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We present a theoretical study of viscous slug motion inside a microscopically rough
capillary tube, where pronounced stick–slip motion can emerge at slow displacement
rates. The mathematical description of this intermittent motion can be reduced to a system
of ordinary differential equations, which also describe the motion of a pendulum inside
a fluid-filled rotating drum. We use this analogy to show that the stick–slip motion
transitions to steady sliding at high displacement rates. We characterize this crossover
with a simple scaling relation and show that the crossover is accompanied by a shift in the
dominant energy dissipation mechanisms within the system.
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1. Introduction

The complex behaviour of fluid–fluid interfaces moving over solid surfaces has captivated
the physics community over the past decades (de Gennes 1985; Bonn et al. 2009; Snoeijer
& Andreotti 2013), intrigued by the elegant physics of the problem and the multitude
of relevant practical applications, such as solid surface coating, CO2 sequestration
(MacMinn, Szulczewski & Juanes 2010, 2011; Szulczewski et al. 2012), geologic storage
of hydrogen (Heinemann et al. 2021) and design of electrolysers (Lee et al. 2019).
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One of the important contributions to the problem dates back to 1971 when Huh &
Scriven (1971) pointed theoretically to a stress-singularity paradox at the intersection of
the fluid–fluid interface with the solid (i.e. the contact line). The surge of experimental
studies that followed aimed to replicate the physical setting envisioned by Huh and Scriven,
where the solid surface was perfectly smooth and homogeneous. Researchers adopted
meticulous surface-cleaning protocols intended to minimize chemical and physical defects
(de Gennes, Brochard-Wyart & Quéré 2004), culminating in the experiments of Hoffman
(1975) that revealed a robust relationship between the shape of the fluid–fluid interface
and the displacement rate. This relationship was subsequently rationalized successfully
by the hydrodynamic models of Voinov (1977) and Cox (1986), where a unique interface
shape could be inferred from a given displacement rate (a regime henceforth termed steady
sliding).

However, most real-world solid surfaces exhibit physical and chemical defects, and
fluid–fluid interfaces moving over them can undergo complex intermittent dynamics
(Quéré 2008; Zuo et al. 2012; Guo et al. 2013; Varagnolo et al. 2013; Perrin et al. 2016;
Wang et al. 2016; Gao et al. 2018; Hatipogullari et al. 2019; Butt et al. 2022; Zhang & Xu
2022; Lindeman & Nagel 2023). The contact line can occasionally pin near strong defects,
producing distinct stick–slip motion of the interface, where one-to-one mapping between
the interface shape and the displacement rate is no longer possible. The force–velocity
scaling of such motion is also distinct from one on smooth substrates; it depends on
whether the displacement is driven at a constant rate or with a constant force (Raphaël
& De Gennes 1989; Joanny & Robbins 1990).

A viscous slug moving inside a capillary tube can exhibit both stick–slip and steady
sliding motion, depending on the displacement rate (figure 1). The slug dynamics resemble
the frictional sliding of a solid block, where the transition from stick–slip to steady sliding
has been researched thoroughly (Brace & Byerlee 1966; Rice & Tse 1986; Alghannam &
Juanes 2020), and the results have been used to inform our understanding of earthquakes.
The rate effects on stick–slip motion have also been examined in adhesive tapes (Maugis
& Barquins 1988) and granular materials (Nasuno et al. 1998). In contrast, no simple
relation is known that marks the transition from stick–slip to steady sliding in a viscous
slug – a physical situation abundant in multiphase flow in porous media and microfluidics
applications. Filling this gap is the primary objective of our theoretical study.

Here, we reduce the dynamics of a viscous slug motion to a system of coupled ordinary
differential equations, whose form is equivalent to equations of motion by Raphaël & De
Gennes (1989) and Joanny & Robbins (1990). We recast these equations in a periodic
domain, connecting them to a fluid-filled drum analogue of Adler (1946). While the link
between constant-force displacement and Adler’s analogue has been recognized by Thiele
& Knobloch (2006a,b), we extend Adler’s analogue to the constant-rate displacement
setting. Doing so allows the reduction of the complexity of stick–slip dynamics to a few
key parameters, elucidating both constant-force and constant-rate displacement regimes.
While the work of Raphaël & De Gennes (1989) and Joanny & Robbins (1990) focused
on the force–velocity scaling at diminishing displacement rates, ours provides a rationale
for the crossover between stick–slip and steady sliding motion at high displacement rates.
This transition is characterized by a simple scaling relation between the spacing of the
defects, the characteristic size of the fluid–fluid interface, and the capillary number – a
scaling relation that can help to explain disparate stick–slip phenomenology from recent
experimental studies.

We develop the equations of motion for the viscous slug in § 2. We examine the
transition from stick–slip to steady sliding in constant-force (§ 3) and constant-rate (§ 4)

973 A2-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.718


Motion of a viscous slug on heterogeneous surfaces

Water Oil

θfθb

Air

zc zb z

f = const.

2R

+

u = const.

0

1

0 0.5 1.0 1.5 2.0 2.5 3.0 3.55 10 15 20 25

Low velocity High velocity

Water WaterOil OilAir Air

Time (s) Time (s)

z c
 (

m
m

)
T

im
e

u
Ff

Fext2π Rh(zc)

–Fsp

l

Fsp

�h

(b) (d )

(c)

(a)

Figure 1. (a) Schematic of a viscous slug, where only the water–oil meniscus is partially wetting and therefore
interacts with surface defects. (b) The constant-force experiment can be realized by imposing a fixed pressure
difference across the viscous slug (neglecting the pressure gradient in water) by controlling the reservoir height
�h. (c) The constant-rate experiment can be realized by supplying water through a syringe at a prescribed
flow rate. (d) A slug of viscous oil displaced by water inside an NOA81-coated capillary tube crosses over
from stick–slip motion (left) to steady sliding (right) as the displacement rate increases. Both experiments
were driven at a constant rate. The low-velocity experiment was at Ca = 2.35 × 10−3, while the high-velocity
experiment was at Ca = 2.31 × 10−2. Here, we define a capillary number as Ca = μżc/γow. See the Appendix
for experimental details.

settings, presenting the scaling relation for the crossover, and discussing implications for
total force (§ 5), energy dissipation (§ 6) and motion over disordered pinning landscapes
(§ 7). We compare our results to a phase-field simulation in § 8 and conclude in § 9 by
discussing the connection of our theoretical results to recent experimental studies.

2. Physical set-up and governing equations

Consider a viscous silicone oil slug of length l being displaced by water inside a
capillary tube with inner radius R, whose surface is not perfectly smooth or homogeneous
(figure 1a). Here, θb and θf are water–oil and oil–air contact angles, and zb and zc are the
positions of the water–oil meniscus centre and the contact line along the tube. We chose a
silicone oil with viscosity much greater than the viscosity of water (μo � μw), which
allows neglecting pressure gradients outside the slug. Furthermore, only the partially
wetting water–oil interface interacts with the surface imperfections; the oil–air interface
is in complete wetting, where a precursor film (or hemi-wicking front) masks surface
defects (Joanny & Robbins 1990). One can drive the viscous slug at either constant force
(figure 1b) or constant rate (figure 1c). At low velocity, the slug moves through stick–slip
motion, while at high velocity, it experiences steady sliding (figure 1d). This is reminiscent
of a solid block being pulled through a spring (a spring–slider model, figure 1a). However,
while the transition from stick–slip to steady sliding is controlled by the stiffness of the
spring in the spring–slider, the analogous transition in viscous slugs seems to be controlled
by the displacement rate.

To rationalize the transition from stick–slip to steady sliding, we simplify the system in
figure 1(a), producing governing equations identical to the ones in the depinning dynamics
framework by Raphaël & De Gennes (1989) and Joanny & Robbins (1990). In fact, by
forcing the viscous slug at either constant force (figure 1b) or constant rate (figure 1c),
one can probe experimentally the seminal force–velocity scaling relations proposed by
Raphaël & De Gennes (1989) and Joanny & Robbins (1990). Here, we examine how the
governing equations behave away from the depinning limit, and rationalize the transition
from stick–slip to steady motion for both constant-rate and constant-force settings.
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The overall motion results from a balance of several forces. We express the externally
applied force through the pressure difference �p at the two ends of the slug as

Fext = �p πR2. (2.1)

The bulk viscous force exerted on the slug due to Poiseuille flow is

Fv.bulk = 8πμolżb. (2.2)

Here, we assume that the length of the slug l is independent of time, as was the case in
Primkulov et al. (2020a). This implies that the oil slug does not leave behind a film of oil
on the tube walls (see the Appendix). Since the front meniscus is completely wetting, its
capillary force can be approximated with

Ff ≈ 2πRγo, (2.3)

where we neglected the dynamic contribution of Ff , assuming a sufficiently long slug
(Primkulov et al. 2020a). We model the chemical heterogeneity of the solid surface by
a spatially periodic perturbation h(zc) to a spreading coefficient (Raphaël & De Gennes
1989; Joanny & Robbins 1990), which is equivalent to

cos θb = cos θb0 + h(zc)/γow, (2.4)

where θb0 is the contact angle on an ideally smooth and homogeneous surface. For
simplicity, we assume θb0 = π/2 and neglect the viscous bending of the interface in both
the front and back menisci. We can then treat the water–oil interface as a linear spring,
with

Fsp = 2πRk(zb − zc), (2.5)

and the spring constant can be approximated as k = γow/R. Finally, we approximate the
local viscous force of the back meniscus as a cumulative force of moving wedge-shaped
fluid slices with contact angle θb0 (de Gennes 1985; Joanny & Robbins 1990; Golestanian
2004):

Fv.b ≈ 2πR
3Γ μo

π − θb0
żc ≈ 2πR

6Γ μo

π
żc, (2.6)

where Γ is the logarithmic factor of order one (de Gennes 1985). In (2.6), Fv.b ∼ żc
means that the water–oil contact line acts similarly to a viscous dashpot in the classic
spring–slider model. We can then write down the coupled dynamics of the slug and the
back contact line as

Fv.bulk = Ff + Fext − Fsp, (2.7)

Fv.b = Fsp + 2πR h(zc). (2.8)

Equations (2.7)–(2.8) reduce to

slug dashpot︷︸︸︷
bbżb =

applied force︷︸︸︷
f −

coupling spring︷ ︸︸ ︷
k(zb − zc) , (2.9)

bcżc︸︷︷︸
contact-line dashpot

= k(zb − zc) + h(zc)︸︷︷︸
pinning force

, (2.10)

where bb = 4μol/R, bc = 6Γ μo/π and f = γo + �p R/2.
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Drum λ B/K ω0/B λωu/K

Capillary tube R/l (ε/q)/(1/R) f /(γowε) Ca(R/q)

Table 1. Conversions between key parameters of the drum analogue and physical parameters in a capillary
tube, where coefficients have been dropped for clarity.

Following Joanny & Robbins (1990), we model heterogeneity in the spreading
coefficient with a sine function as this minimal model still allows us to capture the essential
physics of interest here. Therefore,

h(zc) = −εγow sin(2πzc/q), (2.11)

where ε < 1, and q is the distance between consecutive peaks of the sine function. We
write down the system (2.9)–(2.10) in a reduced form by defining α = 2πz/q as

α̇b =
force term︷︸︸︷

ω0 −
spring term︷ ︸︸ ︷

K(αb − αc), (2.12)

λα̇c = K(αb − αc) − B sin αc︸ ︷︷ ︸
pinning term

, (2.13)

where λ = bc/bb, ω0 = 2πf /bbq, K = k/bb and B = 2πγowε/bbq. This dynamical system
has two interacting parts: bulk motion of the slug and the local motion of the water–oil
contact line. These two parts interact through a spring (water–oil interface). One can drive
this system either at a constant force (by fixing ω0) or at a constant rate (by imposing
α̇b = ωu). It is important to note that λ ∼ R/l (see table 1) is a small parameter since we
assumed that our viscous slug is slender.

The connection of our model to the models of Raphaël & De Gennes (1989) and Joanny
& Robbins (1990) deserves a note. Our (2.9)–(2.10) are identical to the governing equations
in Raphaël & De Gennes (1989) (Eqs 2.4 and 2.7, respectively, in their paper). Therefore, it
is not surprising that our model is able to reproduce key results from Raphaël & De Gennes
(1989) and Joanny & Robbins (1990); we do so for completeness in our work. However,
we take one step further – recasting the governing equations in the form (2.12)–(2.13)
allows us to connect our system to mechanical analogues in figure 2, and express the
dynamics in only three dimensionless groups in §§ 3 and 4. In § 3, we first reproduce the
force–velocity scaling results from the adiabatic approximation of Raphaël & De Gennes
(1989) and Joanny & Robbins (1990). We then relax the adiabatic approximation and
explore how the system behaves in this yet unexplored parameter regime. Similarly, we
begin § 4 by reproducing the force–velocity scaling results of Raphaël & De Gennes
(1989) and Joanny & Robbins (1990) for the constant-rate setting in the presence of
disanchoring events. We extend this analysis by including the force–velocity relations in
the absence of disanchoring events. However, this work’s central contribution is exploring
the transition from stick–slip to steady sliding motion in both constant-force (§ 3) and
constant-rate (§ 4) settings, where the analogues depicted in figure 2 provide a natural
framework.
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(e)

(b)ω0

αc

ωu

α̃c
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Figure 2. Mechanical analogue of the spring oscillator model in a constant-force regime (a) moves through
either stick–slip (b) or steady motion (c). This analogue can be extended to a constant displacement regime by
introducing a spring that is pulled at constant angular velocity ωu (d). Here, the pendulum also moves through
either stick–slip (e) or steady motion ( f ). The shading of the pendulum represents a time sequence, where
lighter colours refer to past pendulum positions.

3. Constant-force analogue

When the system is driven at a constant force, ω0 is fixed in (2.12). We can then rescale
the time as τ = ω0t to obtain a dimensionless form of the governing equations,

α̇b = 1 − K
ω0

(αb − αc), (3.1)

λα̇c = K
ω0

(αb − αc) − B
ω0

sin αc, (3.2)

where three dimensionless groups (λ, K/ω0 and B/ω0) emerge. Here, λ is the ratio of
contact-line to slug damping coefficients, while K/ω0 and B/ω0 represent the importance
of spring and pinning forces relative to the driving force.

3.1. Special case (λ� 1 and B/K � 1)
We first consider a special case that offers valuable physical insights into the problem.
When λ� 1 (contact-line damping � slug damping), we can neglect the λα̇c term,
so (3.1)–(3.2) reduce to α̇b = 1 − (B/ω0) sin αc and α̇b = (1 + (B/K) cos αc)α̇c. By
eliminating α̇b, one can obtain

α̇c =
1 − B

ω0
sin αc

1 + B
K

cos αc

, (3.3)

which simplifies to

α̇c = 1 − B
ω0

sin αc (3.4)

when B/K � 1 (pinning � spring term). This corresponds to the adiabatic approximation
of Raphaël & De Gennes (1989) and Joanny & Robbins (1990). In fact, (3.4) emerges
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in many dynamical systems; Strogatz (2018) discusses this equation in relation to firefly
synchronization and Josephson junction problems, while Adler (1946) examined it in
the context of locking phenomena in electric oscillators. Adler (1946) proposed an
overdamped pendulum analogue that we will use to understand our system.

Consider a pendulum inside a drum filled with viscous fluid, where the drum is rotated
at a fixed angular velocity ω0, and −B sin αc is the gravity term acting on the pendulum
(figure 2a). As one increases ω0 gradually, the system undergoes several distinct regimes.

3.1.1. Static limit (B/ω0 ≥ 1)
The pendulum acquires a static angle αc when the applied force is insufficient to overcome
gravity (B/ω0 > 1). Here, (3.4) has one stable and one unstable fixed point:

α∗
c = arcsin(B/ω0) and α∗

c = π − arcsin(B/ω0). (3.5a,b)
The stable fixed point represents a pinned state of the viscous slug, where local
imperfections match the driving force. These two fixed points coalesce to αc = π/2 at
B/ω0 = 1, and disappear as B/ω0 decreases below 1.

3.1.2. Dynamic limit (B/ω0 → 1−)
When ω0 is infinitesimally greater than B, the pendulum goes through distinct stick–slip
motion; it is slower when moving against gravity, and faster when moving in the direction
of gravity (figure 2b). We can rearrange and integrate (3.4) to calculate the period of the
pendulum (Strogatz 2018):

T =
∫ 2π

0

dαc

1 − B
ω0

sin αc

= 2π√
1 − B2/ω2

0

, (3.6)

which blows up as B/ω0 approaches 1. The pendulum spends most of its period near
αc = π/2, corresponding to the maximum of the gravity term. This regime corresponds
to the stick–slip motion of the viscous slug near the depinning limit.

The average frequency of the pendulum is (Adler 1946)
ω̄

ω0
=

√
1 − B2/ω2

0. (3.7)

When B/ω0 → 1−,

ω̄

ω0
=

√√√√[(
1 − B

ω0

)
+ B

ω0

]2

− B2

ω2
0

=
√

2B
ω0

(
1 − B

ω0

)
+

(
1 − B

ω0

)2

≈
√

2B
ω0

(
1 − B

ω0

)
. (3.8)

We can therefore write the force–velocity relation near the depinning limit as

ω0 − B
B

= 1
2

(
ω̄

B

)2

, (3.9)

which is equivalent to the expressions obtained by Raphaël & De Gennes (1989) and
Joanny & Robbins (1990). In fact, (3.9) can be obtained from (3.6) after realizing that
when B/ω0 → 1−, the dominant contribution to the integral in (3.6) comes from the
neighbourhood of the strongest pinning site.
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Figure 3. Evolution of (a) αc and (b) α̇c for the special case (§ 3.1) of the constant-force analogue. Here,
ω0/B ∈ (1, 2], B/K � 1, and the motion is governed by (3.4). Evolution of (c) αc and (d) α̇c for the general
case (§ 3.2) of the constant-force analogue. Here, ω0/B ∈ (1, 2], B/K = 0.9, and the motion is governed by
(3.1)–(3.2).

3.1.3. Transition to steady sliding (B/ω0 � 1)
When ω0 � B, (3.7) simply reduces to ω̄ = ω0, which we can rewrite in a form analogous
to (3.9):

ω0 − B
B

∼ ω̄

B
. (3.10)

Away from the depinning limit, force scales linearly with speed. The numerical results of
the force–velocity scaling for the constant-force analogue are shown in figure 4(a).

When ω0 � B, the viscous fluid within the drum sweeps up the pendulum (figure 2c),
and its mean angular velocity ω̄ approaches ω0. Figures 3(a,b) show that as one moves
away from the depinning limit, the amplitude of oscillations diminishes in a frame moving
at ω̄/ω0. In fact, if we take α̃c = αc − (ω̄/ω0)τ , then we can rewrite (3.4) in this moving
frame as

dα̃c

dτ
= 1 − ω̄

ω0
− B

ω0
sin

(
α̃c + ω̄

ω0
τ

)
≈ − B

ω0
sin(τ ), (3.11)

where we took the limit ω̄/ω0 → 1 and assumed α̃c � τ . This allows approximating the
oscillations about the moving frame as

α̃c(τ ) ≈

amplitude︷︸︸︷
B
ω0

cos(τ ) + C. (3.12)

In other words, we expect the amplitude of oscillations to decay with increasing ω0,
following B/ω0 scaling, which is indeed what we observe in the numerical solution to
(3.4) (figure 5).

3.2. General case
If we relax the condition that B/K � 1, then we see that the pendulum speed α̇c can blow
up as B/K → 1 in (3.3). Hence neglecting the λα̇c term is no longer justified, and one has
to consider (3.1)–(3.2) to resolve the dynamics.
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Figure 4. Scaling of the force–velocity terms in (a) a special case (§ 3.1) of the constant-force analogue for
ω̄/B < 1 (3.9) and ω̄/B > 1 (3.10). The same force–velocity scaling holds up for (b) the general case of the
constant-force analogue (§ 3.2).

Fixed points (α∗
b , α∗

c ) of the general case are identical to those in § 3.1 and correspond
to

0 = 1 − K
ω0

(α∗
b − α∗

c ), (3.13)

0 = K
ω0

(α∗
b − α∗

c ) − B
ω0

sin α∗
c , (3.14)

or simply (B/ω0) sin α∗
c = 1. Therefore, as in § 3.1, the system is static whenever B/ω0 ≥

1, and undergoes a depinning transition when B/ω0 → 1−, which produces distinct
stick–slip events of the contact line (figures 3c,d). Increasing ω0 away from the depinning
limit reduces the amplitude of contact-line oscillations in the frame moving at the mean
displacement rate ω̄/ω0 (see figure 3c). Here, ω̄ no longer follows (3.7), and is instead
evaluated numerically from the period of αc(τ ). Interestingly, the force–velocity scaling
relations from § 3.1 hold up for arbitrary B/K (figure 4b). Figure 4 demonstrates that
both simplified and general cases of the constant-force analogue cross over to a linear
force–velocity regime when

ω0 − B
B

∼ 1. (3.15)

This, however, does not correspond to the transition from stick–slip to steady sliding,
as the relation between the amplitude of oscillations depends non-trivially on the
parameter B/K (see figure 5b). In figure 5(b), the amplitude of oscillations for fixed B/K
initially decays rapidly, then undergoes a plateau region starting at ω0/B ∼ 1/(B/K), and
ultimately decays again after ω0/B ∼ 1/(λB/K). This trend can be rationalized readily by
considering two limits of the governing equations (3.1)–(3.2).

When the term λα̇c is negligible in (3.1)–(3.2), one can approximate the dynamics with
(3.3). In this case, an argument analogous to one in § 3.1.3 leads to

α̃c(τ ) = B
K

√
1 + K2

ω2
0

sin(τ + arctan(ω0/K)). (3.16)

This equation shows that the amplitude of oscillations would first decay following B/ω0
scaling and then settle into a B/K plateau as ω0/B increases in figure 5(b). The onset of
this plateau coincides with K/ω0 ∼ 1, which is equivalent to ω0/B ∼ 1/(B/K).
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Figure 5. Diminishing amplitude of oscillations with ω0/B in (a) the special case (§ 3.1) and (b) the general
case (§ 3.2) of the constant-force setting. (c) The amplitude data from part (b) are replotted as a function of
λω0/K, where the dashed line corresponds to the crossover from stick–slip to steady sliding. Data correspond
to numerical solutions of (a) (3.4) and (b) (3.1)–(3.2) at varying ω0/B.

The extent of the plateau region in figure 5(b) can be estimated by considering a limit
where (B/ω0) sin αc becomes negligible compared to all other terms in (3.1)–(3.2). In this
limit, the governing equations can be reduced to

d
dτ

(αb − αc) + K
λω0

(αb − αc) = 1, (3.17)

whose solution is

αb − αc = λω0

K
+ C e−(K/λω0)τ . (3.18)

In other words, the distance between αb and αc starts increasing with ω0. This effect
becomes significant when λω0/K ∼ 1 or, equivalently, ω0/B ∼ 1/(λB/K). In this limit,
(3.2) can be approximated as

λα̇c = λ− B
ω0

sin αc, (3.19)

whose solution decays with ω0/B. This corresponds to the post-plateau decay of amplitude
in figure 5(b).

A non-trivial dependence of the amplitude of oscillations on B/K in figure 5(b) makes it
challenging to pinpoint a single condition for the transition from stick–slip to steady sliding
motion for the general case of the constant-force analogue. If, however, the parameter
B/K ∼ O(1), then one can take

λω0

K
∼ 1 (3.20)

as a condition for the crossover from stick–slip to steady sliding (i.e. the end of the plateau
region). In fact, replotting the data in figure 5(b) with λω0/K on a horizontal axis confirms
that the amplitude of oscillations decays for all B/K when λω0/K > 1 (figure 5c). On the
other hand, if B/K � O(1), then the amplitude of oscillations becomes negligible before
even reaching the plateau in figure 5(b). Hence condition (3.20) is too conservative for this
case.

4. Constant-rate analogue

When the viscous slug is driven at a constant rate α̇b = ωu, a modified version of the drum
analogue still holds. In the constant-rate analogue, the drum is free, while the pendulum is
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pulled at a fixed angular velocity ωu through a spring (figures 2d–f ). It is useful to switch
to a frame moving with the viscous slug. In this coordinate system, dα̃b/dt = 0 and we
can choose the frame in a way such that α̃b = 0, so (2.12)–(2.13) transform to

ω0 − ωu = −Kα̃c, (4.1)

λ
dα̃c

dt︸ ︷︷ ︸
dynamic term

+ Kα̃c︸︷︷︸
spring

= − B sin(α̃c + ωut)︸ ︷︷ ︸
pinning

, (4.2)

where ω0 − ωu is the force term due to loading of the spring, and the pendulum motion is
governed by (4.2). The dimensionless form of the above equations is obtained by scaling
the time as τ = ωut:

ω0

ωu
− 1 = − K

ωu
α̃c, (4.3)

λ
dα̃c

dτ
+ K

ωu
α̃c = − B

ωu
sin(α̃c + τ), (4.4)

where three dimensionless groups (λ, K/ωu, B/ωu) set the dynamics (see table 1). Unlike
the constant-force displacement, as long as the prescribed rate is not zero, the pendulum
does not have a static state.

4.1. Quasi-static limit
In the quasi-static limit, we can neglect λ(dα̃c/dτ), and (4.4) reduces to

K
ωu

α̃c.qs = − B
ωu

sin(α̃c.qs + τ). (4.5)

Therefore, the position of the pendulum is determined by the balance of a linear spring
and a sinusoidal gravity term, where the graphical solution for α̃c is the intersection
of the respective functions (Raphaël & De Gennes 1989) (see figures 6a,d). Here, two
distinct modes of motion emerge. If the slope of Kα̃c is greater than the maximal slope of
−B sin(α̃c + τ) (or K > B), then the red line (which shifts to the left with time) and the
blue line in figure 6(d) intersect only once at any given time. This results in a relatively
smooth motion of the pendulum. On the other hand, when K < B, the two functions
intersect more than once. An abrupt change in α̃c takes place whenever the system moves
past the point where spring and pinning functions are tangent to each other (i.e. the
disanchoring configuration depicted in figure 6a).

We can calculate the average force term of the quasi-static displacement as

ω̄0.qs

ωu
= 1 − 1

T

∫ T

0

K
ωu

α̃c.qs(τ ) dτ, (4.6)

where T = 2π is the period of motion and α̃c.qs(τ ) is calculated from (4.5).

4.2. Dynamic limit for moderate/strong pinning (K < B)
We now examine how the average force term evolves as we increase ωu and therefore
moves away from the quasi-static approximation when K < B. Figure 7(a) shows the
typical α̃c(τ ) profile obtained by solving (4.4). We are particularly interested in the
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Figure 6. (a) Quasi-static motion of the pendulum in the constant-rate displacement is governed by the balance
between spring and gravity terms, where the latter shifts left with time. When B > K, two lines occasionally
intersect more than once, which results in disanchoring events depicted here. (b) Evolution of α̃c from the
numerical solution of (4.4) for ωu/B ∈ [10−1, 102] and B/K = 2.3 shows that the amplitude of α̃c vanishes
as the rate ωu increases. (c) The speed of the pendulum ˙̃αc can significantly exceed O(1) near the quasi-static
limit. (d) When B < K (B/K = 0.57), spring and pinning functions can intersect only once. (e) This produces
smooth motion of the pendulum (ωu/B ∈ [10−1, 102] and B/K = 0.6), where ( f ) ˙̃αc ∼ O(1).
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Figure 7. (a) Typical motion near the depinning limit, where the quasi-static solution experiences a jump
discontinuity in α̃c. (b) Expanded view of the region highlighted in green in (a). Solution of (4.4) (blue curve,
ωu/B = 10−2, B/K = 2.3) deviates from the quasi-static profile α̃c.qs (red curve) only near the disanchoring
event; area between the curves (grey) corresponds to the integral in (4.8). (c) Solution to (4.14) (blue) as well

as the quasi-static solution α̂q.s(t̂) = −
√

−t̂ (red). Here, t̂1 is the first root of (4.17), and t̂2 is its first singularity.

dynamics near the disanchoring event highlighted in green. Here, in the quasi-static limit,
α̃c.qs(τ ) experiences a jump discontinuity. In the dynamic model, this discontinuity is
regularized by the viscous term in (4.4). In fact, the solution of (4.4) deviates from the
quasi-static solution only immediately after these disanchoring events (see figure 7b). This
deviation is responsible for the force–velocity scaling near the depinning limit of Raphaël
& De Gennes (1989) and Joanny & Robbins (1990).
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We can write the average force term from (4.3) as

ω̄0

ωu
= 1 − 1

T

∫ T

0

K
ωu

α̃c(τ ) dτ, (4.7)

or alternatively we can use (4.6) to rewrite the above equation as

ω̄0 − ω̄0.qs

ωu
= − 1

T

∫ T

0

K
ωu

[α̃c(τ ) − α̃c.qs(τ )] dτ. (4.8)

The value of this integral is equal to the area between the two curves in figure 7(b), and
can be approximated as an area of a rectangle if one finds its characteristic width in τ . This
is what we do next.

To understand how α̃c evolves near the disanchoring point (τd, αd), we substitute τ =
τd + τε and α̃c = αd + αε into (4.4) and obtain

λ
dαε

dτε

+ K
ωu

(αd + αε) = − B
ωu

sin(αd + τd + αε + τε). (4.9)

We then note that sin(αd + τd + αε + τε) = sin(αd + τd) cos(αε + τε) + cos(αd + τd)

sin(αε + τε) ≈ sin(αd + τd) (1 − (αε + τε)
2/2) + cos(αd + τd) (αε + τε). We also note

that at the disanchoring point, −B sin(αd + τd) = Kαd and −B cos(αd + τd) = K.
Therefore, (4.9) simplifies to

λ
dαε

dτε

= K
ωu

τε − Kαd

2ωu
(αε + τε)

2, (4.10)

or if we assume that for very slow displacement τε � αε , then

λ
dαε

dτε

= K
ωu

τε − Kαd

2ωu
α2

ε . (4.11)

We can rescale the above equation with α̂ = aαε and t̂ = bτε , where taking

a =
(

Kα2
d

4ωuλ

)1/3

, (4.12)

b =
(

K2(−αd)

2ω2
uλ

2

)1/3

, (4.13)

reduces (4.11) to
dα̂

dt̂
= t̂ + α̂2, (4.14)

which is a Riccati equation. Our solution should approach the quasi-static profile α̂q.s(t̂) =
−

√
−t̂ when t̂ → −∞ (see figure 7c). Note that figure 7(c) is a zoom-in of figure 7(b) near

the disanchoring point (τd/T ,αd), with the coordinate system centred around it. Therefore,
negative t̂ corresponds to the time before the disanchoring event. In the quasi-static limit,
we have dα̂/dt̂ = 0, so the above equation reduces to

0 = t̂ + α̂2, (4.15)

which one can solve for negative t̂ and obtain

α̃(t) = −√−t. (4.16)

Before the disanchoring event takes place (t̂ → −∞), pinning and spring terms in the
governing equations are closely balanced, so dα̂/dt̂ is expected to be very small. As a
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Figure 8. (a) Scaling of force–velocity terms in a constant-velocity setting. (b) Change in the amplitude of
oscillations of α̃c with increasing ωu/B. (c) The amplitude data from (b) are replotted as a function of λωu/K,
where the dashed line corresponds to the crossover from stick–slip to steady sliding. Data are obtained through
the numerical solution of (4.4).

result, one should expect the blue curve in figure 7(c) to be very close to the quasi-static
solution (red curve). This condition is satisfied by

α̂(t̂) = Ai′(−t̂)/Ai(−t̂), (4.17)

where Ai is the Airy function of the first kind.
We plot (4.17) along with the quasi-static profile in figure 7(c). Here, point (0, 0)

corresponds to (τd, αd) in figure 7(c); the solution α̂(t̂) crosses the abscissa at t̂1, and
it is singular at t̂2. The contact line detaches from the pinning site somewhere between
t̂1 and t̂2, and relaxes exponentially towards the new quasi-static state. Therefore, the
disanchoring event takes place at t̂ = O(1) or τε ∼ 1/b. Then we can approximate the
integral in (4.8) as (ω̄0 − ω̄0.qs)/ωu ≈ (1/2π)(K/ωu)(αd+ − αd)(1/b). In other words,
at very slow displacement rates, the average extra force term (compared to quasi-static
displacement) needed to move the slug scales as

ω̄0 − ω̄0.qs

K
∼

(ωu

K

)2/3
. (4.18)

This scaling, however, relies on the τε � αε and B/K > 1 assumptions that we have made
to arrive at (4.11). The scaling indeed holds whenever these two conditions are satisfied
(see figure 8a).

4.3. Dynamic limit for weak pinning (K > B)
When K > B, the graphical solution of (4.4) in the quasi-static limit has only one
intercept at any given τ (see figure 6d). As a result, the pendulum’s motion does not have
disanchoring events. Hence the integral in (4.6) is identically zero, and the force term in
(4.8) can be expressed as (ω̄0 − ω̄0.qs)/ωu = −(1/T)

∫ T
0 (K/ωu) α̃c(τ ) dτ , or

ω̄0 − ω̄0.qs

ωu
= 1

T

∫ T

0
λ

dα̃c

dt
dτ + 1

T

∫ T

0

B
ωu

sin(α̃c + τ) dτ, (4.19)

after substituting in (K/ωu) α̃c(τ ) from (4.4). Here, the second integral is also zero
since T is the period of α̃c(τ ). Therefore, when K > B, the force expression scales as
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Motion of a viscous slug on heterogeneous surfaces

(ω̄0 − ω̄0.qs)/ωu ∼ λ or
ω̄0 − ω̄0.qs

K
∼ λωu

K
, (4.20)

which is indeed what we get from the numerical solution in figure 8(a) for K > B.

4.4. Transition to steady sliding
Numerical solution of (4.4) shows that the amplitude of the pendulum oscillations α̃c(τ )

diminishes with increasing angular velocity ωu (figure 6). In fact, when ωu is sufficiently
large, so that α̃c � ωut (α̃c � τ ), we can approximate (4.4) as

λ
dα̃c

dτ
+ K

ωu
α̃c = − B

ωu
sin(τ ), (4.21)

which is a first-order ordinary differential equation with constant coefficients and periodic
forcing. Then the solution to (4.21) can be written as

α̃c(τ ) = −

amplitude︷ ︸︸ ︷
B/ωu√

K2/ω2
u + λ2

sin(τ − φ) +
transient solution︷ ︸︸ ︷
C e−Kτ/λωu , (4.22)

where (B/ωu)/
√

K2/ω2
u + λ2 is the amplitude of oscillations, φ = Arg(K/ωu + iλ) and

the transient solution constant C is determined by the initial conditions. Here, the
amplitude of oscillations scales as B/ωu when λωu/K � 1, which is consistent with the
simulation results (see figure 8b). This solution reveals two characteristic time scales of
our system: 1/ωu is the time interval between disanchoring events, and λ/K is the time
scale for relaxation of the contact line. When ωu � K/λ, the contact line is unable to
keep up with the local changes in the forcing by surface imperfections, so the amplitude
of oscillations diminishes. This corresponds to the steady sliding of the water–oil contact
line at high displacement rates in figure 1. Therefore, one can use

λωu

K
∼ 1 (4.23)

as the condition for the crossover from stick–slip to steady sliding. In fact, one can rewrite
(4.22) as

α̃c(τ ) = − B/K√
1 + λ2ω2

u/K2
sin(τ − φ) + C e−Kτ/λωu, (4.24)

which makes it clear that the amplitude of oscillations decays sharply once λωu/K
increases beyond 1 for all B/K. This is indeed what takes place if one replots figure 8(b)
with λωu/K on a horizontal axis (see figure 8c).

5. Total force

The force–velocity scaling relations that we showed until now do not represent the total
force that one would need to apply to move a viscous slug inside a capillary tube
(figure 1): (i) (3.9)–(3.10) describe the force above the static threshold in the constant-force
setting ((ω0 − B)/B), while (ii) (4.18)–(4.20) describe the force above the quasi-static
limit in the constant-rate setting ((ω̄0 − ω̄0.qs)/K). However, evaluating the total force
in both constant-force and constant-rate settings numerically is straightforward, and we
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Figure 9. Total force scaling for both (a) constant-force and (b) constant-velocity settings in a drum analogue.
The vertical axes stand for the rescaled force applied across the viscous slug; the horizontal axes stand for the
speed of the slug. Here, ω̄/B = (μo ¯̇zb/γow)(4l/R), where ¯̇zb is the average slug speed, and ω̄0/B = f̄ /γowε,
where f̄ is the average applied force. See table 1 for the relations between the key drum analogue and viscous
slug parameters.

do precisely that in figure 9. In the constant-force setting (figure 9a), the force–velocity
relation appears to be independent of B/K; the dominant contribution to the total force
comes from the contact-line interaction with surface imperfections until ω̄/B = O(1). In
the constant-rate setting (figure 9b), the force–velocity relation is sensitive to parameter
B/K (pinning strength to spring stiffness). When B/K < 1, the total force scales linearly
with velocity, while disanchoring events dominate the force–velocity relation when B/K >

1, and figure 9(b) resembles the plot obtained for the constant-force setting (figure 9a).
Interestingly, figure 9 demonstrates that a smaller force is needed to move the slug at
a constant rate compared to the constant-force setting for the same λ and B/K, just as
anticipated by Raphaël & De Gennes (1989) and Joanny & Robbins (1990).

6. Energy dissipation

The transition from stick–slip to steady sliding signifies a change in the dominant
dissipation mechanisms. In the constant-rate analogue, the fraction of the total dissipation
due to stick–slip motion of the contact line reads as

Ξ = 〈−Kα̃c〉
〈−Kα̃c〉 + ωu

. (6.1)

This is equivalent to

Ξ = 〈k(zb − zc)〉
〈k(zb − zc)〉 + bbżb

= 〈k(zb − zc)〉
〈 f 〉 , (6.2)

where the numerator is the mean spring force, and 〈 f 〉 is the mean total driving force in
the spring–dashpot analogue in (2.9). Multiplying both the numerator and denominator by
the prescribed displacement rate of the slug żb converts (6.2) to an estimate of the energy
dissipation ratio.

Figure 10(b) shows that the contribution to the total energy dissipation due to
contact-line oscillations depends on both the displacement rate and the relative magnitudes
of K and B. When B > K, most of the energy dissipation takes place near the oscillating
contact line. This state can be achieved on dirty surfaces (large B). In contrast, systems
with clean surfaces (small B) dissipate most of the energy away from the contact line.
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Figure 10. Fraction of the total dissipation Ξ due to stick–slip motion of the contact line in (a) constant-force
and (b) constant-rate settings. The dashed line represents the crossover relation (4.23). (c) Phase-field
simulations at a constant rate reveal a similar Ξ trend to (b), where the dashed line represents the crossover
relation (8.7). All phase-field simulations were conducted for R = 290 μm and roughness wavelength
q = 50 μm, which was greater than the phase-field interface thickness ε̃.

Another practical way of reducing contact-line oscillations and dissipation is reducing the
radius R of the tube in figure 1, which results in a higher stiffness parameter K. Ultimately,
the fraction of contact-line dissipation diminishes for all B/K at high displacement rates,
where ωu � K/λ is satisfied (to the right of the dashed line in figure 10b).

In the constant-force analogue, the total dissipation due to stick–slip motion of the
contact line can be expressed as

Ξ = 〈K(αb − αc)〉 − λω0

ω0
. (6.3)

Figure 10(a) plots Ξ as a function of the excess force relative to the static limit. When this
excess force is small ((ω0 − B)/B � 1), most of the dissipation is due to oscillations of
the contact line, independently of B/K.

7. Disordered pinning landscape

Finally, since (4.22) is the solution of a linear equation, our analysis can be extended to
arbitrary pinning landscapes (Savva, Pavliotis & Kalliadasis 2011). Many natural surfaces
exhibit fractal features, from nanometre to geologic scales (Sparrow & Mandelbrot 1984;
Chiarello et al. 1991), and one can model the power-law distribution of the roughness
landscape through the Weierstrass–Mandelbrot fractal function (Majumdar & Tien 1990).
Then (4.4) would read as

λ
dα̃c

dτ
+ K

ωu
α̃c = −

∞∑
n=1

AD−1

ωuγ (2−D)n sin(γ nτ), (7.1)

where A is the scaling constant, 1 < D < 2 is the fractal dimension and γ > 1 is the
parameter of the Weierstrass–Mandelbrot function (Majumdar & Tien 1990). Since (7.1)
is linear, its solution can be written as

α̃c(τ ) = −
∞∑

n=1

AD−1/ωu

γ (2−D)n
√

K2/ω2
u + λ2γ 2n

sin(γ nτ − φn) + C e−Kτ/λωu . (7.2)

This suggests that in contact-line experiments on natural (fractal) surfaces, one can use
the mean distance between the strongest defects for q in (8.7) to estimate the crossover
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from stick–slip to steady sliding. Here, the longer wavelength modes exhibit the strongest
effective pinning (amplitude AD−1/γ (2−D)n in (7.1) decreases with n) and therefore dictate
when a fluid–fluid interface crosses over from stick–slip to steady sliding dynamics.
Shorter wavelength modes are often in either the weak pinning or the steady sliding regime
of the phase diagram in figure 10.

8. Phase-field simulations: back to the capillary tube set-up

We now return to the capillary tube set-up and re-examine some of our central findings.
Here, it is useful to recall how some of the key drum analogue parameters are related to
the physical parameters in the capillary tube; we summarize these relations in table 1.
Parameter λ represents the ratio of contact-line to bulk damping coefficients, and it scales
as the ratio of tube radius to slug length, R/l. Parameter B/K represents the ratio of pinning
force to spring stiffness, and it scales as the ratio of the characteristic surface roughness
parameter to the characteristic interface curvature, or (ε/q)/(1/R). Finally, ω0/B is the
ratio of applied force to pinning force f /(γowε), and λωu/K is simply a scaled capillary
number Ca(R/q). Hence, in figure 9, one should simply interpret the vertical axis as a
scaled applied force across the tube, and the horizontal axis as a scaled capillary number.

To verify that our simplified equations of motion and the drum analogue predict the main
displacement regimes on heterogeneous surfaces accurately, we will reproduce the energy
dissipation outcomes in figure 10(b) with two-dimensional (2-D) phase-field simulations.
We limit our comparison to the constant-rate setting.

8.1. Details of the phase-field simulation
Figure 11 shows a typical 2-D phase-field simulation of fluid–fluid displacement, where
invading fluid is marked with phase-field variable φ = 1, defending fluid with φ = −1,
and the diffuse interface has values of φ in between. Spatio-temporal changes in φ are
governed by the Cahn–Hilliard equation (Cahn & Hilliard 2004) in the form

∂φ

∂t
+ u · ∇φ︸ ︷︷ ︸

transport from
flow field

= ∇ · γ̃ λ̃

ε̃2 ∇(φ(φ2 − 1) − ∇ · ε̃2 ∇φ)︸ ︷︷ ︸
transport from

chemical potential

, (8.1)

where γ̃ is the mobility, λ̃ is the mixing energy density and ε̃ is the interface thickness. We
set γ̃ = 10−10, ε̃ = 10 μm and λ̃ = 3ε̃γow/2

√
2 for all our simulations. Furthermore, in

our phase-field simulation, the imposed roughness wavelength q had to exceed the width
of the interface; it was set to 50 μm. The coupled flow field u was obtained using the
creeping flow approximation

ρ
∂u
∂t

= ∇ · [−pI + μ(∇u + (∇u)T)] + λ̃
ε̃2 (φ(φ2 − 1) − ε̃2 ∇2φ)∇φ︸ ︷︷ ︸

interfacial tension term

, (8.2)

where p, ρ and μ are the fluid pressure, density and viscosity. We set the constant flow rate
on the left boundary and constant pressure on the right boundary (figure 11). All of the
simulations were performed in COMSOL over a triangular grid, where the biggest element
size was set to 8 μm in the domain and 2 μm near the solid surface.
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1

–1

φ

Figure 11. Phase-field simulation of constant-rate fluid–fluid displacement in a 2-D channel (R = 290 μm),
where the top boundary is the plane of symmetry.

The model equations are solved numerically using the finite-element method. The
Stokes flow equations are discretized using stabilized linear finite elements with streamline
diffusion, and the fourth-order Cahn–Hilliard equation is split into a set of two
second-order partial differential equations by solving for an auxiliary variable (the
chemical potential G). The second-order equations are then discretized using standard
linear elements. The semi-discrete equations are advanced in time adaptively using
the implicit second-order backward differentiation formula method. The fully discrete
equations are solved monolithically using Newton’s method and a sparse linear solver
(MUMPS or PARDISO, depending on the problem size).

We model microscopic roughness on the walls by setting a space-varying contact angle
θb(z) at the impermeable wall (bottom), such that

cos θb(z) = cos θb0 − ε sin(2πz/q). (8.3)

This was done by imposing

− ∇φ · n = |∇φ| (cos θb0 − ε sin(2πz/q)), (8.4)

as well as a no-slip boundary condition at the wall, where n is the wall’s unit normal
vector.

Phase-field modelling of a viscous oil slug that is preceded by air and displaced by water
would require a relatively long channel with a reasonably fine mesh. That would translate
into a significant computational cost. Since we are interested only in the dynamics of the
stick–slip motion near the contact line, we instead model viscosity-matched displacement
inside the 2-D channel. This way, the total pressure drop �ptotal(t) across the channel
has three components for any given simulation: time-dependent pressure due to stick–slip
dynamics �pslip(t), time-independent pressure due to Poiseuille flow in the bulk of the
channel �ppois, and the time-independent pressure due to sharp velocity gradients near
the mean contact-line geometry �pc.l.. A similar approach has been justified in Liu &
Chen (2017). Thus, for a given capillary number Ca, we find �ppois + �pc.l. by running a
simulation on a smooth surface (ε = 0 in (2.11)). Then we can isolate �pslip(t) through

�pslip(t) = �ptotal(t) − (�ppois + �pc.l.) (8.5)

for any combination of ε and Ca of interest. This is equivalent to isolating the contact-line
dynamics in (4.4).

8.2. Partial comparison of drum analogue to capillary tube set-up
Figure 12 shows how a typical pressure signal due to pinning dynamics of the contact
line evolves as the system’s key parameters are altered. When pinning is stronger than
the interface stiffness (B/K ∼ εR/q > 1), phase-field simulations exhibit a sharp drop
in �pslip near disanchoring events at low Ca (blue line in figure 12a). As Ca increases,
the pressure signal becomes smoother, and the amplitude of �pslip decays. When B/K ∼
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Figure 12. Evolution of �pslip in phase-field simulations when (a) B/K > 1 (B/K = 2πRε/q = 3.6) and
(b) B/K < 1 (B/K = 2πRε/q = 0.9). A noise in the pressure signal is an artefact that decreases with finer
meshing of the fluid domain and smaller time steps.

εR/q < 1 motion of the contact line is relatively smooth and the pressure signal’s
amplitude still decays with increasing Ca. Note that trends similar to those in figure 12
have been observed in a continuum model of Ren & Weinan (2011); all of these trends
align with the drum analogue’s behaviour in figure 6.

Furthermore, we can compute the fraction of dissipation due to oscillatory motion of
the contact line in figure 10(c) as

Ξ = 〈�pslip〉
〈�ptotal〉 , (8.6)

where 〈�ptotal〉 = (1/T)
∫ T

0 �ptotal(t) dt. We set the static contact θb0 to π/2 (see (2.4)) to
match our assumptions in the analytic model. This equation is equivalent to (6.2).

Phase-field simulations reproduce qualitatively the transition from stick–slip motion at
low flow rates to steady sliding at high flow rates (see supplementary movie 1 available
at https://doi.org/10.1017/jfm.2023.718). The condition for the dynamic transition from
stick–slip to steady sliding in (4.23) is equivalent to

Ca
R
q

∼ 1. (8.7)

In fact, after running a sweep of phase-field simulations for a range of pinning
force strengths (controlled through ε) and Ca, we can characterize the contribution
of contact-line oscillations to the overall dynamics. We do so by tracking Ξ through
phase-field pressure measurements (see (8.6)), which essentially reproduces the trends
from the rotating-drum analogue (figure 10c).

While our phase-field simulations reported in figure 10(c) reproduce the main dynamic
regimes of the drum analogue (figure 10b), the mean value of the contact angle θb0
increases with Ca due to viscous bending of the fluid–fluid interface. We marked a Ca
region where this angle reaches π on a smooth surface with green shading in figure 10(c).
A film of defending fluid is deposited on the channel walls in this region (Levaché
& Bartolo 2014; Zhao, MacMinn & Juanes 2016; Qiu et al. 2023). We neglected the
dependence of the wetting transition on ε in figure 10 (Golestanian 2004).

9. Discussion

Previous studies on contact-line motion have focused predominantly on smooth and
clean surfaces, disregarding the presence of defects commonly found on real-world solid
surfaces. Consequently, the intricate dynamics of contact-line motion over heterogeneous
surfaces has remained largely unexplored. This study addresses this knowledge gap
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Motion of a viscous slug on heterogeneous surfaces

by presenting an instance of such complexity, wherein fluid–fluid interfaces display a
noticeable stick–slip motion when undergoing slow displacement across a heterogeneous
surface. Our study demonstrates a universal transition from stick–slip to steady sliding
behaviour as the velocity of the motion increases. To elucidate this transition, we develop
a theory that employs a straightforward scaling relation, drawing an analogy between
moving contact lines and a pendulum enclosed within a fluid-filled rotating drum. This
allows describing the dynamics through only a few key physical parameters.

Our model provides a simple scaling relation (8.7) for the dynamic crossover between
stick–slip and steady sliding motion for a viscous slug depicted in figure 1, which is a
fluid counterpart to the classic frictional spring–slider. The relation (8.7) shows that the
crossover depends on the product of the capillary number and the ratio of meniscus size to
the spacing of pinning sites. As a result, one can suppress the stick–slip motion in a given
experiment (Ca (R/q) � 1) by simply increasing the displacement rate. Alternatively,
one can suppress the stick–slip motion by decreasing the relative magnitude of pinning
strength to interface stiffness; lower values of B/K can produce negligible dissipation due
to stick–slip (figure 10).

While our model was developed for a viscous slug in a capillary tube, its outcomes can
provide insights into many recent experimental observations related to stick–slip dynamics
of moving contact lines in other relevant physical settings. For example, figure 10 shows
that stick–slip dynamics accounts for nearly all of the dissipation under strong pinning.
This is in agreement with numerical simulations of Liu & Chen (2017) and experiments
of Varagnolo et al. (2013), where droplets move an order of magnitude more slowly on
surfaces with hydrophilic/hydrophobic stripes compared to smooth surfaces. Additionally,
our approximation leading up to (4.22) is consistent with temporal modulation of the
contact angle on electrowetting surfaces. Therefore, ωu in (4.22) can represent the
frequency of AC signal. Equation (4.22) shows that the amplitude of oscillations decays
with ωu, which is indeed what has been reported in experiments of Mannetje, Mugele &
Van Den Ende (2013).

Finally, (8.7) also suggests that one can trigger the transition between stick–slip
and steady sliding by changing the spacing between defects (i.e. R/q). Parameter R/q
corresponds effectively to two relaxation times: R/ż is the slug relaxation time, and
q/ż is the contact-line relaxation time. When q/ż � R/ż, i.e. q/R � 1, the contact-line
relaxation time is negligible, and the surface is seen as smooth. This appears to be
happening in experiments of Zuo et al. (2012), where the authors generate surfaces with
varying spatial correlation lengths of defects by increasing the concentration of impurities
in a polymer substrate. Closer spacing of defects corresponds to the decreased amplitude
of stick–slip in their experiments. This is also consistent with the numerical simulations
of Hatipogullari et al. (2019), who reported that the amplitude of contact-line oscillations
reduces with R/q. This trend, however, is not guaranteed for arbitrary pinning landscapes.
While figure 10 shows that one can cross over the stick–slip threshold by increasing R/q,
an increase in R/q would also effectively increase the parameter B/K (one would switch
to curves with higher B/K). There is a trade-off between tuning the relevant time scales
and an increase in the effective pinning strength (B/K).

Overall, we capture the complex motion of partially wetting contact lines over
heterogeneous surfaces with a system of ordinary differential equations, and connect these
equations to a mechanical analogue in figure 2. This allows reducing the complexity of the
motion to a few key parameters. We present a simple model that connects the stick–slip
amplitudes of contact-line motion with the strength and spacing of surface defects,
explaining the rate-dependent transition from stick–slip to steady sliding shown in figure 1.
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Liquid droplets

Figure 13. Crystalline structures growing on cured NOA81 surfaces are reminiscent of the images obtained in
the context of coarsening solidification via solvent-annealing in thin liquid films (Yu, Bulović & Hosoi 2013).
Liquid droplets, visible at the centre of the image (blue box), are replaced by growing crystal structures as time
advances.

The experimental set-up that we show in figure 1 has three features that are useful for
studying moving contact lines in partial wetting: (i) only the partially wetting contact line
interacts with surface imperfections, while the fully wetting meniscus curvature follows
the well-studied Cox–Voinov relation (Voinov 1977; Cox 1986); (ii) the oil slug moves at a
fixed mean velocity in a constant-force displacement regime (Primkulov et al. 2020a),
where the fraction of bulk viscous dissipation can be tuned through the slug length;
and (iii) negligible viscous pressure losses in the water phase (compared to the slug)
allow measuring the pressure difference across the slug in the constant-rate displacement
regime. Therefore, we hope that our work will motivate a slew of experiments in partial
wetting that examine the crossover from slick–slip to steady sliding and allow connecting
these dynamics to experimentally observed macroscopic force–velocity relations in porous
environments (Sinha et al. 2013, 2017).

Supplementary material. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.718.
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Appendix. Experimental details

Many of the previous studies of moving liquid–liquid interfaces in capillary tubes would
aim to reduce the interaction of the contact line with the surface imperfections. This was
achieved typically either by pre-wetting solid surfaces with a thin film of displacing fluid

973 A2-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.718
https://orcid.org/0000-0002-8162-2471
https://orcid.org/0000-0002-8162-2471
https://orcid.org/0000-0003-3505-9718
https://orcid.org/0000-0003-3505-9718
https://orcid.org/0000-0001-5303-0236
https://orcid.org/0000-0001-5303-0236
https://orcid.org/0000-0002-7370-2332
https://orcid.org/0000-0002-7370-2332
https://doi.org/10.1017/jfm.2023.718


Motion of a viscous slug on heterogeneous surfaces

(Eley & Pepper 1946; Mumley, Radke & Williams 1986; Walls 2016) or using very clean
solid surfaces (André & Okumura 2020; Primkulov et al. 2020a). In our case, the aim of
the study was to examine the interactions of the contact line with surface imperfections.
Therefore, instead of reducing these interactions, we amplified them by introducing a
rough landscape to the walls of the capillary tube.

This study used capillary tubes with inner radius R = 290 μm (Hilgenberg GmbH
borosilicate glass 3.3). We spin-coated the inner walls of the tubes with the NOA81
photocurable polymer (Primkulov et al. 2020b). We cured the NOA81 polymer with
high-intensity UV light; this was followed by spontaneous nucleation and growth of
crystals on an initially smooth surface (figure 13). These crystals cover the cured polymer
within several hours, generating a carpet of surface roughness.

Introducing a rough pinning landscape may, in fact, induce the deposition of the
displaced liquid on the solid surface (Schäffer & Wong 2000). In our experiments,
however, the length of the slug appeared to remain constant, as was the case in the previous
variation of our experiment (Primkulov et al. 2020a). This implies that no oil film was
deposited behind the oil slug.
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