LIMITES PROJECTIVES DE CHAINES DE DEMI-GROUPES NILPOTENTS

F.P. Gagnon

Dans cette note nous étudions les demi-groupes avec zéro qui vérifient la condition T:

(T) "Si as
$$\bigcap_{n=1}^{\infty} D^{n+1}$$
 alors a = 0"

Le théorème 1 montre que ces demi-groupes sont isomorphes à la limite projective d'une chaîne de demi-groupes nilpotents. Le théorème 2 donne une façon de réaliser tout demi-groupe nilpotent.

DÉFINITION 1. Une chaîne de demi-groupes

$$\mathcal{L} = (\{D_i\}_{i \in I}, \{\varphi_{ji}\}_{i > j}^{i, j \in I})$$

est formée d'une famille de demi-groupes $\{D_i^{}\}_{i\in I}^{}$, où I est un ensemble totalement ordonné, d'une famille d'épimorphismes

$$\left\{ \begin{array}{l} \varphi_{ji} \right\} \begin{array}{l} i,j \in I \\ i>j \end{array} , \quad \text{où} \quad \varphi_{ji} : D_i \rightarrow D_j, \text{ telle que si } i>j>k \text{ alors} \\ \\ \varphi_{kj} \circ \varphi_{ji} = \varphi_{ki} \end{array} .$$

DÉFINITION 2. La limite projective d'une chaîne $\not\subset$ de demi-groupes est $\lim \not\subset$, le demi-groupe des fonctions f de

I dans $\bigcup_{i \in I} D_i$ telles que

- (1) pour tout $i \in I$, $f(i) \in D_i$,
- (2) si i > j, alors $f(j) = \varphi_{ji}$ (f(i)).

Le produit de f, f' $\in \lim_{\longleftarrow} \mathcal{L}$ est défini par (f \circ f') (i) = f(i) \cdot f'(i) \in D_i.

THÉORÈME 1. Un demi-groupe avec zéro vérifie la condition T si et seulement s'il est isomorphe à la limite projective d'une chaîne de demi-groupes nilpotents.

Démonstration. La condition est évidemment suffisante.

Réciproquement soit B un demi-groupe qui vérifie la condition (T). Pour chaque entier positif n, soit D = B / θ n. Nous écrivons a = b (θ n) si a = b où si a, b ϵ B $^{n+1}$. L'épimorphisme naturel de D sur D (où m > n) est désigné par φ et celui de B sur D par η n.

$$\mathcal{L} = (\{D_{m}\}_{n \in N}, \{\varphi_{mn}\}_{n > m}^{n, m \in N})$$

est une chaîne de demi-groupes nilpotents, car $D_n^{n+1} = (0)$. De plus, l'application $a \to f_a$, où $f_a \in \varprojlim \mathcal{C}$ et où $f_a(n) = \eta_n(a)$, est un isomorphisme entre B et $\varprojlim \mathcal{C}$.

DÉFINITION 3. Soit (E,<) est un ensemble ordonné avec élément minimum 0 une transformation f de E est diminutive si pour tout $x \in E$, $x \ne 0$, f(x) < x et si f(0) = 0.

THÉORÈME 2. Un demi-groupe D est nilpotent si et seulement si il est isomorphe à un demi-groupe de transformations diminutives d'un ensemble ordonné avec élément minimum où toutes les chaînes sont de longueur au plus égale à n+1 (n est le plus petit entier tel que $D^n=0$).

L'ensemble $E = D \cup \{1\}$ est ordonné de la façon suivante:

- (1) x < 1 pour tout $x \in D$
- (2) $a < b \text{ si } a, b \in D \text{ et si } a \in Db$.

Pour chaque $a \in D$ la transformation f_a définie par $f_a(1) = a$ et $f_a(x) = ax$ où $x \in D$ est une transformation diminutive de E. De plus l'application $a \rightarrow f_a$ est un monomorphisme de D dans le demi-groupe des transformations diminutives de E. Enfin

puisque $D^n = (0)$ il est clair que toute chaîne de E comporte au plus n + 1 termes.

BIBLIOGRAPHIE

- 1. G. Birkhoff, Lattice theory. Colloquium Pub. No. XXV, Providence, (1948).
- 2. N. Bourbaki, Théorie des ensembles. Ch. IV, Act. Sci. et Ind. No. 1258, Paris, (1957).
- 3. A. H. Clifford et G. B. Preston, The Algebraic theory of Semi-groups. Vol. I, Math. Surveys, No. 7, Providence, (1961).

Université de Montréal.