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DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES

SANG CHEoOL LEE AND DONG Soo LEE

This paper proves that every direct summand N of a direct sum of indecomposable
injective submodules of a module is the sum of a direct sum of indecomposable
injective submodules and a sum of indecomposable injective submodules of Z2(N).

In this paper, we shall always assume that every ring R has an identity element.
By a module, we shall always mean a unitary left R-module.

LEMMA 1. Let M be an R-module and suppose that {M;};cr and {N;}icr are
families of submodules of M such that 3 &M; = 3 N; in M. Suppose further that
i€l i€l
M; D N; foreach i€ I. Then M; = N; foreacht€1I.
ProoF: If M; D N; for some j € I, then Y &M; O Y @N; = 3 Nj, contradic-

. iel icl el
tion. € i€ € D

Recall that the singular submodule Z(M) of an R-module M is defined by
Z(M) = {m € M | anng (m) is essential in R}.

Recall further that the module M is called singular if M = Z(M), and nonsingular if
Z(M) =0.

It is fairly well known that for any prime p in the ring Z of integers, the Z-module
G = Z(p™) ® Z(p°°) has the property that not every submodule has a unique injective
envelope in G. It is well-known that if there is an injective envelope of a submodule,
within a given nonsingular module, then it is unique. (In fact, this follows from [3,
Propositions 4.9, 3.28(b), 3.26] and (2, Lemma 2.1].) This can be further generalised
as follows:

LEMMA 2. If there is an injective envelope E(N) of a submodule N, within a
given R-module M, then for every injective envelope E'(N) of N, within M,

E'(N) + Z(M) = E(N) + Z(M).
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PROOF: It is well-known (2, Proposition 1.11] or [3, Proposition 4.9] that there
exists an isomorphism f from E(N) onto E'(N) such that f|x = idy. To show that
E(N)+Z(M) = E'(N)+ Z(M) in M, it suffices to prove that for every e € E(N)\N,
anng(e — f(e)) is essential in R.

Let J be a non-zero left ideal in R. Since N is essential in E(N), it follows
that E(N)/N is singular. This implies that anng (e + N) is essential in R, so that
JNanng (e + N) # 0. Take a non-zero element 7 in JNanng (e + N). Then ie € N.
Since f|n = idn, it follows that ¢ belongs to JNanng (e~ f(€)), so that INanng(e—
f(e)) # 0. Hence, anng(e — f(e)) is essential in R, as required. 0

If M is a nonsingular R-module which is a sum of indecomposable injective sub-
modules, then it is a direct sum of indecomposable injective submodules. The general-
isation of this will be discussed.

PROPOSITION 3. Let M be an R-module which can be expressed in the form

M =Y M; + Z(M), where the M;’s are indecomposable injective submodules of M .
iel
Then there exists a subset J of I such that M = 5 &M; + Z(M).
j€J
ProoF: Consider the family {M;};c;. By Zorn’s lemma, the collection of sub-

families {Mi}rex (K C I) of the family {M;}icr such that the sum Y M} is direct,
keK

has a maximal member, say {M;}jcs (JCI). Let C = Y &M; + Z(M). In order
j€J
to show the proposition, it is sufficient to prove that M = C.
Suppose that M # C. Then there exists ¢ € I such that M; is not contained in

C. By the maximality of {M;};jcs, we have M; N Y &M; # 0. We can now pick out
jeJ
a finite collection {M; , Mj,,...,M; } of members of {M;};c; such that

M;N (M, @& Mj,) #0.

Since Mj, & ---@® M;, is injective, M; N (M;, @ --- & M;,) has an injective envelope
which is a submodule of M, ®---® M;_ (see [5, Proposition 2.22]). Further, M; is an
injective envelope for M; N (Mj, @ --- ® M;,). Therefore, according to Lemma 2,

M;CM;+Z(M)C M;, ®---®&M,, + Z(M) CC.

This is a contradiction. Hence, M = C. 0

Let A be any indecomposable injective R-module and let B be any non-zero sub-
module of A. Then A is an injective envelope for B. In particular, B is essential in
A. Hence, the residue class R-module A/B is singular. This shows that the homomor-
phic image of an indecomposable injective R-module A is either an indecomposable
injective R-module (which is isomorphic to A) or a singular R-module.
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Every homomorphic image N of a sum of indecomposable injective submodules of
an R-module is the sum of a direct sum of indecomposable injective submodules which
are not singular and Z(N). More precisely, we proceed to the following:

THEOREM 4. Let M and N be R-modules and let {M;}ic; be a family of
indecomposable injective submodules of M. Then for every epimorphism f : Y, M; —
N, there is a subset J of I such that el

N = (Soss) +2a)

jed
in which each f(Mj) is indecomposable injective but not singular.

Proor: Let {M;}ier be a family of submodules of an R-module M. Let N; =

f(M;) for each : € I. Then N = 5" N;. Hence,
i€l

N = (E N.~) + Z(N).

iel

Now, assume that each M; is indecomposable injective. Then, since N; is the
homomorphic image of M;, it follows from the argument immediately following the
proof of Proposition 3 that each N; is either indecomposable injective or singular. It
may be assumed that every singular submodule of N is contained in Z(N). Thus, we
may assume that each N; is indecomposable injective but not singular.

Therefore, by Proposition 3, there is a subset J of I such that

N= (Z eaN,-) + Z(N);

jedJ

and each Nj is indecomposable injective but not singular, as required. 0

Theorem 4 provides us with the natural generalisation of a theorem of Harada [4,
(8.2.7)).

If R is a nonsingular ring, then the factor R-module M/Z (M) is nonsingular (see
[3, Proposition 3.29].) However, we cannot say in general that the factor R-module
M/Z(M) is nonsingular.

Let R be aring and let M be an R-module. Since Z(M/Z(M)) is a submodule of
the factor R-module M/Z (M), it follows from the one-to-one correspondence theorem
for modules that there exists a unique submodule G of M containing Z(M) such that

G/Z(M) = Z(M/Z(M)).

https://doi.org/10.1017/50004972700018475 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700018475

60 S.C. Lee and D.S. Lee [4]

Then G is called the Goldie torsion submodule (or second singular submodule) of M
and is denoted by Z,(M) (see [7]).

We should mention three well known facts. The first is that

M/Z(M)
Z3(M)/Z2(M)

The second is that Z3(M)/Z(M) is the singular submodule of the factor R-module
M/Z(M). The third is that the factor R-module M/Z,(M) is nonsingular. Clearly,
Z5(Z2(M)) = Zo(M).

THEOREM 5. Let M and N be R-modules and let {M;};e; be a family of

indecomposable injective submodules of M. Then for every epimorphism f: 3 M; —
i€l

N, there are subsets K,J of I with K C J such that
N = (3 o140 © 2:v)
keK
where each f(My) is indecomposable injective and nonsingular;
2 = (Y @ra;)) + 2(v)
jeEIJ~NK

where each f(M;) is indecomposable injective, not singular but Z;(f(M;)) # 0.
PROOF: By Theorem 4, there is a subset J of I such that

(1) N= (]EZ; eBNj> + Z(N)

where N; = f(M;) and Nj is indecomposable injective but not singular. Then since
Z3(N) contains Z(N), it follows that

N = N + Z3(N) = (Z eaN,-) + Z(N) + Za(N) = (Z eaN,-) + Zo(N).
j€J j€J
Let K be the set of all j € J with Z3(N;) = 0. Then
(2) N = (Z GBNk) ® ( > eaNj) + Z3(N).
kEK JEINK

Let j be any element of J\K . Since N; is indecomposable injective and Z(N;) # 0,
N;/Z2(Nj) is both singular and nonsingular. This implies that N; = Z3(N;). Hence,

3T eN;= Y @Zy(N;) C Za(N).
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Further, by making a direct computation, we can see that

(Z @Nk) N Z2(N) C Z BZy(Nx) = 0.

kEK kEK

Therefore, it follows from (2) that

(3) N = (Z @Nk) ® Zz(N).
kEK
Here, notice that each Nj is nonsingular, because N/Z,(N) is nonsingular so that

3" @®N; is nonsingular.
kEK

From (1) and (3), we have

(’;(@Nk) ® Z2(N) = (Z eBNk) ( > GBN,-) + Z(N).

kEK JEJNK

Therefore, by Lemma 1 or by the modularity, we get

Zy(N) = ( > eaN)+Z(N)

jeEJ~NK

The remainder of the proof is obvious. 0

COROLLARY 6. Let M be an R-module which is a direct sum of indecomposable
injective submodules. Then for every direct summand N of M, N/Z3(N) is a direct
sum of indecomposable injective submodules.

Theorem 5 says that if M is a module which is a direct sum of indecomposable
injective submodules, then every direct summand N of M is a direct sum of a direct
sum of indecomposable injective submodules and Z3{N). This implies that Z5(N) is
a direct summand of a direct sum of indecomposable injective modules.

We turn our attention to the decomposition of Z;(N) into indecomposable injective
submodules when Z3(NN) # 0. More generally, we proceed to the following:

LEMMA 7. Let X, Y, Z be submodules of an R-module such that X ®Y =
X ® Z. Then there exists an isomorphism ¢ from Y onto Z such that for every
submodule B of Y and for every submodule C of Z, p(BYNC = (X @& B)NnC.

ProoF: Let n: X&@® Z — Z be the canonical projection. Then for any submodule
Bo XeZ, n(B)=(X+B)NZ. f X®Y = X & Z, then the composite map
:Y "N XeY=X®Z - Zisan isomorphism. Now, let B be any submodule of
Y and let C be any submodule of Z. Then

»(B)NC=n(B)NC=(X®B)nZNC=(X®B)NC,
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as required. a0

Compare the following theorem with Azumaya’s Decomposition Theorem [1, The-
orem 12.6].

THEOREM 8. Let M be an R-module which is a direct sum of indecomposable
injective submodules M;, 1 € I. Then every non-zero direct summand of M has an
indecomposable injective direct summand isomorphic to one of the M;.

ProoF: Let {M;}ier be a family of indecomposable injective submodules of an

R-module M such that M = Y @&M;. Let N be a direct summand of M. Then

i€l

there is a submodule N’ of M such that M = N & N’. If N is non-zero, then there

exists a finite subset J of I such that (Z @Mj) NN # 0. Consider the family
JjEJ

F of all finite subsets F' of I such that ( Y oM f) AN # 0, and consider the set
fEF

S = {|F| | F € F}, where |F| denotes the number of elements of F. Then S is a

non-empty subset of the set N of natural numbers. By the well-ordering property of

integers, S has the least element [. Then ! = |F,| for some finite subset F, of I with

( Z EBM]) NN # 0. Write F, = {il,... ,il}.

fEF.

Assume that [ = 1. Then (M;, NN)N(M; NN') =0, M;; NN # 0, and M;
is indecomposable injective. So, M;, N N’ = 0. Hence, by [6, Lemma 2.10], M;, & N’
is a direct summand of M. In fact, there exists a submodule N; of N such that
M = M;, ® N'@® Ny, that is, N'® M;, ® N, = N'® N. By Lemma 7, there exists an
isomorphism ¢ from M;, &N, onto N. Hence o(M;,)®p(N1) = o(M;, ® N1) = N so
that N has an indecomposable injective direct summand ¢(M;,) which is isomorphic
to Mil .

Assume now that | > 1. Then by the minimality of I, we must have
(Mi1 & M;,_l) NN = 0. According to [6, Lemma 2.10], M;, & ---® M;,_, ® N
is a direct summand of M. In fact, there exists a submodule N] of N’ such that
M=M; & - -®&M;_, ®N & Nj. Write M as follows:

M=M,& &M, & E eM;.
iEI\{ilt“-)il—l}

By Lemma 7, there exists an isomorphism ¢ from 3 @®M; onto N @ Ny
i€\ {i1,.-,i1-1}

such that (M) NN = (M;; @--- @ M;_, ® M;,) N N. Note that

(e(M:) O N) 0 (w(Mi) A 1Y) =
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According to the construction of [,

(p(M,',)nN= (M,'l@"'@M,'l)nN= (Z @Mj) NN #0.
fEF,

M;, = ¢(M;,) implies that ¢(M;,) is indecomposable injective. Hence, as in the case
l =1, we can prove that N has an indecomposable injective direct summand which is
isomorphic to ¢(M;,) and hence to M;,. 0

REMARK. The word “isomorphic” in Theorem 8 cannot be replaced by the word
“equal”’. An example of this is given in the following example.

EXaAMPLE 9. Let R = Z be the ring of integers and let N be the set of non-negative
integers. Let V be a vector space over the field Z/2Z with a countable basis v;, ¢ € N.
Let M be the injective envelope of the Z-module V. Then M = Y &M;, where each
M; is an indecomposable injective Z-module whose socle is the ‘seul;rnodule with two
elements Zv;. Let N be an injective envelope in M of the submodule generated by
the countable set v; — viy+1, ¢ € N, and N’ be an injective envelope in M of the

submodule generated by vg. Clearly M = N @ N'. Note that N = Z3(N) # 0. Then
K={i€N|Z2(M,')9éO}=N.

Now N = Z,(N) # 0 has an indecomposable injective direct summand N; which is
isomorphic to My, for some k; € N. For instance, take as N; the injective envelope
in M of the submodule generated by vg — v1. This N, is isomorphic to M, for any
k1 € N. Let N| be a submodule of N = Z3(N) such that

N=2Z,(N)=N,® NJ.

For instance, take as N| the injective envelope in M of the submodule generated by
the countable set v; — v;4+1, 2 > 1. From this we cannot deduce that

N = Zz(N) = Mk1 @N{

Otherwise, the elements v, in the socle of Mg, would belong to N. But this would
imply that all the elements v; are in N, that is, N = M, contradiction.

To investigate the Goldie torsion submodule of an indecomposable injective module,
we need to introduce the notion of a module with (Cy,).

Let M be an R-module and let N be a submodule of M. By Zorn’s lemma, the
collection of submodules L of M such that NN L = 0 has a maximal member. A
complement of N in M is a submodule K of M maximal with respect to the property
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NNK = 0. A submodule K of M is called a complement in M if there exists a
submodule N of M such that K is a complement of N in M. A module M is a
CS -module or satisfies (C,) if every complement in M is a direct summand of M. A
module M is said to satisfy (Cy1) if every submodule of M has a complement in M
which is a direct summand of M.

If an R-module M satisfies (Cp), then it satisfies (Cy;). For example, every
injective R-module satisfies (C1) and hence it satisfies (Cy;). In fact, let M be an
injective R-module and let K be any complement in M. Then there is a submodule
N of M such that K is a complement of N in M. Since M is injective and N & K
is a submodule of M, N @ K has an injective envelope E(N & K) in M. Note that
E(N® K) = E(N)® E(K). According to [5, Proposition 2.15], E(N) ® E(K) is a
direct summand of M. Let P be a submodule of M such that

M =E(N)® E(K)® P.

Then NN (E(K)®P) =0 and K C E(K)®P. By the maximality of K, E(K)®P =
K. Hence F(K) C K and P C K,s0 K = E(K) and P = PN K = 0. Thus,
M = E(N)@® K. This shows that K is a direct summand of M. Therefore, M
satisfies (C1) and hence it satisfies (Cy,).

PROPOSITION 10. Let M be an R-module. If M is indecomposable injective,
then either Zo(M) =0 or Ze(M)=M.

PROOF: Aséume that M is indecomposable injective. Then since M is injective,
M satisfies (C11). Za(M) is a direct summand of M (see [6, Theorem 2.7].) Since M
is indecomposable, either Z;(M) =0 or Z,(M) =M.

LEMMA 11. Let M be a direct sum of indecomposable injective submodules.
Then every direct summand of M is the sum of all its indecomposable injective sub-
modules.

PrOOF: Let M = > &M, be a direct sum of indecomposable injective submodules
M;. Let N be any dir;f:i, summand of M. Let S be the sum of all indecomposable
injective submodules of N. The goal is to show that S = N.

Suppose on the contrary that S # N. Then we can take an element £ € N\S.
There is a finite set {41,... ,im} C I withz € M; ®---®©M;,,. Set A = M; ®---®M;,, .
By [1, Lemma 26.4] there are direct summands P of N and P’ of N’ such that

M=A9oPoP.

Let
H=Nn(A® P).
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Then z € NN A C H, and by modularity
N=NNnM=Nn((A®P)®eP)=HoP.

Since P’ is a direct summand of N', there is a submodule P"” of N’ with N' = P'@P".
Thus,

A= M/(Pe P')
=(Neo N')/(P® P
=(HoPoP oP')/(Pe&P)
~He P,

But, by {1, Corollary 12.7] the decomposition A = M;, ® --- & M;,, complements

direct summands. Hence, in particular, H is isomorphic to @ Mj for some finite
keF
subset F' C I, so that H is a direct sum of indecomposable injective submodules of N .

Therefore, we get £ € H C S, contradiction. 0

Recently, study of direct sum decompositions into indecomposable injective mod-
ules has been done in [8].

THEOREM 12. Let M be an R-module which is a direct sum of indecomposable
injective submodules. Then every direct summand N of M is the sum of a direct
sum of indecomposable injective submodules and a sum of indecomposable injective
submodules of Z3(N).

PROOF: Let {M;}ics be a family of indecomposable injective submodules of an
R-module M such that M = > @M;. Let N be a direct summand of M. Let

i€l
m: M — N be the canonical projection. Then by Theorem 5, there is a subset J of I
such that
) N = (Torm) o z:()
jEJ

where each w(M;) is indecomposable injective. Let N’ be a submodule of Y &M;
i€l
such that 3 ®&M; = N® N’'. Then
i€l

> " ®Z:(M;) = Zo(N) & Zy(N').

i€l
Let

K={i € I'Zz(M‘)#O}
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Then by Proposition 10,

)" @M = Za(N) & Zo(N').
keK

Hence, by Lemma 11, Z3(N) is the sum of all its indecomposable injective submodules.
By (1), N is a direct sum of a direct sum of indecomposable injective submodules and
the sum of all indecomposable injective submodules of Z3(N). Therefore, by Zorn’s
lemma, N is the sum of a direct sum of indecomposable injective submodules and a
sum of indecomposable injective submodules of Z3(N). ad
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