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Abstract

We investigate some aspects of the problem of the estimation of birth distributions (BDs)
in multi-type Galton–Watson trees (MGWs) with unobserved types. More precisely, we
consider two-type MGWs called spinal-structured trees. This kind of tree is character-
ized by a spine of special individuals whose BD ν is different from the other individuals
in the tree (called normal, and whose BD is denoted by μ). In this work, we show that
even in such a very structured two-type population, our ability to distinguish the two
types and estimate μ and ν is constrained by a trade-off between the growth-rate of the
population and the similarity of μ and ν. Indeed, if the growth-rate is too large, large
deviation events are likely to be observed in the sampling of the normal individuals, pre-
venting us from distinguishing them from special ones. Roughly speaking, our approach
succeeds if r <D(μ, ν), where r is the exponential growth-rate of the population and D
is a divergence measuring the dissimilarity between μ and ν.

Keywords: Multi-type Galton–Watson tree; branching process; parametric inference;
latent variable
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1. Introduction

1.1. Problem formulation

A Galton–Watson tree with birth distribution μ is a random tree obtained recursively as
follows: starting from the root, the number of children of any node is generated independently
according to μ. In light of [4], the log-likelihood of such a tree T observed until generation h
is given by

LGW

h (μ) =
∑

v∈T,D(v)<h

log μ(#C(v)),

where D(v) denotes the depth of node v, i.e. the length of the path from the root to v, and
C(v) stands for the set of children of v. When the mean value m(μ) of the birth distribution
μ is smaller than 1, the model is said to be subcritical and the number of vertices of T as
well as its expectation are finite, that is, the genealogy associated to T becomes extinct. If a
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2 R. AZAÏS AND B. HENRY

subcritical Galton–Watson model is conditioned to survive until (at least) generation h, the
structure of the induced trees is changed according to Kesten’s theorem [1, 10]. Indeed, the
conditional distribution converges, when h tends to infinity, towards the distribution of Kesten’s
tree defined as follows. Kesten’s tree is a two-type Galton–Watson tree in which nodes can be
normal or special such that the following conditions hold.

• The birth distribution of normal nodes is μ, while that of special nodes ν is biased:

ν(k) = kμ(k)

m(μ)
for all k ≥ 0. (1.1)

As for Galton–Watson trees, the numbers of children are generated independently.

• All the children of a normal node are normal. Exactly one of the children of a special
node (picked at random) is special.

It should be noted that the set of children of a special node is non-empty since ν(0) = 0.
Consequently, Kesten’s tree consists of an infinite spine composed of special nodes, to which
subcritical Galton–Watson trees of normal nodes (with birth distribution μ) are attached.
Following the reasoning presented in [4] together with the form of the special birth distribution
(1.1), the log-likelihood of Kesten’s tree is given by

LK

h(μ) =
∑

v/∈S,D(v)<h

log μ(#C(v)) +
∑

v∈S,D(v)<h

log ν(#C(v))

=
∑
D(v)<h

log μ(#C(v)) +
∑

v∈S,D(v)<h

log #C(v) − h log m(μ),

where S denotes the spine of T , i.e. the set of special nodes. Interestingly, maximizing the log-
likelihood (with respect to μ) does not require us to observe the types of the nodes. Indeed, the
term that involves the spine does not depend on the parameter of the model.

In this paper we investigate spinal-structured trees, which can be seen as a generalization of
Kesten’s tree. A spinal-structured tree is a two-type Galton–Watson tree, made of normal and
special nodes, parametrized by a distribution μ and a non-trivial function f : N→R+, such
that the following conditions hold.

• The birth distribution of normal nodes is μ, while that of special nodes ν is biased:

ν(k) = f (k)μ(k)∑
l≥0 f (l)μ(l)

for all k ∈N, (1.2)

assuming that the denominator is positive.

• As for Kesten’s tree, a normal node gives birth to normal nodes, whereas if the set of
children of a special node is non-empty, then exactly one of them (picked at random) is
special.

Whenever f (0) = 0, a spinal-structured tree admits an infinite spine made of special nodes,
which gives its name to the model. It should be remarked that the model fails to be identifiable
because the line spanned by f defines the same probability measure ν. As a consequence,
without loss of generality, we assume ∑

l≥0

f (l)μ(l) = 1.
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Estimation of spinal-structured trees 3

Taking this into account, the log-likelihood of spinal-structured trees is given by

LSST

h (μ, f ) =
∑
D(v)<h

log μ(#C(v)) +
∑

v∈S,D(v)<h

log f (#C(v)).

For any birth distribution μ, any biased distribution ν can be written as (1.2) with a suitable
choice of f (except of course distributions ν such that, for some k, ν(k) > 0 and μ(k) = 0).
The parametrization (μ, f ) instead of (μ, ν) makes it clearer that spinal-structured trees form
a generalization of Kesten’s tree, which is obtained if and only if f is linear, considering
that μ is subcritical. In addition, Galton–Watson trees can be seen as spinal-structured trees
assuming that f is constant. Our goal in this work is to investigate the problem of estimating
μ and f through the maximization of LSST

h without knowledge of the types of the individ-
uals. The main advantage of the parametrization (μ, f ) is that, just as for Kesten’s tree,
it allows us to maximize the log-likelihood with respect to μ without observing the types
of the nodes. However, maximizing it with respect to f entails observation of the types of
the nodes.

1.2. Motivation

The motivation for this paper is twofold: first, it provides a step forward in the theoretical
understanding of type identification in multi-type Galton–Watson trees (MGWs); second, it
offers preliminary theoretical foundations for statistically testing whether or not population
data have been conditioned to survive. These two points are detailed below.

Spinal-structured trees can be seen as particular instances of two more general models. If
the special individuals are interpreted as immigrants, the underlying population process is a
Galton–Watson model with immigration given by ν. And more generally, like every Galton–
Watson process with immigration, it can also be seen as a particular case of MGWs. The
problem of the estimation of birth distributions in MGWs has been heavily studied, for exam-
ple in [5], [6], [11], and [13], and references therein, but in all these works the types of the
individuals are assumed to be known. A small number of works, e.g. [9], [15], and [16], have
investigated this problem with unobserved types, but none of these provide theoretical results:
they only investigate numerical aspects. Using the special case of spinal-structured trees, this
paper aims to demonstrate the theoretical difficulties involved in type estimation and propose
a statistical strategy for dealing with them. In particular, we shall show that we are able to
estimate the underlying parameters when population growth is not too large compared with the
dissimilarity of the two birth distributions. This phenomenon is likely to hold true for more
complicated problems.

When estimating the parameters of an observed population using a stochastic model, the
latter must first be accurately chosen. To the best of our knowledge, even in the simple frame-
work of Galton–Watson models, there is no method in the literature for rigorously determining
from the data whether or not the population has been conditioned to survive. However, as men-
tioned above, estimating the parameters under the wrong model introduces significant biases
that can lead to wrong conclusions about the population. Spinal-structured trees generalize
both Galton–Watson trees (f is constant, not investigated hereafter) and Galton–Watson trees
conditioned to survive (f ∝ Id). By estimating f , and even better by testing the shape of f , we
can conclude which model to apply. The results of this paper will allow us to make progress in
this direction (see in particular Section 7.2).

https://doi.org/10.1017/jpr.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.56


4 R. AZAÏS AND B. HENRY

1.3. Aim of the paper

The present paper is dedicated to the development and study of an estimation method for the
unknown parameters μ and f , as well as the unknown type of the nodes, from the observation
Th of one spinal-structured tree until generation h. The estimation algorithm that we derive
below is based on the maximization ofLSST

h with the major difficulty that types are unobserved.
Once the calculations are done, it can be succinctly described as follows.

(i) Naive estimation of μ:

μ̂h(i) = 1

#Th

∑
v∈Th

1C(v)=i.

(ii) Estimation of the spine, i.e. the set of special nodes:

Ŝh = arg maxs∈Sh dKL(s,Bμ̂h),

where Sh denotes the set of spine candidates (branches still alive at generation h), s is the
empirical distribution of the number of children along the spine candidate s, Bμ̂h(i) ∝
i μ̂h(i), and dKL(p, q) denotes the Kullback–Leibler divergence between distributions p
and q.

(iii) Unbiased estimation of μ (without estimated special nodes Ŝh):

μ̂�
h(i) = 1

#Th − h

∑
v∈Th\Ŝh

1C(v)=i.

(iv) Estimation of f :

f̂h(i) = 1

μ̂�
h(i)h

∑
v∈Ŝh

1C(v)=i.

Even in such a structured instance of MGWs, the convergence of these estimates is far from
easy to establish. In Theorem 3.2 we state that if the distribution of surviving normal nodes is
not too close to the special birth distribution ν compared to the exponential growth-rate of the
tree, then μ̂�

h and f̂h almost surely converge towards μ and f . In addition, the recovered part of
the spine is almost surely of order h when h goes to infinity. We insist on the fact that these
two results are true for any growth regime of the tree (subcritical m(μ) < 1, critical m(μ) = 1,
or supercritical m(μ) > 1). Nevertheless, the reason behind these convergence results is not the
same in the subcritical regime (where almost all of the spine can be recovered in an algorithmic
fashion) and in the critical and supercritical regimes (where the number of spine candidates
explodes). The theoretical convergence properties related to the asymptotics of the estimators
μ̂�

h, f̂h, and Ŝh are shown under the following main conditions, which are essential to the proofs
of convergence.

• The maximum number of children in the tree is N ≥ 1, i.e. μ ∈M, whereM denotes the
set of probability distributions on {0, . . . , N}. By construction (1.2), ν also belongs to
M.

• f (0) = 0 so that ν(0) = 0, that is, the tree admits an infinite spine of special nodes.

For the sake of readability and conciseness of the proofs, we also assume the following
conditions.
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• The support of μ is {0, . . . , N}.
• f (k) > 0 for any k > 0, which implies that the support of ν is {1, . . . , N}.

The article is organized as follows. Section 2 describes how some parts of the spine can
be algorithmically recovered in a deterministic fashion. Section 3 is devoted to our estimation
procedure and theoretical results:

• Section 3.1 for the preliminary estimation of μ;

• Section 3.2 for the identification of a candidate for the spine, named the Ugly Duckling;

• Section 3.3 for the final estimation of μ and the estimation of f ;

• Section 3.4 for the statement of our main result, Theorem 3.2.

The proof of Theorem 3.2 in the subcritical case can be found in Section 4. The proof in
the supercritical case involves large deviation-type estimates, for which we need information
on the rate function. The rate function is studied in Section 5 and the information needed is
stated in Theorem 5.1. We finally consider the proof in the critical and supercritical cases in
Section 6. The final Section 7 is devoted to numerical illustrations of the results (Section 7.1)
and an application to asymptotic tests for populations conditioned on surviving (Section 7.2).
Appendix A concerns the proof of some intermediate lemmas.

2. Algorithmic identification of the spine

Here we propose an algorithm to (at least partially) identify the spine of a spinal-structured
tree T observed until generation h. A node v of T is called observed ifD(v) < h. It means that
the number of children of v can be considered as part of the data available to reconstruct the
spine of T (even if the depth of these children is h). The tree restricted to the observed nodes
is denoted by Th.

We will also need the notion of observed height of a subtree T[v] of T . If v is a node of T ,
T[v] denotes the tree rooted at v and composed of v and all its descendants in T . In the literature
on trees, the heightH(T[v]) of a subtree T[v] is the length of the longest path from its root v to
its leaves. In the context of this work, T is only observed until generation h, and thus the height
of T[v] can be unknown since the leaves of T[v] can be inaccessible. For this reason, we define
the observed height of T[v] as

Ho(T[v]) = min (H(T[v]), l −D(v)),

where l is the length of the minimal path from v to unobserved nodes. It should be noted thatHo

implicitly depends on h. Either l = +∞, if v has no unobserved descendant, or l = h −D(v).
In addition, v has no unobserved descendant if and only ifH(T[v]) +D(v) < h.

The following result makes it possible to partially identify the spine.

Proposition 2.1. Let T be a spinal-structured tree observed until generation h and let v be an
observed node of T.

• IfHo(T[v]) +D(v) < h, then v is normal.

• If v is special, the children of v are observed, and

∃! c ∈ C(v) such that Ho(T[c]) +D(c) ≥ h,

then c is special.
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6 R. AZAÏS AND B. HENRY

FIGURE 1. (a) A spinal-structured tree simulated until generation 30 with normal nodes in blue and
special nodes in red. We assume that it is observed until generation h = 15 and in (b) we identify the type
of the nodes using Proposition 2.1 with the following color code: light blue for identified normal nodes,

light red for identified special nodes, gray for unobserved nodes, and white for unidentified types.

Proof. The proof relies on the fact that special nodes have an infinite number of descendants.
First, if v is such thatHo(T[v]) +D(v) < h, it means that its subtree has become extinct before
generation h and thus v is normal. Second, if v is special, exactly one of its children is special.
All the subtrees rooted at the children of v that become extinct are composed of normal nodes.
Consequently, if only one subtree among its children has not become extinct before generation
h, it is necessarily special. �

It should be noticed that if an observed node is not covered by the two previous conditions,
it can be either special or normal. Indeed, if the ck are the children of a special node v that
do not become extinct before generation h, only one of them is special, while the others are
normal. In fact, only the distribution of the subtrees rooted at the ck can be used to differentiate
them. An application of Proposition 2.1 is presented in Figure 1.

If a node v at depth D(v) = h − 1 has been identified as special, i.e. if v is the only node
with children at depth h − 1, it means that the spine has been algorithmically reconstructed,
and is formed by v and all its ancestors. Otherwise, if the type of two or more nodes at depth
h − 1 has not been identified, each of them is part of a possible spine. More formally, the set
of possible spines Sh is made of all the branches from the root to v whenever D(v) = h − 1
and the type of v has not been identified as normal. With this notation, if #Sh = 1, then the
spine has been fully reconstructed. In all cases,

⋂
s∈Sh

s is exactly the set of nodes identified
as special, while the complement

⋃
s∈Sh

s \⋂s∈Sh
s is composed of all the nodes that cannot

be identified in an algorithmic way.
Spine candidates can be indexed by their first unobserved node. Given a node v in T , the

sequence of ancestors of v is denoted byA(v),

A(v) = (Ph(v),Ph−1(v), . . . ,P(v)
)
, (2.1)

where P(v) is the parent of v in T and recursively Ph(v) =P(Ph−1(v)). IfD(v) = h, thenA(v)
is an element of Sh. Throughout the paper, when there is no ambiguity, we identifyA(v) with
the sequence of numbers of children alongA(v), i.e. (#C(u) : u ∈A(v)).

3. Ugly Duckling

In this section we aim to develop an estimation method for the unknown parameters
μ and f as well as the spine S of a spinal-structured tree observed until generation h.

https://doi.org/10.1017/jpr.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.56


Estimation of spinal-structured trees 7

The algorithm presented below takes advantage of the specific behavior of spinal-structured
trees. We also present our main result of convergence that holds for any growth regime of the
normal population, i.e. whatever the value of m(μ).

3.1. Estimation of µ

As remarked in the Introduction, maximizing LSST

h with respect to μ does not require us to
observe the type of the nodes. Consequently, as f is unknown, we can still construct a first
estimate of μ as

μ̂h = arg maxμ∈MLSST

h (μ, f ).

Standard calculus shows that

μ̂h =
(

1

#Th

∑
v∈Th

1C(v)=i

)
i∈{0,...,N}

. (3.1)

We can notice that the optimum in f of LSST

h depends on the unknown spine S, and is thus of
no use at this stage.

3.2. Selection of the spine

In Sh, the spine S is the unique element whose component-wise distribution is ν defined
from (1.2). In that sense, finding S is a sample selection problem, where, however, the distri-
bution at stake ν is unknown. Our approach consists in estimating the spine by the sample that
differs the most from the expected behavior of a sample made of normal nodes.

However, it should be observed that the Sh consist of surviving lineages. Thus μ is not the
component-wise distribution of the samples of normal nodes in Sh, and, as a consequence, is
not the right distribution for comparison. Identifying the law of s ∈Sh can be done thanks to
the so-called many-to-one formula presented in the following theorem (see [12]).

Theorem 3.1. Let G be a Galton–Watson tree with birth distribution μ and let h be an integer.
Then, for any bounded measurable function ϕ : Rh →R, we have

E

[ ∑
{u∈G : D(u)=h}

ϕ(A(u))

]
= m(μ)h

E[ϕ(X0, . . . , Xh−1)], (3.2)

whereA(u) is defined in (2.1) and X1, . . . , Xh−1 is an independent and identically distributed
(i.i.d.) family of random variables with common distribution Bμ, where the operator B is
defined, for any p ∈M, by

Bp(i) = ipi

m(p)
for all i ∈ {1, . . . , N}. (3.3)

With this new information in hand, we can now define the estimate of the spine as the Ugly
Duckling in Sh,

Ŝh = arg maxs∈Sh dKL(s,Bμ̂h), (3.4)

where X denotes the empirical measure associated to the vector X and dKL(p, q) denotes the
Kullback–Leibler divergence between distributions p and q. In this formula, we compare s to
Bμ̂h, with μ̂h given by (3.1), because the true distribution μ is obviously unknown.
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8 R. AZAÏS AND B. HENRY

Remark 3.1. Another approach would have consisted in selecting the spine as the most likely
sample under ν, which is unknown but can be estimated from an estimate of μ (e.g. μ̂h defined
in (3.1)) and an estimate of f . However, as explained in Section 3.1, the optimum of LSST

h in
f depends on the spine. As a consequence, this approach would have resulted in an iterative
algorithm where f is estimated from the spine, and conversely the spine from f , likely highly
dependent on the initial value.

3.3. Correction of µ and estimation of f

We can remark that the estimate (3.1) of μ is the empirical distribution of the numbers of
children in the tree. However, the tree is made of h special nodes that do not follow μ, which
biases the estimation. Now we know how to estimate the spine, i.e. the set of special nodes in
the tree, we can take this into account and correct the estimator of μ as

μ̂�
h(i) = 1

#Th − h

∑
v∈Th\Ŝh

1C(v)=i for all i ∈ {0, . . . , N}. (3.5)

Then we can estimate f by maximizing (under the constraint
∑N

i=0 f (i)μ̂�
h(i) = 1) LSST

h , where
the unknown spine S has been replaced by Ŝh, which results in

f̂h(i) = 1

μ̂�
h(i)h

∑
v∈Ŝh

1C(v)=i for all i ∈ {0, . . . , N}. (3.6)

It should be noted that, by construction, no node of the spine estimate has no child, which
implies f̂h(0) = 0.

3.4. Theoretical results

The purpose of this section is to study the behavior of the Ugly Duckling method for large
observation windows, i.e. h → ∞. The main difficulty arising in our problem is to recover a
substantial part of the spine. Depending on the growth-rate of the population, this question
takes different forms. Indeed, the number of spine candidates #Sh is highly dependent on the
growth-rate m(μ) of the normal population in the tree.

First, in the subcritical case m(μ) < 1, the trees of normal individuals grafted onto the spine
tends to become extinct. In other words, the set of spines Sh is essentially reduced to S or
at least to small perturbations of S. Thus a macroscopic part of the spine can be directly
identified without further difficulty following the algorithm of Section 2. The only point that
needs clarification is that if the unidentified part of the spine is not large enough to perturb the
estimation, then we would not be able to guarantee that our estimators are convergent.

In the critical and supercritical cases, identifying the spine becomes substantially harder as
the set Sh may have a large size and contain potentially long lineages of non-special indi-
viduals. In particular, if the number of possible spines is large, one may observe that the
empirical distribution of the number of children along some lineages s ∈Sh may experience
large deviations from its distribution, so that

dKL(s,Bμ) 	 dKL(S,Bμ).

In such a situation, one would not be able to distinguish which of s or S is the spine.
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It follows that our ability to identify the spine relies on a dissimilarity/population-growth
trade-off.

• On the one hand, if the growth-rate of the population is small, the number of possible
spines is small and none of the normal spines greatly deviate from its expected distribu-
tion. Thus we can identify the sample with law ν even if laws Bμ and ν are similar (but
without being too close).

• On the other hand, if the growth-rate is large (i.e. m(μ) 	 1), then one may expect large
deviation samples. In such a situation, we would not be able to recover the spine unless
distributions Bμ and ν are very different.

One good way to measure the dissimilarity between two distributions p and q in our context
is given by the following divergence:

D(p, q) = inf
x,y,z)∈M3

δ≥0

{
dKL(x, p) + dKL(y, q) + δdKL(z, q)

∣∣∣∣
dKL

(
δz + x

δ + 1
, p

)
− dKL

(
δz + y

δ + 1
, p

)
≥ 0

}
. (3.7)

This idea is summarized in the following theorem, where our convergence criterion relies on a
comparison between log (m(μ)) and D(Bμ, ν).

Theorem 3.2. If log (m(μ)) −D(Bμ, ν) < 0, then the following convergences hold almost
surely:

μ̂�
h −−−→

h→∞ μ

and
f̂h −−−→

h→∞ f .

In addition, an order h of the spine is recovered, that is,

#S∩ Ŝh

h
−−−→
h→∞ 1

almost surely.

4. Proof of Theorem 3.2 in the subcritical case

In subcritical cases, note that the criteria of Theorem 3.2 are always satisfied. In addition, it
is important to note that the first step of our estimation procedure is in this case a dummy step,
as it has (essentially) no use in the following steps. If m(μ) < 1, our estimation works, as for
large h we can automatically identify an order h of the special individuals as the lineages of the
normal ones tend to become extinct. Thus the main point to check in the proof of the subcritical
case is that enough spine is directly identifiable. We directly give the proof of Theorem 3.2 in
this case.

Proof of Theorem 3.2, subcritical case m(μ) < 1. The key point is that normal Galton–
Watson trees induced by special individuals are very unlikely to reach a large height. As their
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10 R. AZAÏS AND B. HENRY

number is finite at each generation, very few of them reach height h. In particular, they would
be rather recent subtrees.

Let Kh denote the length of spine that can be algorithmically identified (using the procedure
presented in Proposition 2.1) when the spinal-structured tree is observed up to height h. Now,
recalling that the spinal-structured tree T can be constructed by grafting an i.i.d. family of
Galton–Watson trees (Gi,j)i,j≥1 onto the spine, Kh is given by

Kh = sup{1 ≤ n ≤ h |H(Gi,j) < h − i ∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , Si − 1}},
where S1, . . . , Sh denote the numbers of special children of the individuals of the spine.
Thus

P(Kh ≥ n) = P

(
n⋂

i=1

Si−1⋂
j=1

{H(Gi,j) < h − i}
)

=
n∏

i=1

E

[
pSi−1

h−i

]
,

where pl denotes the probability that a tree of type Gi,j becomes extinct before reaching
height l. We then have

P(Kh ≥ n) ≥
n∏

i=1

pE[Si−1]
h−i =

(
n∏

i=1

ph−i

)m(ν)−1

,

by Jensen’s inequality. Fixing some ε > 0, we thus have

P

(
1 − Kh

h
> ε

)
= 1 − P(Kh ≥ 
(1 − ε)h�) ≤ 1 −

(
(1−ε)h�∏
i=1

ph−i

)m(ν)−1

.

In the subcritical case, it is known [2] that

pl ≥ 1 − γ l

for some real number γ ∈ (0, 1). Hence

P

(
1 − Kh

h
> ε

)
≤ 1 −

(
(1−ε)h�∏
i=1

(1 − γ h−i)

)m(ν)−1

≤ 1 − (1 − γ εh)(m(ν)−1)
(1−ε)h�.

It is then easily checked that∑
h≥1

(
1 − (1 − γ εh)(m(ν)−1)
(1−ε)h�)< ∞

which, via the Borel–Cantelli lemma, entails the almost sure convergence of Kh/h toward 1.
Now, as we almost surely have Kh ≤ #Ŝh ∩S, the convergence of μ̂h and μ̂�

h closely follows
the proof of Proposition 6.1 below, while the convergence of f̂h can be easily deduced from the
Law of Large Numbers. �

5. On the rate function of large deviations in sample selection

In Lemma 6.2 below, we show a large deviation-type estimate for the probability that the
empirical distribution of some branch of the spinal-structured tree is closer to ν than that of
the true spine (in Kullback–Leibler divergence). The purpose of this section is to study the rate

https://doi.org/10.1017/jpr.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.56


Estimation of spinal-structured trees 11

function of this estimate, and it is a preliminary to the proof of Theorem 3.2 in the critical and
supercritical cases. Throughout this section, we choose some distribution p and q inM such
that p �= q. Our goal is to study the following parametric optimization problem referenced as
problem (Pα,ε):

(Pα,ε(1)) min fα
(
x(1), x(2), x(3))= (1 − α)

[
dKL
(
x(1), p

)+ dKL
(
x(2), q

)]+ αdKL
(
x(3), q

)
(Pα,ε(2)) s.t. x(j)

i ≥ 0 for all (i, j) ∈ {0, . . . , N} × {1, 2, 3},

(Pα,ε(3)) gj
(
x(1), x(2), x(3))= N∑

i=0

x(j)
i − 1 = 0 for all j ∈ {1, 2, 3},

(Pα,ε(4)) Hα,ε

(
x(1), x(2), x(3))≥ 0,

where

Hα,ε

(
x(1), x(2), x(3))= dKL

(
(1 − α)x(1) + αx(3), p

)− dKL
(
(1 − α)x(2) + αx(3), p

)+ ε.

The value function associated to problem (Pα,ε) is denoted V : [0, 1]2 � (α, ε) �→ V(α, ε) ∈R+
and is given by

V(α, ε) = inf
(x,y,z)∈M3

{(1 − α)(dKL(x, p) + dKL(y, q)) + αdKL(z, q) | Hα,ε(x, y, z) ≥ 0}. (5.1)

In the particular situation where ε = 0, the value function associated to problem (Pα,0) is
denoted v : [0, 1] � α �→ v(α) ∈R+. Our goal is to show the following theorem.

Theorem 5.1. The value function V is continuous. In addition, for any ρ ∈ (0, 1), there exists
ε∗ > 0 such that

V(α, ε) ≥ v(α) − ρ for all α ∈ [0, 1], ε ∈ [0, ε∗],

and
v(α)

1 − α
−−−→
α→1

dB(p, q),

where dB is the Bhattacharyya divergence defined by

dB(p, q) = −2 log

(
N∑

i=1

√
piqi

)
. (5.2)

To show this result, we begin by defining the parameter-dependent Lagrangian associated
with problem (Pα,ε) by

L
(
x(1), x(2), x(3), w, u, γ, α, ε

)
= (1 − α)

(
dKL
(
x(1), p

)+ dKL
(
x(2), q

))+ αdKL
(
x(3), q

)
+

N∑
i=1

3∑
j=1

wi,jx
(j)
i + γ

(
dKL
(
(1 − α)x(1) + αx(3), p

)− dKL
(
(1 − α)x(2) + αx(3), p

)+ ε
)

+
3∑

j=1

uj

N∑
i=1

(
x(j)

i − 1
)
,

where γ, u1, u2, u3, (wi,j)1≤i≤N,1≤j≤3 are the Lagrange multipliers. Thus the first-order
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optimality conditions are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − α)

{
log

(
x(1)

i

pi

)
+ 1

}
+ γ (1 − α)

{
log

(
(1 − α)x(1)

i + αx(3)
i

pi

)
+ 1

}
+ λ = 0, i ∈ �0, N�,

(1 − α)

{
log

(
x(2)

i

qi

)
+ 1

}
− γ (1 − α)

{
log

(
(1 − α)x(2)

i + αx(3)
i

pi

)
+ 1

}
+ μ = 0, i ∈ �0, N�,

α

{
log

(
x(3)

i

qi

)
+ 1

}
+ αγ

{
log

(
(1 − α)x(1)

i + αx(3)
i

(1 − α)x(2)
i + αx(3)

i

)}
+ ν = 0, i ∈ [[0, N]],

γ
(
dKL
(
(1 − α)x(1) + αx(3), p

)− dKL
(
(1 − α)x(2) + αx(3), p

))= 0,

(5.3)

where λ, μ, ν are the Lagrange multipliers associated with the constraints (Pα,ε(3)) (corre-
sponding to u in the definition of the Lagrangian).

Let us point out that these optimality conditions do not hold for feasible points such that
x(i)

j = 0 for some i and j, because our problem is not smooth at these points. It only holds

for feasible points in the interior of R3(N+1)
+ . In Lemma 5.1, we show that there is no opti-

mal solution in the boundary of R3(N+1)
+ that justifies the use of conditions (5.3). The set of

Lagrange multipliers associated with a feasible point (x, y, z) is denoted L(x, y, z) (and is a sub-
set of R3(N+1)

− ×R
3 ×R−). In particular, let us emphasize that due to the inequality constraint

(Pα,ε(4)), we require γ ≤ 0. We let S(α, ε) denote the set of solutions of the above problem for
given parameters (α, ε) and let F(α, ε) be the set of feasible points. In the particular case where
ε = 0, we use the notation S(α) and F(α) for S(α, 0) and F(α, 0) respectively. Our first goal is
to show that for any

(
x(1), x(2), x(3)

) ∈ S(α, ε), we have x(j)
i > 0 for all i,j. This is the point of

the following lemma.

Lemma 5.1. Consider the set S(α, ε) of solutions of problem (Pα,ε). Then, for ε small enough
and any α ∈ (0, 1), we have

S(α, ε) ∩ ∂R
3(N+1)
+ = ∅.

Proof. The proof has been deferred to Appendix A.1. �

Remark 5.1. In the cases where ε = 0, note that one can easily check using the first-order
optimally conditions that the inequality constraint (Pα,ε(4)) is always saturated. Thus, in the
following, we will always assume that γ < 0.

Proof of Theorem5.1.
Step 1: Solving (P0,0) i.e. α = ε = 0. In this case the first-order optimality conditions (5.3)
become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log

(
x(0)

i

pi

)
+ 1 + γ

{
log

(
x(0)

i

pi

)
+ 1

}
+ λ = 0, for all i ∈ �0, N�, (5.4a)

log

(
y(0)

i

qi

)
+ 1 − γ

{
log

(
y(0)

i
pi

)
+ 1

}
+ μ = 0, for all i ∈ �0, N�, (5.4b)

γ
(
dKLx(0)p − dKLy(0)p

)= 0, (5.4c)

N∑
i=0

x(0)
i =

N∑
i=0

y(0)
i = 1. (5.4d)
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If we assume that γ �= −1, then (5.4a), (5.4c), and (5.4d) lead to

x(0)
i = y(0)

i = pi for all i ∈ �0, N�,

which is not compatible with (5.4d) unless p = q. In addition, γ = 0 leads to x(0) = p and
y(0) = q, which is easily checked to be not feasible. Thus we have γ = −1, and (5.4b) then
gives

y(0)
i eμ/2 = √

piqi for all i ∈ �0, N�,

which, using (5.4d), gives

y(0)
i =

√
piqi∑N

l=0
√

plql
for all i ∈ �0, N�.

It follows from (5.4c) that
(
x(0), y(0), z(0)

)
, with⎧⎪⎨⎪⎩x(0)

i = y(0)
i =

√
piqi∑N

l=0
√

plql
for all i ∈ �0, N�,

z(0) = q,

is a feasible optimal solution of problem (P0,0). In particular,

f0
(
x(0), y(0), z(0))
=

N∑
i=0

√
piqi∑N

l=0
√

piqi
log

( √
piqi

pi
∑N

l=0
√

piqi

)
+

N∑
i=0

√
piqi∑N

l=0
√

piqi
log

( √
piqi

qi
∑N

l=0
√

piqi

)

= −2 log

(
N∑

l=0

√
piqi

)
= dB(p, q),

where dB(·, ·) is the Bhattacharyya divergence defined in (5.2).

Step 2: Continuity of the value function. The goal of this step is to show that the full value
function V is continuous. To do so, we apply Theorem 2.1 in conjunction with Theorem 2.8 of
[8]. In view of these theorems, the only point that needs clarification is that

{(x, y, z) ∈M3 | Hα,ε(x, y, z) > 0} = {(x, y, z) ∈M3 | Hα,ε(x, y, z) ≥ 0}.
To do so, it suffices to show that for any (a, b, c) ∈M3 such that Hα,ε(a, b, c) = 0 and any
δ > 0, there exists an element (ã, b̃, c̃) ∈M3 such that Hα,ε(ã, b̃, c̃) > 0 with

‖(a, b, c) − (ã, b̃, c̃)‖1 < δ.

As the proof closely follows the ideas of the proof of Lemma 5.1, we do not write down
the details. Thus V is continuous. The first statement of Theorem 5.1 now follows from the
compactness of [0,1].

Step 3: Limits of v(α)/(1 − α) as α → 1. For any α ∈ [0, 1), it is easily seen that

v(α)

1 − α
= inf

(x,y,z)∈M3

{
dKL(x, p) + dKL(y, q) + α dKL(z, q)

1 − α

∣∣∣∣
dKL

(
x + α

1 − α
z, p

)
− dKL

(
y + α

1 − α
z, p

)
≥ 0

}
.
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This is equivalent to studying the behavior of

V(δ) = inf
(x,y,z)∈M3

{dKL(x, p) + dKL(y, q) + δdKL(z, q) | dKL(x + δz, p) − dKL(y + δz, p) ≥ 0},
(5.5)

as δ goes to infinity. So, let (δn)n≥1 be some sequence of real numbers such that δn −−−→
n→∞ ∞,

and set

Sn := S
(

δn

1 + δn
, 0

)
.

Now, for all n ≥ 1, choose (x(n), y(n), z(n)) ∈ Sn. As ∪n≥1Sn ⊂M is relatively compact, we may
assume, extracting a subsequence if needed, that (x(n), y(n), z(n)) converges to some element
(x∗, y∗, z∗) ∈M3. Now assume that

lim
n→∞ ‖z(n) − q‖1 > 0.

However, this would imply that lim infn→∞ dKL(z(n), q) > 0, and thus that

lim inf
n→∞ {dKL(x(n), p) + dKL(y(n), q) + δndKL(z(n), q)} ≥ lim inf

n→∞ δndKL(z(n), q) = ∞,

but this is impossible, since, according to Step 1, V(δ) ≤ dB(p, q) (because the solution given
in Step 1 is always feasible). It follows that

lim
n→∞ ‖z(n) − q‖1 = 0

and z∗ = q. Now, for fixed n ≥ 1, the first-order optimality conditions of problem (5.5) take the
form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

log

(
x(n)

i

pi

)
+ 1 + γn

(
log

(
δnz(n)

i + x(n)
i

pi

)
+ 1

)
+ λn = 0,

log

(
y(n)

i

qi

)
+ 1 − γn

(
log

(
δnz(n)

i + y(n)
i

pi

)
+ 1

)
+ μn = 0,

δn log

(
z(n)

i

qi

)
+ δn + γnδn

(
log

(
δnz(n)

i + x(n)
i

δnz(n)
i + y(n)

i

))
+ νn = 0,

(5.6)

for some Lagrange multipliers (λn, μn, νn, γn) ∈ L(x(n), y(n), z(n)).
We now show that the sequence γn must be bounded. For this, let us assume that γn is

unbounded. So, extracting a subsequence if needed, we may assume that

γn −−−→
n→∞ −∞.

The second equation of (5.6) implies that, for all i,

y(n)
i pi

qi
= pi

(
δnz(n)

i + y(n)
i

pi

)γn

exp (−1 + γn − μn).

Summing over i and using Jensen’s inequality (since γn < 0), we obtain

N∑
i=1

y(n)
i pi

qi
=

N∑
i=1

pi

(
δnz(n)

i + x(n)
i

pi

)γn

exp (−1 + γn − μn) ≥ (1 + δn)γn exp (−1 + γn − μn).
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Thus

log

(
N∑

i=1

y(n)
i pi

qi

)
− γn log (1 + δn) + 1 − γn + μn ≥ 0.

Now equations (5.6) also give, for all 1 ≤ i ≤ N,

log

(
x(n)

i

pi

)
+ γn log

(
z(n)

i + δ−1
n x(n)

i

pi

)
+ γn log (δn) + 1 + γn + λn

= log

(
x(n)

i

pi

)
+ γn log

(
δnz(n)

i + x(n)
i

(δn + 1)pi

)
+ γn log (1 + δn) + 1 + γn + λn

= 0 (5.7)

and

log

(
y(n)

i

qi

)
− γn log

(
δnz(n)

i + y(n)
i

(δn + 1)pi

)
− γn log (1 + δn) + 1 + γn + μn = 0.

Hence, for n large enough, we have

log

(
y(n)

i

qi

)
− γn log

(
δnz(n)

i + y(n)
i

(δn + 1)pi

)
− log

(
N∑

i=1

y(n)
i pi

qi

)
≤ 0.

In particular, this implies that y∗
i = 0 for all i such that qi > pi. Similarly to (5.7), we get

log

(
x(n)

i

pi

)
+ γn log

(
δnz(n)

i + x(n)
i

(δn + 1)pi

)
≤ 0,

and x∗
i = 0 for all i such that pi > qi. Now a direct computation gives

dKL(x∗, p) + dKL(y∗, q) ≥ − log

(∑
j∈J

pi

)
− log

(∑
i∈I

qi

)
,

with I = {i ∈ {1, . . . , N} | qi ≤ pi} and J = {i ∈ {1, . . . , N} | pi ≤ qi}. However,(∑
i∈J

pi

)(∑
i∈I

qi

)
≤
(∑

i∈J

√
piqi

)(∑
i∈I

√
piqi

)
<

(
N∑

i=1

√
piqi

)2

.

Thus

− log

(∑
j∈J

pi

)
− log

(∑
i∈I

qi

)
> dB(p, q).

But, as the solution of Step 1 is always an admissible solution, this is absurd since it would
imply that, for n large enough, (x(n), y(n), z(n)) is not optimal. From the preceding, we conclude
that γn is bounded. Thus, again extracting a subsequence if needed, we can suppose that there
exists some γ∞ ≤ 0 such that

γn −−−→
n→∞ γ∞.
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In addition, (5.7) implies that the sequence (γn log (δn) + λn)n≥1 is bounded as well (because
there must be at least one i such that limn→∞ x(n)

i > 0), which we may also assume to be
convergent. From these and (5.7), it follows that

x(n)
i = p1+γn

i q−γn
i ecn+γnO(δ−1

n ) = p1+γ∞
i q−γ∞

i∑N
j=1 p1+γ∞

j q−γ∞
j

+ o(1) for all 1 ≤ i ≤ n, (5.8)

and similarly, we have

y(n)
i = p−γn

i q1−γn
i ec̃n+γnO(δ−1

n ) = p−γ∞
i q1+γ∞

i∑N
j=1 p−γ∞

j q1+γ∞
j

+ o(1) for all 1 ≤ i ≤ n, (5.9)

where (cn)n≥1 and (c̃n)n≥1 are some convergent sequences. Denoting

h(γ ) =
(

p1+γ
i q−γ

i∑N
j=1 p1+γ

j q−γ
j

)
1≤i≤N

,

and setting K(x) = dKL(x, p) for any x ∈M, it follows that (see Remark 5.1)

0 = K
(
αnz(n) + (1 − αn)x(n))− K

(
αnz(n) + (1 − αn)y(n))

= K(αnq + (1 − αn)h(γn)) − K(αnq + (1 − αn)h( − 1 − γn))

+ ∇K(αnq + (1 − αn)h(γn)) · (αn(z(n) − q) + (1 − αn)(x(n) − h(γn))
)

− ∇K(αnq + (1 − αn)h(−1 − γn)) · (αn(z(n) − q) + (1 − αn)(y(n) − h(−1 − γn))
)

+ O

(
1

δ2
n

)
= K(αnq + (1 − αn)h(γn)) − K(αnq + (1 − αn)h( − 1 − γn))

+ αn(∇K(αnq + (1 − αn)h(γn)) − ∇K(αnq + (1 − αn)h( − 1 − γn))) + o

(
1

δn

)
,

but since ∇K exists and is continuous in a neighborhood of q, we get

K
(
αnz(n) + (1 − αn)x(n))− K

(
αnz(n) + (1 − αn)y(n))

= K(αnq + (1 − αn)h(γn)) − K(αnq + (1 − αn)h( − 1 − γn)) + o

(
1

δn

)
= (1 − αn)∇K(αnq) · (h(γn) − h( − 1 − γn)) + o

(
1

δn

)
= 0.

Finally, as 1 − αn ∼ 1/δn, it follows that

∇K(q) · (h(γ∞) − h(1 − γ∞)) = 0.

Now, since ∇K(q) = ( log (qi/pi) + 1)1≤i≤N , we have

N∑
i=1

log

(
qi

pi

)
(hi(γ∞) − hi( − 1 − γ∞)) = 0. (5.10)
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Since p1+γ
i q−γ

i = (pi/qi)−γ−1/2(piqi)1/2, (5.10) can be written as

F(−γ∞ − 1/2) = F(γ∞ + 1/2), (5.11)

where F(γ ) = F1(γ )/F0(γ ) with, for any k ∈N,

Fk(γ ) :=
N∑

i=1

logk
(

qi

pi

)
·
(

qi

pi

)γ √
piqi.

Let γ∞ := −γ∞ − 1/2, which implies that (5.11) can be rewritten as F(γ ∞) = F( − γ ∞).
We shall show that the only solution of this equation is γ ∞ = 0. One can see that F(1/2) =
dKL(q, p) > 0 and F(−1/2) = −dKL(p, q) < 0. Since F′

k = Fk+1, we obtain

F′ = F′
1F0 − F1F′

0

F2
0

= F2F0 − F2
1

F2
0

> 0

by the Cauchy–Schwarz inequality, because log (qi/pi) is not constant by p �= q. Thus F is a
strictly increasing function, which implies that the only solution is γ ∞ = 0. Hence γ∞ = 1/2,
which finally gives, according to (5.8) and (5.9),

x∗
i = y∗

i =
√

piqi∑N
j=1

√
pjqj

for all 1 ≤ i ≤ N.

From this, it follows that
V(δn) −−−→

n→∞ dB(p, q),

which, since the sequence (δn)n≥1 is arbitrary, implies that

lim
α→1

v(α)

1 − α
= lim

δ→∞V(δ) = dB(p, q).

This ends the proof. �

6. Proof of Theorem 3.2 in the critical and supercritical cases

The purpose of this section is to prove Theorem 3.2 when m(μ) ≥ 1.

6.1. Estimation of µ

We aim to prove that μ̂h is always convergent in these cases.

Proposition 6.1. If m(μ) ≥ 1, then the estimators μ̂h and μ̂∗
h, defined in (3.1) and (3.5)

respectively, satisfy
μ̂h −−−→

h→∞ μ

and
μ̂∗

h −−−→
h→∞ μ

almost surely. In addition, for any ε > 0 we have∑
h≥1

P(‖μ̂h − μ‖1 > ε) < ∞.
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18 R. AZAÏS AND B. HENRY

Note that the result of Proposition 6.1 is rather intuitive. Indeed, when the normal Galton–
Watson subtrees are supercritical, the sample used in (3.1) or (3.5) is a perturbation of size h
of a μ i.i.d. sample whose size is of order m(μ)h. Therefore our primary concern is ensuring
that this perturbation is not sufficiently large to hinder the estimation process.

Proof. Recall that the spinal-structured tree T can be decomposed as the grafting of a
sequence (Gi,j)i,j≥1 of i.i.d. Galton–Watson trees with common birth distribution μ onto the
spine. For each of these trees, let us write Xi,j,h, for i, j, h ∈N, the random vector defined by

Xi,j,h(k) =
∑

{v∈Gi,j : D(v)<h}
1C(v)=k, 0 ≤ k ≤ N.

We emphasize that i corresponds to generations in the spinal-structured tree whereas j corre-
sponds to indices of the offspring in a given generation. In addition, it is known (see e.g. [7])
that the law of Xi,j,h conditional on #{v ∈ Gi,j : D(v) < h} is multinomial with parameters μ

and #{v ∈ Gi,j : D(v) < h}. From this, and from the independence of the Gi,j, it follows that the
random variable Xh defined by

Xh =
h∑

i=1

Si−1∑
j=1

Xi,j,h−i

is, conditionally on #Th, a multinomial random variable with parameters #Th − h and μ inde-
pendent of Sh. Now, letting Sh denote the empirical distribution associated with Sh, that is,

Sh(k) = 1

h

h∑
i=1

1Si=k for all k ∈ {1, . . . , N},

where S1, . . . , Sh denote the numbers of special children of the individuals of the spine, it is
easily seen that

μ̂h =
(

1 − h

#Th

)
Xh + h

#Th
Sh.

Now, taking ε > 0, Pinsker’s inequality entails that

P
(‖μ̂h − μ‖1 >

√
ε/2
)≤ P(dKL(μ̂h, μ) > ε).

The convexity of the Kullback–Leibler divergence gives, with αh := h/#Th,

P
(‖μ̂h − μ‖1 >

√
ε/2
)≤ P
(
(1 − αh)dKL

(
Xh, μ
)+ αhdKL

(Sh, μ
)
> ε
)

≤ P

(
(1 − αh)dKL

(
Xh, μ
)+ αhdKL

(Sh, μ
)
> ε, αhdKL(ν, μ) <

ε

2

)
+ P

(
αhdKL(ν, μ) ≥ ε

2

)
.

Next, using the method of Lemma 6.2, one can show that for any δ > 0 there is a constant
C > 0 such that

P

(
(1 − αh)dKL

(
Xh, μ
)+ αhdKL

(Sh, μ
)
> ε, αhdKL(μ, ν) <

ε

2

∣∣∣∣ #Th

)
≤ C exp ( − #Th(
(αh) − δ)),
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with


(α) := inf
(x,y)∈M2

{
(1 − α)dKL(x, μ) + (1 − α)dKL(y, ν)

∣∣∣∣
(1 − α)dKL(x, μ) + αdKL(y, μ) > ε, αdKL(ν, μ) <

ε

2

}
≥ inf

(x,y)∈M2

α∈[0,1]

{
(1 − α)dKL(x, μ) + (1 − α)dKL(y, ν)

∣∣∣∣
(1 − α)dKL(x, μ) + αdKL(y, μ) ≥ ε, αdKL(ν, μ) ≤ ε

2

}
.

As the feasible set of the right-hand side is obviously compact, there exists a feasible point
(x∗, y∗, α∗) such that

(1 − α∗)dKL(x∗, μ) + (1 − α∗)dKL(y∗, ν)

= inf
(x,y)∈M2

α∈[0,1]

{
(1 − α)dKL(x, μ) + (1 − α)dKL(y, ν)

∣∣∣∣
(1 − α)dKL(x, μ) + αdKL(y, μ) ≥ ε, αdKL(ν, μ) ≤ ε

2

}
.

Assume that (1 − α∗)dKL(x∗, μ) + (1 − α∗)dKL(y∗, ν) = 0, which readily implies that x∗ = μ

and y∗ = ν, but it is easily seen that for any α ∈ [0, 1], the point (μ, ν, α) is not feasible. Hence
there exists a constant C̃ > 0 independent of α such that


(α) ≥ C̃.

Choosing δ < C̃, we get

P

(
(1 − αh)dKL

(
Xh, μ
)+ αhdKL

(Sh, μ
)
> ε, αhdKL(μ, ν) <

ε

2

∣∣∣∣ #Th

)
≤ C exp

(−#Th(C̃ − δ)
)

≤ e−h(C̃−δ),

since #Th ≥ h. Then

P
(‖μ̂h − μ‖1 >

√
ε/2
)≤ e−hC + P

(
αhdKL(μ, ν) ≥ ε

2

)
.

To ensure that the right-hand side of the previous inequality is summable for h ≥ 1, it thus
remains to check that ∑

h≥1

P

(
αhdKL(μ, ν) ≥ ε

2

)
< ∞.

From this point we assume that the birth distribution is critical. The supercritical case is con-
sidered below. So, to treat this, we observe that the spinal-structured tree (excluding the spine)
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can be interpreted as a Galton–Watson tree with immigration with birth distribution μ and
immigration ν̃ given by ν̃k = νk+1 for k ≥ 0. It is known (see [14]) that the generating function
of #Th is given by

E
[
x#Th
]= xh

h−1∏
i=0

B(gi(x)), (6.1)

where B : [0, 1] �→R is the generating function of the law ν̃, and gi is the generating function
of the total progeny of a Galton–Watson tree with law μ up to generation i, that is,

gi(x) =E
[
x
∑i

j=0 Zj
]

for all x ∈ [0, 1],

where (Zi)i≥0 is a standard Galton–Watson process with birth distribution μ. Now denote

vh =E
[
x#Th/h] for all h ≥ 1.

We then have (the regularity of B and gi is easily checked)

log (vh) = log (B(gi(θh))) + (θh+1 − θh)
g′

i(ηh)B′(gi(ηh))

B(gi(ηh))
,

with

θh = exp

(
log (x)

h

)
and ηh ∈ (θh, θh+1) for all h ≥ 1. (6.2)

Hence (6.1) entails that

log

(
vh+1

vh

)
= log (x) + (θh+1 − θh)

h−1∑
i=0

g′
i(ηh)B′(gi(ηh))

B(gi(ηh))
+ log (B(gh(θh+1))).

Now, as the sequence gi is monotonically decreasing and converging to some proper generating
function g (only in the critical case; see again [14]), we obtain

g′
i(ηh)B′(gi(ηh))

B(gi(ηh))
≤ m(ν̃)g′

i(ηh)

B(g(ηh))
.

Now, as for x ∈ (0, 1),

g′
i(x) =E

[(
i∑

j=0

Zj

)
x
∑i

j=0 Zj−1

]
,

we have

g′
i(x) ≤ − e−1

x log (x)
.

It follows that

lim sup
h→∞

log

(
vh+1

vh

)
≤ log (x) − lim sup

h→∞

(
(θh+1 − θh)

m(ν̃)

B(g(ηh))

h e−1

ηh log (ηh)
+ log (B(gh(θh+1)))

)
= log (x) + m(ν̃) e−1,

where we used (6.2) to get
lim

h→∞ hηh log (ηh) = log (x).

https://doi.org/10.1017/jpr.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.56


Estimation of spinal-structured trees 21

Now, as x is arbitrary, it can always be chosen such that log (x) + m(ν̃) e−1 < 0, which, by the
ratio test, implies that, for such x, ∑

h≥1

E
[
x#Th/h]< ∞.

Finally, we have

E
[
x#Th/h]≥E

[
x#Th/h1#Th/h≤cε

]≥ xcεP

(
#Th

h
≤ cε

)
,

where

cε = 2dKL(μ, ν)

ε
.

From this, it follows that ∑
h≥1

P

(
#Th

h
≤ 2dKL(μ, ν)

ε

)
< ∞. (6.3)

We now consider the case where Th is supercritical. A possible approach is to consider a
coupling between the supercritical tree Th and a critical tree T̃h using a thinning procedure, in
order to get the estimate

E
[
x#Th/h]≤E

[
x#T̃h/h]. (6.4)

Indeed, now assume that Th is supercritical. We consider a thinning of Th where each normal
individual (and its descent) is killed independently with probability p. This induces a new
tree T̃h with new normal birth distribution μ̃ such that m(μ̃) = pm(μ). So taking p = m(μ)−1

implies that T̃h is a spinal-structured tree with critical birth distribution. Hence, from the first
part of the proof, we have ∑

h≥1

E
[
x#T̃h/h]< ∞,

for x such that log (x) + m(ν̃) e−1 < 0. But the thinning procedure used for constructing T̃h

directly implies that #T̃h ≤ #Th almost surely, which gives (6.4). This implies that∑
h≥1

E
[
x#Th/h]< ∞.

The remainder of the proof is the same as for the critical case. This ends the proof of the
almost sure convergence of μ̂h. Concerning the almost sure convergence of μ̂∗

h, first note that
(6.3) implies that

h

#Th
−−−→
h→∞ 0 (6.5)

almost surely. Now take any s ∈Sh, where we recall that Sh is the set of spine candidates
defined in Section 2, and consider the estimator μs

h given by

μs
h(i) = 1

#Th − h

∑
v∈Th\s

1C(v)=i for all 0 ≤ i ≤ N.

Thus

|μ̂h(i) − μ̂s
h(i)| ≤ μ̂h

∣∣∣∣1 − #Th

#Th − h

∣∣∣∣+ #s
#Th − h

= μ̂h

∣∣∣∣1 − #Th

#Th − h

∣∣∣∣+ h

#Th − h
,

and the result follows from (6.5) and the almost sure convergence of μ̂h. �
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6.2. Spine recovery

Now, to go further in the proof of Theorem 3.2, we need to understand whether we can
recover enough of the spine in order to estimate f . To do so, the idea is to show that the Ugly
Duckling Ŝh contains a proportion of order h of special individuals. Before this result, we need
some preliminary lemmas. The first one concerns Kullback–Leibler divergence.

Lemma 6.1. Let p ∈M such that p− := inf0≤i≤N pi > 0 and m(p) ≥ 1. Then there exists ε1 > 0
such that, for any q, p̂ ∈M, we have

‖p − p̂‖1 < ε1 =⇒ |dKL(q,Bp) − dKL(q,Bp̂)| ≤ C1‖p − p̂‖1,

where C1 depends only on p.

Proof. The proof has been deferred to Appendix A.2. �

The following lemma concerns large deviations on the probability of distinguishing two
samples.

Lemma 6.2. Let p and q in M. Let R, M, and S be three independent multinomial random
variables with respective parameters (h − n, p), (h − n, q), and (n,q), for some integers h and
n such that h > n. Then, for any δ > 0, there exists a constant C > 0 such that

P(dKL(M + S, p) + ε > dKL(R + S, p)) ≤ C exp{h( − (1 − α)D(p, q) + ε − δ)},
where D is the divergence defined in (3.7). In addition the constant C depends only on N and δ.

Proof. The proof has been deferred to Appendix A.3.
�

We can finally come to the proof of Theorem 3.2.

Proof of Theorem 3.2, critical and supercritical cases. Let us recall that, for any element
s ∈Sh, s̄ is defined as the random vector given by

s̄i = 1

h

∑
v∈s

1C(v)=i for all 0 ≤ i ≤ N,

that is, the empirical distribution of the numbers of children along s. In addition, for any non-
negative integer l ≤ h, we let Sl

h denote the subset of Sh such that

Sl
h = {s ∈Sh | #(s ∩S) ≤ l}.

From the definition of Ŝh, we have, for any non-negative integer l,

P(#(Ŝh ∩S) ≤ l) = P

(
max
s∈Sl

h

dKL(s̄,Bμ̂h) > max
s∈Sh\Sk

h

dKL(s̄,Bμ̂h)

)
≤ P

(
max
s∈Sl

h

dKL(s̄,Bμ̂h) > dKL(S̄,Bμ̂h)

)

= P

( ⋃
s∈Sl

h

{dKL(s̄,Bμ̂h) > dKL(S̄,Bμ̂h)}
)

.
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Now let ε > 0 such that ε < ε1, where ε1 is defined in Lemma 6.1. Thus, according to
Lemma 6.1, we have

P

( ⋃
s∈Sl

h

{dKL(s̄,Bμ̂h) > dKL(S̄,Bμ̂h)}, ‖μ̂h − μ‖1 ≤ C−1
1 ε

)

≤ P

( ⋃
s∈Sl

h

{dKL(s̄,Bp) + ε > dKL(S̄,Bp)}
)

,

where C1 is also defined in Lemma 6.1. Hence, following the notation of (3.2), we have

P(#(Ŝh ∩S) ≤ l) ≤E

[
l∑

i=0

Si∑
j=1

∑
{u∈Gi,j : D(u)=i}

1dKL((1−i/h)A(u)+i/hSi,Bp)+ε>dKL(Sh,Bp)

]
+ P
(‖μ̂h − μ‖1 > C−1

1 ε
)

=E[S]
l∑

i=0

E

[ ∑
{u∈G : D(u)=i}

1dKL(i/hA(u)+(1−i/h)Si,Bp)+ε>dKL(Sh,Bp)

]
+ P
(‖μ̂h − μ‖1 > C−1

1 ε
)
,

where G is some Galton–Watson tree with birth distribution μ and we recall that Si =
(S1, . . . , Si) are the i first elements of the spine. Now, applying the many-to-one formula (3.2),
we get

E

[ ∑
{u∈G : D(u)=h}

1dKL(i/hA(u)+(1−i/h)Sh−i,p)+ε>dKL(S̄,p)

]

= mi
P

(
dKL

(
i

h
X +
(

1 − i

h

)
Sh−i, p

)
+ ε > dKL

(Sh, p
))

,

where X is the empirical distribution of an i.i.d. sample X1, . . . , Xi with law given by Bμ

independent of S.
Now let ρ > 0 be such that log (m(μ)) −D(Bμ, ν) + ρ < 0. Thus, according to Lemma 6.2

and Theorem 5.1, we can choose δ > 0 and ε small enough such that V(α, ε) ≥ v(α) − ρ and

P
(
#
(Ŝh ∩S)≤ l

)≤ CδE[S]
l∑

i=0

mh−i exp

(
−h

(
v

(
i

h

)
− ρ

)
+ hδ

)
+ P
(‖μ̂h − μ‖1 > C−1

1 ε
)
,

for some constant Cδ provided by Lemma 6.2. Now let η > 0; setting Eh = h − #(Ŝh ∩S), we
have

P

(Eh

h
> η

)
= P
(
#
(Ŝh ∩S)≤ 
(1 − δ)h�)

≤ CδE[S]
∑
α∈Lh

exp (h((1 − α) log (m) − v(α) + ρ + δ)) + P(‖μ̂h − μ‖1 > ε),

with

Lh =
{

i

h
| 0 ≤ i ≤ 
(1 − δ)h�

}
.
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One can now easily control the probability by

P

(Eh

h
> η

)
≤ CδE[S](h + 1) exp

(
h sup

α∈[0,(1−η)]

{
(1 − α) log (m) − V(α) + ρ + δ

})
.

Now let us denote

αη := arg maxα∈[0,(1−η)](1 − α) log (m) − V(α).

Since (1 − α) log (m) − V(α) < 0 for all α ∈ [0, 1), we have

αη −−→
η→0

1,

by virtue of the continuity of V . Now, according to Theorem 5.1, we have

(1 − α) log (m) − v(α) ∼α→1 (1 − α)( log (m) − dB(p, q)).

Thus, for a fixed κ > 0 and for η small enough, we have

(1 − αη) log (m) − v(αη) ≤ (1 − κ)(1 − αη)( log (m) − dB(p, q)),

which gives

P

(Eh

h
> η

)
≤ CδE[S](h + 1) exp (h{(1 + κ)(1 − αη)( log (m) − dB(p, q)) + ρ + δ}).

Thus, for ρ and δ small enough, we find that P(E/h > η) converges to zero exponentially fast,
which entails that Eh

h
−−−→
h→∞ 0

almost surely, and ends the proof. �

7. Simulation study

The numerical results presented in this section were obtained using the Python library
treex [3] dedicated to tree simulation and analysis.

7.1. Consistency of estimators

This part is devoted to the illustration of the consistency result stated in Theorem 3.2
through numerical simulations. For each of three normal birth distributions μ (subcritical, crit-
ical, and supercritical), we have simulated 50 spinal-structured trees until generation hmax + 1,
with hmax = 125. The birth distribution of special nodes ν is obtained from μ and f using
(1.2), where the only condition imposed on f (in the critical and supercritical regimes) was
that the convergence criterion K(μ, ν) = log m(μ) −D(Bμ, ν) is negative. The values of the
parameters selected for this simulation study are presented in Table 1.

For each of these trees, we have estimated the unknown model parameters for observation
windows h between 5 and hmax with a step of 5. The normal birth distribution is estimated
twice: by the (biased) maximum likelihood estimator μ̂h given in (3.1) and by the corrected
estimator μ̂�

h defined in (3.5). The transform function f is estimated by f̂h defined in (3.6).
Finally, the special birth distribution ν is estimated by

ν̂h(k) ∝ f̂h(k)μ̂�
h(k) for all 0 ≤ k ≤ N.
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TABLE 1. Values of the parameters μ and f selected for the simulation of the spinal-structured trees in the
subcritical, critical, and supercritical regimes, as well as the associated convergence criterion K(μ, ν) =

log m(μ) −D(Bμ, ν).

Subcritical Critical Supercritical

k 0 1 2 0 1 2 0 1 2
μ(k) 0.35 0.4 0.25 0.4 0.2 0.4 0.29 0.4 0.31
f (k) 0 1 3 0 1 3 0 1 4

K(μ, ν) −0.116 −0.017 −0.006

For these four numerical parameters, we have computed the error in the L1-norm (since f is
identifiable only up to a multiplicative constant, both f and f̂h were normalized so that their
sum is 1 as before). The spine is estimated by the Ugly Duckling Ŝh defined in (3.4). In this
case, the estimation error is given by the proportion of special nodes not recovered by Ŝh.

The average errors computed for each of the five estimators from varying observation win-
dows h are presented for the three growth regimes in Figure 2. First of all, note that the five
average errors tend to vanish when h increases (even if it is with different shapes) for any
growth regime (the convergence criterion is checked in the three examples). This illustrates the
consistency of the estimators stated in Theorem 3.2. However, additional pieces of information
can be obtained from these simulations.

• It can be remarked that the correction of μ̂h is useful only in the subcritical regime. In
the two other regimes, one can indeed observe that the errors related to μ̂h and μ̂�

h are
almost superimposed. This is due to the fact that, in these growth regimes, the number
of normal nodes is sufficiently large (compared to the number of special nodes) so that
the bias of the maximum likelihood estimator vanishes.

• The estimators of f and ν are clearly less accurate than μ̂�
h, in particular in the critical

and supercritical regimes. A first but likely negligible reason is that f̂h is computed from
μ̂�

h, which should only add an error to the one associated with the latter. Furthermore,
the number of special nodes (used to estimate f̂h) is smaller than the number of normal
nodes (used to estimate μ̂�

h).

• The estimator of the spine seems to converge, but slowly compared to the other estimates.
However, we emphasize that, when h increases, the number of unknown node types
increases as well, contrary to μ, f , and ν, for which the dimension is fixed. It is thus
expected to observe a slower convergence rate.

7.2. Asymptotic test of conditioned Galton–Watson trees

When observing a population modeled by a Galton–Watson tree, it is of primary importance
to know whether or not it has been conditioned to survive, in particular when the birth distri-
bution is subcritical. Here we show how the theoretical contributions of this paper can be used
to develop an asymptotic test to answer this question.

We observe a subcritical tree T until generation h and would like to test the null hypothesis:
T is a Galton–Watson tree conditioned to survive until (at least) generation h. In the framework
of spinal-structured trees and approximating conditioned Galton–Watson trees by Kesten’s
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FIGURE 2. Average error as a function of the maximum height observed in the estimation of the unknown
parameters (orange and red, μ; blue, f ; light blue, ν; green, S) of a spinal-structured tree in the three

growth regimes: (a) subcritical, (b) critical, (c) supercritical. Parameter values can be read in Table 1.
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TABLE 2. Empirical rejection rate measured when testing the null hypothesis f ∝ Id from samples of
100 Kesten’s trees with normal birth distribution (0.55, 0.2, 0.25) observed until generation h for various

levels of confidence 1 − α.

Empirical rejection rate

α q(1 − α) h = 50 h = 100 h = 200 h = 500

10% 2.71 19% 8% 15% 5%
5% 3.84 10% 6% 9% 2%
1% 6.63 2% 3% 4% 0%

model [10], this is equivalent to testing f ∝ Id, which simplifies the construction of the test
but also provides a further motivation for the class of models considered in this paper. As in
Section 7.1, we assume that

∑N
i=0 f (i) = 1.

The construction of a test statistic for f requires both a consistent estimator and some
knowledge of its asymptotic behavior. The latter is sorely lacking but can be estimated from
numerical simulations. Here we restrict ourselves to binary (f (1) is therefore sufficient to
know f ) spinal-structured trees with 0.5 < m(μ) < 1 and 0 < f (1) < 0.5, that is, f is increas-
ing because f (1) + f (2) = 1. We suspect that f̂h(1) satisfies a central limit theorem with rate√

h. However, we want to check if this rate seems to be adequate, so we need to estimate its
asymptotic variance, possibly as a function of both μ and f . To this end, we have estimated
h Var (̂fh(1) − f (1)) from simulated samples of spinal-structured trees from various values of
μ and f within the range specified above: the results are presented in Figure 3(a). First, we
observe that h Var (̂fh(1) − f (1)) seems to be constant in h for any value of the two parame-
ters, which validates the rate

√
h. In addition, the asymptotic variance clearly depends on the

parameters, but can be accurately predicted from them by a linear regression:

σ 2(μ, f ) = 0.4611141 − 0.5561625 × m(μ) + 1.0688165 × f (1).

In Figure 3(b) we display the distribution of
√

h(̂fh(1) − f (1))/σ (μ̂h, f̂h), which is very close to
the Gaussian distribution, as expected.

Relying on this short simulation study and recalling that f (1) = 1/3 in Kesten’s model (f ∝
Id and f (1) + f (2) = 1), we introduce the test statistic

Qh = h(̂fh(1) − 1/3)2

σ 2(μ̂h, f̂h)
,

which approximately follows a χ2(1) distribution when the underlying tree is sampled accord-
ing to Kesten’s model. Denoting q(x) = P(χ2(1) > x), one rejects the hypothesis f ∝ Id with
confidence level 1 − α when Qh > q(1 − α). Figure 4(a) illustrates the behavior of Qh when
the tested hypothesis is true. Furthermore, Table 2 shows that the test rejects the null hypothesis
with approximately the expected frequency of error α.

To go further, the behavior under the alternative hypothesis needs to be investigated. That is
why we propose to apply the test to a population that does not follow Kesten’s model. For this
purpose, we consider a Galton–Watson model with competition: for any k ≥ 0, each node of
the kth generation gives birth, with distribution μs depending on its size s, to a random number
of children,

μs =
(

1

4

(
1 − 1

s

)
,

3

4

(
1 − 1

s

)
,

1

s

)
.
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FIGURE 3. (a) Estimates of h Var (̂fh(1) − f (1)) from samples of 100 spinal-structured trees simulated
with various parameters μ and f with 0.5 < m(μ) < 1 and 0 < f (1) < 0.5, and (b) empirical distribution
of the reduced centered error

√
h(̂fh(1) − f (1))/σ (μ̂h, f̂h) for some of these parameters with a comparison

to the Gaussian distribution (thick black line).
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FIGURE 4. Empirical distribution of the test statistic Qh obtained from (a) samples of 100 Kesten’s
trees with normal birth distribution (0.55, 0.2, 0.25), and (b) samples of 100 Galton–Watson trees with

competition, both with a comparison to the χ2(1) distribution (red line).
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It should be noted that m(μs) = 3/4 + 5/(4s), which makes the population growth supercritical
when s ≤ 4, critical when s = 5, and subcritical when s ≥ 6. Oscillating between exponential
growth and decay, the population is likely to avoid extinction, without fitting to the behavior
of a Galton–Watson tree conditioned on surviving. Figure 4(b) provides the distribution of
the test statistic Qh under this model: it is significantly different from the χ2(1) distribution
expected under the null hypothesis, even from small populations, and thus differentiates from
conditioned Galton–Watson trees.

Appendix. Proofs of intermediate lemmas

A.1. Proof of Lemma 5.1

Let (x, y, z) ∈ F(α, ε). The proof is based on the fact that if x, y, or z has some null coordi-
nate, we may always perturb these points in order to decrease the objective function while still
remaining in F(α, ε). For the sake of simplicity, we assume throughout the proof that xi > 0,
zi > 0, and yi > 0, as soon as i �= 0. The other cases can be treated similarly and are left to the
reader. The harder case is when we have x0 = z0 = 0 and y0 > 0, but to give an example we
first treat the case where x0 = 0, z0 > 0 and y0 > 0. Henceforth, for any X ∈R

N+1, we let I(X)
denote the set given by

I(X) = {i ∈ �0, N� | Xi = 0},
and let ∇+dKL(x, p) be the vector given by

∇+dKL(x, p) =
{

1 + log (xi/pi) for all i ∈ Ic(x),

0 for all i ∈ I(x),

which is the vector of directional derivatives of dKL(· , p) in the directions where they are
well-defined.

Case 1: x0 = 0, z0 > 0 and y0 > 0. We first show that whenever h ∈R
N+1 satisfies h0 > 0

we have

lim sup
δ→0

fα(x + δh, y, z) − fα(x, y, z)

δ
< 0. (A.1)

For any i ∈ I(x) and any δ > 0,

fα(x + δei, y, z) − fα(x, y, z) = (1 − α)δ log

(
δ

pi

)
,

where ei is the ith vector of the canonical basis of RN+1. This easily entails that

lim
δ→0

fα(x + δei, y, z) − fα(x, y, z)

δ
= −∞. (A.2)

Now take h ∈R
N+1 such that h0 > 0. We have that h = hI(x) + hIc(x), where hI(x) is given by

hI(x) =
{

hi if i ∈ I(x),

0 else,

and hIc(x) = h − hI(x). Thus, because f has well-defined directional derivatives in the direction
of the positive coordinate, we have

fα(x + δh, y, z) = fα(x + δhI(x), y, z) + δ∇+fα(x, y, z) · hIc(x) + o(δ). (A.3)
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Thus (A.3) implies

lim sup
δ→0

fα(x + δh, y, z) − fα(x, y, z)

δ

= lim sup
δ→0

fα(x + δhI(x), y, z) − fα(x, y, z)

δ
+ ∇+fα(x, y, z) · hIc(x),

and (A.1) now follows from (A.2). Now let i∗ ∈ �0, N� such that

log

(
(1 − α)xi∗ + αzi∗

pi∗

)
= min

0≤i≤N
log

(
(1 − α)xi + αzi

pi

)
.

Because (1 − α)x + αz ∈M and p ∈M, we must have

log

(
(1 − α)xi∗ + αzi∗

pi∗

)
< 0.

Thus, taking h = e0 − ei∗ , we get

Hα,ε(x + δh, y, z) − Hα,ε(x, y, z) = δ(1 − α)

(
log

(
αz0

p0

)
− log

(
(1 − α)xi∗ + αzi∗

pi∗

))
+ o(δ).

For δ small enough, we obtain

Hα,ε(x + δh, y, z) ≥ Hα,ε(x, y, z),

which implies that (x + δh, y, z) ∈ F(α, ε). In addition, (A.1) implies f (x + δh, y, z) < f (x, y, z)
for δ small enough. Thus (x,y,z) cannot be a solution of problem (Pα,ε).

Case 2: x0 = z0 = 0 and y0 > 0. This particular case raises a new difficulty. Informally, in
such a situation a perturbation of type (x + δh, y, z + δh̃) gives

Hα,ε(x + δh, y, z + δh̃) = Hα,ε(x, y, z) + δ log (δ) + o(δ log (δ)).

It follows that H is decreasing in any direction of type δ(h, 0, h̃), and (x + δh, y, z + δh̃) may
not be in F(α, ε). To overcome this problem, we consider perturbed points of the form{

xδ = x + δe0 − δei + δ log (δ)r,

zδ = z + δe0 − δei,

where r ∈R
N+1 satisfies {

r0 = 0,∑N
i=0 ri = 0.

(A.4)

Thus, for sufficiently small δ, we have zδ ∈M and xδ ∈M. Because xi > 0 and zi > 0 for all
i > 0, we have

dKL(xδ, p) = dKL(x, p) + δ log (δ) + δ log (δ)r · ∇+dKL(x, p) + o(δ log (δ))

and
dKL(zδ, q) = dKL(z, q) + δ log (δ) + o(δ log (δ)),
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which gives

fα(xδ, y, zδ) = f (x, y, z) + δ log (δ)(1 + (1 − α)r · ∇+dKL(x, p)) + o(δ log (δ)). (A.5)

Similarly, we get

Hα,ε(xδ, y, zδ)

= Hα,ε(x, y, z) + δ log (δ)(1 + (1 − α)r · ∇+dKL((1 − α)x + αz, p)) + o(δ log (δ)). (A.6)

Our next step is to show that for some choice of r and δ small enough, we have f (xδ, y, zδ) ≤
f (x, y, z) and h(xδ, y, zδ) ≥ h(x, y, z), which imply (xδ, y, zδ) ∈ F(α, ε) and that (x, y, z) is not a
minimizer of f among the feasible set F(α, ε). To show this, by virtue of (A.5) and (A.6), we
only need to find some r ∈R

N+1 satisfying conditions (A.4) and{
−r · ∇+dKL(x, p) ≤ 1,

r · ∇+dKL((1 − α)x + αz, p) ≤ −1,
(A.7)

in particular because δ log (δ) < 0 for δ small enough. According to Farkas’s lemma, such an r
exists as soon as there is no solution (u,v,w) to the problem⎧⎪⎪⎨⎪⎪⎩

−u log

(
xi

pi

)
+ v log

(
(1 − α)xi + αzi

pi

)
+ w = 0 for all i > 0,

u − v < 0,

u > 0, v > 0, w > 0.

(A.8)

Assume that (u,v,w) is a solution to problem (A.8). Thus, for all i > 0,

xi = ew/upi

(
(1 − α)xi + αzi

pi

)v/u

.

Hence, according to Jensen’s inequality and the conditions of problem (A.8),

1 = ew/u
N∑

i=1

pi

(
(1 − α)xi + αzi

pi

)v/u

≥ ew/v > 1,

which is absurd. Thus problem (A.8) has no solution, and Farkas’s lemma entails that there
exists r ∈R

N+1 such that conditions (A.4) and (A.7) are satisfied.

The method is similar if we have more than one zero. This ends the proof.

A.2. Proof of Lemma 6.1

We begin the proof by showing that the Kullback–Leibler divergence (q, p) �→ dKL(q, p) is
locally Lipschitz in the second variable away from 0, and that this holds uniformly with respect
to the first variable. We have

∇2dKL(q, p) =
(

−qi

pi

)
1≤i≤N

,

where ∇2 denotes the gradient with respect to the second variable. Hence

‖∇2dKL(q, p)‖1 ≤ N

p−
.
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Given 0 < ε < p−, as soon as ‖p − p̂‖1 < ε, we have

sup
{p̂∈M | ‖p−p̂‖1<ε}

‖∇2dKL(q, p̂)‖1 ≤ N

p− − ε
,

which entails that

|dKL(q, p) − dKL(q, p̂)| ≤ N

p− − ε
‖p − p̂‖1 for all p̂ ∈M s.t. ‖p − p̂‖1 < ε.

To go further, we need to investigate the effect of a perturbation of p on Bp, where the operator
B was defined in (3.3). Now one can easily see that on the open set {p ∈M | m(p) > 1/2} we
have

‖∇Bp‖1 ≤ 2N.

As m(p) ≥ 1, there exists ε > 0, such that m(p̂) > 1/2 for all p̂ ∈ B1(p, ε). Thus, for p̂ ∈M∩
B1(p, ε), we have

‖Bp̂ −Bp‖1 ≤ 2N‖p − p̂‖1,

which ends the proof.

A.3. Proof of Lemma 6.2

First we have

P(dKL(M + S, p) > dKL(R + S, p))

=
∑

r1+...+rN=h−n

∑
m1+...+mN=h−n

∑
s1+...+sN=h

((h − n)!)2h!
N∏

i=1

pri
i qmi+si

i

ri!mi!si! 1dKL(r̄,p)+ε>dKL(r̄,p).

(A.9)

In addition, one can easily check that

N∏
i=1

pri
i qmi+si

i = exp ( − (n − h)dKL(r̄, p) − (n − h)dKL(m̄, p) − hdKL(s̄, q))

×
N∏

i=1

(
ri

n − h

)ri
(

mi

n − h

)mi
(

si

h

)si

.

In addition, since

(h − n)!(h − n)!h!
N∏

i=1

(ri!mi!si!)−1
N∏

i=1

(
ri

n − h

)ri
(

mi

n − h

)mi
(

si

h

)si

≤ 1,

we obtain from (A.9) that

P(dKL(M + S, p) > dKL(R + S, p))

≤
∑

1+...+rN=h−n
m1+...+mN=h−n
s1+...+sN=h

e−(n−h)dKL(r̄,p)−(n−h)dKL(m̄,p)−hdKL(s̄,q)1dKL(r̄,p)+ε>dKL(r̄,p),
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which leads to

P(dKL(M + S, p) > dKL(R + S, p)) ≤
(

h − n + N − 1

N − 1

)2(h + N − 1

N − 1

)
exp ( − hV(α, ε)),

where V(α, ε) is defined in (5.1) and α = h/n. Now, as(
h + N − 1

N − 1

)
≤ eN−1

(
h + N − 1

N − 1

)N−1

≤ CNhN

for some constant CN , we get

P(dKL(M + S, p) > dKL(R + S, p)) ≤ C3
Nh3N exp (−hV(α, ε)).

For any δ > 0, one can always find some constant (independent of h and V(α, ε)) such that

C3
Nh3N exp (−hV(α, ε)) ≤ C exp (−h(V(α, ε) − δ)).

This ends the proof.
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