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ABSTRACT. Evolutionary scenarios must account for Algol binaries 
surviving their first phase of mass transfer. The outcome of this 
phase is dependent upon the rapidity of the initial mass transfer, 
which can be estimated by calculating the radial reponse of potential 
progenitors to mass loss. Limits on the donor's evolutionary state, 
and its companion mass, can be placed on systems which would transfer 
mass on a thermal or dynamical timescale. Slower mass transfer rates 
are necessary for the successful transition to an Algol. Considering 
1.5 and 5.0 M models, the former succeed in case A and Br systems, 
while the latter can do so only in case A systems. To evolve into an 
Algol binary, all systems seem to require initial mass ratios near one. 

1. INTRODUCTION 

The formation of Algol binaries has been a classic problem for stellar 
evolution. Consisting of a lower mass giant and a higher mass main-
sequence star, the reversed evolutionary state has been explained by 
the transferral of mass from the evolved giant to the main-sequence 
star (cf. Paczynski 1971). However, numerical investigations, 
conducted with the most realistic assumptions, have failed to produce a 
bona fide Algol. Three difficulties have been encountered in evolu­
tionary calculations: the very large range of initial masses and 
periods to cover; the response of the mass-gaining star; and the role 
of non-conservative mass transfer. The first can be addressed with 
simplifying assumptions which generalize the use of single star models. 
This approach ignores the second difficulty, but it does provide an 
estimate of the timescale of mass transfer, which is relevant to the 
gainer's response. At present, the third difficulty can only be 
addressed through free parameters. 

The mass transfer rate in a binary system depends on the 
difference between the donor star's photospheric radius and its Roche 
lobe radius (cf. Webbink 1985). Once R, equals RL, the "stability" of 
continued mass transfer depends on the changes in these radii, as char­
acterized by the radius-mass exponent: f ™ dlnR/dlnM. If ;"„ < f L , 
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R„ — RL increases as more mass is removed, causing the mass transfer to 
accelerate. There are two time-independent methods of estimating J",. 
If mass loss is very rapid, internal heat flow is negligible and the 
donor's radial response will be adiabatic (f* = f a d ). If mass loss is 
somewhat slower, the response will be different as the donor adjusts to 
its new mass by regaining its previous state of thermal equilibrium 

(f* " fth>-
With the values of $"ad and fth for stars just filling their Roche 

lobes, the future evolution of the binary can be projected. If $*ad < 
$\ , dynamical timescale mass transfer will commence. Such rapid mass 
transfer is thought to result in the formation of a common envelope 
(Paczynski 1976; see Livio 1988) from which an Algol could not emerge. 
If f h < fL < 5"ad, thermal timescale mass transfer will commence. This 
not-quite-so-rapid mass transfer could result in a swelling accretor 
and a contact configuration (Benson 1970, and many others) from which 
it is unlikely that an Algol could emerge. Evidently, Algol binaries 
originate from systems in which both $"ad and J"th are greater than J"L . 

These results can be used to direct simultaneous-evolution calcul­
ations towards the initial masses and periods most likely to follow 
diverging paths of evolution. In Section 2, the radial response 
calculations are discussed. In Section 3, the calculations are related 
to binaries which could not become Algols, creating boundaries for 
Algol progenitors. The results are also compared with the properties 
of observed Algols. The implications of the results for evolutionary 
scenarios are discussed in Section 4. The conclusions are summarized 
in Section 5. 

2. RADIAL RESPONSE OF DETAILED STELLAR MODELS 

The radius-mass relations being calculated are special cases of a 
star's response to mass loss. Previous estimates of $"ad have been made 
with polytropic models (Hjellming and Webbink 1987, and references 
therein). To estimate fth, stellar models in complete equilibrium have 
been used for main-sequence and giant donors (Plavec, Kriz, and Horn 
1969; Refsdal and Welgert 1970). The methods used for the calculations 
presented here are improvements on both approaches and are described 
below. 

The adiabatic response of a model is driven by the preservation of 
hydrostatic equilibrium. When mass is removed from the surface, each 
remaining mass shell feels a decrease in pressure and expands somewhat. 
The adiabatic assumption, of entropy kept fixed in mass, limits how the 
density and temperature can vary to provide the pressure decrease. The 
behavior of the surface radius depends upon the expansion allowed by 
the entropy profile and the original position of the new surface layer. 
Models with radiative envelopes are more likely to contract: They have 
lower interior entropies and have further to expand to reach the old 
surface radius than models with convective envelopes. 

The thermal response of a model is determined by the replacement 
of the energy losses caused by adiabatic expansion. During thermal 
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Figure 1. ZAMS response curves (solid-adiabatic, dashed-thermal) for 
two different masses. A qL-2 Roche lobe curve (heavy dotted line) is 
included to illustrate that both models, in such a binary, will begin 
mass transfer on a thermal timescale, until RL < Ra(J when a delayed 
transition to dynamical timescale mass transfer occurs. 

mass age 

1.5a 0.0000 
1.5b 1.6075 
1.5c 1.2932 
1.5d 1.9646 

5.0a 0.0000 
5.0b 7.1767 
5.0c 7.5799 
5.0d 7.7068 
5.0e 7.7108 

log R log L log T 

0.1321 0.7716 3.8901 
0.3478 0.8979 3.8139 
0.5118 0.9074 3.7343 
0.5677 0.9209 3.7096 

0.4199 2.7567 4.2425 
0.6806 2.9850 4.1692 
0.7790 3.1166 4.1529 
1.5554 2.8146 3.6892 
1.6493 2.8981 3.6632 

moore menv 

0.1481 0.0000 
0.0801 0.0000 
0.0000 0.1344 
0.0000 0.7152 

1.0749 0.0000 
0.4262 0.0000 
0.0000 0.0000 
0.0000 0.1329 
0.0000 1.4006 

>ad , 0 = th , 0 

> 40 0.40 
> 40 0.47 
0.92 1.18 
0.00 0.25 

> 80 0.60 
> 80 -0.20 
> 80 -1.00 
0.40 -0.05 
0.15 0.00 

Table 1. Model data for response curves (X=0.70, Z-0.02). The values 
are in solar units; the ages are in 109 and 107 years for the 1.5 and 
5.0 M respectively; columns 6 and 7 are the masses of the convective 
regions; columns 8 and 9 are the initial slopes of the adiabatic and 
thermal response curves. 

« 

PI 

0 

-.2 

-.4 

-.6 

-.8 

1 

https://doi.org/10.1017/S0252921100087753 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100087753


158 M. S. HJELLMING 

relaxation, heat flow corrects the luminosity deficit created by the 
expansion. The energy added to the outer layers, provided by internal 
restructuring, causes further pressure changes and radial adjustments. 
The ultimate result of the adjustments can be estimated by limiting the 
relaxation to the initial thermal energy generation rate profile. 
Further relaxation to complete thermal equilibrium is not appropriate 
because the donor's nuclear evolution keeps the star out of equilibrium 
regardless of mass loss. 

To illustrate points of particular interest to the evolution of 
Algols, the adiabatic and thermal responses of 1.5 and 5.0 M stars, at 
various points in their evolution, are presented here. The structural 
differences of these stars help to pinpoint the causes of differing 
responses. Parameters for all the initial models, used in Figures 1-3, 
are contained in Table 1. 

Figure 1 contains the response curves of the zero-age models. 
Plotted are the changing radii as a function of the decreasing mass. 
The values of fad and $"th are merely the slopes of the curves. The 
initial contraction of the adiabatic curves is due to the radiative 
envelopes with positive entropy gradients. The eventual re-expansion 
is caused by the exposure of the convective cores which are isentropic. 
The expansion occurs earlier for the 5.0 M model because of its larger 
convective core mass. The thermal curves for these uniform-composition 
models are identical to the main-sequence mass-radius relation. 

The adiabatic responses of the evolved models change greatly from 
those of the zero-age models, as shown by the solid lines in Figures 2 
and 3. In the Hertszprung gap, nuclear burning creates a positive 
entropy gradient outside the core, inducing rapid contraction when the 
majority of the envelope has been removed. At the base of the giant 
branch, a growing convective envelope reduces the entropy gradient in 
the envelope to zero, allowing the surface to expand. The change in 
the initial adiabatic response is primarily dependent on the fraction 
of the total mass contained in the convective envelope (see Figure 4) . 
A significant decrease in J"ad 0 occurs when mCB/Ki - 0.05-0.10, but 
note that it does not reach the conventional value of -1/3, due to the 
low entropy helium core. 

The thermal responses of the evolved models show marked differ­
ences from each other, as shown by the dashed lines in Figures 2 and 3. 
The 5.0 M models tend to expand before the end of the main sequence, 
with the maximum expansion ($"th < -1) occuring in models positioned in 
the Hertzsprung gap. While a model's core mass is less than the 
Schonberg-Chandrasekhar mass of its now smaller mass, fth remains 
approximately equal to its zero-age main-sequence value. When this is 
not the case, the model is forced to expand, fth < 0, as if it were 
crossing the Hertzsprung gap. The higher mass models undergo more 
expansion due to the greater distance between their terminal-age main-
sequence and giant branch locations in the Hertzsprung-Russell diagram. 
At the giant branch, fth returns to zero as the model's radius becomes 
dependent on its core mass, not its total mass (Refsdal and Weigert 
1970). 
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Figure 2. Three evolved 1.5 M response curves (solid=adiabatic, 
dashed-thermal). The initial thermal responses are similar, while the 
adiabatic responses change with the growth of a convective envelope. 
See Table 1 for the particular model information. 
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Figure 3. Three evolved 5.0 M response curves (solid=adiabatic, 
dashed-thermal). The thermal responses are quite different from the 
1.5 M models, indicating more extreme thermal timescale mass transfer. 
Note the greater possibility for a delayed dynamical instability in the 
TAMS model (b). 
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Figure 4. The transition of the initial adiabatic response from 
contraction (fad > 0) to expansion. Polytropic models (Hjellming and 
Webbink 1987), approximating ZAMS and giant stars, are shown for 
comparison. Note the similarity between the responses of the two 
masses. 

3. CRITICAL MASS RATIOS AND OBSERVED ALGOLS 

To find potentially interesting behavior in binaries containing either 
of these masses, the adiabatic and thermal curves may be compared with 
Roche lobe curves. The presumption is that the star under considera­
tion has just filled its Roche lobe and is beginning mass transfer. 
Under conservative assumptions, fL is only a function of the initial 
mass ratio, qA = donor mass/gainer mass. Critical mass ratios, qc, are 
those qi for which the Roche lobe curve has a tangent point with 
either response curve. So a binary with q >q will, at some point, 
overfill its Roche lobe and undergo unstable mass transfer on the 
appropriate timescale. Non-conservative qc can be found with an 
appropriate Roche lobe formula. Since angular momentum losses probably 
dominate, critical mass ratios, in such cases, are generally smaller. 

A conservative Roche lobe curve, for a binary with qi=3, has been 
included in Figure 1 to illustrate the criteria for unstable mass 
transfer. Both zero-age models have (fth < fL < f d, so mass transfer 
begins on a thermal timescale. Only for qt~l is mass transferred from 
a zero-age donor on a longer-than-thermal timescale. Actual thermal 
relaxation, which causes the Roche lobe to remain filled as mass is 
transferred, occurs mostly in the envelope of the donor and not in the 
core. The interior responds adiabatically as mass transfer continues, 
producing a delayed transition to dynamical timescale mass transfer 
when RL < Rad. A delayed dynamical instability may lead to common 
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envelope evolution, but unlike that associated with cataclysmic 
variables. The non-degenerate nature of the core does not allow rapid 
shrinking below the Roche lobe, so the donor is likely to be completely 
disrupted. 

More evolved main-sequence donors are able to contract as their 
cores are exposed, so higher initial mass ratios are needed for the 
delayed instability to occur. The 5.0 M models have larger, higher-
entropy cores than the 1.5 M models, so critical mass ratios for the 
former are smaller throughout the main-sequence. For both masses, the 
likelihood of a delayed instability decreases in the Hertzsprung gap as 
the entropy difference, between the core and the surface, increases. 
In any case, the possibility of its occurrence sets an upper limit on 
the initial mass ratio of main-sequence Algol progenitors. 

As noted in Section 1, the initial phase of thermal timescale mass 
transfer itself may prevent the formation of Algols. The changes, from 
nuclear evolution, cause fth to decrease from its zero-age value, 
exacerbating the problem. Since qc(th ) becomes less than one, larger 
mass transfer rates may be expected from more evolved donors even if 
q1-l. The greater expansion of the 5.0 M thermal curves causes 
Rth — RL, for a given qt , to be larger than for a comparably evolved 
1.5 M donor. Thus, independent of the shorter relaxation time, a 
higher mass donor tends to have higher mass transfer rates. Higher 
mass donors, therefore, have a smaller range of initial periods from 
which Algols could evolve. 

When the donor reaches the base of the giant branch, the criterion 
for initial dynamical stability becomes relevant, as fad changes 
rapidly with the growing convective envelope. The decrease of qc(ad) 

below one implies that any binary with a lobe-filling giant and q. >1 
will form a common envelope. These systems do not become Algols 
either. 

Does the distribution of current Algols reflect any of these 
results concerning their progenitors? Systems with spectroscopic mass 
ratios, taken from Giuricin, Mardirossian, and Mezzetti (1983), are 
plotted in Figure 5, although several were excluded for not being 
classical Algols. The periods and masses have been extrapolated back 
to q=l, assuming conservation of total mass and orbital angular 
momentum. Also shown, as solid lines, are the periods of lobe-filling 
components at the beginning and end of the main-sequence, as well as at 
the base of the giant branch. The latter serves as the boundary for 
dynamically unstable mass transfer, where f d = fL(qi=l). The dashed 
line is the boundary for thermally unstable mass transfer, where fth -

rL(qi-D-
A few remarks can be made about the positions of the systems in 

this diagram. At high masses (Mj+l^ > 4 M ) , none are near the 
dynamical stability boundary. The spread of systems above the thermal 
stability boundary can be explained by recalling that the thermal 
stability criterion is a lower limit, allowing relaxation in the core 
not just the envelope. At low masses (Mj+M2 < 4 M ) , the systems are 
bounded above by the dynamical stability boundary. The relative 
paucity of systems within the low-mass main sequence could be explained 
by their absence or rarity among initial binaries, as suggested by 
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Figure 5. The distribution of Algol binaries returned to q-1 while 
conserving total mass and angular momentum. The solid lines mark the 
periods of lobe-filling models at three points in their evolution. The 
dashed line comes from thermal response calculations. The period 
ranges for unstable mass transfer are indicated. 

Kraitcheva, et.al. (1978a,b). Several of the systems fall below the 
period for zero-age main-sequence contact systems; angular momentum 
losses appear to be the probable cause (Ziolkowski 1969; Refsdal, Roth, 
and Weigert 1974; Iben and Tutukov 1984). 

4. DISCUSSION 

Why should the initial mass ratios be near one? The lack of high-mass 
systems above the TAMS boundary can be explained by large differences 
between $"th and fL , leading to mass transfer rates of 10"

5 M /yr and 
contact configurations (Benson 1970). Near the TAMS boundary for these 
systems, 5"th decreases below zero, which increases the difference with 
fL for any initial mass ratio. The same effect is accomplished with 
higher mass ratios: fL(q1-2) - 2.6, while (^(q^l) - 0.46. Smaller 
5"L — J"th would allow more stable mass transfer and Increase the 
probability of avoiding contact. Thus, a high-mass Algol progenitor 
must begin mass transfer before crossing very far into the Hertzsprung 
gap, and its mass rato must be close to one. In addition, de Greve 
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(1988) has pointed out that, in systems of nearly equal masses filling 
their Roche lobes near the zero-age main sequence, the gainer develops 
a larger convective core and evolves faster. The gainer fills its 
Roche lobe due to nuclear evolution, not thermal effects, and again, a 
contact configuration develops. This further limits the initial 
periods of massive Algol progenitors. 

For low-mass progenitors, the thermal restrictions are not so 
severe. Larger values of fth would allow stable mass transfer before 
the base of the giant branch. At the BGB boundary, fad decreases 
dramatically, and dynamical timescale mass transfer ensues for any 
system with q1>l. Tout and Eggleton (1988) envision a scenario where 
the mass ratio can be decreased, by an enhanced stellar wind, to avoid 
this circumstance. This would increase the range of initial periods or 
the possible initial mass ratios which could produce Algols. 

What will happen to the current Algols? Their current mass ratios 
doom the second mass transfer episode to a common envelope phase, since 
the majority of Algols have periods long enough for the main-sequence 
star to evolve to a giant before filling its Roche lobe. For those 
with periods not as long, continued mass transfer increases the mass 
difference, also causing the period to lengthen. If circumstances do 
not initially drive dynamical timescale mass transfer, the mass ratio 
will be so large as to force unstable thermal timescale mass transfer, 
possibly leading to delayed dynamical timescale mass transfer. The 
result will ultimately be a pair of white dwarfs (Webbink, 1979, 1984; 
Yungelson, Tutukov, and Fedorova 1988). 

5. CONCLUSIONS 

The results presented here are a small portion of the detailed stellar 
model calculations performed for my thesis. They have confirmed the 
initial dynamical stability of donor stars evolving across the 
Hertzsprung gap. A consequence of the thermal stability limit is that 
higher mass systems (Md^t > 1.5 M ) , with qt>l or periods long enough 
for overflow after the main-sequence, are unlikely to evolve into 
Algols. Lower mass systems (Md i < 1.5 M ) appear to be less 
susceptible to thermal timescale mass transfer. Instead, the dynamical 
stability limit, requiring Roche lobe overflow before the donor reaches 
the giant branch, restricts their initial periods and mass ratios. 
Neither suggestion is new, but these calculations provide a better 
framework for evaluating scenarios creating the whole variety of binary 
systems. More details of individual responses for more initial masses 
will be published in the future. 

I would like to thank the organizing committee, for travel assist­
ance, and Ron Webbink, for support of this work through NSF grant 86-
16992 and helpful comments and criticism of the original text. The 
calculations have been made possible by an allocation from the National 
Center for Supercomputer Applications funded by the National Science 
Foundation. 
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DISCUSSION 

Rucinski cited work by B. Paczynski and R. Sienkiewicz (Acta Astr. 22, 
73, 1972) which was based on a formalism similar to Hjellming's and 
asked how the results compared. Hjellming replied that their paper 
involved "condensed polytropes" which provided the upper line in his 
Figure 7. His detailed models tended to confirm the results of 
Paczynski and Sienkiewicz but a direct comparison is difficult because 
of the very large initial increase in radius caused by the superadiaba-
tic region in giant stars. 
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