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Introduction. In [8], [9] R. Rautmann has given a systematic development of error
estimates for the spectral Galerkin approximations of the solution of the Navier-Stokes
equations (spectral in the sense that one chooses as basis functions the eigenfunctions of
the Stokes operator).

Error estimates are presented locally in time, valid on a finite interval determined by
certain norms of the data. If one assumes the solution to be approximated is uniformly
regular for / 3= 0, the method gives an error estimate which grows exponentially with time.
Without further assumptions this is the best estimate that one can expect. However, as
pointed out in [2] by J. G. Heywood, if one assumes, additionally, that the solution to be
approximated is stable, then one obtains an error estimate which is uniform in time.

Notice that the existence theory for the equations of viscous incompressible
non-homogeneous fluids can be developed by Galerkin type approximation ([3], [5], [6]).
Then one expects that some results in [2], [8], [9] hold for these equations. The paper
deals with this problem.

In §1 we give preliminaries. In §2 we consider error estimates in the L2-norm and in
the Dirichlet norm, locally in time. In §3 we consider a stability condition in the L2-norm
and obtain the best rate of convergence, uniform in time, for the spectral Galerkin
approximations of the Navier-Stokes solution. We note that the problem of the best
estimate was raised in [8 page 438]. In §4 we consider error estimates, uniform in time,
for the solution of the equations of viscous incompressible non-homogeneous fluids.

1. Preliminaries. Let Q c R3 be a bounded domain with smooth boundary F
(uniformly of class C3 at least). The functions in this paper are either R or .Revalued and
we will not distinguish them in our notations. The L2(Q)-product and norm are denoted
by (,) and 11 respectively, the Lp(Q)-norm by | \p and Hm(Q) product and norm are
denoted by ((,))„, || ||m. We set ((,))x = ((,)), || ||x = || ||. We shall consider the following
spaces of divergence free functions;

H = completion of £>(Q) in L2(Q);

V = completion of D(Q) in H\Q).

Throughout the paper P denotes the orthogonal projection from L2(Q) onto H and
A = —PA (the Stokes operator). We shall denote by CJ*(JC) and kk the eigenfunctions and
the eigenvalues of the Stokes operator defined in V PI H2(Q)(Hm(Q) are defined as
usual). It is well known (see [2], [8]) that tok(x) are orthogonal in the inner product (,),
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200 R. SALVI

((,)), (A, A) and complete in the spaces H, V, H2(Q)r\V. Furthermore if

M = E ak<ok(x) eVn H2(Q) then (see [2, Lemma 4])

2 **«*(*)
k=n

1-1

<A - 2

v 2 «*«>*(•*)
k=n

00

A 2 «**»*(*)

Now we consider the equations which govern the flow of a viscous incompressible
non-homogeneous fluid (non-homogeneous in the sense that the density p is not
constant):

p 3,u + pu . Vu — Au = Vp + pt

d,p + u . Vp = 0 in Q

V . u = 0

(1.1)

Here a, = d/3t, u = u(t) = u(f, *) = («i(f, *), «2(/, X), u3(r, x)) is the velocity, p = p(t) =
p(t,x) the density, p=p(t)=p(t,x) the pressure, f = f(f) = f(f, at) = (^(f, x), f2if,x),

3 3

Ut,x)) t h e e x t e r n a l fo rce , a n d u . V u = E M,-3X-«» V . U = E 3^ «,• W e a s s u m e t h e
; i i

viscosity pt = \. We consider the initial boundary conditions

u = 0 on T
u(0) = uo; p(0) = p0; 0 < a ^ p

)
'n — p J

(1.2)

with a, /S positive constants.
Solutions of problem (1.1), (1.2) can be obtained using a semi-Galerkin approxima-

n
tion i.e. a Galerkin approximation u" = E c"(t)ta'(x) on the velocity and an infinite

1=1

dimensional approximation p" on the density, solution of the continuity equation

d,p" + u" . Vp" = 0

with p"(0) = p0.
For the n unknown coefficients

c1{t) = I u(t, X)«D'(JC) dx
Ja

we have the system of n ordinary differential equations and initial conditions

Pnp" 3,u" - P Au" + Pnp"u" . Vu" = Pnp"f]
(1.3)

(Pn = projection operator of L2(Q) onto the space spanned by (tal(x), w2(x),. .., ta"(x)).
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NAVIER-STOKES TYPE EQUATIONS 201

Error estimates result from a differential inequality for the respective norm of the
difference of two Galerkin approximations and a subsequent limiting process (see [8]) or
of the difference of Galerkin approximation and the partial sum of the series for u (see
[2]); therefore we need uniform regularity of the approximations u". For this we consider
the following theorem (see [10]); we assume f = 0 for simplicity.

THEOREM 1. Assume Uo e V n H2(Q), p0 e CX(Q). Then there exists T such that there
exists a unique strong solution u of problem (1.1), (1.2), i.e. a function u such that

u e L2(0, T; V n H2(Q)); p e C\Q x [0, T])'

3,u e L2((0, T, V)

and

P(p 3,u - Au + pu . Vu) = 0

holds a.e. in Q x [0, T].
Moreover the approximations u", p" satisfy the estimates

(1.4)

|VuT +

I An"

F(t);

l'\\Vu"\\c(a)dr^H(t);
Jo

"M2 f n\2d-
Jo

(1.5)

The functions on the right hand sides depend on their argument t, and in addition on T,
a>0, F and the norm ||uoj|2- On the interval in question these functions are continuous
in the variable t, the functions F(t), G(t), h(t) being continuously differentiate with
respect to t.

We notice O. A. Ladyzhenskaya and V. A. Solonnikov proved in [5] the regularity of
the solution of problem (1.1), (1.2) in II-theory by linearization and potential theory.
Instead below we need estimates as in (1.5).

Theorem 1 holds with a > 0. The existence of a weak solution of problem (1.1), (1.2)
was proved by J. Simon in [12] with a = 0. With a different method, the author proved in
[11] the existence of a weak solution for the equations of non-homogeneous fluids in
presence of diffusion with a = 0. For other results on this problem see [4], [7].

2. Error estimates for the approximations u", p". Let [0, T] be an interval as
in Theorem 1, u", p" the n-th approximations of u and p.
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202 R. SALVI

THEOREM 2. Suppose the assumptions of Theorem 1 hold. Then the approximations
u", p" satisfy

(i) \p(t)-p"(t)\2£

(ii) |n(O-u"(OI2 +
Jo

for any t e [0, T\. The continuous functions F{t), F(t) depend on t and on the functions
F(t), g(t), G(t) and H(t) in (1.5).

Proof. First we suppose (ii) true. The difference p ' - p" with / > n satisfies

3,(pl - p") + u ' . V(p' - p") = -(u ' - u"). Vp"
and

Let yl(t, x, x) be the solution of the Cauchy problem

y' = x for t = x.

(the hydrodynamic meaning of the above system is well known). Then the following
relation holds (see [5, p. 707]):

p'(x, t) - p"(x, 0 = - f f,n(y'(T, t, x), T) dx (2.1)
Jo

where f/,n(y', t) = (u'(y'( t) - u"(y', 0) • Vp"(y', t). Bearing in mind (ii), the properties of y'
(see [1, pp. 93-96]) and the last estimate in (1.5) we have

\p'-P"\^cf\U'-u"\\\Vp"\\ma)do
Jo

ma)(t exp H{t)( sup F(s)) ^
0<s<t

Consequently we obtain (i).

Now we prove (ii). We consider the following equations (l>n):

P,p' 9,u' + Pip'u'. Vu' - P Au' = 0; (2.2)

Pnp" d,u" + Pnp"u" . Vu" - P Au" = 0. (2.3)
(p', p" satisfy the continuity equation with u', u" respectively). Subtracting (2.3) from
(2.2), the difference to = u' - un satisfies

P,p' d,u' - Pnp
nu" . Vu" + P,plv! . Vu' - Pnp

n d,un - P Aw = 0,
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NAVIER-STOKES TYPE EQUATIONS 203

We take the inner product in L2(Q) of (2.4) with 01 and after some calculations we obtain
(writing d, = d/dt)

\ d, |p'oi|2 + |V . oi|2 + (Pn(p' - p")u" . Vu", 01) + (Pnp'oi. Vu", oi)

= -Pn(p' - p") 3,u", oi) - ((P, - Pn){pl d,u" + p'vf . Vu"), o>). (2.5)

By virtue of (1.5), we have the following estimates:

|((P, - Pn){p' d,vT + p'vl. Vu"), OI)| < c((g(0G(0)1 / 2 + g(

|(Pnp'w . Vu", co)| < 6 |Voi|2 + ca |Au"|2

Moreover, bearing in mind (2.1),

\(Pn(p' - p") a,un, oi)| = | ( £ ((oi. Vp") dr) 3,u", oi)

|oi|2 HVp-Hi-tu)^) |V a,u"|2 + 5 |Voi|2. (2.7)

Analogously, (2.1), (1.5), imply

| (P n (p ' -p" )u" . Vu", oi)| < c a ( f J"|oi|2 | |Vp"||2-(n )dT)((F(O)1/2(g(O)3/2 + (g(0)2 + S |Voi|2

(2.8)

(the above constants c, cs depend on the boundedness of p0). Bearing in mind (2.6),
(2.7), (2.8), and assuming 5 e (0, 1/4), the differential equality (2.5) yields the integral
inequality

|oi|2+ |Voi |2dT<a(0A~+i+ b(x)\io\2dr+ \ f{x)dx\ \w\2 dx
Jo Jo Jo Jo

where the functions a(t), b(t), and f(t) depend on g(t), F(t), G(t), H{t), |V5ru"|, and
a>0. This inequality can be written in the following form:

|oi | 2+ |Voi|2 dx :£ a(i)k~Xx + I b(x)\(o\2dx.
Jo Jo

Now applying a variant of Gronwall 's lemma proved in [8], we get

| u ' - u f + f |V(ul-ull)|2<iTs;c/i(OA-.i1.
Jo

Now passing to the limit l—><x> on the left side we obtain (ii). Thus the theorem is proved.

THEOREM 3. Under the assumptions of Theorem 1, the approximations u" satisfy

|V(u - u")|2 + f |ar(u - u")|2 dx < cA^,A:(0 (2.9)
Jo
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204 R. SALVI

for any t e (0, T). The continuous function K(i) of the variable t depends on the functions
in (1.5).

Proof. We take the inner product of (2.4) with 3,o> in L2(Q) to get

(p,pl a,w, a,w) + (P,pV. Vw, a,o>) + (pnp'<o. Vu", a,o>) + \ d, | v . o>|2

= -((p, - pn)p' a,u", a,oi) - (Pn(p
l - p") a,u", a,<») - ((p, - pn)p'v!. Vu", a,w)

-(Pn(p ' -p")u" .Vu", a,o>);

o)(0) = (P, - Pn)uo. (2.10)

From the estimates (1.5), and (i) of Theorem 2, we get

|(Pnp'oj. Vu", a,o>)| < <5 |a,w|2 + cs \g(t)\ |Vo|2;

|pn(p' — p")(a,u" + u n . Vu", a,oi)i ^ cA~+f J

\(P, - Pn)p'u'. Vco, 3,ai)| £ <5 \3M2 + ca |Au'|2 |Vw|2

(the above constants c, c6 depend on the boundedness of p0). If 6 e (0, a/A)
(consequently c6 depends on a>0) these inequalities and (2.10) lead to the integral
inequality

|V.w|2+ f \3Tia\2dr<a(t)Kl/?+ f b{j) |V.
Jo Jo

Applying the variant of Gronwall's lemma proved in [8] and passing to the limit /-»oo we
obtain (2.9).

3. L2(Q)-error estimates uniform in time for the spectral Galerkin approximations
of the Navier-Stokes solution. Let u, p be the solution of the Navier-Stokes problem

a,u + u . Vu - Au = -Vp, 1

V.u = 0, i (3.1)

u(0) = UQ; u = 0 on T. J

ASSUMPTION 1. UQ e V n H2(Q), and the solution u is strong in the sense that

uGL°°(0,°°;Vn//2(Q)); a,u e L"(0, »; H) (3.2)
and

P(dtu + u . Vu - Au) = 0

is satisfied a.e. in Q.

We assume u is conditionally stable in the following sense (see [2]). First, a function
t, defined on some interval t^t0 is called a perturbation of u if Z,(t, x) + u is a solution of
the Navier-Stokes equations with t, = 0 on T. Thus, setting i^ = £(/0, JC), t,(t) is a solution
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of the initial-boundary value problem

V. i ; = 0 . (3.3)

5('o) = So; S = o onr.

The assumption, then, is as follows.

ASSUMPTION 2. There exist positive numbers A, C, e such that for every fo> 0 and
£o€ VC)H2(Q) with |£o| ^ £ the perturbation problem (3.3) is uniquely solvable and its
solution is strong in the sense of assumption 1 and satisfies

15(01 =sC|5o|exp(-i4(r-/„)). (3.4)

We observe the n-th spectral Galerkin approximation

u" = E c?(0w'(x) (3.5)

to the solution of the problem (3.1) is uniquely determined by the equations

(3,n", <p") + (Vn", Vq>") + (u" . Vu", q>") = 0;

(u"(0)-no,q»-) = 0

n

for all q>" of the form <p" = E d,(o'(;t). We shall prove the following theorem.
i=i

THEOREM 4. Under the assumptions 1, 2, there exist constants N and K depending on
the domain Q, the norms of the data and the constants in (3.4), such that

| u - u f </ttn-*! (3.7)

for allt>0 and n>N.

00

Proof. Let u = E £,(*)*»'(•*) be the eigenfunction expansion of the solution of the

n

problem (3.1). Let v" = E gi(t)to'(x) be the n-th partial sum of the series for u. Let
i=i

e" = u - v" and t|»" = u" - v" where u" is the n-th Galerkin approximation of u. Then
u — u" = e" — \|)n. Now tj>" satisfies the equation (see [2, p. 337])

a(t|>
n, q>") + (Vt|>", Vq.") = - ( u . Vi|»", cp") - (t|>n . Vu, if") - W . V^n, q>n)

+ W . Xen, <fn) + (en . Vv", q>") + (e" . Vi|»", q>") + (u . Ve", <pn). (3.8)

Let Pn and Qn be the orthogonal projection of L2(Q) onto span of {tal(x), . . . , CI)"(JC))

and of (tn"+\x), <o"+2(x),. . .) respectively. For yeH let us write <p = Pnq> + Qnq> =
<jp" + QnV- Also, for q> e V

l)", Vq>n) =
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Using such identities, we rewrite (3.8) as

(d,yn, q>) + (Vi|>", V<p) + (u . Vt|>", <p) + (t|>" . Vu, q>) + (t|>" . Vt|>n,

= (G-(ii • W - <J>) + (QnW . Vu), q>) + (Qn(V . Vi|>"), <P) +

+ (Pn(e" . Vt|i"), q>) + (P,(u. Ve"), q>) + (PB(e". Vv"), q>) (3.9)

which is valid for all <p e V and for all t s 0. Then 8 = t|>" - % satisfies

(3,8, q>) + (V . 8, V . q>) + (u . V8, q>) + (i|>" . V8, <p) + (8 . Vt,, q>) - (8 . Vu, qi)

= (Qn(u . VV"), q>) + ( e n ( ^ n . Vu), q>) + (QnW . Vi|i"), <p) + (Fn(^n . Ve"), q>)

+ (Pn(en . V^n), q>) + (Pn(u . Ve"), q>) + (Pn(en . Vv"), q»). (3.10)

Setting <p = 8 in (3.10) we get

i d, |8|2 + |V8|2 = - ( 8 . Vu, 8) - (8 . V5, 8) + (Qn(n . V^"), 8) + {QnW . Vt|>"), 6)

+ (Qn(^n . Vu), 8) + (0n(tl." . Vip"), 8) + (Pn(il." . Ve"), 8)

+ (Pn(en . Vi|>n), 8) + (Pn(e" . Vv"), 8) + (Pn(u. Ve"), 8). (3.11)

Furthermore we have
| (8 .Vu ,8 ) |<c 6 |Au | 2 | 8 | 2 +

) , 8)1 =s c6 |^"|2 |Ati,"|2 A ^ + <5 |V8|2;

l(G-(i|»" • Vu), 8)| < c 6 \r\2 |Au|2 An-^+ 6 |V8|2;

|(QB(o . Vi|»"), 8)| < c6 |Au|2 |V^"|2 A-̂ x + 6 |V8|; (3.12)

\(Pn(r . Ve"), 8)| < c 6 |At|,"| |Au|2 A"^ + 6 |V8|2;

|(Pn(e" . Vi|»"), 8)| < ca |Au|2 |A^"|2 A;2! + <5 |V8|2;

|(PB(e" . Vv"), 8)| < c6 |Au|4 X~U + <5 |V8|2;

|(Pn(u . Ve"), 8)| < c6 |Au|4 A"2! + «5 |V8|2.

(In (3.12) c6 denotes different constants independent of n.) If 6 e (0,1/10) these
inequalities and (3.11) lead to the integral inequality

|8|2 < exp f c(\Au|2 + |A$|2) dr(\Q(to)\
2 + c f (An~

2! |Au|2(|Au|2 + |AtJ,"|2)
J'o ^ Jh

+ 1 An+^ |t|>"|2(|Ati>"|2 + |Au|2) dx). (3 13)

Now we need to estimate |VtJ>"|, |At|>"|. For this we shall prove the following lemma.
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LEMMA 1. Suppose |t|>"|2 —ci^T+i holds on some interval (0, t*). Then there hold on
(0,/*) also \Vy"\2^c2X^lu I A ^ I ^ C S A - ^ provided that n>N (where c,, c2, c3, N
depend on Q, |Au|).

Proof. Setting <p" = t|>" in (3.8) we obtain

h d, \y"\2 + |V. t p f ^ c |Au| |t|>"| |V*n + cKU |Au|2 |Vt|>n|

whence

d, |t|>n|2+ |Vtp"|2^c(|Au|2+ |Au|4)A-+i- (3.14)

Multiplying (3.14) be e' and integrating over Q(t) = Q x [0, t) one has

^cX-l,. (3.15)
Jo

Setting q>" = Ay" in (3.8) we obtain

\ d, \Vy"\2 + IAi|)"|2 ̂  c |Au| |V\p"| |AtJ>"| + c |VH>"|3/2 |AH»"|3/2 + c |Au|2 |A^"| A~|?

whence

d, |VH>"|2+ |Atl>"|2<c |Au|2 |Vil>"|2 + c |Vt|)"|6 + c |Au| 4A- | j . (3.16)

Multiplying (3.16) by e' and integrating over Q(t) one has

|Vt|>"(0l2^ cA-ix + ce- f e'dV^I6 + cA^,) dr. (3.17)
Jo

Now there exists N such that for n > TV, f < f *

f ^ . (3.18)

If not, that is, if (3.18) fails for some n>N, let t be the first value of t for which
|Vi|>M(7)|2 = KIT From (3.15), (3.17) we have

^e-' f eT |V^|2 dx U Klv
Jo

If we choose N such that for n>N, X~lf < \c (c depends on Q, | Au| only) we have

contradicting our supposition on I. So (3.18) must hold on (0, t*).
Now we reconsider (3.8) with <p" = Atp"; we get

\ d, |Vt|»"|2 + |Ai|»"|2 ̂  c |Au| |Vtl)"| |Ai|)"| + c |Vt|>"| |A%J>"|2 + c |Au|2 |A^"| A"^ . (3.19)

If we re-choose /V (if it is necessary) such that A~+? < \c then on multiplying (3.18) by e'
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and integrating over Q{t) we obtain

|Vi|>"(0l2 ^ e- \ eT |Vt|»"|2 dx + ck'U.
Jo

From (3.15) we obtain

|Vti»"(0|2£c2An-^ (3.20)

provided that n > N. From (3.20) and [2, Lemma 8] we have

Now we are in the position to prove |t|)"(f)|2<cA~+i. We choose N(>N) and T
sufficiently large such that

u | 2 )A-^<i (3.21)

where
B > sup c(|Au|2 + |A£|2); b > sup(c |Au|4 + c2 |Au|2).

We set

Now we are in the situation of [2, p. 344]. We shall give the proof for the reader's
convenience.

For n > N we claim

|\i»"|2<yn fora l lOO. (3.22)

If not, that is, if (3.22) fails for some n>N, let t be the first value of t for which
|^,"(7)|2 = yn. To show it is impossible that I < T, we consider (3.13) with t0 = 0, £ = 0 and
Lemma 1 and we obtain

which contradicts our supposition about I On the other hand, if I> T, then |tl>"(f)|2< Yn
in [i-T, t) and from Lemma 1, |V^"(0l2sc2A-i, and IWiOf^c^U for
t e [i - T, t). So considering (3.13) with t0 = 1 - T and £(< - T) = t|>"(7 - T) we find

Jy- (3.23)

In view of (3.21), the stability condition implies

IWONir - (3-24)
Together (3.23) and (3.24) imply |tp"(7)|2<yn again contradicting our supposition about
I So (3.21) must hold.

4. L2(Q)-Error estimates uniform in time for the approximations u", p" of the
solution of the system (1.1). Let (u,p, p) be a solution of the problem (1.1), (1.2). We
make the following assumptions.
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ASSUMPTION 3. UQ e V (~) H2(Q); f = 0 and the solution (u, p) is unique and satisfies

ueLa>(0,^;H\Q)nV); p e C\Q x (0, «)); 3,n e L"(0, «; H). (4.1)

Now we g/ue f/ie definition of the pertubation of the system (1.1), (1.2).

Functions £, p defined on some interval f s: f0 are called a perturbation of u, p if
(5 + u, p = p + p) is the solution of the system (1.1) with % = 0 on T. Setting ^ = £(f0);
p0 = p('o)> (£> p) is the solution of the initial boundary value problem

(4.2)

= 0 onF. J
ASSUMPTION 4. (u, p) is "partially" conditionally exponentially stable if there exist

positive numbers D, L, r such that for every t>0 and every t^eV D H2(Q) with |£o| < r
the pertubation problem (4.2) is uniquely solvable and the solution ^(f) is strong in the
sense of (4.1) and

2 (4-3)

n

From section 1 we know that the approximations p" and u" = E c"(t)ia'(x) to the

solution of the problem (1.1), (1.2) are uniquely determined by the following system:
(pn d,u", q>") + (Vun, Vcp") + (p"u" . Vun<p") = 0, (4.4)

a ,p"+u".Vp"=0; (un(0)-uo,q.") = 0; p"(0) = po (4.5)

for all q>" of the form <p" = E d>'(x).

We use the notation of the section 3. Then v" satisfies

(p 3,u, q>") + (Vv", V<p") = (pu . Vu, q>") = 0 (4.6)

for all <(" = E d>''(jc). Subtracting (4.6) from (4.4) one has
; i

(pn d,ty", q>") + ( v y , Vq>") = (pu . Vu, q>") - (p"u" . Vu", <pn)

-(Pn((p-p")(u.Vu+3,u) ,q.") . (4.7)

Now we re-write (4.7) for all test functions (peKfl H2(Q) as (3.9); hence we have

(pn d,if, <f) + (Vt|»", V<j>) + (p"u . Vi|»", q>) + ( p Y . Vu, <p) + ( p Y • Vt|)", q>)
- (P n (p -p" ) (u .Vu + a,u),q.)

= (Qn(p"u. Vip"), V) + ( G . ( P Y • Vu), <p) + ( Q , ( p Y • V t « , q.) + (Pn(p>" . Ve"), q>)
+ (Pn(p"e" . Vtp"), q>) + (Pn(p"u . Ve"), <p) + (Pn(p

nen . Vv"), q>) + (gn(p" 3,^"). <P)-

(4.8)
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Now we denote the right side of (4.8) by (gn, q>) and we set

Subtracting the weak form of the first equation of (4.2) from (4.8) gives

(pn d,eq>) + (V6, Vq>) + (p"u . V6, q>) + (p- e . Vu, q>) + ( p > n . V6, <p) + (p"8 . V£, q>)

= ( ( p - p n ) ( h + b),<p) + (g",<p).

Furthermore, p- p" satisfies

3,(P " P") + (" + 5) • V(p - p") + (u + % - o") . Vp" = 0.

Now using the procedures of sections 2, 3 one can prove the following theorem.

THEOREM 4. Let the assumptions 3, 4 be satisfied. Then there exist constants N, c, and
a function q(t), monotonously increasing in t, depending only on the domain Q, the norms
of data, sup |Au|2 and the constants in (4.3) such that

KU and | u - u f ^cA^

provided n>N.
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