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The fundamental resonance (FR) in the nonlinear phase of the boundary-layer transition
to turbulence appears when a dominant planar instability mode reaches a finite amplitude
and the low-amplitude oblique travelling modes with the same frequency as the dominant
mode, together with the stationary streak modes, undergo the strongest amplification
among all the Fourier components. This regime may be the most efficient means to
trigger the natural transition in hypersonic boundary layers. In this paper, we aim to
reveal the intrinsic mechanism of the FR in the weakly nonlinear framework based on
the large-Reynolds-number asymptotic technique. It is found that the FR is, in principle, a
triad resonance among a dominant planar fundamental mode, a streak mode and an oblique
mode. In the major part of the boundary layer, the nonlinear interaction of the fundamental
mode and the streak mode seeds the growth of the oblique mode, whereas the interaction
of the oblique mode and the fundamental mode drives the roll components (transverse
and lateral velocity) of the streak mode, which leads to a stronger amplification of the
streamwise component of the streak mode due to the lift-up mechanism. This asymptotic
analysis clearly shows that the dimensionless growth rates of the streak and oblique modes
are the same order of magnitude as the dimensionless amplitude of the fundamental mode
(ε̄10), and the amplitude of the streak mode is O(ε̄−1

10 ) greater than that of the oblique mode.
The main-layer solution of the streamwise velocity, spanwise velocity and temperature of
both the streak and the oblique modes become singular as the wall is approached, and so
a viscous wall layer appears underneath. The wall layer produces an outflux velocity to
the main-layer solution, inclusion of which leads to an improved asymptotic theory whose
accuracy is confirmed by comparing with the calculations of the nonlinear parabolised
stability equations (NPSEs) at moderate Reynolds numbers and the secondary instability
analysis (SIA) at sufficiently high Reynolds numbers.
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1. Introduction

In the development of hypersonic vehicles, to calculate accurately the drag and heat flux is
a task of the first priority, which requires an accurate prediction of the laminar–turbulent
transition. For high-altitude flight conditions, transition is often triggered by a natural
route, for which four phases, including the receptivity, linear instability, nonlinear
resonance and turbulence, appear in sequence. For supersonic or hypersonic boundary
layers, there may exist more than one discrete instability mode, which are referred to as
the Mack first, second, . . . modes, according to the ascending order of their frequencies
(Mack 1987). It was revealed by the asymptotic analysis that only the Mack first mode
with Θ > tan−1

√
M2 − 1 (where Θ and M denote the wave angle and Mach number,

respectively) has the viscous nature (Smith 1989; Liu, Dong & Wu 2020), while the
quasi-two-dimensional Mack first and all the higher-order modes are inviscid (Cowley
& Hall 1990; Smith & Brown 1990; Dong, Liu & Wu 2020; Zhao, He & Dong 2023).
Usually, the Mack second mode appears when the Mach number is approximately over
4, and its growth rate peaks when it is planar (two-dimensional). In contrast, the Mack
first mode appears in all supersonic boundary layers, which is more unstable when it is
oblique (three-dimensional). The linear evolution of these modes was confirmed by quite
a few numerical works, such as Fedorov (2011) and Zhong & Wang (2012). When the
unstable modes are accumulated to finite amplitudes, the nonlinear interaction among
different Fourier components becomes the leading-order impact, showing three major
nonlinear regimes, including the oblique-mode breakdown (Thumm 1991; Fasel, Thumm
& Bestek 1993; Chang & Malik 1994; Leib & Lee 1995; Mayer, Von Terzi & Fasel
2011a; Mayer, Wernz & Fasel 2011b), the subharmonic resonance (Saric 1984; Herbert
1988) and the fundamental resonance (Sivasubramanian & Fasel 2015; Hader & Fasel
2019).

The oblique-mode breakdown appears when the dominant perturbations in the early
nonlinear phase are a pair of three-dimensional (3-D) travelling waves with the same
frequency but opposite spanwsie wavenumbers, as sketched in figure 1(a). Such a regime
was pioneered by Thumm (1991) and Fasel et al. (1993) using the direct numerical
simulation (DNS) approach and subsequently studied by Chang & Malik (1994) using
the nonlinear parabolised stability equations (NPSEs) approach. They all found that the
growth rates of the second-order harmonics and the stationary streak mode are equal to
twice those of the oblique modes, because they are driven by the self or mutual interaction
of the oblique modes. Particularly, the streak mode shows a much greater amplitude than
the second-order harmonics. Such a phenomenon was recently explained by Song, Dong
& Zhao (2022) using the weakly nonlinear analysis based on the large-Reynolds-number
asymptotic technique. Considering the growth rate of the travelling Mack mode to be much
smaller than its wavenumber, the transverse and lateral perturbation velocities of the streak
mode, showing a roll structure, are primarily amplified due to the mutual interaction of the
oblique modes, but its streamwise velocity perturbation undergoes a further amplification
due to the lift-up mechanism induced by the roll structure. For a low-Mach-number
supersonic boundary layer, the most unstable linear perturbation is usually the oblique
first mode, which ensures the dominant perturbation in the early nonlinear phase to be
three-dimensional, indicating that the oblique-mode breakdown regime is likely to be
triggered in this configuration.

The subharmonic resonance (SR) appears when the dominant perturbation in the
early nonlinear phase is planar, or two-dimensional (2-D), and the frequency of the
most amplified 3-D perturbations is half of that of the 2-D mode; see the schematic in
figure 1(b). Such a regime usually appears in a subsonic or an incompressible boundary
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Figure 1. Characteristic parameters in the frequency-spanwise-wavenumber space: (a) oblique-mode
breakdown regime; (b) subharmonic resonance regime; (c) fundamental resonance regime. Here, ω0 and β0
denote the fundamental frequency and spanwise wavenumber, respectively. This sketch is a modified version
of figure 10 of Hader & Fasel (2019).

layer, as observed numerically (Herbert 1988) and experimentally (Saric 1984), and
the rapid amplification of the 3-D modes is attributed to the secondary instability (SI)
based on the Floquet theory (Herbert 1988). For supersonic boundary layers, Kosinov,
Maslov & Shevelkov (1990), Kosinov et al. (1994) and Kosinov & Tumin (1996)
reported a generalised subharmonic regime, for which the dominant perturbation is
a 3-D Mack first mode, and the two most promoted SI modes are subharmonic in
frequency. This scenario was later confirmed by the numerical simulations of Mayer et al.
(2011b).

For a hypersonic boundary layer, the 2-D Mack second mode is the most linearly
amplified perturbation, which could be the dominant perturbation in the early nonlinear
phase. Using the DNS approach, the most amplified 3-D modes are found to be those
with the same frequency as the 2-D second mode (Sivasubramanian & Fasel 2015; Hader
& Fasel 2019), which was also confirmed by the secondary instability analysis (SIA)
of Chen, Zhu & Lee (2017). This scenario is referred to as the fundamental resonance
(FR) and a schematic for the FR in the spectrum space is shown in figure 1(c). Based on
the critical-layer theory (Wu 2004; Zhang & Wu 2022), Wu, Luo & Yu (2016) deduced
the evolution equations for the oblique modes and claimed that the 2-D mode acts as
a catalyst to promote the growth of the oblique modes. The 2-D dominant mode and
the small-amplitude oblique modes are found to be phase-locked. Actually, the SI modes
include both the 3-D travelling waves and the stationary streak mode, and the amplitude
of the latter was found to be much greater than those of the former (Brad et al. 2009;
Chou et al. 2011; Sivasubramanian & Fasel 2015; Chynoweth et al. 2019; Hader & Fasel
2019). However, the latter phenomenon so far is not well explained from the dynamic
viewpoint.

For convenience of illustration, each Fourier component with a frequency mω0 and a
spanwise wavenumber nβ0 is denoted by (m, n), where ω0 and β0 are the fundamental
frequency and spanwise wavenumber, respectively. It is seen that in both the SR and FR
regimes, the dominant perturbation in the early nonlinear phase is 2-D. If we choose the
frequency of the 2-D mode to be the fundamental frequency ω0, then the 2-D fundamental
mode is denoted by (1, 0). For the SR, the most unstable 3-D travelling waves are
components (1/2, n), where n is an integer to represent the spanwise wavenumber. The
components (1, 0), (1/2, n) and (1/2, −n) with a non-zero n form a triad resonance
system, for which the mutual interaction of any two components seeds for the growth of
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Figure 2. Sketch of the physical model.

the third one. When the dominant 2-D mode (1, 0) reaches a nonlinear saturation phase,
the oblique modes (1/2, n) and (1/2, −n) could amplify with a greater rate, interpreted as
an SI regime. As the oblique pair (1/2, ±n) reach finite amplitudes, their interaction could
also drive a streak mode (0, 2n), similar to the oblique-mode breakdown regime. However,
for the FR, the most unstable 3-D travelling waves are (1, n) with n being an integer,
and the Fourier components (1, 0), (1, n) and (1, −n) with a non-zero n do not form
a triad resonance system. Although SI analyses have confirmed the rapid amplification
of (1, ±n) in the nonlinear phase (Sivasubramanian & Fasel 2015; Chen et al. 2017;
Hader & Fasel 2019), the energy transfer among different Fourier components due to their
nonlinear interaction is far beyond obvious. Actually, the SI modes include a set of oblique
modes with the same frequency (1, n) and stationary streak modes (0, n), and the Fourier
components (1, 0), (1, n) and (0, n) could form a triad resonance system. Inclusion of
the streak mode in the triad resonance determines the key role of the streak mode in
the SI process of the FR, which is in contrast to the SR. Unfortunately, such a dynamic
mechanism has not been formulated theoretically, especially in the hypersonic boundary
layers, which is the main task of the present work.

The rest part of this paper is structured as follows. In § 2, we introduce the physical
model and the numerical treatment (NPSE approach) for the FR, and the NPSE
calculations showing the crucial role of the streak mode are demonstrated in § 3. In § 4,
we develop an asymptotic theory to describe the dynamic mechanism of the FR, whose
accuracy is confirmed by the NPSE calculations for moderate Reynolds numbers in § 5
and by SI analysis for sufficiently high Reynolds numbers in § 6. The concluding remarks
are present in § 7.

2. Physical model and governing equations

2.1. Physical model
The physical model to be studied is a flat plate inserted into a perfect-gas hypersonic stream
with zero angle of attack, as sketched in figure 2. The plate is assumed to be infinitely thin
such that a rather weak oblique shock forms from its leading edge, and the flow quantities
behind the shock are rather close to those of the oncoming stream. A viscous boundary
layer forms in the close neighbourhood of the wall.
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Principle of fundamental resonance

We study the evolution of a set of Mack instability modes in a selected computational
domain, whose inlet boundary is located at a distance L∗ downstream of the leading
edge, where the Mack modes are already unstable. The inflow perturbations consist of a
dominant 2-D Mack mode and a pair of small 3-D Mack modes with the same frequency.
The problem is described by the Cartesian coordinate x∗ = (x∗, y∗, z∗) with its origin
O at the inlet of the computational domain. The reference length is selected to be the
boundary-layer characteristic thickness at the origin δ∗ = √

ν∗∞L∗/U∗∞, where U∗∞ and ν∗∞
denote the velocity and the kinematic viscosity of the oncoming flow. The dimensionless
coordinate and time are expressed as

x = (x, y, z) = x∗/δ∗, t = t∗U∗
∞/δ∗. (2.1a,b)

In what follows, the superscript ∗ denotes the dimensional quantities. The velocity field
u = (u, v, w), density ρ, temperature T , pressure p are normalised by U∗∞, ρ∗∞, T∗∞,
ρ∗∞U∗2∞ , respectively, where the subscript ∞ denotes the quantities at the oncoming stream.
For unsteady perturbations, the frequency ω, streamwise wavenumber α and spanwise
wavenumber β are normalised as

ω = ω∗δ∗/U∗
∞, α = α∗δ∗, β = β∗δ∗. (2.2a–c)

The flow field is governed by two dimensionless parameters, the Reynolds number R =
U∗∞δ∗/ν∗∞ and the Mach number M = U∗∞/a∗∞, with a∗∞ denoting the sound speed of the
oncoming stream.

2.2. Governing equations
The dimensionless governing equations are

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.3a)

ρ
Du
Dt

= −∇p + 1
R

[
2∇ · (μS) − 2

3
∇ (μ∇ · u)

]
, (2.3b)

1
γ

ρ
DT
Dt

− γ − 1
γ

T
Dρ

Dt
= 1

PrR
∇ · (μ∇T) + (γ − 1) M2

R

[
2μS : S − 2

3
μ(∇ · u)2

]
,

(2.3c)

p = ρT
γ M2 , (2.3d)

where S = [∇u + (∇u)T]/2 is the strain-rate tensor, μ is the dynamic viscosity satisfying
the Sutherland law (μ = (1 + C)T3/2/(T + C) with C = 110.4K/T∗∞), Pr is the Prandtl
number, γ is the ratio of the specific heats and D/Dt = ∂/∂t + u · ∇ denotes the material
derivative. In this paper, we take Pr = 0.72 and γ = 1.4.

The no-slip, non-penetration and isothermal boundary conditions are applied at the wall,

(u, v, w, T) = (0, 0, 0, Tw), at y = 0, (2.4)

where Tw is the dimensionless wall temperature. In the far field, all the perturbations
damp exponentially (the radiating mode as that of Chuvakhov & Fedorov (2016) is not
considered here) and the upper boundary conditions read

(ρ, u, v, w, T) → (1, 1, 0, 0, 1), as y → ∞. (2.5)
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2.3. Perturbation field
The instantaneous flow field φ ≡ (ρ, u, v, w, T) can be decomposed into a steady base
flow ΦB and an unsteady perturbation φ̃,

φ = ΦB(x, y) + φ̃(x, y, z, t), (2.6)

where ΦB = (1/TB, UB, VB, 0, TB) is the compressible Blasius solution. Substituting (2.6)
into (2.3), and subtracting the base flow out, we obtain the nonlinear equations governing
the perturbations,

G
∂φ̃

∂t
+ A

∂φ̃

∂x
+ B

∂φ̃

∂y
+ C

∂φ̃

∂z
+ Dφ̃ + V xx

∂2φ̃

∂x2 + V yy
∂2φ̃

∂y2

+ V zz
∂2φ̃

∂z2 + V xy
∂2φ̃

∂x∂y
+ V xz

∂2φ̃

∂x∂z
+ V yz

∂2φ̃

∂y∂z
= F , (2.7)

where the coefficient matrices G, A, B, C , D, V xx, V yy, V zz, V xy, V yz and V xz and the
nonlinear forcing F can be found in Appendix A. The pressure perturbation p̃ has been
eliminated by the equation of the state (2.3d).

In this paper, we particularly focus on the FR regime, therefore, the introduced
perturbations φ̃ at the inlet of the computational domain should include a 2-D Mack
second mode with a frequency ω0 and a pair of 3-D Mack second modes with the same
frequency ω0 but opposite spanwise wavenumbers ±β0, where ω0 and β0 are referred to
as the fundamental frequency and fundamental spanwise wavenumber, respectively. For
convenience, we use (m, n) to denote a perturbation with a frequency mω0 and a spanwise
wavenumber nβ0. Thus, the three introduced perturbations are denoted by (1, 0), (1, 1)

and (1, −1), respectively. The inflow perturbation can be expressed as

φ̃(0, y, z, t) = ε10φ̂10(y) exp(−iω0t) + ε11φ̂11(y) exp[i(β0z − ω0t)]

+ ε1−1φ̂1−1(y) exp[i(−β0z − ω0t)] + c.c., (2.8)

where εmn measures the initial amplitude of the introduced perturbation (m, n), φ̂mn
denotes the perturbation profile for the (m, n) component, c.c. denotes the complex
conjugation and i ≡ √−1. For a hypersonic boundary layer, the 2-D second mode is
usually more unstable, and the amplitude of mode (1, 0) should be much greater than
modes (1, ±1) due to the historical accumulative effect. Thus, the amplitude of the
introduced 2-D mode ε10 is taken to be much greater than those of the 3-D modes ε11
and ε1−1. Also, the linear growth rates of the two oblique modes are the same, and so we
let ε11 = ε1−1. Note that in reality, the spanwise wavenumbers of the oblique modes may
be not exactly opposite and their amplitudes may be different, but our selection is still a
good demonstration to reveal their resonance mechanism.

2.3.1. Linear stability theory (LST)
The perturbation profile φ̂ for each Fourier mode of the inflow perturbation is obtained
by the linear stability theory (LST). Introducing the parallel-flow assumption, the
perturbation with a frequency ω, a streamwise wavenumber α and a spanwise wavenumber

978 A30-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1043


Principle of fundamental resonance

β is expressed in terms of a travelling-wave form,

φ̃ = εLφ̂(y) exp[i(αx + βz − ωt)] + c.c., (2.9)

where εL � 1 measures its amplitude. Substituting (2.9) into the system (2.7) with O(ε2
L)

terms neglected, we obtain the compressible Orr–Sommerfeld (O-S) equations,

B̃
∂φ̂

∂y
+ V yy

∂2φ̂

∂y2 + D̃φ̂ = 0, (2.10)

where
B̃ = B + iαV xy + iβV yz,

D̃ = −iωG + iαA + iβC + D − α2V xx − β2V zz − αβV xz.

}
(2.11)

Introducing the homogeneous boundary conditions,

[û, v̂, ŵ, T̂] = 0, at y = 0; φ̂ → 0, as y → ∞, (2.12a,b)

we arrive at an eigenvalue problem. For the spatial mode, ω and β are given to be
real, and the eigenvalue α = αr + iαi is complex with the opposite of its imaginary part
representing the growth rate. Usually, the imaginary part is much smaller than the real part
in the boundary-layer flow, i.e. |αi| � |αr|. The numerical details to solve the eigenvalue
system (2.10) with (2.12a,b) can be found in our previous papers (Dong et al. 2020; Song,
Zhao & Huang 2020; Dong & Zhao 2021; Li & Dong 2021).

2.3.2. Nonlinear parabolised stability equations (NPSEs)
The NPSE approach (Bertolotti, Herbert & Spalart 1992; Chang & Malik 1994) is
considered as a more accurate means because it allows the slow streamwise variation of
the perturbation profiles and takes into account the non-parallelism of the base flow. The
only approximation is that the ∂xx terms are neglected to reduce the elliptic system to a
parabolised system, which is quite reasonable for a boundary layer with a smooth wall.
Expressing φ̃ and F in terms of the Fourier series with respect to z and t, we obtain

φ̃(x, y, z, t) =
Me∑

m=−Me

Ne∑
n=−Ne

�

φmn(x, y) exp[i (nβ0z − mω0t)],

F (x, y, z, t) =
Me∑

m=−Me

Ne∑
n=−Ne

F̃ mn(x, y)exp[i (nβ0z − mω0t)],

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.13)

where Me and Ne denote the orders of the Fourier-series truncation. In this paper, we
choose Me = 5 and Ne = 5, which has been confirmed to be sufficient via resolution
tests. Considering that the perturbations are propagating with two length scales, a fast
one with an oscillatory manner and a slow one related to the non-parallelism, we express

the perturbation profile
�

φ in terms of a Wentzel–Kramers–Brillouin (WKB) form,

�

φmn(x, y) = φ̌mn (x, y) exp
(

i
∫ x

x0

αmn(x̄) dx̄
)

, (2.14)

where each Fourier component is denoted by (m, n), ω0 and n0 are the fundamental
frequency and spanwise wavenumber, respectively, and αmn represents the complex
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streamwise wavenumber of (m, n). The shape function φ̌mn varies slowly with x. The
integral in (2.14) starts from a reference streamwise position x0, which is selected as the
inlet of the computational domain for the numerical calculations in this paper, namely,
x0 ≡ 0.

Neglecting the ∂xxφ̌mn terms, (2.7) is reduced to

Ãmn
∂φ̌mn

∂x
+ B̃mn

∂φ̌mn

∂y
+ V yy

∂2φ̌mn

∂y2 + D̃mnφ̌mn = F̌ mn, (2.15)

where the matrices Ãmn, B̃mn and D̃mn are given by

Ãmn = A + 2iαmnV xx + inβ0V xz,

B̃mn = B + iαmnV xy + inβ0V yz,

D̃mn = −imω0G + iαmnA + inβ0C + D − n2β2
0 V zz

−
(

α2
mn − i

dαmn

dx

)
V xx − nαmnβ0V xz,

F̌ mn = F̃ mnexp(−i
∫ x

x0

αmn(x̄) dx̄).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

The inflow perturbations are given by (2.8), and the lower and upper boundary conditions
are

(ǔmn, v̌mn, w̌mn, Ťmn) = (0, 0, 0, 0), at y = 0,

(ρ̌mn, ǔmn, v̌mn, w̌mn, Ťmn) → (0, 0, 0, 0, 0), as y → ∞.

}
(2.17)

To solve for the complex streamwise wavenumber αmn and the profiles φ̌, an iterative
procedure is employed, which can be found from Zhao et al. (2016), and our code
validation is provided in the appendix of Song et al. (2022).

Additionally, if F̌ mn is set to be zero, then (2.15) is recast to the linear PSE (LPSE),
which can be used to track the evolution of each linear mode individually. To be
distinguished, the PSE approach with F̌ mn being retained is referred to as the nonlinear
PSE (NPSE) in this paper.

2.3.3. Secondary instability analysis (SIA) for a wavy base flow
When the amplitude of the fundamental perturbation (1, 0) has reached a finite level, the
rapid growth of the infinitesimal perturbations can be explained by the SI based on a wavy
profile driven by a 2-D quasi-saturated travelling mode.

Since the growth rate of the fundamental mode is usually much smaller than that of the
SI mode, as confirmed by many numerical studies such as those of Sivasubramanian &
Fasel (2015), Chen et al. (2017) and Hader & Fasel (2019), we take α10 to leading order to
be real and introduce ᾰ ≡ Re(α10). Thus, the base flow for the SIA is a superposition of
the steady base flow and a series of quasi-saturated travelling waves. In a moving frame,
the base flow Φ̆B ≡ [ρ̆B, ŬB, 0, 0, T̆B] is expressed as

Φ̆B(x̃, y) = (1/TB, UB − cr, 0, 0, TB)(y) +
MW∑

m=−MW

�

φm0 (y) exp(imᾰx̃) + · · · , (2.18)

where cr = ω0/ᾰ, x̃ = x − crt is the Galilean transformed coordinate and MW denotes
the order of the Fourier-series truncation. The laminar base flow ΦB develops with a
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Principle of fundamental resonance

length scale much greater than the wavelength of the fundamental mode 2π/ᾰ, and so the
non-parallelism of ΦB in the local region is neglected in the present analysis, rendering a
periodic feature of Φ̆B in the streamwise direction.

According to the Floquet theory, the periodic base flow supports the instability modes
φ̃W which can be expressed as

φ̃W(x̃, y, z, t) = εW φ̆W (x̃, y) exp [σ̃ (x̃ + crt) + iβz + iσ̃dᾰx̃] + c.c.,

φ̆W (x̃, y) =
NW∑

n=−NW

φ̂W,n (y) exp (inᾰx̃),

⎫⎪⎪⎬
⎪⎪⎭ (2.19)

where σ̃ represents the growth rate, β is the spanwise wavenumber, σ̃d is the detuning
parameter, and NW is the order of the Fourier-series truncation and εW � 1 measures the
amplitude. For the fundamental resonance, we take σ̃d = 0. The component φ̂W,0 denotes
the streak component, and φ̂W,n with n /= 0 represents the travelling mode. Substituting
(2.18) and (2.19) into (2.7) with O(ε2

W) terms neglected, we arrive at a linear system,

(M0 + σ̃M1 + σ̃ 2M2)φ̆W (x̃, y) = 0, (2.20)

where

M0 = (A + iβV xz)
∂

∂ x̃
+ (

B + iβV yz
) ∂

∂y
+ [D + iβC + (iβ)2V zz]

+ V xx
∂2

∂ x̃2 + V yy
∂2

∂y2 + V xy
∂2

∂ x̃∂y
,

M1 = (A + iβV xz) + 2V xx
∂

∂ x̃
+ V xy

∂

∂y
+ cG,

M2 = V xx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.21)

The wall-normal boundary conditions read

ŭW = v̆W = w̆W = T̆W = 0, at y = 0,

(ρ̆W , ŭW , v̆W , w̆W , T̆W) → 0, as y → ∞.

}
(2.22)

The linear system (2.20) with the homogeneous boundary conditions forms an eigenvalue
problem with the growth rate σ̃ being the eigenvalue. In our paper, we choose (MW , NW) =
(3, 6), which has been confirmed to be of sufficient accuracy. Such an analysis has also
been used in the study of the SI of 2-D Mack second modes in hypersonic boundary layers
(Chen et al. 2017; Xu et al. 2020), and our code validation and discretisation method are
provided by Song, Zhao & Dong (2023).

3. Demonstration of the fundamental resonance regime by NPSE calculations

3.1. Case studies
For demonstration of the FR, we select a wind-tunnel condition of Maslov et al. (2001), for
which the Mach number and temperature of the oncoming stream are 5.92 and 48.69 K,
respectively. Such an oncoming condition was also used by Dong et al. (2020) and Dong
& Zhao (2021). Two wall temperatures as listed in table 1 are selected, which are equal to
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R. Song, M. Dong and L. Zhao

Case M T∗∞ Tw Tw/Tad δ99

A 5.92 48.69 K 6.95 1 19.95
B 5.92 48.69 K 3.47 0.5 13.94

Table 1. Parameters characterising the flow condition.

UB TB

y

0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

Case A
Case B

0 2 4 6 8

5

10

15

20

25
(b)(a)

Figure 3. (a) Streamwise velocity and (b) temperature of the compressible Blasius solution at x = 0 for
Cases A and B. The red and black horizontal lines denote the nominal boundary-layer thicknesses for the
two cases, respectively.

and a half of the adiabatic wall temperature Tad, where Tad is estimated by an empirical
formula in White (2006, p. 512),

Tad = 1 +
√

Pr(γ − 1)M2/2. (3.1)

The nominal boundary-layer thickness for each case is also listed in the table.

3.2. Base flow and its linear instability
The base-flow profiles of UB and TB at x = 0 for the two cases are shown in figure 3. As
the wall temperature decreases, the boundary-layer thickness is reduced and the shear rates
of UB and TB at the wall increase. Solving the O-S equations numerically based on these
base-flow profiles, we obtain the dependence of the growth rates −αi of 2-D Mack modes
on the frequency ω for the two cases, as shown in figures 4(a) and 4(b). Two distinguished
unstable zones appear for each case, which are marked by the Mack first and second modes
(Mack 1987). The second mode is more unstable than the first mode, and decrease of the
wall temperature leads to an enhancement of the second mode and suppression of the first
mode overall. In each panel, we show the results for three Reynolds numbers, namely,
R = 2 × 103, 1 × 104 and ∞ (for this case, the O-S equations reduce to the Rayleigh
equations, which will be shown in § 4.1). Overall, increase of the Reynolds number leads
to a greater growth rate, indicating the inviscid nature of the 2-D Mack modes.
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ω

–αi

0 0.05 0.10 0.15 0.20 0.25

0.002

0.004

0.006

0.008

R = 2 × 103

R = 1 × 104

R = ∞

1st mode

2nd mode

ω
0 0.05 0.10 0.15 0.20 0.25

0.002

0.004

0.006

0.008

1st mode

2nd mode

(b)(a)

Figure 4. Dependence on the frequency ω of the growth rate −αi of 2-D modes for (a) Case A and
(b) Case B.

x
0 400 800 1200
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ω = 0.125
ω = 0.135
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ω = 0.10
ω = 0.11
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Figure 5. Streamwise evolution of the N factors of 2-D second modes for (a) Case A and (b) Case B at
R = 2 × 103.

The accumulated amplitude of each Fourier mode can be quantified by an N factor
according to the LST, defined by

N(x) = exp
[∫ x

0
−αi(x̄) dx̄

]
. (3.2)

In figure 5, we plot the streamwise evolution of the N factors of 2-D second modes
with representative frequencies in the second-mode frequency band for R = 2 × 103. It
is observed that for Cases A and B, the frequencies of the most amplified second modes
from x = 0 to 1200 are ω = 0.11 and ω = 0.125, respectively, and they are selected as the
fundamental frequencies ω0 in the following NPSE calculations.
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R. Song, M. Dong and L. Zhao

Case M Tw/Tad R ω0 β0 ε10 ε1±1

Case A 5.92 1 2 × 103 0.11 0.1 2.5 × 10−3 2.5 × 10−5

Case B 5.92 0.5 2 × 103 0.125 0.1 2.5 × 10−3 2.5 × 10−5

Table 2. Parameters for case studies in § 3.3.

3.3. Calculations of the fundamental resonance
For each case, we calculate the nonlinear evolution of the initial perturbations (2.8)
using the NPSE approach, until the calculation blows up, indicating the emergence of
the transition onset in a short distance downstream (Dong, Zhang & Zhou 2008). The
parameters for Cases A and B are summarised in table 2. For Case A, the contours of
the instantaneous velocity u in the x–z plane at two wall-normal positions are shown in
figures 6(a) and 6(b). For x < 930, the perturbation field is dominated by planar waves;
however, 3-D structures appear at further downstream locations (x > 930) and grow
with a high rate. Panels (c,d) show the time-averaged streamwise velocity at the same
wall-normal positions for comparison, and the low- and high-speed streaks are observed
evidently in the late nonlinear phase. In panel (e), we plot the contours of the time-averaged
streamwise velocity in the y–z plane at x = 1360, where the spanwise localised blue
structure indicates the low-speed streaks. The streamlines show the counter-rotating roll
structures of the streamwise vorticities, which push the near-wall fluids upward, showing
a lift-up mechanism for the formation of the low-speed streaks.

The amplitude of each Fourier component in the physical space can be expressed as

ũ(m,n)
max (x) =

⎧⎪⎨
⎪⎩

maxy

∣∣∣�u mn (x, y) + c.c.
∣∣∣ , m /= 0 ∨ n /= 0,

maxy

∣∣∣�u mn (x, y)
∣∣∣ , m = 0 ∧ n = 0.

(3.3)

In figure 7(a), we plot the streamwise evolution of ũ(m,n)
max , shown by the solid lines. The

amplitude of the fundamental mode (1, 0) agrees well with the linear result predicted
by LPSE (shown by the red circles) until x ≈ 1100, after which it saturates due to the
nonlinearity. The oblique waves (1, ±1) grow with exactly the same rate, and so only
the curve for ũ(1,1)

max is plotted. It agrees with the linear prediction shown by the black
circles until x ≈ 700, after which a drastic amplification is observed. Although the other
Fourier components are not introduced as initial perturbations, they are excited due to the
mutual interaction of the introduced modes. The mean-flow distortion (MFD) (0, 0) and
the harmonic mode (2, 0) are driven by the self-interaction of mode (1, 0), and therefore,
their growth rates are almost twice that of (1, 0) in most of the computational domain,
as confirmed by comparison with the blue crosses. For x > 700, the streak component
(0, 1) and the high-order harmonics (2, 1) grow at almost the same rate as (1, 1), but their
amplitudes differ by a remarkable amount; the amplitude of the streak mode (0, 1) is the
greatest among the three. When the streak mode (0, 1) overwhelms the fundamental mode
(1, 0) and becomes the dominant perturbation, the calculation blows up, indicating that
the transition to turbulence is not far.
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Figure 6. Contours of the velocity field obtained by the NPSE for Case A: (a,b) instantaneous velocity u in
the x–z planes at y = 5 %δ99 and y = 40 %δ99, respectively; (c,d) time-averaged velocity in the x–z planes at
y = 5 %δ99 and y = 40 %δ99, respectively; (e) time-averaged velocity in the y–z plane at x = 1360, where the
arrayed curves show the streamlines.

Alternatively, one can trace the evolution of the perturbation energy of each Fourier
component, which is defined as (Chu 1965)

Emn =
∫ ∞

0

�

φ
†

mnM
�

φmn dy, M = diag
(

TB

γ M2ρB
, ρB, ρB, ρB,

ρB

γ (γ − 1)M2TB

)
,

(3.4a,b)

where the superscript † denotes the complex conjugate with respect to its argument. The
streamwise evolution of Emn for each Fourier component is shown in figure 7(b), and
overall the same feature as in panel (a) is observed. This is quite predictable, because ũ
and T̃ are the dominant components in φ̃ with similar evolution trend, and the evolution
of the perturbation energy should agree overall with that of each dominant component.
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Figure 7. Streamwise evolution of the NPSE results for Case A: (a) amplitude of each Fourier component
û(m,n)

max ; (b) perturbation energy of each Fourier component Emn; (c) energy growth rate of each Fourier
component σE; (d) coefficient of surface friction, where the Cf curve for turbulence is given by the empirical
formula of White (2006, p. 553).

Figure 7(c) further plots the evolution of the growth rate of the perturbation energy, defined
as

σ
(m,n)
E = 1

2Emn

dEmn

dx
. (3.5)

Remarkably, in the interval of x ∈ [900, 1200], as highlighted by the dashed box, the
growth rates of (0, 1), (1, 1) and (2, 1) are almost identical, and much greater than that
of the fundamental mode in the linear phase. This is a representative feature of the FR,
as also observed by Sivasubramanian & Fasel (2015), Chen et al. (2017) and Hader &
Fasel (2019). Such a high growth rate was explained by the SIA as introduced in § 2.3.3. In
the SIA, the base flow is regarded as a superposition of the time- and spanwise-averaged
mean flow and the quasi-saturated 2-D fundamental mode, together with its high-order
harmonics, and the perturbation fields, including the streak mode, the 3-D travelling mode
and higher-order harmonics with the same spanwise wavenumber, are governed by a linear
eigenvalue system (2.20), with the growth rate σ̃ appearing as the eigenvalue.
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Figure 8. Comparison of the growth rate σE obtained by the NPSE calculation with the SIA prediction σ̃ .

In figure 7(d), the streamwise evolution of the coefficients of the skin friction,

Cf =
(2μ

R
∂u
∂y

)
y=0

, (3.6)

are plotted, where u and μ represent the temporal and spanwise average of the streamwise
velocity and the dynamic viscosity. The Cf curve obtained by the NPSE calculation
decreases with x gradually at the beginning, agreeing with the unperturbed laminar-flow
state, but it starts to deviate from the laminar state at x ≈ 500, indicating a moderate
MFD appearing there. The Cf curve reaches its first peak at x ≈ 1000, followed by a
plateau until x ≈ 1300, after which it shows another increase until the blowup position.
The double-increase phenomenon is typical for the fundamental resonance regime, as also
reported by previous works (Chen et al. 2017; Hader & Fasel 2019). The first increase
is associated with the strong MFD induced by the finite-amplitude fundamental mode,
and the following plateau agrees with the region of FR. Due to the FR, the streak mode
becomes the dominant perturbation in the late phase, which, together with the travelling
modes, may drive another type of secondary instability to support the growth of the
high-frequency perturbations. Since these secondary instability modes amplify with high
growth rates, which produce sufficient Reynolds stress to cause the rapid distortion of the
mean flow, the parabolised assumption in the NPSE approach ceases to be valid, leading
to the blowup of the NPSE calculation eventually.

In figure 8, we compare the growth rates of modes (1, 1) and (0, 1), σ
(1,1)
E and σ

(0,1)
E ,

with that predicted by SIA, σ̃ . In the interval x ∈ [900, 1200], the three curves agree with
each other. The perturbation profiles of (0, 1) and (1, 1) obtained by the two approaches
also agree well, as shown in figure 9. In fact, û01, v̂01 and T̂01 are real and ŵ01 is pure
imaginary, which will be discussed in § 4.2.1. Observations in figure 9 also indicate that
the amplitude of the streamwise velocity of the streak mode û01 is much greater than that
of the 3-D travelling mode û11, agreeing with the amplitude evolution in figure 7(a). For
the profiles of the temperature perturbation, the streak mode in the bulk of the boundary
layer T̂01 is also much greater than the 3-D travelling mode T̂11, but it is much weaker
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|ŵ11|

|T̂11| T̂01

–iŵ01
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Figure 9. Comparison of the perturbation profiles for (0, 1) and (1, 1) obtained by the SIA and NPSE
approaches for Case A at x = 1000. The profiles are normalised by the maximum of v̂01.

in the near-wall region. Although the SIA can predict quantitatively the growth rates and
profiles of both the streak mode and 3-D travelling modes in the interval [900, 1200],
the underlining mechanism determining the dominant role of the streak mode in the bulk
region is not obvious. To answer these questions, a more in-depth analysis is required as
will be introduced in the following section. Numerical results for Case B show the same
feature, which will be illustrated in detail in § 5.

4. Asymptotic analysis for the principle of the fundamental resonance

4.1. Flow decomposition and the 2-D fundamental mode
To reveal the principle mechanism of the FR, we perform a weakly nonlinear analysis
based on the high-Reynolds-number asymptotic technique. In the weakly nonlinear phase,
the perturbation field φ̃ = (ρ̃, ũ, ṽ, w̃, T̃) defined in (2.6) includes a set of harmonic
perturbations,

φ̃(x, y, z, t) = ε̄00φ̃00 + ε̄10φ̃10 + ε̄11φ̃11 + ε̄1−1φ̃1−1 + ε̄01φ̃01 + c.c. + h.o.t., (4.1)

where ε̄mn � 1 denotes the amplitude of each component in the nonlinear phase, h.o.t.
denotes the high-order terms, and the subscripts 00, 10, 11 ( and 1–1) and 01 denote the
MFD, the fundamental mode, the 3-D travelling modes and the streak mode, respectively.
According to the numerical results in § 3.3, we know that the amplitude of the fundamental
mode ε̄10 is much greater than those of the 3-D travelling modes and the streak mode,
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namely,
ε̄10 � ε̄11, ε̄10 � ε̄01. (4.2a,b)

In the following analysis, we will focus on the region x > 900, for which the
fundamental mode φ̃10 evolves either in the linear phase or in the nonlinear phase, but
the streak mode and the 3-D travelling modes undergo drastic amplification, as shown
in figure 7(a). The base flow for the nonlinear analysis is chosen as the time- and
spanwise-averaged mean flow, which includes the Blasius solution and the MFD,

(Ū, T̄)(x, y) = (UB, TB)(x, y) + ε̄00(ũ00, T̃00)(x, y). (4.3)

In the early nonlinear phase, the MFD is mainly driven by the fundamental mode, which
also acts back on the fundamental mode to lead to its saturation eventually. Since the
streamwise length scale of the mean flow is much greater than the Mack-mode wavelength,
the non-parallelism of the base flow is negligible in the following analysis.

From the linear stability analysis based on the parallel mean flow (4.3) at a chosen
streamwise location x, we find that the growth rate of the fundamental Mack mode is
much smaller than its wavenumber. We can express the perturbation profiles φ̃10 in terms
of

φ̃10(x, y, t) = φ̂10(y; x) exp
(

i
(∫ x

0
α dx − ω0t

))
, (4.4)

where the streamwise wavenumber α is almost real and O(1), the frequency ω0 is also
taken to be O(1) and φ̂10 is the eigenfunction of the fundamental mode. Asymptotic
analyses, as done by Dong et al. (2020) and Dong & Zhao (2021), showed that the Mack
mode shows a double-deck structure in the high-R approximation, namely, a main layer
where y = O(1) and a viscous Stokes layer where y = O(R−1/2).

The eigenfunction of the fundamental mode ϕ̂10 = (v̂10, p̂10) satisfies the Rayleigh
equation in the main layer based on the mean flow (Ū, T̄),

LRφ̂10 ≡ (dy − H0)ϕ̂10 = 0, (4.5)

where

H0 =
(

Ūy/(Ū − c) −M2S0 − α2T̄/S0
−S0/T̄ 0

)
(4.6)

with S0 = iα(Ū − c) and c ≡ ω/α. The boundary conditions read

v̂10(0) = 0; p̂10(∞) → 0. (4.7a,b)

Such a linear, homogeneous system leads to an eigenvalue problem. For a spatial mode, the
frequency ω is given to be real, and following the numerical method as used by Dong et al.
(2020), Dong & Zhao (2021) and Zhao & Dong (2022), we can calculate the eigenvalue
α = αr + iαi (|αi| � |αr|) and the eigenfunctions. If, for a particular ω, the Mack mode
is neutral, i.e. αi = 0, then the system (4.5) becomes singular, and a critical layer around
the location where Ū = ω/α appears. For a linear critical layer, the leading-order balance
in this layer is between the inertial and viscous terms, and in the numerical process, the
solution can be obtained by detouring the integrating path around the critical point, as
illustrated by Schmid & Henningson (2001, pp. 44–45); an example can be found from
Dong et al. (2020). Other perturbation quantities such as û10 and T̂10 can be obtained by

û10 = − Ūyv̂10 + iαp̂10

S0
, T̂10 = − T̄yv̂10

S0
+ (γ − 1)M2T̄p̂10. (4.8a,b)

Additionally, we take maxy|û10(y)| = 1 for normalisation.
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Because the Rayleigh solution does not satisfy the no-slip condition at the wall, a
viscous Stokes layer needs to be taken into account, whose solutions can be found from
Dong et al. (2020) and so are not presented here.

4.2. The 3-D travelling modes and the streak mode
It is seen from figure 7(a) that after the fundamental 2-D mode reaches a finite amplitude,
both the 3-D travelling modes (1, ±1) and the streak mode (0, 1) amplify with the
same rate, which is much greater than that of the fundamental mode, showing an FR
phenomenon. To reveal this mechanism, we probe the evolution of the perturbations φ̃1±1
and φ̃01, which are expressed as

φ̃11 = φ̂11(y) exp(i(αrx + β0z − ω0t) + σx),
φ̃1−1 = φ̂1−1(y) exp(i(αrx − β0z − ω0t) + σx),

(4.9a,b)

φ̃01 = φ̂01(y) exp(iβ0z + σx), (4.10)

where σ denotes their common growth rate. Due to the fundamental resonance, the
streamwise wavenumber αr of modes (1, ±1) is the same as that of the fundamental 2-D
mode, and all these modes grow with the same rate σ . Although the growth rate σ could
be much greater than that of the fundamental mode, its magnitude is still much smaller
than unity, i.e.

|αi| � σ � 1. (4.11)

4.2.1. Leading-order asymptotic solutions in the main layer
In the main layer where y ∼ 1, balancing the governing equations and taking into account
the scalings of α, β and ω, we obtain that all the quantities of the 3-D travelling mode,
û1±1, ρ̂1±1, T̂1±1, p̂1±1 are of the same order, but those of the streak mode are not. The
streamwise wavenumber of the streak mode is zero, and its streamwise growth rate σ

is small. Thus, the streamwise derivative of φ̂01 with respect to x is only O(σ φ̂01), much
smaller than its derivatives with respect to y and z. Then, from the balance of the continuity
equation, we obtain that the streamwise perturbation û01 must be much greater than v̂01
and ŵ01. For convenience, we let û01 ∼ 1 (because its magnitude is measured by ε̄01), then
balance of the continuity equation leads to

v̂01 ∼ ŵ01 ∼ σ. (4.12)

Here, φ̃11 is driven by the nonlinear interaction of φ̃01 and φ̃10, therefore, we have

ε̄11 = ε̄10ε̄01. (4.13)

In the spanwise momentum equation of the streak mode, the inertial term uwx ∼
ε̄01σ Ūŵ01, the pressure-gradient term pz ∼ ε̄01iβp̂01 and the nonlinear terms O(ε̄10ε̄11)
should balance, namely,

ε̄01σ
2 ∼ ε̄01p̂01 ∼ ε̄10ε̄11, (4.14)

leading to

σ ∼ ε̄10, p̂01 ∼ σ 2 ∼ ε̄2
10. (4.15a,b)

In the balance of the streamwise momentum equation, the nonlinear terms O(ε̄10ε̄11)
are much smaller than the inertia term O(ε̄01σ), and so they do not appear in the
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Principle of fundamental resonance

leading-order balance. For convenience, we introduce

σ̄ = ε̄−1
10 σ = O(1). (4.16)

It should be noted that one may be dissatisfied with (4.15a) if the NPSE results are
re-examined, because figure 7(a) shows that in the FR region, ε̄10 ∼ 0.1, but figure 8
indicates that σ ∼ 0.01. Actually, the scaling relation (4.15a) is from a priori analysis from
the properties of the governing equations, instead of an observation from the numerical
results at a finite Reynolds number. The purpose to prescribe this scaling relation is to
construct a consistent mathematical description to explain the physics of FR, which should
agree with the reality as long as the Reynolds number is sufficiently high. Therefore, the
ratio of σ and ε̄01 is expected to approach O(1) as R increases, which will be displayed in
figure 22.

Likewise, balancing the energy equation and the equation of the state for φ̂01, we obtain
that T̂01 ∼ ρ̂01 ∼ 1. Thus, we introduce

(û01, v̂01, ŵ01, p̂01, ρ̂01, T̂01) = (ŭ01, ε̄10v̆01, ε̄10w̆01, ε̄
2
10p̆01, ρ̆01, T̆01) + · · · . (4.17)

The physical quantities for the 3-D travelling waves φ̂1±1 are all O(1). For convenience,
both φ̂1+1 and φ̂11 are used to denote the 3-D travelling mode (1, 1) in this paper.

Collecting the leading-order terms from the governing equations of the 3-D travelling
modes φ̃1±1, we obtain

Ŝ0M2p̂1±1 + iαrû1±1 + v̂′
1±1 ± iβŵ1±1 = F1±1,1

≡ −M2iαrp̂10ŭ01 +
(

Ŝ0ρ̂10 − T̄y

T̄2 v̂10

)
T̆01 − T̄(iαrû10 + v̂′

10)ρ̆01, (4.18a)

Ŝ0û1±1 + Ūyv̂1±1 + iαrT̄p̂1±1 = F1±1,2 ≡ −v̂10ŭ′
01 − iαrû10ŭ01 + iαrT̄2p̂10ρ̆01,

(4.18b)

Ŝ0v̂1±1 + T̄p̂′
1±1 = F1±1,3 ≡ −iαrv̂10û01 − Ŝ0T̄ v̂10ρ̂01, (4.18c)

Ŝ0ŵ1±1 ± iβT̄p̂1±1 = F1±1,4 ≡ 0, (4.18d)

Ŝ0T̂1±1 + T̄yv̂1±1 − (γ − 1) M2T̄Ŝ0p̂1±1 = F1±1,5

≡ −v̂10T̆ ′
01 − iαr[T̂10 − (γ − 1)M2T̄p̂10]ŭ01 − T̄(T̄yv̂10 − Ŝ0T̂10)ρ̆01, (4.18e)

− T̂1±1

T̄
+ γ M2p̂1±1 − T̄ρ̂1±1 = F1±1,6 ≡ ρ̂10T̆01 + T̂10ρ̆01, (4.18f )

where Ŝ0 = −iω + iαrŪ and in what follows, the prime denotes the derivative with respect
to its argument. Equation (4.18a) is obtained by eliminating ρ̂1±1 and T̂1±1 from the
continuity equation, the energy equation, and the equation of the state. It is seen that a
critical layer appears at a position where Ū = ω/αr, and we use the standard treatment for
the linear critical layer as done by Schmid & Henningson (2001, pp. 44–45) to avoid the
singularity.

If the profiles of the streak mode φ̆01 are known, then (4.18) forms an inhomogeneous
linear system. However, they are coupled with the unknown vector of the streak mode φ̆01,
rendering a triad resonance system.
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The leading-order governing equations for the streak mode are

σ̄ ŭ01 + v̆′
01 + iβw̆01 = 0, (4.19a)

σ̄ Ūŭ01 + Ūyv̆01 = 0, (4.19b)

σ̄ Ūv̆01 + T̄p̆′
01 = F01,3 ≡ −v̂

†
10(v̂

′
11 − iαrû11 − T̄Ŝ0ρ̂11) −

(
2(v̂

†
10)

′ − T̄y

T̄
v̂

†
10

)
v̂11 + c.c.,

(4.19c)

σ̄ Ūw̆01 + iβT̄p̆01 = F01,4 ≡ −(v̂
†
10ŵ11)

′ + T̄y

T̄
v̂

†
10ŵ11 − c.c., (4.19d)

σ̄ ŪT̆01 + T̄yv̆01 = 0, T̆01 + T̄2ρ̆01 = 0. (4.19e, f )

From the symmetric feature of these equations, we know that ŭ01, v̆01, T̆01 and p̆01 are
real, and w̆01 is pure imaginary. However, the detouring method near the critical layer is
used and thus breaks the symmetric feature slightly. However, this effect is very weak and,
therefore, to the leading-order approximation, we also consider ŭ01, v̆01, T̆01 and p̆01 to be
real, and w̆01 to be pure imaginary.

Remarkably, it is seen from (4.19) that the transverse and lateral velocities of the streak
mode are forced by the nonlinear interaction of the 2-D fundamental and 3-D travelling
modes, while its streamwise velocity with a greater amplitude is driven by the linear lift-up
mechanism. Such a mechanism is reminiscent of the stronger amplification of the streak
mode in the oblique breakdown regime observed by Song et al. (2022).

The attenuation condition is imposed in the far field, and the analysis of the wall layer, as
will be shown in § 4.3, implies that the non-penetration condition is imposed at the lower
boundary,

( p̂11, p̂1−1, p̆01) → 0, as y → ∞, (4.20a–c)

v̂11(0) = v̂1−1(0) = v̆01(0) = 0. (4.20d–f )

Combining (4.18) and (4.19), we obtain a six-order linear differential system,

dϕ̂

dy
= Aϕ̂, (4.21)

where ϕ̂ = (v̂11, p̂11, v̂1−1, p̂1−1, v̆01, p̆01) and A can be deduced readily from (4.18) and
(4.19). Such a homogeneous system with the homogeneous boundary conditions forms
an eigenvalue system, with σ̄ being the eigenvalue. The numerical approaches as used by
Malik (1990) can be employed to solve this system.

Now we are interested in the near-wall behaviours of the perturbation fields for
components (0, 1) and (1, 1). Although v̂11 and v̆01 satisfy the non-penetration condition
at the wall, the perturbations of the streamwise velocity, spanwise velocity and temperature
may be finite or even blow up, disagreeing with the no-slip and isothermal boundary
conditions. From a scaling estimate, we find that as y → 0,

v̆01 ∼ y ln y, (ŭ01, T̆01) ∼ ln y, w̆01 ∼ 1, p̆01 ∼ 1, (4.22)

v̂11 ∼ y ln y, (û11, T̂11) ∼ ln y, ŵ11 ∼ 1, p̂11 ∼ 1. (4.23)

In fact, the inhomogeneous forcing terms in (4.19d) in the vicinity of the wall are
expanded as

F01,4 = Â2 + Â3y + · · · , (4.24)
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Principle of fundamental resonance

where

Â2 = −2iIm[λ†
vŵ11(0)], Â3 = −2iIm

[
2λ†

vŵ′
11(0) +

(
λ̄†

v − λTλ
†
v

Tw

)
ŵ11(0)

]
, (4.25)

ŵ11(0) = βTw

ω
p̂11(0), ŵ′

11(0) =
[
αβλTw

ω2 + βλT

ω

]
p̂11(0), (4.26)

with λv = v̂10,y(0), λ̄v = v̂10,yy(0), λ = Ūy(0) and λT = T̄y(0). Thus, applying y → 0 to
(4.19), we have

v̆′
01 = v̆01

y
+ iβ

σ̄λy
[iβ(Tw + λTy)p̆01 − Â2] − iβÂ3

σ̄λ
+ · · · , (4.27a)

p̆′
01 = − σ̄λy

Tw
v̆01 + · · · . (4.27b)

The solutions of the transverse velocity and pressure of the streak mode are

v̆01 → iβ
σ̄λ

(
−Â3 + λTÂ2

Tw

)
y ln y + · · · , p̆01 → Â2

iβTw
+ · · · , (4.28)

and the other perturbations behave like

(ŭ01, T̆01) →
(

1,
λT

λ

)
iβ

σ̄ 2λ

(
Â3 − λTÂ2

Tw

)
ln y + · · · , w̆01 → 1

λσ̄

(
Â3 − λTÂ2

Tw

)
+ · · · .

(4.29)

Obviously, ŭ01 and T̆01 are unbounded at the wall, which requires consideration of the
viscosity in a thin layer, referred to as the viscous wall layer.

4.3. Viscous wall layer
Since the streak mode is singular at the wall, a viscous wall layer has to be taken into
account. Balancing the inertial and viscous terms, we obtain the thickness of the wall
layer, y ∼ (ε̄10R)−1/3. For convenience, we introduce a local coordinate

Y = ε−1y = O(1), ε ≡ (ε̄10R)−1/3. (4.30)

From the main-layer estimate (4.29), we obtain the magnitude of the streak mode in the
wall layer,

(ŭ01, v̆01, p̂01, T̆01, ρ̆01) ∼ (ln ε, ε ln ε, 1, ln ε, ln ε). (4.31)

However, to satisfy the wall-layer governing equations, the perturbation spanwise velocity
must come to the leading-order continuity equation. Thus, we let

w̆01 ∼ ln ε, (4.32)

which decays algebraically as Y → ∞. In the spanwise momentum equation, the
leading-order balance is between the pressure gradient and the inhomogeneous forcing,
and the inertial term σ Ūŵ01 appears only in the second order, which must balance
with the second-order pressure gradient iβp̂(2)

01 , where p̂(2)
01 denotes the second-order
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pressure perturbation. This balance leads to p̂(2)
01 ∼ ε̄2

10ε ln ε, and as Y → ∞, the spanwise
velocity perturbation ŵ01 → ε̄10 ln εY−1 or w̆01 → ln εY−1.

Therefore, the streak-mode perturbation field is expanded as

(ŭ01, v̆01, w̆01, T̆01) = ln ε(Ŭ0, εV̆0, W̆0, T̆0) + (Ŭ1, εV̆1, W̆1, T̆1) + · · · , (4.33a)

p̆01 = P̆0 + ε ln εP̆1 + · · · , (4.33b)

where P̆0 = Â2/(iβTw). The presence of ε ln εP̆1 and εV̆1 induces an O(ε ln ε) correction
to the main-layer solution.

The perturbation quantities of the corresponding 3-D travelling mode in the wall layer
are expanded as

(ŭ11, v̆11, w̆11, p̆11, T̆11, ρ̆11) = (ln εÛ0, ε ln εV̂0, Ŵ0, P̂0, ln εT̂0, ln εR̂0) + · · · . (4.34)

The leading-order governing equations for the streak mode read

σ̄ Ŭ0 + V̆ ′
0 + iβW̆0 = 0, (4.35a)

λσ̄YŬ0 + λV̆0 − CwŬ′′
0 = 0, P̆′

1 = 0, (4.35b,c)

iβTwP̆0 = Â2, λσ̄YW̆0 − CwW̆ ′′
0 + iβTwP̆1 = 0, (4.35d,e)

λσ̄YT̆0 + λTV̆0 − Cw

Pr
T̆ ′′

0 = 0, (4.35f )

where Cw = μwTw. This is a linear homogeneous system, in which the nonlinear
interaction of the fundamental mode and the 3-D travelling mode does not appear in
the leading-order balance. Because the viscosity appears in the leading order of the
streak-mode equations, the no-slip conditions are satisfied at the lower boundary,

Ŭ0(0) = V̆0(0) = W̆0(0) = T̆0(0) = 0. (4.36)

In the upper limit, the perturbation field must match the main-layer solutions, namely,

(Ŭ0, V̆0, W̆0, T̆0) →
(

1, −σ̄Y, O(1/Y),
λT

λ

)
iβ
λσ̄ 2

(
Â3 − λTÂ2

Tw

)
as Y → ∞. (4.37)

From (4.35d,e), the matching condition and the no-slip condition (W̆0(0) = 0), we find
that

P̆0 = Â2

iβTw
, W̆0 = − iπβTwP̆1

C1/3
w (λσ̄ )2/3

(
Gi(η) − Gi(0)

Ai(0)
Ai(η)

)
, (4.38)

where η = (λσ̄/Cw)1/3Y , Ai and Gi are the Airy’s functions of the first kind and the
Scorer’s function, respectively; see Abramowitz & Stegun (1964, p. 448).
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Principle of fundamental resonance

Equating (4.35a,b,e) and eliminating Ŭ0, W̆0 and P̆0, we obtain

CwV̆(4)
0 − λσ̄YV̆ ′′

0 = 0, (4.39)

whose solution reads

V̆0 = C̄
∫ η

0

∫ η̄

0
Ai(η̂) dη̂ dη̄, (4.40)

where C̄ is a constant to be determined later. The upper limit of V̆0 is

V̆0 →
[

1
3
(λσ̄/Cw)1/3Y − 0.2588

]
C̄, as Y → ∞. (4.41)

Comparing with the matching condition (4.37), we obtain

C̄ = −3iβC1/3
w

(λσ̄ )4/3

(
Â3 − λTÂ2

Tw

)
. (4.42)

The implication is that in the main layer, the second-order perturbation is driven by an
outflux ε ln εV∞ with

V∞ = −0.2588C̄ = 0.7764iβC1/3
w

(λσ̄ )4/3

(
Â3 − λTÂ2

Tw

)
. (4.43)

Thus, to predict the growth rate σ̄ more accurately, an improved boundary condition will
be introduced in § 4.4.

Substituting (4.40) into the continuity equation (4.35a), we obtain

Ŭ0 = − 1
σ̄

(
(λσ̄/Cw)1/3C̄

∫ η

0
Ai(η̄)dη̄ + iβW̆0

)
. (4.44)

The energy equation (4.35e) leads to

T̆0 = Pr1/3λTπ

C1/3
w λσ̄

[
−Ai

∫ ξ

0
V̆0Bi(ξ̄ )dξ̄ + Bi

∫ ξ

0
V̆0Ai(ξ) dξ

]
, (4.45)

where ξ = (λσ̄Pr/Cw)1/3Y . Applying (4.35b) at Y = 0, we obtain Ŭ′′
0 (0) = 0, which leads

to

P̆1 = −3iAi′(0)C1/3
w

Twβ(λσ̄ )1/3

(
Â3 − λTÂ2

Tw

)
. (4.46)

The governing equations for the 3-D travelling mode are

iαÛ0 + V̂ ′
0 = −iαM2p̂w0Ŭ0 − iωρ̂w0T̆0 + (iαûw0 + λv)T−1

w T̆0, (4.47a)

−iωÛ0 = −iαûw0Ŭ0 − λvYŬ′
0 − iωT−1

w ûw0T̆0, (4.47b)

iωŴ0 + iβTwP̂0 = 0, (4.47c)

−iωT̂0 = −iα[θ̂w0 − (γ − 1)M2Twp̂w0]Ŭ0 − λvYT̆ ′
0 − iωT−1

w θ̂w0T̆0, (4.47d)

where ( p̂w0, ûw0, θ̂w0, ρ̂w0) = ( p̂10(0), û10(0), T̂10(0), ρ̂10(0)). It is seen that P̆0, V̆0, W̆0
and P̆1 do not appear in the leading-order balance. From the Rayleigh equation (4.5), we

978 A30-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1043


R. Song, M. Dong and L. Zhao

know that(
ûw0, λv, ρ̂w0, θ̂w0

)
=
(

αTw

ω
,

(
iωM2 + α2Tw

iω

)
,

M2

Tw
, (γ − 1)M2Tw

)
p̂w0. (4.48)

The viscous effect of the 3-D travelling mode is secondary in the wall layer, and so only
the non-penetration condition is satisfied at the lower boundary,

V̂0(0) = 0. (4.49)

Solving the above system, we obtain the solutions for the streamwise velocity and
temperature of the 3-D travelling mode,

Û0 =
[
α2Tw

ω2 Ŭ0 +
(

M2 − α2Tw

ω2

)
YŬ′

0 + α

ω
T̆0

]
p̂w0, (4.50)

T̂0 =
[(

M2 − α2Tw

ω2

)
YT̆ ′

0 + (γ − 1)M2T̆0

]
p̂w0. (4.51)

It is seen that the no-slip and isothermal conditions are satisfied automatically, i.e. Û0(0) =
T̂0(0) = 0. Integrating (4.47a), we obtain the solution for the transverse velocity,

V̂0 =
∫ Y

0
−iαp̂w0

[(
M2 + α2

ω2

)
Ŭ0 +

(
M2 − α2

ω2

)
ȲŬ′

0 + α

ω
T̆0

]
dȲ. (4.52)

In the upper limit, we can estimate, by dropping the O(Y) unbounded part, the outflux to
the main layer,

V1∞ ≡ αβp̂w0C1/3
w

σ̄ 7/3λ4/3

[
C1

(
M2 + α2

ω2

)
+ C2

(
M2 − α2

ω2

)
+ C3

λTα

λω

](
Â3 − λTÂ2

Tw

)
.

(4.53)

We obtain from numerical calculations that C1 = −0.8869, C2 = 0.1139 and C3 =
−1.0221.

Interestingly, from (4.51), we find that the second term of T̂0 appears as (γ − 1)M2T̆0.
Although we take M = O(1) in this paper, the factor M2 may be numerically large for a
hypersonic case. Thus, for a finite-R case, ε̄11T̂0 could be greater than ε̄01T̆0 in the near-wall
region, as observed in figure 9.

If we go to the second order, the perturbation of the streamwise velocity and temperature
of the 3-D travelling waves would also approach constants, which requires a Stokes layer
to satisfy the no-slip condition. Balancing the unsteady and viscous terms, we obtain that
the thickness of the Stokes layer is y ∼ R−1/2 for ω = O(1). Since they do not affect
the leading-order balance, the Stokes-layer analysis is omitted in this paper; the detailed
Stokes-layer solution can be found from Dong et al. (2020).

There is another issue that we would like to emphasise. From (4.28), we know that

v̆01 ∼ Ĉy ln y, as y → 0, (4.54)

where Ĉ is a constant. Under the wall-layer coordinate, this asymptotic behaviour is
translated to

v̆01 ∼ ε ln εYĈ + εĈY ln Y. (4.55)

In the wall layer where Y = O(1), the two terms on the right-hand side separate into two
different scales. The wall-layer expansion (4.33) indicates that the above scale separation
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leads to two orders of solutions (Ŭ1, V̆1, W̆1, T̆1) in the wall layer. The leading-order
solution (4.41) matches the leading-order term in (4.55), where the O(1) part of (4.41)
induces an outflux to the main layer. To avoid lengthy mathematical argument, we do
not show the second-order solution in the wall layer. Although ignoring the second-order
solution of the wall layer will prevent us from constructing a consistent composite solution
for the whole boundary layer, the leading-order solution is sufficient to derive a viscous
correction to the main-layer solution, as will be demonstrated in the next subsection.
Therefore, the numerical justification of the perturbation profiles, as will be displayed
in figures 19 and 20, will be only focus on the comparison of the asymptotic predictions
and the NPSE calculations in the main layer.

4.4. Improved asymptotic theory
Indeed, the second-order terms in the main-layer expansion (4.17) should be of O(ε ln ε),
which is driven by the wall-layer outflux ε ln εV∞ and ε ln εV1∞. Since the value of
ε ln ε is usually not small, neglecting it may lead to a quantitatively large error. As
demonstrated by Dong et al. (2020), if the corrections from the lower boundary are taken
into account, the accuracy of the main-layer solutions could be improved significantly.
Thus, the improved boundary conditions for (4.20d–f ) are derived,

v̂01(0) = ε ln εV∞, v̂11(0) = v̂1−1(0) = ε ln εV1∞, (4.56)

where V∞ and V1∞ were defined in (4.43) and (4.53), respectively. Since Â3 and Â2 in
V∞ and V1∞ are functions of p̂11(0), the boundary condition (4.56) is homogeneous. Now
the improved strategy is to solve the eigenvalue system (4.21) with boundary conditions
(4.20a–c) and (4.56). The improved approach includes the impact of Reynolds number
explicitly.

4.5. Discussion
From the above asymptotic analysis, we have described the skeleton of the fundamental
resonance in hypersonic boundary layers by a triad resonance system appearing among
the 2-D fundamental mode (1, 0), the 3-D travelling mode (1, 1) and the streak mode
(0, 1). Here, the most distinguished feature is that the amplitude of the streamwise velocity
component of the streak mode (streak component) is much greater than those of the
transverse and lateral velocity components (roll components); therefore, the magnitude
of the terms in the momentum equation governing the streak component is much greater
than that governing the roll components. The mutual interaction of modes (0, 1) and (1, 1)

could drive the formation of the roll components (see (4.19c,d)), but is too small to affect
the leading-order streamwise momentum equation of the streak mode.

The conditions for the triad resonance include: (1) the dimensionless growth rates of
the streak mode (0, 1) and the 3-D travelling modes (1, ±1) are of the same order as the
dimensionless amplitude of the fundamental mode ε̄10 (see (4.15a)); (2) the magnitude of
the roll structure is smaller by a factor of O(σ ) than that of the streak structure (see (4.12)).
Such scaling relations could not be prescribed by the SIA, which can also be regarded as
a distinguished feature of the FR regime.

The value of the present asymptotic analysis is to reveal the intrinsic mechanism of the
fundamental resonance from the dynamic point of view, as summarised in the schematic
in figure 10. The nonlinear interaction of the fundamental mode and the streak mode seeds
the growth of the 3-D travelling mode; the nonlinear interaction of the fundamental Mack
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Figure 10. Sketch of the principle of the FR.
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Figure 11. Asymptotic structures of (a) φ̂10, (b) φ̂01 and (c) φ̂1±1, where ε ≡ (ε̄10R)−1/3.

mode φ̂10 and the 3-D travelling modes φ̂1±1 drives the roll components of the streak
mode, v̂01 and ŵ01; the stronger amplification of the streak component of the streak mode
is due to the linear lift-up mechanism.

The aforementioned analyses also indicate that the transverse asymptotic structures for
different Fourier components are different. As shown in figure 11, the 2-D fundamental
mode φ̂10 shows a double-deck structure, namely, a main layer of O(1) and a thinner
Stokes layer of O(R−1/2); the streak mode φ̂01 shows an asymptotic structure with a
main layer of O(1) and a wall layer of O(ε); for the 3-D travelling mode φ̂11, a main
layer of O(1), a wall layer of O(ε) and a thinner Stokes layer of O(R−1/2) are observed.
The wall-layer solutions of φ̂01 and φ̂1±1 communicate with the main-layer solutions via
outflux velocities, which are both O(ε ln ε). Inclusion of these effects leads to construction
of the improved boundary conditions of the main-layer equations, which could increase
the accuracy of the asymptotic predictions of both the growth rates and the perturbation
profiles in the main layer.

978 A30-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1043


Principle of fundamental resonance

Case M Tw/Tad R ω0 β0 ε10 ε1±1

Case A1 5.92 1 2 × 103 0.110 0.1 2.5 × 10−3 2.5 × 10−9

Case A2 5.92 1 4 × 103 0.110 0.1 2.5 × 10−3 2.5 × 10−9

Case A3 5.92 1 6 × 103 0.110 0.1 2.5 × 10−3 2.5 × 10−9

Case A4 5.92 1 8 × 103 0.110 0.1 2.5 × 10−3 2.5 × 10−9

Case A5 5.92 1 1 × 104 0.110 0.1 2.5 × 10−3 2.5 × 10−9

Case B1 5.92 0.5 2 × 103 0.125 0.1 2.5 × 10−3 2.5 × 10−9

Case B2 5.92 0.5 4 × 103 0.125 0.1 2.5 × 10−3 2.5 × 10−9

Case B3 5.92 0.5 6 × 103 0.125 0.1 2.5 × 10−3 2.5 × 10−9

Case B4 5.92 0.5 8 × 103 0.125 0.1 2.5 × 10−3 2.5 × 10−9

Case B5 5.92 0.5 1 × 104 0.125 0.1 2.5 × 10−3 2.5 × 10−9

Table 3. Parameters for case studies in § 5.

5. Verification of the asymptotic theory by NPSE calculations for moderate R values

5.1. Parameters of the case studies
To verify the asymptotic theory in § 4, we choose a set of case studies with the same
Mach number but different wall temperatures and Reynolds numbers, as listed in table 3.
Each case is labelled by a two-digit character, the first and second of which distinguish
the wall temperature and the Reynolds number, respectively. The frequency ω0, spanwise
wavenumber β0 and initial amplitude ε10 of the fundamental 2-D mode are the same as
those in § 3, but the initial amplitudes of the oblique modes ε1±1 are reduced to be 2.5 ×
10−9, which enlarges the streamwise region of the fundamental resonance.

5.2. Evolution of the fundamental modes
Figure 12(a,c) show the amplitude evolution of the fundamental mode (1, 0) and the MFD
(0, 0) obtained by NPSE calculations for Cases A1–A5 and Cases B1–B5, respectively,
and figure 12(b,d) display their zoom-in plots in the nonlinear phase. For all the Reynolds
numbers, the mode (1, 0) becomes saturated at x ≈ 1000 for Case A and x ≈ 800 for
Case B. Overall, the saturated amplitudes of both (1, 0) and (0, 0) components decrease
with increase of R, except mode (1, 0) for Case A1. Since the MFD is mainly driven by
the self-interaction of the fundamental mode, its order of magnitude is square of that of
the latter.

Figure 13 compares the profiles of the streamwise velocity and temperature of the base
flow (UB, TB) with those of the mean flow (Ū, T̄). The difference between the two families
of curves is quite limited.

In figure 14, we compare the wavenumber and growth rate of the Rayleigh solutions and
NPSE calculations, where only Cases A5 and B5 are chosen for demonstration. Although
there exist small discrepancies between the two families of curves, the overall trends agree.
The error is attributed to the nonlinear, non-parallel and viscous effects.

Figure 15 shows the comparison of the perturbation profiles obtained by Rayleigh and
NPSE calculations. The largest error appears in the near-wall region and the critical layer,
because the viscosity, neglected in the Rayleigh equation (4.5), is more important there.
However, the overall agreement is quite satisfactory.
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Figure 12. Evolution of the amplitude of modes (1, 0) and (0, 0) obtained by NPSE: (a,b) results for Cases
A1–A5; (c,d) results for Cases B1–B5. Panels (b,d) are the zoom-in plots of panels (a,c), respectively.

5.3. The 3-D travelling mode and the streak mode
Figure 16(a) shows the evolution of the amplitudes of (1,1) and (0,1) obtained by NPSE
calculations for Cases A1–A5. Being similar to figure 7, a mild increase for the 3-D
travelling mode (1, 1) before x ≈ 720 is observed, which is determined by its linear
instability. After that, a drastic amplification occurs for both (1, 1) and (0, 1). In panel (b),
we also plot their growth rates, which are nearly identical and increases monotonically in
the interval of x ∈ [900, 1200], indicating the FR phenomenon. The increase of the growth
rates is attributed to the increase of the amplitude of the fundamental mode (1, 0), as
predicted by the asymptotic analysis (4.15a). Similar observations can be found in panels
(c,d) for Cases B1–B5. However, the position where FR appears is promoted to x ≈ 650,
because the fundamental mode reaches a finite amplitude at an earlier position due to its
higher growth rate.
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Figure 13. Comparison of the base flow ΦB and the time- and spanwise-averaged mean flow Φ̄ for Case A5
and Case B5 at x = 1000: (a) streamwise velocity; (b) temperature.
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Figure 14. Comparison of (a) the wavenumber αr and (b) the growth rate −αi of mode (1, 0) obtained by the
NPSE calculations and the Rayleigh solutions for Case A5 and Case B5.

Comparing with figure 14(b), we find that the FR appears before the mode (1, 0) reaches
the nonlinear saturation phase. At the FR regions (x ∈ [900, 1200]] for Case A and x ∈
[650, 1000] for Case B), both the amplitude of the fundamental mode ε̄01 and the growth
rate of the secondary instability mode σ increase with x, agreeing qualitatively with the
scaling relation (4.15a).

To confirm quantitatively the asymptotic prediction of the growth rate of the secondary
instability mode, figure 17 compares the NPSE results with the asymptotic predictions
of both the original and improved versions. The growth rate of the NPSE calculation is
normalised by the amplitude of the fundamental mode at each x,

σ̄ (m,n)(x) = σ
(m,n)
E (x)

1
2

ũ(1,0)
max (x)

, (5.1)
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Figure 15. Comparison of the perturbation profiles of the fundamental mode (1, 0) obtained by the NPSE
calculation and the Rayleigh solutions for (a,b) Case A5 and (c,d) Case B5 at x = 1000.

where σ
(m,n)
E and u(1,0)

max are defined in (3.5) and (3.3), respectively. Here, the growth rates
of (0, 1) and (1, 1) obtained by NPSE are both shown. In the FR regions, x ∈ [900, 1200]
for Case A5 and x ∈ [650, 1000] for Case B5, the normalised growth rates σ̄ (0,1) and
σ̄ (1,1) remain almost constant, confirming the scaling relation (4.15a). The growth rate of
the original asymptotic theory σ̄Asmp is obtained by solving (4.21) with (4.19), shown by
the red lines in the figure. Overall, σ̄Asmp does not change much with x in the FR region,
showing the same feature as the NPSE calculations, but its value is almost three times
greater than σ̄ (0,1) or σ̄ (1,1). If the impact of the viscous wall layer is taken into account, as
predicted by the improved asymptotic theory by solving (4.21) with (4.20a–c) and (4.56),
then the agreement with the NPSE results is much better, as indicated by the blue lines in
the figure.

In figure 18, we show the impact of R on the predictions of the growth rate σ̄ , where only
the curves for σ̄ (0,1) are plotted for the NPSE calculations. Again, the improved asymptotic
predictions show a better agreement with the NPSE calculations than the original
asymptotic prediction, and its relative error is only approximately 20 %. The discrepancy
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Figure 16. Evolution of the (a,c) amplitude and (b,d) growth rate of (1, 1) and (0, 1) components:
(a,b) Cases A1–A5; (c,d) Cases B1–B5.
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Figure 17. Dependence on x of the normalised growth rate obtained by the NPSE calculation, the asymptotic
prediction and the improved asymptotic prediction for (a) Case A5 and (b) Case B5.
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Figure 18. Dependence on R of the normalised growth rate σ̄ obtained by the NPSE calculation, the
asymptotic prediction and the improved asymptotic prediction at x = 1000: (a) Cases A1–A5; (b) Cases
B1–B5.

is acceptable because in the asymptotic theory, the impact of the high-order viscosity, the
non-parallelism and the higher-order Fourier components are excluded.

Figures 19 and 20 compare the perturbation profiles of the streak mode (0,1) and the 3-D
travelling mode (1, 1) obtained by the NPSE calculations and the main-layer asymptotic
predictions (4.18) and (4.19) for Cases A and B. According to the system (4.19), û01,
v̂01 and T̂01 are almost real, but ŵ01 is almost pure imaginary, and therefore, we display
only Re(û01), Rev̂01, Im(ŵ01) and Re(T̂01). Note that the asymptotic predictions in these
figures are only from the main-layer equations (4.18) and (4.19), and the solutions in
the wall layer shown in § 4.3 are not included. In principle, if we construct a composite
solution based on both the main-layer and wall-layer solutions, then the agreement with
the NPSE calculations should be throughout the whole boundary layer. However, as
mentioned before, because the main-layer solution undergoes a logarithmic singularity
as the wall is approached, a consistent composite solution requires consideration of the
wall-layer solutions up to the second order, which requires more complicated mathematical
processes but yields the same accuracy on predicting the growth rate. Thus, we only
probe the leading-order wall-layer solution, which is sufficient to construct the improved
asymptotic approach as shown in § 4.4. Therefore, in figures 19 and 20, we only consider
the comparison in the main layer (y > 2). The original asymptotic results shown by
the dashed lines are not sufficient to predict the NPSE calculations, even when R is as
large as 1 × 104. The discrepancy is greater in the region of y < 10. However, when the
wall-layer-induced correction is considered, the accuracy of the asymptotic predictions is
remarkably improved, as shown by the symbols. In the region around the critical layer,
the viscous effect needs to be taken into account to achieve a better agreement. A similar
observation is obtained for the comparison of |φ̂11|, as shown in panels (e–h).

In the main layer, the magnitude of û01 is much greater than those of v̂01 and
ŵ01, showing a longitudinal streak nature, which agrees with the scaling relations in
(4.12). From the NPSE calculations, as R increases, the peak of Re(û01) increases
monotonically, with its location moving towards a wall, agreeing with the improved
asymptotic predictions. The main-layer solution of v̂01 and ŵ01 are almost independent
of R, which also agrees with the improved asymptotic predictions. For the 3-D travelling
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û 0
1
)

Im
(ŵ
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Figure 19. Perturbation profiles of (0, 1) and (1, 1) at x = 1000 for Case A. Solid lines, NPSE results; dashed
lines, asymptotic predictions; symbols, improved asymptotic predictions. The profiles are normalised by the
maximum of Re(v̂01).
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Figure 20. Perturbation profiles of (0, 1) and (1, 1) at x = 1000 for Case B. Solid lines, NPSE results; dashed
lines, asymptotic predictions; symbols, improved asymptotic predictions. The profiles are normalised by the
maximum of Re(v̂01).
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Principle of fundamental resonance

Case M Tw/Tad R ω0 β0 ε̄10

Case A6 5.92 1 1 × 104 0.11 0.1 0.015
Case A7 5.92 1 1 × 105 0.11 0.1 0.015
Case A8 5.92 1 1 × 106 0.11 0.1 0.015
Case A9 5.92 1 1 × 107 0.11 0.1 0.015
Case A10 5.92 1 1 × 108 0.11 0.1 0.015
Case B6 5.92 0.5 1 × 104 0.125 0.1 0.015
Case B7 5.92 0.5 1 × 105 0.125 0.1 0.015
Case B8 5.92 0.5 1 × 106 0.125 0.1 0.015
Case B9 5.92 0.5 1 × 107 0.125 0.1 0.015
Case B10 5.92 0.5 1 × 108 0.125 0.1 0.015

Table 4. Parameters for the FR calculations at higher R values.

mode φ̂11, the discrepancy between the improved solution and the asymptotic one is
even smaller than that for φ̂01, and both methods can provide a satisfied prediction in
comparison with the NPSE calculations.

6. Verification of the asymptotic theory by the SIA approach for large R values

In this section, we verify the asymptotic predictions for large R values. Because the
NPSE calculations for higher Reynolds numbers are not stable numerically, we verify our
asymptotic predictions for higher R values by the SIA approach in this section, which is
confirmed to be accurate at moderate R values shown in figures 8 and 9. The comparison
is made based on a wavy base flow, which consists of a laminar Blasius solution and a
fundamental mode (1, 0) with a finite amplitude. The latter is obtained by solving the O-S
equation (2.10). Admittedly, this base flow is a bit artificial, but it is easy to demonstrate
the fundamental resonance for sufficiently high Reynolds numbers. The parameters of the
case studies are listed in table 4.

Figure 21 shows the perturbation profiles of the fundamental mode (1, 0) for Cases A
and B with different R values. The results of the Rayleigh equation (4.5) are also plotted
by the dashed lines for comparison. Obviously, the planar Mack second mode (1, 0) shows
a double-deck structure, a main layer in the major part of the boundary layer, where the
O-S and Rayleigh solutions agree, and a Stokes layer in the near-wall region, where the
streamwise velocity and temperature damp to satisfy the no-slip and isothermal conditions.
An overshoot is observed at the edge of the Stokes layer for each curve, which can be
predicted by the Stokes-layer solution. The thickness of the Stokes layer δS decreases
as R increases, and a scaling of δS ∼ R−1/2 is evident. The eigenfunction |T̂10| shows a
sharp peak at the critical layer but |û10| does not. This is because for a 2-D case, the
streamwise velocity |û10| shows only a logarithmic singularity, much weaker than the
first-order singularity of |T̂10|. It is found that as R increases, the O-S solutions approach
the Rayleigh solution, except in the near-wall region, confirming the inviscid nature of the
(1,0) component.

In figure 22, we compare the growth rate σ̄ of the secondary mode obtained by the SIA
approach, the asymptotic theory and the improved asymptotic theory. The amplitude of
the fundamental mode (1, 0) is chosen to be ε̄10 = 0.015. The growth rate σ̄ obtained by
the SIA increases with R monotonically and approaches a constant as R → ∞, indicating
that the viscosity plays a stable role. In the large-R limit, the relative errors between the
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Figure 21. Perturbation profiles of the fundamental mode (1, 0) for the cases listed in table 4: (a,c)
streamwise perturbation velocity; (b,d) perturbation temperature. (a,b) Cases A6–A10; (c,d) Cases B6–B10.
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Figure 22. Dependence on R of the normalised growth rate σ̄ obtained by the SIA approach, the asymptotic
theory and the improved asymptotic theory: (a) Cases A6–A10; (b) Cases B6–B10.

978 A30-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1043


Principle of fundamental resonance

0.6
(a) (b)

0.5

R = 1 × 108 SIA

R = 1 × 108 improved asymptotic theory
R = 1 × 104 SIA
R = 1 × 104 improved asymptotic theory0.4σ̄

0.3

0.2
10–4 10–3

A6

A10

B10

B6

10–2 10–4 10–3 10–2

0.9

0.8

0.6

0.7

0.5

0.4

ε̄10 ε̄10

Figure 23. Dependence on ε̄10 of the normalised growth rate σ̄ obtained by the SIA and the improved
asymptotic prediction: (a) Cases A6 and A10; (b) Cases B6 and B10.

SIA solutions and the asymptotic predictions are 18 % and 28 % for Cases A and B,
respectively. Although there is still a gap between the SIA solution and the asymptotic
prediction when R is as high as 108, the convergent trend is clearly seen. Including the
wall-layer correction to the asymptotic theory, the improved asymptotic theory leads to an
increase of the accuracy at moderate R values. The monotonic increase of σ̄ with R for SIA
is also reproduced by the improved asymptotic theory. Actually, in our asymptotic analysis,
there exist two small parameters, namely, R−1 and ε̄10, and the O(R−1/2) and O(ε̄2

01) terms
are neglected in the governing equations. In figure 22, although we have probed the results
for large R values, the amplitude of mode (1,0) ε̄01 is kept unchanged, which is the reason
why there still exists a discrepancy even when R = 108. To confirm this argument, we
perform calculations of the SIA by changing the amplitude of the fundamental mode
ε̄01 with fixed Reynolds numbers, as shown in figure 23. For each Reynolds number, the
normalised growth rate obtained by SIA increases with the decrease of ε̄01 and approaches
a constant when ε̄01 is sufficiently small. The constant agrees well with the normalised
growth rate predicted by the improved asymptotic theory.

Figure 24 compares the perturbation profiles of the streak mode (0, 1) obtained by
the SIA and the asymptotic predictions for different R values for Cases A6–A10. As R
increases, the SIA solutions approach consistently the asymptotic predictions for all the
perturbation quantities. Similar observations can be found for Cases B6–B10, as shown in
figure 25. The agreement of both the growth rate and the perturbation profiles between the
SIA and the improved asymptotic predictions in the large-R limit confirms the accuracy of
our asymptotic analysis.

7. Concluding remarks and discussion

In this paper, we focus on the fundamental resonance in hypersonic boundary layers,
appearing when the planar Mack second mode dominates the nonlinear phase, and the
infinitesimal oblique travelling waves and the streak mode amplify with a rather large
rate. This regime is frequently observed in the laminar–turbulent transition in 2-D or
axisymmetric hypersonic boundary layers since the planar Mack mode is always the most
unstable linear instability mode in its laminar phase.
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Figure 24. Comparison of the perturbation profiles for streak mode (0, 1) obtained by SIA (for Cases
A6–A10) and asymptotic theory. The eigenfunctions are normalised by the maximum of Re(v̂01).
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Principle of fundamental resonance

For a Mach 5.92 flat-plate hypersonic boundary layer with different wall temperatures
and Reynolds numbers, we calculate the FR process using the NPSE approach, and
show the amplitude evolution of representative Fourier components and their perturbation
profiles. It is found that when the fundamental 2-D mode reaches a finite amplitude, a
series of infinitesimal Fourier components with the same spanwise wavenumbers grow
with the same rate, much greater than that of the fundamental mode, and the streak
mode attains the greatest amplitude among these components. Such a phenomenon can
be predicted quantitatively by the SIA based on a base flow consisting of the time-
and spanwise-averaged mean flow and the fundamental mode. However, the SIA is not
sufficient to reveal the underlying mechanism determining the energy transfer among
different Fourier components and to explain the stronger amplification of the streak mode.

Therefore, a large-R asymptotic theory is developed, based on the weakly nonlinear
framework. The asymptotic analysis indicates that the FR is in principle a triad resonance
system appearing among a dominant planar fundamental mode, an oblique travelling
mode with the same frequency as the fundamental mode and a streak mode with the
same spanwise wavenumber as the oblique mode. Remarkably, the amplitude of the
streamwise velocity component (streak component) of the streak mode is much greater
than those of the transverse and lateral velocity components (roll components), implying
that these components may be driven by different mechanisms. The triad resonance
system sketched in figure 10 shows that in the major part of the boundary layer, the
interaction of the fundamental mode and the streak mode seeds the growth of the oblique
mode, whereas the nonlinear interaction of the fundamental mode and the oblique mode
drives the roll component of the streak mode, which further encourages a stronger
amplification of the streamwise component of the streak mode due to the linear lift-up
mechanism. The triad resonance system appears when: (1) the dimensionless growth rates
of the streak mode and the oblique mode are of the same order of the dimensionless
amplitude of the fundamental mode ε̄10; and (2) the amplitude of the streak mode is
O(ε̄−1

10 ) greater than the oblique mode. These observations indicate that the present
asymptotic theory is superior to the SIA by providing an in-depth understanding of the
FR mechanism.

The asymptotic analysis also reveals the multi-layered structure of the perturbations
in the FR regime as sketched in figure 11. The main-layer solutions of the streamwise
velocity, spanwise velocity and temperature of both the streak mode and the oblique mode
become singular as the wall is approached, and hence a viscous wall layer needs to be
taken into account. It is found that the wall layer produces an outflux velocity of O(ε ln ε)

to the main layer, inclusion of which leads to an improved asymptotic theory. Comparing
with the NPSE calculations for moderate Reynolds numbers and the SIA for sufficiently
large Reynolds numbers, it is found that the asymptotic theory can predict both the overall
growth rate and the main-layer profiles of the infinitesimal perturbations, and the improved
asymptotic theory could increase the accuracy of the growth-rate predictions remarkably.
Additionally, for a moderate amplitude of the fundamental mode ε̄01, the error of the
improved asymptotic prediction does not vanish even when R is sufficiently high; this is
because the O(ε̄01) terms are also neglected in the asymptotic analysis. Further decreasing
ε̄01 leads to a remarkable reduction of the error, confirming the accuracy of the asymptotic
analysis in this paper.
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Appendix A. The coefficient matrices and the inhomogeneous forcing in (2.7)

In (2.7), G, A, B, C , D, V xx, V yy, V zz, V xy, V yz and V xz are all 5 × 5-order matrices,
whose non-zero elements are

G11 = 1, G22 = G33 = G44 = ρB, G51 = − (γ − 1)TB

γ
, G55 = ρB

γ
, (A1)

A11 = UB, A12 = ρB, A21 = TB

γ M2 , A22 = ρBUB − 4μB,x

3R
, A23 = −τTB,y

R
,

A25 = ρB

γ M2 + 2τ

R

(
1
3
∇ · U − S11

)
, A32 = 2μB,y

3R
, A33 = ρBUB − μB,x

R
,

A35 = −2τS12

R
, A44 = ρBUB − μB,x

R
, A51 = −γ − 1

γ
TBUB,

A52 = −4 (γ − 1) M2

R
μB

(
S11 − 1

3
∇ · U

)
, A53 = −4 (γ − 1) M2

R
μBS12,

A55 = ρBUB

γ
− 2τTB,x

RPr
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A2)

B11 = VB, B13 = ρB, B22 = ρBVB − μB,y

R
, B23 = 2μB,x

3R
, B25 = −2τS21

R
,

B31 = TB

γ M2 , B32 = −μB,x

R
, B33 = ρBVB − 4μB,y

3R
, B35 = ρB

γ M2 + 2τ

R

(
1
3
∇ · U − S22

)
,

B44 = ρBVB − μB,y

R
, B51 = −γ − 1

γ
TBVB, B52 = −4 (γ − 1) M2

R
μBS21,

B53 = −4 (γ − 1) M2

R
μB

(
S22 − 1

3
∇ · U

)
, B55 = ρBVB

γ
− 2τTB,y

RPr
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A3)

C14 = ρB, C24 = 2μB,x

3R
, C34 = 2μB,y

3R
, C41 = TB

γ M2 , C42 = −μB,x

R
, C43 = −μB,y

R
,

C45 = ρB

γ M2 + 2τ∇ · U
3R

, C54 = 4 (γ − 1) M2μB∇ · U
3R

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A4)
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D11 = ∇ · U, D12 = ρB,x, D13 = ρB,y,

D21 = (
UBUB,x + VBUB,y

)+ TB,x

γ M2 , D22 = ρBUB,x, D23 = ρBUB,y,

D25 = ρB,x

γ M2 − 1
R

{
τ

[(
2S11 − 2

3
∇ · U

)
x
+ 2S21,x

]
+
(

2S11 − 2
3
∇ · U

)
τx + 2S21τy

}
,

D31 = (
UBVB,x + VBVB,y

)+ TB,y

γ M2 , D32 = ρBVB,x, D33 = ρBVB,y,

D35 = ρB,y

γ M2 − 1
R

{
τ

[
2S12,x +

(
2S22 − 2

3
∇ · U

)
y

]
+2S12τx +

(
2S22 − 2

3
∇ · U

)
τy

}
,

D51 = U · ∇TB

γ
, D52 = ρBTB,x

γ
− (γ − 1) TBρB,x

γ
, D53 = ρBTB,y

γ
− (γ − 1) TBρB,y

γ
,

D55 = −2 (γ − 1) M2τ

R

[
SB : SB − 1

3
(∇ · U)2

]
− ∇ · (μB∇TB)

RPr
− γ − 1

γ
(U · ∇ρB) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

Vxx,22 = −4μB

3R
, Vxx,33 = −μB

R
, Vxx,44 = −μB

R
, Vxx,55 = − μB

RPr
, Vyy,22 = −μB

R
,

Vyy,33 = −4μB

3R
, Vyy,44 = −μB

R
, Vyy,55 = − μB

RPr
, Vzz,22 = −μB

R
, Vzz,33 = −μB

R
,

Vzz,44 = −4μB

3R
, Vϕϕ,55 = − μB

RPr
, Vxy,23 = Vxy,32 = −μB

3R
, Vxz,24 = Vxz,42 = −μB

3R
,

Vyz,34 = Vyz,43 = −μB

3R
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A6)

with τ = dμB/dTB, U = [UB, VB, 0]T, ∇ · U = UB,x + VB,y and SB the rate of strain
tensor of the base flow, whose components are

S11 = UB,x, S22 = VB,y, , S12 = S21 = (
VB,x + UB,y

)
/2. (A7)

Here, F is a five-dimensional vector, whose elements are

F(1) = − (ρ̃∇ · u + u · ∇ρ̃) , (A8)

F(2) = −ρ̃ũt − ρ̃
(

UBũx + ṼBũy + ũUB,x + ṽUB,x

)

− (ρ̃ + ρB)
(
ũũx + ṽũy + w̃ũz

)−

(
ρ̃T̃
)

x

γ M2

− 2
3R

(μ̃∇ · u)x + 2
R

[(
μ̃S̃11

)
x
+
(
μ̃S̃21

)
y
+
(
μ̃S̃31

)
z

]
, (A9)
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F(3) = −ρ̃ṽt − ρ̃
(

UBṽx + ṼBṽy + ũṼB,x + ṽṼB,y

)

− (ρ̃ + ρB)
(
ũṽx + ṽṽy + w̃ṽz

)−

(
ρ̃T̃
)

y

γ M2

− 2
3R

(μ̃∇ · u)y + 2
R

[(
μ̃S̃12

)
x
+
(
μ̃S̃22

)
y
+
(
μ̃S̃32

)
z

]
, (A10)

F(4) = −ρ̃w̃t − ρ̃
[
UBw̃x + ṼBw̃y

]
− (ρ̃ + ρB)

(
ũw̃x + ṽw̃y + w̃w̃z

)

−

(
ρ̃T̃
)

z

γ M2 − 2
3R

(μ̃∇ · u)z + 2
R

[(
μ̃S̃13

)
x
+
(
μ̃S̃23

)
y
+
(
μ̃S̃33

)
z

]
, (A11)

F(5) = − ρ̃

γ

(
T̃ t + u · ∇TB + U · ∇T̃ + u · ∇T̃

)
+ γ − 1

γ
TB (u · ∇ρ̃)

+ (γ − 1) M2
{

2μ̃S̃ : S̃ − 2
3
μ̃(∇ · u)2

}
− ρB

γ

(
u · ∇T̃

)

+ γ − 1
γ

T̃
(
ρ̃t + u · ∇ρB + U · ∇ρ̃ + u · ∇ρ̃

)+ ∇ ·
(
μ̃∇T̃

)

+ (γ − 1) M2
[

2μBS̃ : S̃ − 2
3
μB(∇ · u)2 + 4μ̃S̃ : S̃−4

3
μ̃ (∇ · U) (∇ · u)

]
,

(A12)

where u = [ũ, ṽ, w̃]T, ∇ · u = (ũx + ṽy + w̃z), and S̃ is the rate of strain tensor of
disturbance with

S̃11 = ũx, S̃22 = ṽy, S̃33 = w̃z, S̃12 = S̃21 = (
ṽx + ũy

)
/2,

S̃13 = S̃31 = (w̃x + ũz) /2, S̃23 = S̃32 = (
w̃y + ṽz

)
/2.

}
(A13)
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