupied homes in $1,000’s,
and the explanatory variables include crime rate (CRIM), proportion of area
zoned with large lots (ZN), proportion of nonretail business areas (INDUS),
location contiguous to the Charles River (CHAS), squared levels of nitrogen oxides
(NOX2), squared average number of rooms (RM2), proportion of structures built
before 1940 (AGE), weighted distances to the employment centers (DIS), an index

32Available at http://lib.stat.cmu.edu/datasets/. Gilley and Pace (1996) corrected several miscoded observations and
Pace and Gilley (1997) added the location of each tract in latitude and longitude. In the Supplementary Material, we
also apply our NGPMLE to the crime dataset with 49 observations in Anselin (1988) and to the presidential election
dataset with 3,107 observations in Pace and Barry (1997).
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Table 4. Performance of various estimators for the SAR model with symmetric
vi.

λ β2

Bias SD RMSE Bias SD RMSE

GPMLE −0.010 0.055 0.055 0.000 0.042 0.042

BGMME −0.008 0.055 0.056 −0.002 0.042 0.042

NGPMLEo −0.007 0.043 0.044 0.000 0.032 0.032

AEs with GPMLE as the initial estimate

AEa(p,1) 0.100 0.066 0.120 −0.010 0.043 0.044

AEa(b,1) 0.078 0.053 0.094 −0.008 0.034 0.035

AEb(p,1) 0.327 0.105 0.343 −0.031 0.050 0.059

AEb(b,1) 0.229 0.080 0.243 −0.023 0.038 0.044

AEa(p,2) 0.095 0.067 0.116 −0.010 0.044 0.045

AEa(b,2) 0.075 0.054 0.092 −0.008 0.035 0.036

AEb(p,2) 0.308 0.103 0.325 −0.030 0.050 0.059

AEb(b,2) 0.222 0.080 0.236 −0.022 0.039 0.045

AEa(p,4) 0.074 0.062 0.096 −0.008 0.042 0.042

AEa(b,4) 0.060 0.063 0.087 −0.006 0.042 0.042

AEb(p,4) 0.235 0.088 0.251 −0.023 0.045 0.051

AEb(b,4) 0.189 0.086 0.207 −0.018 0.044 0.048

AEs with OLSE as the initial estimate

AEa(p,1) 0.044 0.060 0.074 −0.005 0.042 0.042

AEa(b,1) 0.022 0.048 0.053 −0.003 0.033 0.034

AEb(p,1) 0.318 0.109 0.336 −0.030 0.050 0.058

AEb(b,1) 0.206 0.081 0.222 −0.020 0.037 0.043

AEa(p,2) 0.041 0.061 0.074 −0.005 0.043 0.044

AEa(b,2) 0.021 0.050 0.054 −0.003 0.035 0.035

AEb(p,2) 0.298 0.108 0.317 −0.029 0.050 0.058

AEb(b,2) 0.199 0.081 0.215 −0.020 0.039 0.043

AEa(p,4) 0.018 0.059 0.061 −0.003 0.041 0.041

AEa(b,4) 0.013 0.060 0.061 −0.002 0.042 0.042

AEb(p,4) 0.214 0.089 0.232 −0.021 0.044 0.049

AEb(b,4) 0.170 0.085 0.190 −0.017 0.044 0.047

Notes: The true disturbance distribution is a mixture of two normal distributions with mean zero. The
ratio of variances for the two normal distributions is 10, and the mixing probability is 0.3. β2 is the
coefficient on the nonintercept variable in Xn. λ0 = 0.4, ρ0 = 0.2, β10 = 1, β20 = 1, and σ 2

0 = 0.25.
The sample size is 147.
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CONSISTENT NON-GAUSSIAN PSEUDO 1143

Table 5. Empirical sizes of score tests for spatial dependence in the SARAR
model with a row-normalized Mn and asymmetric vi.

n = 147 n = 294

Kurtosis Skewness GPMLE NGPMLEo GPMLE NGPMLEo

6 0.8 0.051 0.051 0.048 0.049

6 0.05 0.047 0.044 0.052 0.051

4 0.4 0.048 0.047 0.045 0.046

4 0.05 0.056 0.051 0.049 0.047

3.05 0.05 0.046 0.049 0.045 0.046

Notes: The nominal size is 5%. The true disturbance distribution is a fourth-order Gram–Charlier
expansion of the standard normal distribution as a function of the skewness and kurtosis coefficients.
β10 = 1, β20 = 1, and σ 2

0 = 0.25.

of accessibility (RAD), property tax rate (TAX), pupil–teacher ratio (PTRATIO),
black population proportion (B), and lower status population proportion (LSTAT).
All variables are normalized to have mean zero and unit variance as in LeSage
(1999). The spatial weights matrix Wn is a first-order continuity matrix and row-
normalized. The Mn is set to equal Wn.

Table 7 reports the empirical results. We carry out several diagnostic tests.
First, a normality test of innovations rejects the null of normal innovations at
the 1% level. With nonnormal innovations, the GPMLE will lose efficiency
compared to a true ML estimator. We further test skewness and excess kurtosis
of innovations.33 While the null hypothesis of zero skewness is not rejected at
any usual significance level, the null hypothesis of zero excess kurtosis is rejected
at the 1% level. The estimated kurtosis coefficient is 5.751. These results show
some evidence of symmetric and leptokurtic innovations for this dataset. GPMLE,
BGMME, and NGPMLE have the same sign for each model parameter except the
coefficient on INDUS, but their differences in magnitude can be relatively large.34

For example, for the variable AGE, BGMME is about 60% larger in magnitude
than GPMLE, whereas NGPMLE is more than three times that of GPMLE. The
standard errors (SEs) of BGMME are very close to those of GPMLE, whereas
the SEs of NGPMLE are about 30% smaller than those of GPMLE. Due to the
differences in the estimates and SEs, for the variables NOX2 and AGE, we observe
different results on coefficient significance from different estimation methods. For
the coefficient on NOX2, GPMLE and BGMME are significant at the 1% level,
whereas NGPMLE is significant only at the 10% level; for the coefficient on AGE,
GPMLE is not significant at any usual significance level, BGMME is significant

33All the test statistics are derived in the Supplementary Material. The normality test is a special case of that for
the SARAR model with parametric heteroskedasticity in Jin, Lee, and Yang (2022), which follows the Lagrange
multiplier principle as in Jarque and Bera (1980). We present it in the Supplementary Material for completeness. The
skewness and excess-kurtosis tests are on the basis of the delta method, as in Godfrey and Orme (1991).
34We only consider the NGPMLE with no added parameter, since the NGPMLE with an added parameter does not
perform well in Monte Carlo experiments.
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1144 FEI JIN AND YUQIN WANG

Table 6. Empirical powers of score tests for spatial dependence in the SARAR
model with a row-normalized Mn and asymmetric vi.

λ0 = 0 ρ0 = 0

Kurtosis Skewness ρ0 = 0.1 ρ0 = 0.2 ρ0 = 0.3 λ0 = 0.1 λ0 = 0.2 λ0 = 0.3

Panel A: n = 147

6 0.8 GPMLE 0.114 0.330 0.663 0.259 0.784 0.982

NGPMLEo 0.144 0.436 0.794 0.369 0.918 0.998

6 0.05 GPMLE 0.106 0.330 0.673 0.255 0.777 0.983

NGPMLEo 0.128 0.420 0.789 0.355 0.909 0.996

4 0.4 GPMLE 0.111 0.321 0.656 0.254 0.779 0.985

NGPMLEo 0.119 0.340 0.679 0.272 0.800 0.990

4 0.05 GPMLE 0.112 0.340 0.666 0.261 0.789 0.982

NGPMLEo 0.119 0.352 0.684 0.275 0.798 0.985

3.05 0.05 GPMLE 0.103 0.328 0.653 0.259 0.772 0.984

NGPMLEo 0.104 0.328 0.652 0.260 0.772 0.983

Panel B: n = 294

6 0.8 GPMLE 0.171 0.598 0.929 0.473 0.974 1.000

NGPMLEo 0.237 0.738 0.978 0.661 0.998 1.000

6 0.05 GPMLE 0.182 0.589 0.928 0.478 0.980 1.000

NGPMLEo 0.237 0.714 0.977 0.660 0.998 1.000

4 0.4 GPMLE 0.182 0.601 0.933 0.470 0.972 1.000

NGPMLEo 0.190 0.623 0.941 0.498 0.977 1.000

4 0.05 GPMLE 0.176 0.587 0.931 0.463 0.975 1.000

NGPMLEo 0.188 0.608 0.940 0.491 0.982 1.000

3.05 0.05 GPMLE 0.174 0.591 0.927 0.479 0.977 1.000

NGPMLEo 0.175 0.589 0.925 0.478 0.976 1.000

Notes: The true disturbance distribution is a fourth-order Gram–Charlier expansion of the standard
normal distribution as a function of the skewness and kurtosis coefficients. β10 = 1, β20 = 1, and
σ 2

0 = 0.25.

at the 5% level, whereas NGPMLE is significant at the 1% level. These differences
in coefficient significance also carry over to impact measures such as the average
total, direct, and indirect impacts, which we report in the Supplementary Material.
Overall, the application shows that more efficient estimation methods for the
SARAR model can be valuable in practice.

6. CONCLUSIONS

This study considers the non-Gaussian PML estimation of the SARAR model.
If the spatial weights matrix Mn in the SAR process of disturbances is row-
normalized or the model reduces to the SAR model with no SAR process of
disturbances, the NGPMLE for model parameters except the intercept term and the
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CONSISTENT NON-GAUSSIAN PSEUDO 1145

Table 7. Empirical results for the hedonic pricing data.

GPMLE BGMME NGPMLE

Estimate SE Estimate SE Estimate SE

λ 0.188∗∗∗ 0.060 0.267∗∗∗ 0.055 0.121∗∗∗ 0.044

ρ 0.626∗∗∗ 0.061 0.612∗∗∗ 0.062 0.673∗∗∗ 0.048

CRIM −0.187∗∗∗ 0.023 −0.177∗∗∗ 0.023 −0.166∗∗∗ 0.015

ZN 0.065∗∗ 0.031 0.063∗∗ 0.031 0.046∗∗ 0.021

INDUS 0.016 0.046 −0.001 0.046 0.001 0.031

CHAS −0.007 0.021 −0.010 0.021 −0.014 0.014

NOX2 −0.191∗∗∗ 0.055 −0.310∗∗∗ 0.055 −0.071∗ 0.038

RM2 0.199∗∗∗ 0.024 0.193∗∗∗ 0.024 0.415∗∗∗ 0.016

AGE −0.046 0.036 −0.074∗∗ 0.037 −0.161∗∗∗ 0.025

DIS −0.256∗∗∗ 0.055 −0.207∗∗∗ 0.055 −0.172∗∗∗ 0.039

RAD 0.342∗∗∗ 0.061 0.387∗∗∗ 0.061 0.202∗∗∗ 0.041

TAX −0.259∗∗∗ 0.057 −0.234∗∗∗ 0.057 −0.213∗∗∗ 0.038

PTRATIO −0.127∗∗∗ 0.030 −0.103∗∗∗ 0.030 −0.079∗∗∗ 0.021

B 0.119∗∗∗ 0.026 0.131∗∗∗ 0.026 0.152∗∗∗ 0.018

LSTAT −0.378∗∗∗ 0.035 −0.373∗∗∗ 0.035 −0.155∗∗∗ 0.023

Test for normality of innovations:

Test statistic: 67.742; p-value: 0.000.

Test for skewness of innovations:

Test statistic: 0.755; p-value: 0.450; estimated skewness coefficient = 0.267.

Test for excess kurtosis of innovations:

Test statistic: 4.115; p-value: 0.000; estimated kurtosis coefficient = 5.751.

Notes: ∗, ∗∗, and ∗∗∗ denote significance at, respectively, the 10%, 5%, and 1% levels.

variance parameter σ 2 is consistent. If Mn is not row-normalized but innovations
are symmetric, the NGPMLE for model parameters except σ 2 is consistent. With
neither row-normalization of Mn nor the symmetry of innovations, a location
parameter can be added to the non-Gaussian pseudo log-likelihood function to
obtain consistent estimation of model parameters except σ 2. We formally prove
the convergence and asymptotic normality of the NGPMLE. An advantage of
the NGPMLE is that it can have a significant efficiency improvement upon the
GPMLE and BGMME. We also propose a non-Gaussian score test for spatial
dependence, which is locally more powerful than the Gaussian score test when
the NGPMLE is more efficient than the GPMLE. Using Student’s t distribution
to formulate the non-Gaussian likelihood function, our numerical integration and
Monte Carlo results show that the NGPMLE with no added parameter can have
a significant efficiency improvement upon the GPMLE and BGMME, but the
NGPMLE with an added parameter can be less efficient than the GPMLE. The
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1146 FEI JIN AND YUQIN WANG

non-Gaussian score test based on the NGPMLE with no added parameter is more
powerful than the Gaussian score test in finite samples. Therefore, we recommend
the use of the NGPMLE with no added parameter and the non-Gaussian score test
based on it when they are applicable.

APPENDIX A. Expressions for Asymptotic Variances

In this appendix, we present the expressions for asymptotic variances of NGPMLEs in
Theorem 2.

A.1. Row-Normalized Mn

For model (1) with a row-normalized Mn, the NGPMLE maximizes lnLn(γ ) in (2).
Note that vi(θ∗) = σ0

σ∞ vi + σ0
σ∞ cv, where cv = − 1

σ0
(1 − ρ0)(β1∞ − β10). Denote ζ1i =

σ0
σ∞

∂ ln f (vi(θ∗),η∞)
∂v , ζ2i = ζ1ivi + 1, ζ3i = − ∂ ln f (vi(θ∗),η∞)

∂η
, ζ4i = − σ 2

0
σ 2∞

∂2 ln f (vi(θ∗),η∞)

∂v2 ,

ζ5i = σ0
σ∞

∂2 ln f (vi(θ∗),η∞)
∂v∂η

, ζ6i = − ∂2 ln f (vi(θ∗),η∞)
∂η∂η′ , Dn = RnWnS−1

n R−1
n = [dn,ij], Zn =

MnR−1
n = [zn,ij], Qn = 1

σ0
RnWnS−1

n Xnβ0 = [qni], and cβ = − 1
σ0

(β1∞−β10). By Assump-
tion 4(i)(c), E(ζji) = 0, for j = 1,2,3. For any two subvectors δ1 and δ2 of δ, let Bδ1δ2 =
1
n E(

∂ lnLn(γ∗)
∂δ1

∂ lnLn(γ∗)
∂δ′

2
) and Aδ1δ2 = − 1

n E(
∂2 lnLn(γ∗)

∂δ1∂δ′
2

).

For the expression of B, using the reduced form of Yn, we have ∂ lnLn(γ∗)
∂λ

=
−∑n

i=1 qniζ1i − ∑n
i=1 dn,iiζ2i − ∑n

i=1 ζ1i
∑

j 
=i dn,ijvj,
∂ lnLn(γ∗)

∂ρ
= −∑n

i=1 cβζ1i −∑n
i=1 zn,iiζ2i − ∑n

i=1 ζ1i
∑

j 
=i zn,ijvj,
∂ lnLn(γ∗)

∂β
= − 1

σ0

∑n
i=1 ζ1iX

′
nR′

nei,
∂ lnLn(γ∗)

∂σ 2 =
− 1

2σ 2∞
∑n

i=1(cvζ1i + ζ2i), and ∂ lnLn(γ∗)
∂η

= −∑n
i=1 ζ3i. Then,

Bλλ = 1

n
E(ζ 2

1i)

n∑
i=1

q2
ni +

2

n
E(ζ1iζ2i)

n∑
i=1

qnidn,ii + 1

n
E(ζ 2

2i)

n∑
i=1

d2
n,ii +

1

n
E(ζ 2

1i)

n∑
i=1

∑
j 
=i

d2
n,ij

+ 1

n

n∑
i=1

∑
j 
=i

dn,ijdn,ji

= 1

n
E(ζ 2

1i)Q
′
nQn + 2

n
E(ζ1iζ2i)Q

′
nvecD(Dn)

+ 1

n
[E(ζ 2

2i)−E(ζ 2
1i)−1]vecD

′(Dn)vecD(Dn)+ 1

n
E(ζ 2

1i) tr(D′
nDn)+ 1

n
tr(D2

n),

Bλρ = cβ

n
E(ζ 2

1i)Q
′
n1n + 1

n
E(ζ1iζ2i)[Q

′
nvecD(Zn)+ cβ tr(Dn)]

+ 1

n
[E(ζ 2

2i)−E(ζ 2
1i)−1]vecD

′(Dn)vecD(Zn)+ 1

n
E(ζ 2

1i) tr(D′
nZn)+ 1

n
tr(DnZn),

Bλβ = 1
nσ0

E(ζ 2
1i)Q

′
nRnXn + 1

nσ0
E(ζ1iζ2i)vecD

′(Dn)RnXn, Bλσ 2 = 1
2nσ 2∞

[cv E(ζ 2
1i) +

E(ζ1iζ2i)]Q
′
n1n + 1

2nσ 2∞
[cv E(ζ1iζ2i) + E(ζ 2

2i)] tr(Dn), Bλη = 1
n E(ζ1iζ

′
3i)Q

′
n1n

+ 1
n E(ζ2iζ

′
3i) tr(Dn),
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Bρρ = c2
β E(ζ 2

1i)+ 2cβ

n
E(ζ1iζ2i) tr(Zn)+ 1

n
[E(ζ 2

2i)−E(ζ 2
1i)−1]vecD

′(Zn)vecD(Zn)

+ 1

n
E(ζ 2

1i) tr(Z′
nZn)+ 1

n
tr(Z2

n),

Bρβ = cβ

nσ0
E(ζ 2

1i)1
′
nRnXn + 1

nσ0
E(ζ1iζ2i)vecD

′(Zn)RnXn, Bρσ 2 = cβ

2σ 2∞
[cv E(ζ 2

1i) +
E(ζ1iζ2i)] + 1

2nσ 2∞
[cv E(ζ1iζ2i) + E(ζ 2

2i)] tr(Zn), Bρη = cβ E(ζ1iζ
′
3i) + 1

n E(ζ2iζ
′
3i) tr(Zn),

Bββ = 1
nσ 2

0
E(ζ 2

1i)X
′
nR′

nRnXn, Bβσ 2 = 1
2nσ 2∞σ0

[cv E(ζ 2
1i) + E(ζ1iζ2i)]X

′
nR′

n1n, Bβη =
1

nσ0
X′

nR′
n1n E(ζ1iζ

′
3i), Bσ 2σ 2 = 1

4σ 4∞
[c2

v E(ζ 2
1i) + 2cv E(ζ1iζ2i) + E(ζ 2

2i)], Bσ 2η =
1

2σ 2∞
[cv E(ζ1iζ

′
3i)+E(ζ2iζ

′
3i)] and Bηη = E(ζ3iζ

′
3i).

For the expression of A, using the explicit form of ∂ lnLn(γ )
∂γ ∂γ ′ in the Supplementary

Material and the reduced form of Yn, we have

Aλλ = 1

n
E(ζ4i)Q

′
nQn + 2

n
E(ζ4ivi)Q

′
nvecD(Dn)

+ 1

n
[E(ζ4iv

2
i )−E(ζ4i)]vecD

′(Dn)vecD(Dn)+ 1

n
E(ζ4i) tr(D′

nDn)+ 1

n
tr(D2

n),

Aλρ = cβ

n
E(ζ4i)Q

′
n1n + 1

n
E(ζ4ivi)[Q

′
nvecD(Zn)+ cβ tr(Dn)]

+ 1

n
[E(ζ4iv

2
i )−E(ζ4i)]vecD

′(Dn)vecD(Zn)+ 1

n
E(ζ4i) tr(D′

nZn)+ 1

n
tr(DnZn),

Aλβ = 1

nσ0
E(ζ4i)Q

′
nRnXn + 1

nσ0
E(ζ4ivi)vecD

′(Dn)RnXn,

Aλσ 2 = 1

2nσ 2∞
[cv E(ζ4i)+E(ζ4ivi)]Q

′
n1n + 1

2nσ 2∞
[cv E(ζ4ivi)+E(ζ4iv

2
i )+1] tr(Dn),

Aλη = 1

n
E(ζ ′

5i)Q
′
n1n + 1

n
E(viζ

′
5i) tr(Dn),

Aρρ = c2
β E(ζ4i)+ 2cβ

n
E(ζ4ivi) tr(Zn)

+ 1

n
[E(ζ4iv

2
i )−E(ζ4i)]vecD

′(Zn)vecD(Zn)+ 1

n
E(ζ4i) tr(Z′

nZn)+ 1

n
tr(Z2

n),

Aρβ = cβ

nσ0
E(ζ4i)1

′
nRnXn + 1

nσ0
E(ζ4ivi)vecD

′(Zn)RnXn, Aρσ 2 = cβ

2σ 2∞
[cv E(ζ4i) +

E(ζ4ivi)] + 1
2nσ 2∞

[cv E(ζ4ivi) + E(ζ4iv
2
i ) + 1] tr(Zn), Aρη = cβ E(ζ ′

5i) + 1
n E(viζ

′
5i) tr(Zn),

Aββ = 1
nσ 2

0
E(ζ4i)X

′
nR′

nRnXn, Aβσ 2 = 1
2nσ 2∞σ0

[cv E(ζ4i) + E(ζ4ivi)]X
′
nR′

n1n, Aβη =
1

nσ0
X′

nR′
n1n E(ζ ′

5i), Aσ 2σ 2 = 1
4σ 4∞

[c2
v E(ζ4i) + 2cv E(ζ4ivi) + E(ζ4iv

2
i ) + 1], Aσ 2η =

1
2σ 2∞

[cv E(ζ ′
5i)+E(viζ

′
5i)], and Aηη = E(ζ6i).

A.2. Symmetric vi

As in the last subsection, the NGPMLE in this case maximizes lnLn(γ ) in (2). In this and
the next subsections, let ζ1i to ζ6i be as defined in the last subsection except that vi(θ

∗) is
replaced by σ0

σ∞ vi. It is shown in the proof of Theorem 2 that E(ζji) = 0, for j = 1,2,3. Then
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1148 FEI JIN AND YUQIN WANG

the expressions of A and B are the same as those in the last subsection, except the additional
restrictions cv = 0 and cβ = 0.

With symmetric vi, it is shown in the proof of Corollary 1 that E(ζ1iζ2i) = 0, E(ζ1iζ3i) =
0, E(ζ4ivi) = 0, and E(ζ5i) = 0. Then Aβρ = 0, Aβσ 2 = 0, Aβη = 0, Bβρ = 0, Bβσ 2 = 0,
and Bβη = 0.

In the case that τ0 = 0, Dn = Wn and Zn = Mn. As Wn and Mn have zero diagonals,
vecD(Dn) = 0, vecD(Zn) = 0, tr(Dn) = 0, and tr(Tn) = 0. Then some components of A
and B can be simplified accordingly. In particular, Aρσ 2 = 0, Aρη = 0, Bρσ 2 = 0, and
Bρη = 0.

A.3. Non-Row-Normalized Mn and Asymmetric vi

In this case, the NGPMLE maximizes lnLn(δ) in (4). By Assumption 4(i)(c), E(ζji) =
0, for j = 1,2,3. The expressions of Bδ1δ2 = 1

n E(
∂ lnLn(δ#)

∂δ1

∂ lnLn(δ#)

∂δ′
2

) and Aδ1δ2 =
− 1

n E(
∂2 lnLn(δ#)

∂δ1∂δ′
2

) for δ1 and δ2 not containing α can be derived by imposing cv = −α∞
σ0

and cβ = 0 in the corresponding expressions in Appendix A.1. The remaining components

of B are Bαλ = 1
nσ0

E(ζ 2
1i)Q

′
n1n + 1

nσ0
E(ζ1iζ2i) tr(Dn), Bαρ = 1

nσ0
E(ζ1iζ2i) tr(Zn),

Bαβ = 1
nσ 2

0
E(ζ 2

1i)1
′
nRnXn, Bασ 2 = 1

2σ 2∞σ0
[−α∞

σ0
E(ζ 2

1i) + E(ζ1iζ2i)], Bαα = 1
σ 2

0
E(ζ 2

1i),

and Bαη = 1
σ0

E(ζ1iζ
′
3i). The remaining components of A are Aαλ = 1

nσ0
E(ζ4i)Q

′
n1n +

1
nσ0

E(ζ4ivi) tr(Dn), Aαρ = 1
nσ0

E(ζ4ivi) tr(Zn), Aαβ = 1
nσ 2

0
E(ζ4i)1

′
nRnXn, Aασ 2 =

1
2σ 2∞σ0

[−α∞
σ0

E(ζ4i)+E(ζ4ivi)], Aαα = 1
σ 2

0
E(ζ4i), and Aαη = 1

σ0
E(ζ ′

5i).

APPENDIX B. Lemmas

The following Lemma B.1 provides more primitive conditions for gn(τ ) > 0 at τ 
= τ0 in a
neighborhood of τ0, where gn(τ ) is in Assumption 3. The matrices T1n and T2n below are
defined after Assumption 3.

LEMMA B.1. Suppose that Wn = Mn and that T1n and T2n are linearly independent. If
Wn is symmetric or is row-normalized from a symmetric matrix, then gn(τ ) > 0 at τ 
= τ0
in a neighborhood of τ0.

Proof. As explained below Assumption 3, we need to show that ∂2gn(τ0)
∂τ∂τ ′ is positive-

definite, which requires that tr(T2
1n) > 0, tr(T2

2n) > 0, and tr(T2
1n) tr(T2

2n) > tr2(T1nT2n), by
some calculation.

If Wn is symmetric, with Wn = Mn, it is obvious that T1n and T2n are symmetric. Then
tr(T2

jn) = tr(T ′
jnTjn) ≥ 0, for j = 1,2. By the Cauchy–Schwarz inequality, tr(T2

1n) tr(T2
2n) =

tr(T ′
1nT1n) tr(T ′

2nT2n) ≥ tr2(T ′
1nT2n) = tr2(T1nT2n). The inequality is strict when T1n and

T2n are linearly independent, which also implies that tr(T2
jn) > 0, for j = 1,2.

If Wn is row-normalized from a symmetric matrix such that Wn = HnAn, where

Hn = diag(1/(e′
n1An1n), . . . ,1/(e′

nnAn1n)) and An is symmetric, let Bn = H1/2
n AnH1/2

n
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CONSISTENT NON-GAUSSIAN PSEUDO 1149

and Cn(λ) = In − λBn. Then Bn and Cn(λ) are symmetric and satisfy BnCn(λ) =
Cn(λ)Bn. We have Sn(λ) = H1/2

n Cn(λ)H−1/2
n , A1n = HnAn · H1/2

n C−1
n (ρ0)H−1/2

n =
H1/2

n BnC−1
n (ρ0)H−1/2

n , and A2n = H1/2
n Cn(ρ0)H−1/2

n · HnAn · H1/2
n C−1

n (λ0)H−1/2
n ·

H1/2
n C−1

n (ρ0)H−1/2
n = H1/2

n BnC−1
n (λ0)H−1/2

n . For n × n matrices E1n and E2n, if

E2n is diagonal, then diag(E1nE2n) = diag(E1n)E2n. Thus, T1n = H1/2
n D1nH−1/2

n ,

T2n = H1/2
n D2nH−1/2

n , and T1nT2n = H1/2
n D1nD2nH−1/2

n , where D1n = BnC−1
n (ρ0) −

diag(BnC−1
n (ρ0)) and D2n = BnC−1

n (λ0) − diag(BnC−1
n (λ0)) are symmetric. Thus,

tr(T2
jn) = tr(D2

jn) = tr(D′
jnDjn) ≥ 0, for j = 1,2. Furthermore, tr(T2

1n) tr(T2
2n) = tr(D2

1n)

tr(D2
2n) = tr(D′

1nD1n) tr(D′
2nD2n) ≥ tr2(D′

1nD2n) = tr2(T1nT2n) by the Cauchy–Schwarz
inequality. The inequality is strict when D1n and D2n are linearly independent, i.e., T1n and
T2n are linearly independent, which also implies that tr(T2

jn) > 0, for j = 1,2. �

LEMMA B.2. For j = 1, . . . ,l, let Ajn be n × n nonstochastic matrices that are
bounded in the row-sum norm, and let Ujn = [ujn,1, . . . ,ujn,n]′ be n × 1 vectors such that

supi,j,n E(|ujn,i|aj) < ∞, for aj > 1. Then supi,n E[(
∏l

j=1 |e′
niAjnUjn|)1/

∑l
j=1

1
aj ] < ∞.

Proof. This is a special case of Lemma 1(ii) in Jin and Lee (2019). �

LEMMA B.3. Suppose that h(x) is a scalar function, vi’s in Vn = [v1, . . . ,vn]′
are i.i.d. with mean zero and variance σ 2

0 , An = [an,ij] and Bn = [bn,ij] are n × n
nonstochastic matrices that are bounded in both the row- and column-sum norms,
and E(|vi|cv) < ∞ and E(|h(vi)|ch) < ∞, for some cv > 0 and ch > 0. Then c1n −
E(c1n) = op(1) if 1

ch
+ 2

cv
< 1, and c2n − E(c2n) = op(1) if 1

ch
+ 1

cv
< 1, where

c1n = 1
n

∑n
i=1 h(vi)(

∑n
j=1 an,ijvj)(

∑n
k=1 bn,ikvk) and c2n = 1

n
∑n

i=1 h(vi)

(
∑n

j=1 an,ijvj).

Proof. This lemma is proved by an LLN for martingale differences. The details are in
the Supplementary Material. �

LEMMA B.4. Suppose that An = [an,ij] is an n × n nonstochastic matrix that is
bounded in both the row- and column-sum norms; bn = [bni] is an n × 1 vector
of uniformly bounded constants; εn = [εni], Vn = [vni], and �n = [ψni] are n × 1
random vectors with mean zero; [εni,vni,ψni], for i = 1, . . . ,n, are independent; and
supi,n E(|εnivni|2+ι)+supi,n E(|εni|2+ι)+supi,n E(|vni|2+ι)+supi,n E(|ψni|2+ι) < ∞, for

some ι > 0. Let ωn = ε′
nAnVn + b′

n�n − E(ε′
nAnVn) and σ 2

ωn
= var(ωn). If infn

1
nσ 2

ωn
> 0,

then ωn
σωn

d−→ N(0,1).

Proof. This lemma is a special case of Lemma 6 in Yang and Lee (2017). �

LEMMA B.5. Suppose that Assumption 1 holds. Let each of An = [an,ij] and
Bn = [bn,ij] be one of the matrices Wn, Mn, Rn, and Sn. Denote Cn = AnBn =
[cn,ij]. If limr→∞ supi,n

∑
j:d(i,j)>r |an,ij| = 0, limr→∞ supi,n

∑
j:d(i,j)>r |bn,ij| = 0, and

supn ‖An‖∞ + supn ‖Bn‖∞ < ∞, then limr→∞ supi,n
∑

j:d(i,j)>r |cn,ij| = 0.
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Proof. As cn,ij = ∑n
k=1 an,ikbn,kj,

sup
i,n

∑
j:d(i,j)>r

|cn,ij| ≤ sup
i,n

∑
j:d(i,j)>r

∑
k:d(j,k)>r/2

|an,ikbn,kj|

+ sup
i,n

∑
j:d(i,j)>r

∑
k:d(j,k)≤r/2

|an,ikbn,kj|

≤ sup
i,n

n∑
k=1

|an,ik|
∑

j:d(j,k)>r/2

|bn,kj|+ sup
i,n

∑
k:d(i,k)>r/2

|an,ik|
n∑

j=1

|bn,kj|

≤ sup
n

‖An‖∞ sup
k,n

∑
j:d(j,k)>r/2

|bn,kj|+ sup
i,n

∑
k:d(i,k)>r/2

|an,ik| · sup
n

‖Bn‖∞,

where the second inequality holds because d(i,j) > r and d(j,k) ≤ r/2 imply that d(i,k) >

r/2. Thus, limr→∞ supi,n
∑

j:d(i,j)>r |cn,ij| = 0. �

For any matrix A = [aij], denote abs(A) = [|aij|].

LEMMA B.6. (i) If Assumptions 1 and 2(iii) hold, then supn ‖S−1
n ‖∞ < ∞ and

supn ‖R−1
n ‖∞ < ∞. (ii) If Assumptions 1, 2(ii), and 7 hold, then limr→∞ supi,n

∑
j:d(i,j)>r

|wn,ij| = 0, limr→∞ supi,n
∑

j:d(i,j)>r |mn,ij| = 0, supn ‖Wn‖1 < ∞, and supn ‖Mn‖1 <

∞. (iii) If Assumptions 1, 2(ii) and (iii), and 7(ii) hold, then supn ‖S−1
n ‖1 < ∞ and

supn ‖R−1
n ‖1 < ∞.

Proof. (i) As ‖λ0Wn‖∞ ≤ c0 < 1, S−1
n = ∑∞

k=0(λ0Wn)k. Thus, by the triangle

inequality, supn ‖S−1
n ‖∞ ≤ supn

∑∞
k=0(‖λ0Wn‖∞)k ≤ ∑∞

k=0 ck
0 = 1

1−c0
< ∞. Similarly,

supn ‖R−1
n ‖∞ < ∞.

(ii) Under Assumption 7(i), wn,ij = 0 if d(i,j) > d̄0. Then limr→∞ supi,n
∑

j:d(i,j)>r
|wn,ij| = 0. By Lemma A.1 in Jenish and Prucha (2009), |{j: k ≤ d(i,j) < k + 1}| ≤
ckcd−1, for k ≥ 1, and some constant c > 0, where |A| for a set A denotes its cardinal-

ity. Then supn ‖Wn‖1 = supj,n
∑

i:d(i,j)≤d̄0
|wn,ij| ≤ supj,n

∑[d̄0]+1
k=1

∑
i:k≤d(i,j)<k+1 cw =

ccw
∑[d̄0]+1

k=1 kcd−1 < ∞, where cw = supn ‖Wn‖∞ < ∞ under Assumption 2(ii) and [d̄0]
is the smallest integer that is nongreater than d̄0.

Under Assumption 7(ii), supi,n
∑

j:d(i,j)>r |wn,ij| ≤ supi,n
∑∞

k=[r]
∑

j:k≤d(i,j)<k+1

|wn,ij| ≤ supi,n
∑∞

k=[r]
∑

j:k≤d(i,j)<k+1 π1k−π2 ≤ ∑∞
k=[r] cπ1kcd−π2−1. As π2 > cd ,∑∞

k=1 cπ1kcd−π2−1 < ∞. Then limr→∞
∑∞

k=[r] cπ1kcd−π2−1 = 0. It follows that
limr→∞ supi,n

∑
j:d(i,j)>r |wn,ij| = 0. Similarly, supn ‖Wn‖1 = supj,n

∑
i:d(i,j)≥1 |wn,ij| ≤∑∞

k=1 cπ1kcd−π2−1 < ∞.
The results on Mn can be similarly proved.
(iii) Under the maintained assumptions, we have ‖λl

0[abs(Wn)]l‖1 ≤ max{lN,1}ωcl−1
0 ,

where ω = |λ0|supn ‖Wn‖1 < ∞, as in the proof of Lemma 1 of Xu and Lee (2015).
The only difference is that our upper bound max{lN,1}ωcl−1

0 has cl−1
0 instead of ζ l−1,

where ζ is the upper bound of the compact parameter space of λ. Since we have a
linear SAR process, there is no need to introduce ζ and the proof is similar. Then
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supn ‖S−1
n ‖1 ≤ supn

∑∞
k=0(‖λ0Wn‖1)k ≤ c(1 + ∑∞

k=1 kck−1
0 ) < ∞ for some constant c.

Similarly, supn ‖R−1
n ‖1 < ∞. �

LEMMA B.7. Under Assumptions 1, 2(i)–(iii), and 7, {e′
niAnVn} is L2-NED on

{v1, . . . ,vn}, where An is either S−1
n R−1

n , WnS−1
n R−1

n , MnS−1
n R−1

n , or WnMnS−1
n R−1

n .

Proof. As ‖λ0Wn‖∞ ≤ c0 < 1, S−1
n = ∑∞

k=0(λ0Wn)k. Then abs(S−1
n ) ≤∗ ∑∞

k=0
[abs(λ0Wn)]k ≤∗ [In − abs(λ0Wn)]−1, where An ≤∗ Bn for two n × n matrices
An = [an,ij] and Bn = [bn,ij] means that an,ij ≤ bn,ij for any i,j. Since the proof

of Proposition 1 in Xu and Lee (2015, p. 274) shows that [In − abs(λ0Wn)]−1

satisfies limr→∞ supi,n
∑

j:d(i,j)>r |e′
ni[In − abs(λ0Wn)]−1enj| = 0 under Assumptions

1, 2(iii), and 7, we also have limr→∞ supi,n
∑

j:d(i,j)>r |e′
niS

−1
n enj| = 0. Similarly,

limr→∞ supi,n
∑

j:d(i,j)>r |e′
niR

−1
n enj| = 0. By Lemma B.6, limr→∞ supi,n

∑
j:d(i,j)>r

|wn,ij| = 0, limr→∞ supi,n
∑

j:d(i,j)>r |mn,ij| = 0, supn ‖S−1
n ‖∞ < ∞, and supn ‖R−1

n ‖∞ <

∞. Thus, by Lemma B.5, limr→∞ supi,n
∑

j:d(i,j)>r[abs(An)]ij = 0, where An is either

S−1
n R−1

n , WnS−1
n R−1

n , MnS−1
n R−1

n , or WnMnS−1
n R−1

n . Hence, by Proposition 1 in Jenish
and Prucha (2012), {e′

niAnVn} is L2-NED on {v1, . . . ,vn}. �

APPENDIX C. Proofs

For the following proofs of Propositions 1 and 2, denote �ni(θ) = σ0e′
niTn(τ )Vn −

σ0vitn,ii(τ ) + e′
niRn(ρ)[Sn(λ)S−1

n Xnβ0 − Xnβ], which does not depend on vi. As Yn =
S−1

n (Xnβ0 +σ0R−1
n Vn), vi(θ) = 1

σ �ni(θ)+ 1
σ σ0vitn,ii(τ ).

Proof of Proposition 1. (i) We first prove the result under Assumption 4(i). As Tn(τ ) =
In +(ρ0 −ρ)A1n +(λ0 −λ)A2n +(ρ0 −ρ)(λ0 −λ)A3n, under Assumption 3(iii), tn,ii(τ ) 
= 0
for any i and τ . Since Mn is row-normalized, Rn1n = (1 − ρ0)1n. Then the nonsingu-

larity of Rn implies that ρ0 
= 1. Denote Q(σ,β1,η) = E[ln f ( σ0vi−(1−ρ0)(β1−β10)
σ ,η)] −

1
2 ln(σ 2), σni = σ

tn,ii(τ )
, and β1,ni = β10 − 1

(1−ρ0)tn,ii(τ )
�ni(θ). Since E[ln f ( σ0vi−α

σ ,η)] −
1
2 ln(σ 2) is uniquely maximized at (σ∞,α∞,η∞), Q(σ,β1,η) is uniquely maximized at
(σ∞,β1∞,η∞), where β1∞ = β10 + α∞

1−ρ0
. Let E−i(·) be the conditional expectation given

v1, . . ., vi−1, vi+1, . . ., vn. Then,

E[lnLn(γ )] =
n∑

i=1

E{E−i[ln f (vi(θ),η)]}− n

2
ln(σ 2)+ ln |Sn(λ)|+ ln |Rn(ρ)|

=
n∑

i=1

E[Q(σni,β1,ni,η)]−
n∑

i=1

ln |tn,ii(τ )|+ ln |Sn(λ)|+ ln |Rn(ρ)|

≤ nQ(σ∞,β1∞,η∞)−
n∑

i=1

ln |tn,ii(τ )|+ ln |Sn(λ)|+ ln |Rn(ρ)| (C.1)

= nQ(σ∞,β1∞,η∞)−
n∑

i=1

ln |tn,ii(τ )|+ ln |Tn(τ )|+ ln |Sn|+ ln |Rn|

≤ E[lnLn(γ∗)], (C.2)
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where (C.1) uses the property that Q(σ,β1,η) is uniquely maximized at (σ∞,β1∞,η∞)

and (C.2) uses the assumption that ln |Tn(τ )| ≤ ∑n
i=1 ln |tn,ii(τ )|. The inequality in (C.2)

is strict if τ 
= τ0. With τ = τ0, we have Tn(τ ) = In, tn,ii(τ ) = 1, σni = σ , and β1,ni =
β10 − 1

1−ρ0
e′

niRnXn(β0 −β) = β1 − 1
1−ρ0

e′
niRnX2n(β20 −β2). Since RnXn has full column

rank, β1,ni 
= β1∞ for some i if β2 
= β20. Thus, with τ = τ0, the inequality in (C.1) is
strict if (β2,σ,η) 
= (β20,σ∞,η∞). It follows that E[lnLn(γ )] is uniquely maximized at
γ = γ∗. (ii) We next prove the result under Assumption 4(ii). Because vi’s are symmetrically
distributed around zero with unimodal density, by Lemma A in Newey and Steiger-
wald (1997), E[ln f (vi(θ),η)] = E{E−i[ln f (vi(θ),η)]} ≤ E{E−i[ln f ( σ0

σ vitn,ii(τ ),η)]} =
E[ln f ( σ0

σ vitn,ii(τ ),η)], where the inequality is strict if �ni(θ) 
= 0. Denote Q(σ,η) =
E[ln f ( σ0vi

σ ,η)]− 1
2 ln(σ 2). Then,

E[lnLn(γ )] ≤
n∑

i=1

Q(σni,η)−
n∑

i=1

ln |tn,ii(τ )|+ ln |Sn(λ)|+ ln |Rn(ρ)| (C.3)

≤ nQ(σ∞,η∞)−
n∑

i=1

ln |tn,ii(τ )|+ ln |Sn(λ)|+ ln |Rn(ρ) (C.4)

≤ E[lnLn(γ#)], (C.5)

where (C.4) uses the assumption that Q(σ,η) is uniquely maximized at (σ∞,η∞), and
(C.5) uses the assumption that ln |Tn(τ )| ≤ ∑n

i=1 ln |tn,ii(τ )| as in the proof for (i) above.
Furthermore, the inequality in (C.5) is strict if τ 
= τ0. With τ = τ0, the inequality in
(C.4) is strict if (σ,η) 
= (σ∞,η∞). With (τ,σ,η) = (τ0,σ∞,η∞), we have Tn(τ ) = In and
�ni(θ) = e′

niRnXn(β0 −β). Since RnXn has full column rank, with (τ,σ,η) = (τ0,σ∞,η∞),
the inequality in (C.3) is strict if β 
= β0. Hence, E[lnLn(γ )] is uniquely maximized
at γ#. �

Proof of Proposition 2. Denote Q(σ,α,η) = E[ln f ( σ0vi−α
σ ,η)] − 1

2 ln(σ 2), σni =
σ

tn,ii(τ )
, and αni = α−�ni(θ)

tn,ii(τ )
. Then,

E[lnLn(δ)] =
n∑

i=1

E
{
E−i

[
ln f

(
vi(θ)− α

σ
,η

)]}− n

2
ln(σ 2)+ ln |Sn(λ)|+ ln |Rn(ρ)|

=
n∑

i=1

E[Q(σni,αni,η)]−
n∑

i=1

ln |tn,ii(τ )|+ ln |Sn(λ)|+ ln |Rn(ρ)|

≤ nQ(σ∞,α∞,η∞)−
n∑

i=1

ln |tn,ii(τ )|+ ln |Sn(λ)|+ ln |Rn(ρ)| (C.6)

= nQ(σ∞,α∞,η∞)−
n∑

i=1

ln |tn,ii(τ )|+ ln |Tn(τ )|+ ln |Sn|+ ln |Rn|

≤ E[lnLn(δ#)], (C.7)

where (C.6) uses the property that Qn(σ,α,η) is uniquely maximized at (σ∞,α∞,η∞)

and (C.7) uses the assumption that ln |Tn(τ )| ≤ ∑n
i=1 ln |tn,ii(τ )|. The inequality in (C.7)

is strict if τ 
= τ0. With τ = τ0, we have Tn(τ ) = In, tn,ii(τ ) = 1, σni = σ , and αni =
α − e′

niRnXn(β0 −β). Since RnXn has full column rank and does not contain an intercept
term, αni 
= α∞ for some i if β 
= β0. Thus, with τ = τ0, the inequality in (C.6) is strict
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if (β,σ,α,η) 
= (β0,σ∞,α∞,η∞). It follows that E[lnLn(δ)] is uniquely maximized at
δ = δ#. �

Proof of Theorem 1. We only prove the convergence of γ̂ in the case with symmetric
vi, since the proofs for other cases are similar. As Yn = S−1

n (Xnβ0 +σ0R−1
n Vn), Rn(ρ) =

Rn + (ρ0 −ρ)Mn, and Sn(λ) = Sn + (λ0 −λ)Wn, we have

Rn(ρ)[Sn(λ)Yn −Xnβ]

= σ0Vn + (λ0 −λ)RnWnS−1
n Xnβ0 +σ0(λ0 −λ)RnWnS−1

n R−1
n Vn +RnXn(β0 −β)

+σ0(ρ0 −ρ)MnR−1
n Vn + (ρ0 −ρ)(λ0 −λ)MnWnS−1

n Xnβ0

+σ0(ρ0 −ρ)(λ0 −λ)MnWnS−1
n R−1

n Vn + (ρ0 −ρ)MnXn(β0 −β).

Under Assumption 2(iii), by Lemma B.6, R−1
n and S−1

n are bounded in the row-sum norm.
As Wn and Mn are also bounded in the row-sum norm, so are the products of Wn, Mn, R−1

n ,
and S−1

n . With supi E(|vi|2+2ct+ι) < ∞ in Assumption 8(ii), vi(θ) = 1
σ e′

niRn(ρ)[Sn(λ)Yn −
Xnβ] is uniformly L(2+2ct+ι) bounded by Lemma B.2. Furthermore, by Lemma B.7, {vi(θ)}
is L2-NED on {v1, . . . ,vn}. With | ∂ ln f (x,η)

∂x | ≤ cf (|x|ct + 1) for ct = 0 in Assumption 8(i),

i.e., ∂ ln f (x,η)
∂x is bounded, by Proposition 2 of Jenish and Prucha (2012), ln f (vi(θ),η) is

L2-NED on {v1, . . . ,vn}; on the other hand, with | ∂ ln f (x,η)
∂x | ≤ cf (|x|ct + 1) for ct = 1 in

Assumption 8(i), by Lemma A.4 in Xu and Lee (2015), ln f (vi(θ),η) is uniformly L2-NED

on {v1, . . . ,vn}. By the mean value theorem, ln f (vi(θ),η) = ln f (0,η)+ ∂ ln f (cvi(θ),η)
∂v vi(θ),

where c is some constant between 0 and 1. Thus, with supi E(|vi|2+2ct+ι) < ∞, ln f (vi(θ),η)

is uniformly L2 bounded by Lemma B.2. It follows by the LLN in Theorem 1 of Jenish and
Prucha (2012) that 1

n lnLn(γ )− 1
n E[lnLn(γ )] = op(1).

We next prove that 1
n lnLn(γ ) is stochastically equicontinuous (SE) and 1

n E[Ln(γ )] is

equicontinuous. With | ∂ ln f (x,η)
∂x | ≤ cf (|x|ct +1),

1

n
E
∣∣∣∂ lnLn(γ )

∂λ

∣∣∣ ≤ cf

nσ
E

n∑
i=1

[|vi(θ)|ct +1] · |e′
niRn(ρ)WnYn|+ 1

n
| tr[WnS−1

n (λ)]|, (C.8)

where
cf
nσ E

∑n
i=1[|vi(θ)|ct +1] · |e′

niRn(ρ)WnYn| = O(1) by Yn = S−1
n (Xnβ0 +σ0R−1

n Vn)

and Lemma B.2, and 1
n | tr[WnS−1

n (λ)]| = O(1) since supn ‖Wn‖∞ < ∞ by Assumption

2(ii), supn ‖Wn‖1 < ∞ by Lemma B.6 and S−1
n (λ) is bounded in either the row- or

column-sum norm. Thus, 1
n E | ∂ lnLn(γ )

∂λ
| = O(1) and 1

n
∂ lnLn(γ )

∂λ
= Op(1). As σvi(θ)

is linear in every element of θ and the parameter space of γ is compact, by (C.8),

Esupγ∈ | 1
n

∂ lnLn(γ )
∂λ

| = O(1) and supγ∈ | 1
n

∂ lnLn(γ )
∂λ

| = Op(1). Similarly, for other ele-

ments γj of γ , Esupγ∈ | 1
n

∂ lnLn(γ )
∂γj

| = O(1) and supγ∈ | 1
n

∂ lnLn(γ )
∂γj

| = Op(1). Hence,

Esupγ∈ ‖ 1
n

∂ lnLn(γ )
∂γ

‖ = O(1) and supγ∈ ‖ 1
n

∂ lnLn(γ )
∂γ

‖ = Op(1). By Lemma 3.6 in

Newey and McFadden (1994), Esupγ∈ ‖ 1
n

∂ lnLn(γ )
∂γ

‖ = O(1) implies that 1
n

∂ E[lnLn(γ )]
∂γ

=
1
n E(

∂ lnLn(γ )
∂γ

). Therefore, by the mean value theorem and Theorem 21.10 in Davidson

(1994), 1
n lnLn(γ ) is SE, and 1

n E[Ln(γ )] is equicontinuous.

The pointwise convergence 1
n lnLn(γ )− 1

n E[lnLn(γ )] = op(1) and the SE of 1
n lnLn(γ )

imply that supγ∈ | 1
n lnLn(γ )− 1

n E[lnLn(γ )]| = op(1). As 1
n E[lnLn(γ )] is equicontinuous
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and limn→∞ 1
n E[lnLn(γ )] is uniquely maximized at γ = γ#, we have γ̂ = γ# + op(1)

(White, 1994, Theorem 3.4). �

Proof of Theorem 2. We only prove the asymptotic distribution of γ̂ in the case with
symmetric vi, and omit similar proofs for other cases. By the mean value theorem, 0 =
∂ lnLn(γ̂ )

∂γ
= ∂ lnLn(γ#)

∂γ
+ ∂2 lnLn(γ̃ )

∂γ ∂γ ′ (γ̂ −γ#), where γ̃ lies between γ̂ and γ#. Then,

√
n(γ̂ −γ#) = −

(1

n

∂2 lnLn(γ̃ )

∂γ ∂γ ′
)−1 1√

n

∂ lnLn(γ#)

∂γ
. (C.9)

We prove that (i) 1
n

∂2 lnLn(γ̃ )
∂γ ∂γ ′ = 1

n
∂2 lnLn(γ#)

∂γ ∂γ ′ +op(1) and (ii) 1
n

∂2 lnLn(γ#)
∂γ ∂γ ′ = 1

n E(
∂2 lnLn(γ#)

∂γ ∂γ ′ )

+op(1) so that 1
n

∂2 lnLn(γ̃ )
∂γ ∂γ ′ = 1

n E(
∂2 lnLn(γ#)

∂γ ∂γ ′ )+op(1).

For (i), we prove that every element of 1
n

∂2 lnLn(γ )
∂γ ∂γ ′ is SE under Assumption 9(ii) and

(iii). With ‖ ∂3 ln f (vi(θ),η)
∂z∂z′∂zi

‖ ≤ cf (|vi(θ)|3ct + 1) in Assumption 9(ii), we could show that

supγ∈ ‖ ∂3 lnLn(γ )
∂γ ∂γ ′∂γj

‖ = Op(1), where γj is the jth element of γ . As an example, consider

∂3 lnLn(γ )

∂λ3
= − 1

σ 3

n∑
i=1

∂3 ln f (vi(θ),η)

∂v3
[e′

niRn(ρ)WnYn]3 −2tr{[WnS−1
n (λ)]3},

where | ∂3 ln f (vi(θ),η)

∂v3 | ≤ c[|vi(θ)|3ct + 1]. With the reduced form Yn = S−1
n (Xnβ0 +

σ0R−1
n Vn) and E(|vi|3+3ct ) < ∞, 1

n
∂3 lnLn(γ )

∂λ3 = Op(1) by Lemma B.2. As vi(θ) =
1
σ e′

niRn(ρ)[Sn(λ)Yn − Xnβ] is linear in each element of [λ,ρ,β ′]′, {S−1
n (λ)} is bounded

in either the row-sum or column-sum norm uniformly on the parameter space of λ and  is

compact, supγ∈ | 1
n

∂3 lnLn(γ )

∂λ3 | = Op(1). Hence, (i) holds by the mean value theorem.
We prove (ii) by Lemma B.3. As an example, consider

1

n

∂2 lnLn(γ#)

∂λ2
= 1

nσ 2∞

n∑
i=1

∂2 ln f ( σ0
σ∞ vi,η∞)

∂v2
(e′

niRnWnYn)2 − 1

n
tr[(WnS−1

n )2].

Under Assumption 9(ii),
∂2 ln f (

σ0
σ∞ vi,η∞)

∂v2 is either bounded or | ∂
2 ln f (

σ0
σ∞ vi,η∞)

∂v2 | ≤
cf (

σ 2
0

σ 2∞
|vi|2 +1). In the latter case, as supi E(|vi|4+ι) < ∞, E[| ∂

2 ln f (
σ0
σ∞ vi,η∞)

∂v2 |2+ι/2] < ∞.

Then, using Yn = S−1
n (Xnβ0 + σ0R−1

n Vn) and supi E(|vi|2+2ct+ι) < ∞, where ct = 0 for

the case with bounded
∂2 ln f (

σ0
σ∞ vi,η∞)

∂v2 and ct = 1 for the case with | ∂
2 ln f (

σ0
σ∞ vi,η∞)

∂v2 | ≤
cf (

σ 2
0

σ 2∞
|vi|2 +1), we have 1

n
∂2 lnLn(γ#)

∂λ2 −E( 1
n

∂2 lnLn(γ#)
∂λ

) = op(1) by Lemma B.3.

With (i) and (ii), by (C.9),
√

n(γ̂ − γ#) = −( 1
n E ∂2 lnLn(γ#)

∂γ ∂γ ′
)−1 1√

n
∂ lnLn(γ#)

∂γ
+ op(1).

Under Assumption 4(ii), E[ln f ( σ0
σ vi + c,η)] is uniquely maximized at c = 0 for any σ

and η, by Lemma A in Newey and Steigerwald (1997). Then E(ζ1i) = 0, where ζ1i =
σ0
σ∞

∂ ln f (
σ0
σ∞ vi,η∞)

∂v . By Assumption 4(ii)(c), E(ζ2i) = 0 and E(ζ3i) = 0, where ζ2i = ζ1ivi +1

and ζ3i = − ∂ ln f (
σ0
σ∞ vi,η∞)

∂η
. Hence, every element of ∂ lnLn(γ#)

∂γ
is a special case of the
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general linear-quadratic form ωn in Lemma B.4. By Assumptions 2(ii) and 9(iv) and Lemma
B.6, the involved matrices S−1

n R−1
n , WnS−1

n R−1
n , MnS−1

n R−1
n , and WnMnS−1

n R−1
n in ωn are

bounded in both the row- and column-sum norms. As | ∂ ln f (
σ0
σ∞ vi,η∞)

∂v | ≤ cf (| σ0
σ∞ vi|ct +

1) and supi E(|vi|2+2ct+ι) < ∞, we have E[| ∂ ln f (
σ0
σ∞ vi,η∞)

∂v vi|2+ι/(1+ct)] < ∞ and

E[| ∂ ln f (
σ0
σ∞ vi,η∞)

∂v |2+2ct+ι] < ∞ for ct = 0 or 1. As ‖ ∂ ln f (
σ0
σ∞ vi,η∞)

∂η
‖ ≤ cf (| σ0

σ∞ vi|1+ct +1)

and supi E(|vi|2+2ct+ι) < ∞, E[‖ ∂ ln f (
σ0
σ∞ vi,η∞)

∂η
‖2+ι/(1+ct)] < ∞. Then Lemma B.4

implies that 1√
n

∂ lnLn(γ#)
∂γ

d−→ N(0, limn→∞B), where B = 1
n E(

∂ lnLn(γ#)
∂γ

∂ lnLn(γ#)
∂γ ′ ).

Hence,
√

n(γ̂ −γ#)
d−→ N(0, limn→∞A−1BA−1), where A = − 1

n E(
∂2 lnLn(γ#)

∂γ ∂γ ′ ). �

Proof of Corollary 1. We first prove that: (i) E(ζ1iζ2i) = 0, (ii) E(ζ1iζ3i) = 0,
(iii) E(ζ4ivi) = 0; and (iv) E(ζ5i) = 0, where ζ1i to ζ5i are defined in Appendix A.2 and
they satisfy E(ζ1i) = 0, E(ζ2i) = 0, and E(ζ3i) = 0, as shown in the proof of Theorem 2.

(i) Note that for any even function h1(v) of v, h1(v) = h1(|v|) = h2(v2), where h2(z) ≡
h1(z1/2), for z ≥ 0. Then a symmetrically distributed vi is also spherically symmetric (Fang,
Kotz, and Ng, 1990, p. 35). Define g(ς,η) = f (ς1/2,η), for ς ≥ 0, so that f (v,η) = f (|v|,η) =

g(v2,η). Then ∂ ln f (v,η)
∂v = 2 ∂ lng(v2,η)

∂ς
v and E(

∂ ln f (
σ0
σ∞ vi,η∞)

∂v ) = 2σ0
σ∞ E(

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂ς
vi).

Let vi = |vi| · �i. It follows that |vi| and �i are independent (Fang et al., 1990, p.

30). Then E(ζ1iζ2i) = E[ζ1i(ζ1ivi + 1)] = E(ζ 2
1ivi) = 4σ 4

0
σ 4∞

E[(
∂ lng(

σ2
0

σ2∞
v2

i ,η∞)

∂ς
)2v3

i ] =

4σ 4
0

σ 4∞
E[(

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂ς
)2|vi|3 · � 3

i ] = 4σ 4
0

σ 4∞
E[(

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂ς
)2|vi|3]E(� 3

i ). Since 0 =
E(v3

i ) = E(|vi|3 ·� 3
i ) = E(|vi|3)E(� 3

i ), E(� 3
i ) = 0. Thus, E(ζ1iζ2i) = 0.

(ii) E(ζ1iζ3i) = E(
2σ0
σ∞

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂ς
vi ·

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂η
) =

2σ0
σ∞ E(

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂ς

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂η
|vi| ·�i) = 2σ0

σ∞ E(
∂ lng(

σ2
0

σ2∞
v2

i ,η∞)

∂ς

∂ lng(
σ2

0
σ2∞

v2
i ,η∞)

∂η
|vi|)

E(�i) = 0, where we use E(�i) = 0 implied by 0 = E(vi) = E(|vi|)E(�i).

(iii) As ∂ ln f (v,η)
∂v = 2 ∂ lng(v2,η)

∂ς
v, ∂2 ln f (v,η)

∂v2 = 4 ∂2 lng(v2,η)

∂ς2 v2 + 2 ∂ lng(v2,η)
∂ς

. Then

E(ζ4ivi) = − 4σ 4
0

σ 4∞
E(

∂2 lng(
σ2

0
σ2∞

v2
i ,η∞)

∂ς2 v3
i )− 2σ 2

0
σ 2∞

E(
∂ lng(

σ2
0

σ2∞
v2

i ,η∞)

∂ς
vi) = 0.

(iv) As ∂ ln f (v,η)
∂v = 2 ∂ lng(v2,η)

∂ς
v, ∂2 ln f (v,η)

∂v∂η
= 2 ∂2 lng(v2,η)

∂ς∂η
v. Then E(ζ5i) = 2σ0

σ∞

E(
∂2 lng(

σ2
0

σ2∞
v2

i ,η∞)

∂ς∂η
vi) = 0.

By (i)–(iv) and Appendix A, we haveAβρ = 0,Aβσ 2 = 0,Aβη = 0,Bβρ = 0,Bβσ 2 = 0,
and Bβη = 0. Hence, for the spatial error model, by Theorem 1, the asymptotic variance

of the NGPMLE β̂ is limn→∞A−1
ββBββA−1

ββ = limn→∞[ 1
nσ 2

0
E(ζ4i)X

′
nR′

nRnXn]−1 ·
1

nσ 2
0

E(ζ 2
1i)X

′
nR′

nRnXn · [ 1
nσ 2

0
E(ζ4i)X

′
nR′

nRnXn]−1 = limn→∞ σ 2
0 E(ζ 2

1i)

[E(ζ4i)]2 ( 1
n X′

nR′
nRnXn)−1.
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The GPMLE is a special case of the NGPMLE with f (v,η) = 1√
2π

e−v2/2 and σ 2∞ =
σ 2

0 . Then, for the GPMLE, ζ1i = −vi, ζ4i = 1, and the asymptotic variance for β is

limn→∞ σ 2
0 ( 1

n X′
nR′

nRnXn)−1. The BGMME of β has the same asymptotic variance as
the GPMLE, by Corollary 3 in Liu et al. (2010). �

Proof of Theorem 3. We could show that γ̌ = γ∞ + op(1) as the proof of Theorem 2.

By the mean value theorem, 0 = ∂ lnLn(γ̌ )
∂γu

= ∂ lnLn(γn)
∂γu

− ∂2 lnLn(γ̄ )
∂γu∂τ ′ τn + ∂2 lnLn(γ̄ )

∂γu∂γ ′
u

(γ̌u −
γu∞), where γn = [τ ′

n,γ
′
u∞]′ and γ̄ lies between γ̌ and γ∞. Thus,

√
n(γ̌u − γu∞) =

−( 1
n

∂2 lnLn(γ̄ )
∂γu∂γ ′

u
)−1( 1√

n
∂ lnLn(γn)

∂γu
− 1

n
∂2 lnLn(γ̄ )

∂γu∂τ ′ · √
nτn). As in the proof of Theorem

2, we could show that 1
n

∂2 lnLn(γ̄ )
∂γu∂γ ′

u
= 1

n E(
∂2 lnLn(γn)

∂γu∂γ ′
u

) + op(1) and 1
n

∂2 lnLn(γ̄ )
∂γu∂τ ′ =

1
n E(

∂2 lnLn(γn)
∂γu∂τ ′ )+op(1). Hence,

√
n(γ̌u −γu∞) = −

(1

n
E

∂2 lnLn(γn)

∂γu∂γ ′
u

)−1

×
[ 1√

n

∂ lnLn(γn)

∂γu
− 1

n
E
(∂2 lnLn(γn)

∂γu∂τ ′
)

·√nτn

]
+op(1). (C.10)

Similarly,

1√
n

∂ lnLn(γ̌ )

∂τ
= 1√

n

∂ lnLn(γn)

∂τ
− 1

n

∂2 lnLn(γ̄ )

∂τ∂τ ′ ·√nτn + 1

n

∂2 lnLn(γ̄ )

∂τ∂γ ′
u

·√n(γ̌u −γu∞),

(C.11)

where 1
n

∂2 lnLn(γ̄ )
∂τ∂τ ′ = 1

n E(
∂2 lnLn(γn)

∂τ∂τ ′ )+op(1) and 1
n

∂2 lnLn(γ̄ )
∂τ∂γ ′

u
= 1

n E(
∂2 lnLn(γn)

∂τ∂γ ′
u

)+op(1).

Plugging (C.10) into (C.11) yields 1√
n

∂ lnLn(γ̌ )
∂τ

= � · 1√
n

∂ lnLn(γn)
∂γ

+ 1
n� ·√nτn + op(1).

Since 1√
n

∂ lnLn(γn)
∂γ

d−→ N(0, limn→∞B), the result in the proposition follows. �
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