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Note on Continued Fractions and the Sequence of
Natural Numbers

By H. W. TurNBULL.

When a student first approaches the theory of infinite continued
fractions a natural question that suggests itself is how to evaluate
the expression ‘

1 3 5 2n — 1
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et (1)
but, as far as I know, it is considered in no text bqpk short of the
great work by O. Perron, Die Lehre von dem Kettenbruchen (Teubner,
1913). I propose to consider this, and also an allied fraction

2 4 6 2n
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. (2)
in an elementary fashion, and incidentally to point out the curious
contrast in their properties which seems to reside in this simple
displacement of the ascending sequence of natural numbers. For
example, in f, the first fraction, the integers are arranged in a zigzag
sequence, which gives rise to the second fraction by moving each
element one place along the zigzag in a general leftwards direction—a
retreating step, let us say. Evidently the repetition of such a step
restores the general features of f (when one considers the general
term); and the same remark applies to an even number of such steps.
In this way one is led to consider the more general fraction

1 a2 a4 3
h= o e
a+1+ a+3+ a+4+

- (3)

which is equal to f when a =1, and to ¢g-! when ¢ =0. Even values
of a correspond “to ¢ and to fractions derived from ¢ by an even
number of retreating steps, whereas odd values of a correspond to f
and all such even derivatives of f.

Evidently there are two classes—the odd, or f class, and the even,
or g class—of these fractions, which at first sight appear to differ hardly
at all in complexity. A little further examination will shew that
while each member of the ¢ class can be evaluated rationally in terms
of the elementary transcendental number Ve, no such simple result
follows for the f class.
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If, instead of starting with the sequence 1, 2, 3, ...., one
duplicates it (taking a kind of second power of the sequence) by
writing 1,1, 2, 2,8, 3, ...., and then proceeds to form a zigzag of
odd or even order, the result is at once related to v/e.+/e=e. For
example:

e=2+ 2 3 4 _ov1s2818284.. ..,
2+ 3+ 4+
1 1 2 3
=24 (4)

T 7 3% 43
Here it matters not whether an odd or an even number of retreating
steps is taken; all such continued fractions are evidently of the form:

(a + Be)/(y + 8¢), where a, B, y, & are positive integers. For instance,
from the first of this pair of continued fractions we may deduce
3 4 2 6 — 2e .

—_— e L. = — 2 = .
3+ 4+ e—2 e—2

Fractions of this type (4) which may be found in most text books on
algebra, are collected by Perron upon p. 209 of the cited work, among
a number of other interesting expressions for e and e¢*. They originate
in formulae known to Euler, Cesaro, and Lagrange.

In passing it may be suggested that further interesting results
would probably follow by placing the third and higher powers of the
integer sequence upon a zigzag, in the manner explained; (or again
the sequence of prime numbers might be attempted!). Ultimately

such an enquiry includes the case 1,1, 1, 1, .. .., which leads to the

Fibonacci numbers 1, 2, 3, 5, 8, .. .. by way of the recurring continued
1 1

fraction 1 : — ..

ractio + 1+ 11

To evaluate f, let p,/q, be the n™ convergent; so that, in the
usual way, we have

=1 p,=4, Prn=20p, 1+ (2n — l)pn_g,} (5)
g1 = 2, qy = 119 qn=2nq,._1+(2n—- 1) G2
By using this difference relation upon each term of the series
Pr=PrytPaz— .o (=)D,
and also upon the analogous series for ¢, we obtain
Pn=(2n+1)l’n_1'—(— l)na} (6)
In = (20 4 1) gny + (= 1)
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By addition, p, + ¢, = (2n + 1) (Px-1 + ¢x-1), Which leads by repeti-
tion to the relation
P+ =1.3.5....02n—1)(2n+1). (7)

On using the repeated relations (6), after dividing throughout by
2n 4+ 1, we obtain

qn 1 1 1 1
A =l = 4 (=) 8
9n + Du s t3s 3507 T )3.5...(2n+1)’ 8)
and also
1 1 1
e e — ...
. P 8 3.5 '3.5.1 N
f=1lim 22 = ) : = 37973 .... (9)

e T
3 T35 357

(There is a strange reluctance for even digits to appear in the work).

+ o

Exactly the same procedure avails for the more general continued
fraction %, which includes g. 'Thus in the same notation for the
convergents of &,

P = 1 ’ Do = (a+2n—1)pn—l+(a+2n_2)pn—2:
r=a+1, gn=1(a+20—1)ga 1+ (@4 20— 2)q,_,,

so that
Pa=(a+20)pp1—(—)1,
gn =(a+2n)q,.1 + (—)" 1.
Hence
Putdn=(a+2)(a+4)....(a+ 2n); (10)
also
2 1 1 1

ptte a2 T @¥D@rd  @FDetdare)
If a = 0 and if n—> o, this last series is at once identified with

1 1 1 b .
1_5.}_2_.4_2_.4—.6-]—....—-e : = 6065 .

Thus
1

e |
14 lim p,./q.
n—>w

H -

8o that the continued fraction ¢ has been evaluated as

1 1 2 4 6

e —~1 3+ 5+ T+ 77
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Hence g and, as already explained, any continued fraction obtained
by an even number of retreating steps from g, may be expressed as a
bilinear form (ay/e + B)/(yv/e + 8) with integer coefficients. For
example, by unwrapping this last relation sufficiently far, we obtain

6 8 _ syt 2 1 48 —204/e
T+ 9+ T —3+ —14+ 4/e—1  B4/e—8

This consideration also shews that the above series (11) can be
summed in terms of /e for all even positive integral values of a, as
also is at once apparent on dividing the series throughout by the
product 2. 4. .... .a.

On the contrary, no such convenient result follows for odd
integral values of a, which lead to the f class already discussed.

A series of the type to which (11) belongs, in which the numerators
are all equal while the denominators are accumulating products which
retain all preceding factors, are sometimes looked upon as ascending
continued fractions in contrast to the usual descending kind. By
means of an obvious notation, whose use is illustrated by the example

.
ot v _ "7 ,
A p
the relation (11) may be thrown into the form
11 1 a+2 =11 (12)
1+2 1+ (a+1)+ (a+3)+ a+2 a+4 a+6 "

for all values of a except negative even integral values.
Once again, each term of this same series (11) may be resolved into

partial fractions and re-sorted into groups such as _{_12 Z,, where X, is
a-+2r
an absolutely convergent series independent of ¢, when n —> o« . Thus
qn z, 2y % X

- =1 s,

P+ qn _l_awr2+a+4+a&+6Jr +a+2n
where the value of X, may be found, in the usual way, by multiplying
throughout by a + 2r and then putting @ = — 2r in the result. This

yields the expression whose limit, when n—> o, is

L 1 1 1
___=1—- 3
) ¢ <a+2+2(a+4)+2.4(a+6)+"“>'
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This holds for all values of @ which do not cause the denominators to
vanish. Here again it follows that any series of this last type can be
summed as a bilinear form in /e if a is an even positive integer.

The essential distinction between the f and the g classes can now
be exhibited. Let

xa+2 xa+4 xa+6

ir2 T dar T d@re

a series which converges for all finite values of z, and admits of a

derivative
dy x? xt x?
==X {14+ ) =2t =)
( Ttz > v eXp<2>

y::

dx

It follows, by integration for the range 0 <z <1, that
1 1
== 1-— e‘*L xo ! e d,
which can evidently be evaluated very simply by parts, if, and only
if, @ is zero or an even positive integer. But for all other values of a,

including the odd, or f, class, this integral is by no means easy to
track. It has some affinity with the function

1
P(p) = jo w-le"du

of Saalschutz (cf. Whittaker and Watson, Modern Analysis (1915)
238), where 2 = a + 1, but its range of integration extends from
0 to — 34 and not from 0 to 1.

In conclusion it may be mentioned that the method employed
above to derive the relations (6) equally well applies to establish the
results (4). It then exhibits the same features as would be found in
the recurrence relation whereby the number of permutations of =
letters a,, @y, ....,a, may be enumerated in the case when each letter
is displaced from its original position, in each permutation.

Note on Polynomial Interpolation
By A. C. AITKEN.

The formulae of interpolation of Lagrange and Newton are easily
retained in the memory if one considers a simple way in which each
can be derived, for polynomials.
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