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Abstract
In recent years, unmanned aerial vehicles (UAVs) have been applied in underground mine inspection and other
similar works depending on their versatility and mobility. However, accurate localization of UAVs in perceptually
degraded mines is full of challenges due to the harsh light conditions and similar roadway structures. Due to the
unique characteristics of the underground mines, this paper proposes a semantic knowledge database-based local-
ization method for UAVs. By minimizing the spatial point-to-edge distance and point-to-plane distance, the relative
pose constraint factor between keyframes is designed for UAV continuous pose estimation. To reduce the accu-
mulated localization errors during the long-distance flight in a perceptual-degraded mine, a semantic knowledge
database is established by segmenting the intersection point cloud from the prior map of the mine. The topo-
logical feature of the current keyframe is detected in real time during the UAV flight. The intersection position
constraint factor is constructed by comparing the similarity between the topological feature of the current keyframe
and the intersections in the semantic knowledge database. Combining the relative pose constraint factor of LiDAR
keyframes and the intersection position constraint factor, the optimization model of the UAV pose factor graph
is established to estimate UAV flight pose and eliminate the cumulative error. Two UAV localization experiments
conducted on the simulated large-scale Edgar Mine and a mine-like indoor corridor indicate that the proposed UAV
localization method can realize accurate localization during long-distance flight in degraded mines.

1. Introduction
The unmanned aerial vehicle (UAV) has the advantages of lightness, flexibility, and highly maneuver-
able. By equipping the UAV with some environmental sensing equipment, such as LiDAR and vision
sensors, the UAV can replace workers to complete complex patrol inspection and other similar tasks in
the underground mine. In this way, the incidence of coal mine safety accidents can be greatly reduced,
and production efficiency can be improved. Furthermore, mechanization, automation, informatization,
and intelligence of the coal mining industry could be rapidly promoted. However, the underground mine
environment is extremely complex. The roadways of the mine are narrow and featureless. There are no
GPS signals and the light condition is poor. These limitations make it difficult for the existing localization
methods to achieve accurate positioning in the underground mine. The two commonly used types of sen-
sors for localization in general environments are camera and LiDAR. Therefore, we review vision-based
and LiDAR-based localization methods applied in the underground mine environment below.
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Vision-based localization
ORB-SLAM [1–3] is currently the most widely used robot localization method based on visual feature
point matching. Rogers et al. [4] tested the localization accuracy of ORB-SLAM2 in the open-source
underground mine. However, the lack of image texture features in underground roadways leads to the
maximum localization error of ORB-SLAM up to 30 m. Compared to visual localization algorithms
based on feature matching, direct sparse visual odometry exploits pixel gradients rather than image fea-
tures to estimate the relative pose change, which is usually applied in featureless environments. Özaslan
et al. [5–7] equipped a UAV with an active light and a camera and estimated the axial displacement of
the UAV based on Lucas–Kanade optical flow [8] during flight in a dark tunnel. The experimental results
show that the maximum localization error is up to 40%. The large localization error results from the fact
that the active lighting carried by UAV during the flight in the dark tunnel makes it difficult to satisfy the
theory of the gray-scale invariance assumption of optical flow. To improve the localization accuracy of
the vision-based method in underground mines, Jacobson et al. [9] proposed a semi-supervised SLAM
algorithm for pose tracking of mining vehicles. The semi-supervised SLAM established multiple posi-
tioning nodes and stored the keyframe images to form an image database and then used the optical flow
to estimate the vehicle pose. Whereas, the semi-supervised SLAM requires a large amount of image
data and manual intervention. With the development of robot intelligence, semantic features [10] are
conducive to navigation and localization. Furthermore, to cope with the sensitivity of lighting changes
and motion blur of single-camera images, vision inertial odometry (VIO) was applied to the localiza-
tion of robots in the underground mine. Kramer et al. [11] tested the localization accuracy of existing
OKVIS [12] algorithms. Chen et al. [13] evaluated VIO-Mono [14] state estimator’s accuracy in fea-
tureless indoor environments like underground mine environment. Papachristos et al. [15–17] combined
the images from an infrared camera and data from an IMU to localize the UAV indoors and proposed
RITIO and KTIO algorithm [18]. Compared with visible light images, although infrared images can be
adapted to the harsh lighting of underground mines to some extent, the lack of enough features leads to
a large localization error. In summary, since the mine is located hundreds of meters underground, where
most areas have only weak light and some areas are dark, the vision-based localization method cannot
capture enough features or satisfy the gray-scale invariance assumption, making it difficult to achieve
accurate localization.

LiDAR-based localization
In the visually degraded underground mine environment, LiDAR sensors can directly measure the dis-
tance and orientation information of the target object, which has the advantages of wide-ranging scope
and high sensing accuracy compared to vision sensors. Thus, the LiDAR-based method is more suit-
able for robot localization and mapping [19]. Meanwhile, the LiDAR data is almost unaffected by the
changes in ambient light, making it suitable for dark coal mine environments. LiDAR sensors can be
divided into single-line LiDAR (2D LiDAR) and multi-line LiDAR (3D LiDAR) depending on the num-
ber of laser beams. 2D LiDAR was commonly used in the localization of indoor mobile robots in the
early stage, which can only scan in a plane and cannot measure the height of the object. The ATRV
mobile robot developed by Bakambu et al. [20] was equipped with two 2D LiDARs to explore the mine.
They used line segments scanned by 2D LiDAR as the basic elements for localization and mapping. In
addition, the Groundhog robot developed by Sebastian et al. [21] also used the point cloud data from
2D LiDAR aligned with a map to estimate the pose of the robot based on the Iterative Closest Point
(ICP) matching. Since the 2D LiDAR cannot measure the spatial information, the above research can
only acquire the x-y translation and heading angle of the mobile robot. Compared to 2D LiDAR, 3D
LiDAR can measure the spatial geometric structure of the object. LOAM [22] and Lego_LOAM [23] are
two typical 3D point cloud-based localization algorithms. Li et al. [24] combined Lego_LOAM with
the Normal Distributions Transform (NDT)-based feature matching algorithm to localize the pose of
a mobile robot in a mine. The experimental results showed that the maximum error was up to 29%.
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Papachristos et al. [25] fused LOAM and IMU based on the Extended Kalman Filter (EKF) to estimate
the pose of a UAV during flight in a mine. However, they did not quantitatively analyze the localiza-
tion accuracy of the UAV during flight since it is difficult to obtain the ground truth of the UAV pose
in the real mine environment. Chow et al. [26] conducted experimental analysis in an indoor environ-
ment for three SLAM methods: Hector_slam [27], Gmapping [28], and Cartographer [29]. The results
showed that the trajectory generated by Cartographer fluctuated greatly and Gmapping failed in some
tests. Koval et al. [30] used a dataset collected in an underground area with multiple tunnels to conduct
experimental analysis of various LiDAR-based positioning algorithms. However, all of the tested algo-
rithms showed large drift in the Z-axis since the underground mine environment had sparse features and
only one LiDAR was used. In addition to traditional pose estimation methods, Wang et al. [31] proposed
a supervised 3D point cloud learning model, PWCLO-Net, for LiDAR localization. However, the super-
vised learning method requires a large amount of point cloud data labeled with ground truth for training.
However, the ground truth trajectory in the underground mine is hard to obtain. In conclusion, LiDAR
sensors have the advantage of accurate ranging, which are not affected by illumination. The localization
accuracy of the LiDAR-based method can reach the decimeter level in general outdoor scenes. However,
in degraded mine environments, the sparse point clouds measured by LiDAR cannot directly distinguish
the similar geometry structure of the mine roadway, resulting in a non-negligible cumulative error in the
LiDAR-based localization method.

Multi-sensor fusion-based localization
As mentioned above, each type of sensor has inherent defects, such as the visible light vision sensor
being sensitive to illumination, the resolution of infrared vision image being low, and the LiDAR point
cloud being sparse. Multi-sensor data fusion can effectively incorporate the advantages of each sensor
to better adapt to complex mines. Alexis et al. [32] proposed a concurrent fusion framework consist-
ing of LOAM, ROVIO, and KTIO to estimate the pose of a UAV in the mine. However, they did not
perform a quantitative evaluation of the localization accuracy. Jacobson et al. [33] fused LiDAR point
cloud with IMU data for pose estimation and used visual images for scene recognition. However, their
method needs extensive human intervention to build maps for localization. In addition, some studies
combined active sensors such as RFID, UWB, and WIFI with environmental sensing sensors such as
LiDAR and camera to localize robot in a mine. Lavigne et al. [34] fused 2D LiDAR, RFID, and absolute
optical encoders to construct an underground localization network of passive RFID tags. Nevertheless,
this method restricts the localization to a two-dimensional plane, which results in a large deviation in
the robot’s pose when the height of the mine changes. Li et al. [35] proposed an underground mine
pseudo-GPS system, composed of UWB to localize the robot in the mine. Unfortunately, the deploy-
ment cost of UWB is high, which limits its practical application in underground positioning. Wang et al.
[36] integrated multi-source data containing WIFI, LiDAR, and a camera for estimating the pose of an
underground search and rescue robot. However, the intricate tunnel structure of the mine has a large
impact on the signal transmission, making it difficult to obtain the robot’s pose in areas where the WIFI
signal intensity is low. In summary, the existing multi-sensor fusion-based localization methods are also
limited in the perceptually degraded mine, and it is challenging to accurately estimate the UAV pose in
the complex mine.

Based on the above review of localization methods for the robot/UAV in mines, the vision-based and
LiDAR-based methods suffer from localization error accumulation due to the lack of enough image fea-
tures and high similarity geometric structure. Most of the current robot/UAV localization methods for
underground mines are based on the alignment of image features or geometric features. While with the
development of the robot intelligence, semantic features [37, 38] are conducive to improving naviga-
tion and localization. Inspired by manual inspection, intersections are the critical semantic features to
achieve accurate UAV localization in underground mines. Therefore, based on our previous work pro-
posed in [39] and [40], this paper proposes a semantic knowledge database-based localization method for
UAVs in underground mines. Based on the intersection recognition method proposed in [40], a semantic
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Figure 1. The framework for UAV pose estimation based on semantic knowledge database.

knowledge database is established by segmenting the intersection point cloud from the pre-built map
of the mine. Furthermore, the global pose constraint of the current frame with the semantic knowledge
database is constructed by detecting semantic intersection features of the mine in real time during UAV
flight. Combining the relative pose constraints between the keyframes of the LiDAR point cloud, the
pose graph model is established for UAV pose optimization.

2. System overview
To realize stable UAV flight over a long distance in underground mines, a UAV pose estimation frame-
work is proposed in this paper based on LiDAR odometry constraint and semantic intersection pose
constraint. The framework is shown in Figure 1. The gray part represents the process of relative pose
constraint factor construction, and the yellow part represents the process of global pose constraint factor
construction.

To construct the relative pose constraint during UAV flight, the keyframe selection procedure is per-
formed first to improve the computational efficiency of pose estimation, using equal distance intervals
and equal angle intervals selection strategies [41, 42]. That is, if the relative translation distance between
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the new frame and the last keyframe is larger than a set distance threshold, or if the rotation angle between
the new frame and the last keyframe is larger than a set angle threshold, the new frame will be selected
as the keyframe.

Based on the selected keyframes, the geometric features of the point cloud are extracted for estimating
the pose change between the neighboring keyframes. Inspired by the feature-extracting method proposed
by LOAM, the curvature features of each point in the measured LiDAR point cloud are calculated for
extracting edge features and plane features. By establishing the point-to-line and point-to-plane spatial
distance functions based on the extracted edge and plane features between keyframes, the relative pose
and local map can be estimated. Furthermore, the relative pose constraint factor is constructed taking
into account the noise during UAV flight.

As stated in [43, 44], map-based localization algorithms are currently considered as the most accurate
ones. In this paper, the intersection semantic knowledge database is established based on the pre-built
point cloud map. The pre-built point cloud maps are often referred to as High Definition Maps (HD
Maps). The resolution of HD Maps can reach centimeter-level accuracy. The intersection pose constraint
factor building process is shown in the yellow part of Figure 1. The intersection semantic knowledge
database is established based on the pre-built point cloud map. The green part of Figure 1 shows the
building procedures of mine intersection semantic knowledge database. The pre-built point cloud map
of the underground mine is the basis of the semantic knowledge database, which can be reconstructed
by our previous work proposed in [39]. Based on the pre-built point cloud map, the dense point cloud
information of each intersection is segmented. Accordingly, the location of each intersection, as well as
the Polar Wall Contour Vector (PWCV) and Cylinder Wall Contour (CWC) descriptors, are generated
for building the intersection semantic knowledge database. Then, the semantic features of the sampled
LiDAR point cloud during UAV flight are detected in real time. The candidate intersection is selected by
comparing the intersection similarity between the current keyframe and the intersections in the semantic
knowledge database. Next, the ICP algorithm is applied to register the detected intersection with the cor-
responding intersection in the mine intersection semantic knowledge database. If the ICP distance after
registration is below the minimum ICP distance threshold, the intersection pose factor is constructed.
Combining the relative pose constraint factor and the intersection pose constraint factor, the pose factor
graph model is established for UAV pose estimation.

3. Intersection-based factor graph model
The factor graph model is a Bayesian network-based graph optimization model, which is proposed by
Kschischang et al. [45] and suitable for modeling complex state estimation problems in SLAM and
Structure From Motion (SFM). The factor graph is an undirected graph that contains two types of
nodes, that is, variable nodes and factor nodes. The variable nodes represent the unknown variables
to be estimated, such as the UAV pose during flight. The factor nodes represent probabilistic constraint
relationships between variable nodes, which can be obtained from the sensor measurements or prior
knowledge. The factor graph can handle back-end optimization problems incrementally. When the new
edges and nodes are added to the graph model, only the nodes connected to the newly added nodes need
to be optimized. Therefore, this paper proposes an intersection-based factor graph model for UAV pose
estimation.

The proposed UAV pose factor graph model is shown in Figure 2. The UAV pose xi is the variable
node to be estimated. Ik is the position of the intersection. The gray box represents the relative pose
constraint factor between LiDAR keyframes. The yellow box represents the intersection pose constraint
factor between the current keyframe and the observed intersection. The pose variable of the graph factor
model to be optimized is denoted as:

χ = {x0, x1, x2, . . . , xi, . . . , xτ } , xi = {tW
i , θW

i } (1)

where χ is the set of pose variables to be estimated. tW
i = (tx, ty, tz) is the x-y-z translation of the UAV

in the world coordinate system. θW
i = (θx, θy, θz) represents the roll-pitch-yaw rotation of the UAV in the
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Figure 2. The pose factor graph model of UAV.

world coordinate system. According to the Bayesian rule, the joint probability expression of χ is

P(χ |Z)=
∏

k,i

P(zk |xi )
∏

i

P(xi |xi−1 ) (2)

where Z represents the set of observations. The first term P(Ik|xi) is the likelihood probability, which
represents the probability of obtaining observation zk at UAV pose xi. The second term P(xi|xi−1) is the
prior probability, which represents the relationship between pose xi−1 and xi. More generally, Eq. (2) can
be represented by the product of relative pose constraint factor ψL(χ i) and intersection pose constraint
factor ψ I(χ i) as:

P(χ |Z)=
∏

ψL(χ i)
∏

ψ I(χ i) (3)

where χ i denotes the set of variables xi associated with the factor ψ i. In the following, we use unified
ψ i to represent the factors ψL and ψ I , respectively. Each factor ψ i is a function of the pose variables
in χ i.

Based on the above derivation, the solution of the UAV pose factor graph model is to find the optimal
estimation of the variables χ for a prior relative pose and a known observation. It can then be converted
into a maximum likelihood problem as:

χ ∗
MLE = arg max

∏
ψL(χ i)

∏
ψ I(χ i) (4)

With the assumption that the measurement noise� i follows the Gaussian distribution [46], the max-
imum likelihood problem can be transformed into a simpler form. The general form of the measurement
function is

zi = hi(χ i)+� i (5)

where the noise term � i follows the distribution � i ∼N(0,�i). Then, the probability density function
expansion of the corresponding constraint factor ψ i takes the form:

ψ i (χ i)∝ exp{− 1
2

∥∥hi (χ i)− zi
∥∥2

�i
}= exp{− 1

2

∥∥ei (χ i)
∥∥2

�i
} (6)

where ei (χ i) denotes the residual function of the ith constraint factor ψ i(χ i).
∥∥ei (χ i)

∥∥2

�i
=

ei(χ i)
T�−1

i ei (χ i) is defined as the square of the Mahalanobis distance with covariance matrix �i.
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Substituting Eq. (6) into Eq. (4), the maximum likelihood estimation of the pose variable χ is equiva-
lent to minimizing the negative logarithm of the constraint factor. That is, the objective function for the
optimization of the UAV flight pose χ ∗MLE can be established as:

χ ∗MLE = arg min
χ

{∥∥eL(χ i)
∥∥2

�L
+ ∥∥eI(χ i)

∥∥2

�I

}
(7)

where eL(χ i) is the residual function of the LIDAR relative pose constraint factor ψL(χ i). �L is the
covariance matrix of the LIDAR relative pose estimation, which determines the weighting coefficients
of the residual function eL(χ i) in the UAV pose objective function. eI(χ i) is the residual function of the
intersection pose constraint factor ψ I(χ i). �I is the covariance matrix of the intersection observation,
which determines the weighting coefficients of the residual function eI(χ i) in the UAV pose objective
function. The following subsection will separately describe the modeling of the LiDAR relative pose
constraint factor ψL(χ i) and the intersection pose constraint factor ψ I(χ i) in detail.

3.1. LiDAR relative pose constraint factor
The scanning frequency of LiDAR is 10 Hz. The continuously scanned LiDAR point clouds contain
some redundant information, so LiDAR keyframes are selected to build the UAV factor graph model.
Therefore, the equal interval relative pose change sampling criterion is applied to ensure the uniform dis-
tribution of the LiDAR keyframes. That is, the first scanned LiDAR frame is selected as the first keyframe
point cloud. Then, the newly scanned frame is aligned with the previous keyframe for calculating the
relative pose change �T:

�T =
[
�R �t
0 1

]
(8)

where �R is the relative rotation matrix and �t is the relative translation vector. Based on �R and �t,
the translation distance ||�t||2 and the relative rotation angle �θ between the current frame and the
previous keyframe can be calculated by:⎧⎨

⎩
‖�t‖2 =

√
�t2

x +�t2
y +�t2

z

�θ = arccos
trace(�R)− 1

2

(9)

If the relative distance ||�t||2 is larger than the set minimum translation distance threshold εt or the
relative rotation angle �θ is larger than the set minimum rotation angle threshold εθ , the current frame
can be selected as a new keyframe. Then, the new keyframe can be added to the factor graph model as
a new node.

Once a new keyframe is added to the factor graph model, the relative pose constraint between the
new and previous keyframe needs to be constructed. For two keyframe point clouds i and j, the relative
pose transformation matrix Tj

i can be calculated by registering the spatial geometry features. The relative
pose transformation matrix Tj

i satisfies the following equation:

Tj
i = (TW

j )−1TW
i (10)

where TW
i is the transformation matrix from the ith keyframe to the world coordinate system and TW

j is
the transformation matrix from the jth keyframe to the world coordinate system.

Due to the accumulated error caused by the environmental perception deviation during UAV flight,
Eq. (10) will not be strictly valid. Then, the residual function eL between the ith keyframe and jth
keyframe can be denoted as:

eL(xi, xj)= ln((Tj
i)
−1(TW

i )−1TW
j ) (11)

In the above residual function, there are two pose variables to be optimized: the pose xi of ith keyframe
and the pose xj of jth keyframe. Therefore, it is required to find the derivative of eL(xi, xj) with respect to
the variables xi and xj. It is equivalent to finding the derivative of eL(xi, xj) with respect to TW

i and TW
j .
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However, the transformation matrices TW
i and TW

j are not closed under addition and subtraction. Thus,
Lie group and Lie algebra [47] are introduced to solve the deviation. The transformation matrix T is
labeled as the special Euclidean group SE(3) and its corresponding Lie algebra is se(3). In Lie algebra,

each pose is denoted by ξ =
[
ρ

φ

]
, where ξ is a six-dimensional vector. The first three dimensions ρ

denote the translations and the last three dimensions φ denote the rotations.
According to the transformation relation between Lie groups and Lie algebras, the Lie algebra form

of the pose xi of the ith keyframe is denoted as ξ i, and the Lie algebra form between ith and jth keyframe
is denoted as ξ ij. By adding the left perturbation terms δξ i and δξ j to the poses ξ i and ξ j, the residual
function eL(xi, xj) is changed to the following form:

êL(xi, xj)= ln
((

Tj
i

)−1(TW
i

)−1
exp

((−δξ i

)∧)
exp

((
δξ j

)∧) TW
j

)∨
(12)

Based on the derivation rule of Lie algebra, the derivatives of the residual function eL(xi, xj) with
respect to ξ i and ξ j are equivalent to the derivatives of the residual function êL(xi, xj) with respect to the
left perturbation terms δξ i and δξ j:

∂eL(xi, xj)

∂ξ i
= ∂ êL(xi, xj)

∂δξ i
=−J−1

r

(
eL(xi, xj)

)
Ad

((
TW

j

)−1
)

(13)

∂eL(xi, xj)

∂ξ j
= ∂ êL(xi, xj)

∂δξ j
= J−1

r

(
eL(xi, xj)

)
Ad

((
TW

j

)−1
)

(14)

where Jr is the right multiplication of the Jacobi matrix and Ad( · ) represents the adjacency matrix.
Furthermore, it is also necessary to estimate the covariance matrix �L of the relative pose factors.

The inverse of the covariance matrix (�L)−1 is alternatively called the information matrix, which reflects
the weight of residuals of each factor in the factor graph model. The covariance matrix �L between ith
and jth keyframes can be constructed based on the uncertainty of the matched geometric feature points.
Supposing that ipf and jpf are a pair of feature points between the ith and jth keyframes, the two feature
points satisfy the following projection relationship:

jpf =Rj
i

(ipf − ti
j

)
(15)

Based on the above feature points, the covariance matrix can be estimated by calculating the sum of
all matched feature point pairs in the two keyframes:

�L(xi, xj)=
Nf∑

m=1

HT−1
L H (16)

where Nf is the total number of pairs.L is the zero-mean Gaussian matrix (the noise matrix of LiDAR).
H is the Jacobi matrix, which is defined as:

H = [ (
jpf

)∧ Rj
i

]
(17)

The noise matrix L is defined as:

L =
⎡
⎣ 2σ 2

x 0 0
0 2σ 2

y 0
0 0 2σ 2

z

⎤
⎦ (18)

where σx, σy, and σz are the measurement noise along the X, Y , and Z axes of the LiDAR sensor with
units of m. By setting the covariance matrix at the initial pose as the zero matrix 06×6, the covariance
matrix corresponding to the kth keyframe can be iterated according to the following equation as the
LiDAR odometry is accumulated:

�k
L←�k−1

L +Hk,k-1
T−1

L Hk,k-1 (19)

where Hk,k-1 corresponds to the Jacobi matrix between the kth keyframe and the (k− 1)th keyframe.
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Figure 3. The procedure for intersection location constraints constructing.

3.2. Intersection pose constraint factor
Since most areas of underground roadways are long and narrow corridors with high similarity of
geometric structures, the point cloud scanned by LiDAR in such degraded scenarios lacks adequate
discriminative features, resulting in increasing accumulated positioning errors. Therefore, the intersec-
tion pose constraint factor is added to the factor graph model to provide reliable pose constraint for UAV
pose optimization.

Based on our previous work proposed in [40], we first construct an intersection semantic knowledge
database from the pre-built point cloud map of the underground mine. The constructed semantic knowl-
edge database contains the geometric invariant point location CIi , the dense point cloud PIi , the PWCV
descriptor VIi

d , and CWC descriptor MIi
d of each intersection. While the UAV is inspecting the under-

ground mine, the pose constraint constructing process between the current keyframe and the intersection
in the semantic knowledge database is shown in Figure 3. The detailed steps are as follows.

1. The keyframe point cloud is preprocessed first. The key steps of preprocessing include point
cloud filtering, mine ground plane detection, and wall point cloud segmentation.

2. Based on the segmented wall point cloud, the topology feature detection is performed to iden-
tify whether the current keyframe is an intersection or not. If the current keyframe is not an
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intersection, it returns to the first step. If the current keyframe is an intersection, then the
geometrical invariant point location of the intersection is computed.

3. Centering at the geometrical invariant point within radius Rpwcv, the intersection point cloud is
decoded as a PWCV descriptor Vcurr. Then, the similarity between the current PWCV descriptor
Vcurr and the PWCV descriptor in the semantic knowledge database is calculated one by one.

4. According to the calculated similarity, the candidate intersections subset with high similarity
is selected. By setting the minimum PWCV similarity threshold εpwcv, the intersections with
similarity greater than εpwcv are selected to form a candidate intersection subset.

5. The matched intersection is determined by the number of the candidate intersection subset Ninter.
If Ninter is equal to 0, the current keyframe is not a real intersection. The subsequent processes are
stopped, and then return to the first step to wait for the processing of the next keyframe. If Ninter is
equal to 1, it means the unique intersection in the candidate intersections subset is the matched
intersection, and the process returns to step 8. If the number of candidate intersections Ninter is
larger than 1, it means that the current keyframe is similar to multiple intersections of the seman-
tic knowledge database. It is difficult to identify the matched intersection using only the PWCV
descriptor similarity results. It is necessary to further compare the similarity of CWC descriptors
between the current keyframe and the intersections in the semantic knowledge database.

6. The CWC descriptor of the current keyframe is generated to select the final matched intersec-
tions. The CWC is a cylinder wall contour descriptor, which is generated by adding the height
feature encoding on the basis of the PWCV descriptor. The single-frame LiDAR point cloud is
sparse and contains less spatial information. Therefore, before generating the CWC descriptor
of the current keyframe, the nearest neighboring Nhis keyframes are transformed to the current
keyframe for staking dense point cloud to obtain richer spatial features. The dense point cloud is
stacked by:

Pdense = Pcurr +
Nhis∑
i=1

Tcurr
hisi

Phisi (20)

where Pdense is the dense point cloud after stacking. Pcurr is the point cloud of current keyframe.
Phisi is the ith nearest-neighbor keyframe point cloud. Tcurr

hisi
is the transformation matrix from

the current keyframe to the ith nearest-neighbor keyframe. Based on the stacked dense point
cloud Pdense, the CWC descriptor Mcurr is generated. Meanwhile, its similarity with the CWC
descriptors of intersections in the candidate subset is calculated one by one. The intersection
with the highest similarity is selected as the final matched intersection.

7. To avoid false intersection recognition, the number of consecutive recognitions of the same
intersection is counted. When the UAV flies through an intersection, this intersection should
be recognized by multiple keyframes. At the beginning, the number of keyframes Nsame continu-
ously recognized for the same intersection is set to 0. If the matched intersection ID of the current
keyframe is the same as the matched intersection ID of the latest keyframe, Nsame is increased by 1.
If the matched intersection ID of the current keyframe is different from the matched intersection
ID of the latest keyframe, Nsame is initialized to 0 and the subsequent steps are terminated. The
process then returns to the first step and waits for the processing of the next keyframe.

8. Judge whether the same intersection is stably detected based on the number of consecutive recog-
nition Nsame. When Nsame is smaller than the set minimum number of consecutive recognition εsame,
the subsequent step is terminated until Nsame is equal to εsame. Then, it proceeds to the next step,
and Nsame is initialized to 0 simultaneously.

9. The ICP distance dicp between the current keyframe and the matched intersection is used for
distance verification. If the ICP distance dicp is larger than the minimum distance threshold εicp,
it is considered a wrong match and the intersection pose constraint will not be added to the fact
graph model. If the ICP distance dicp is smaller than εicp, it is considered as a correct match. Then,
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Figure 4. The 3D location observation of intersection.

the intersection pose constraint between the current keyframe and the matched intersection in the
semantic knowledge database is added to the factor graph model for UAV pose optimization.

According to the above procedures, the intersection pose constraint can be established. When the
UAV detects a stable intersection at pose xi, the spatial pose relationship among the UAV pose (the
LiDAR coordinate system OLXLYLZL), the world coordinate system OWXWYWZW , and the intersection
coordinate system OIXIYIZI is shown in Figure 4.

As Figure 4 shown, tW
I displayed as the orange dashed line is the 3D vector of the observed intersection

in the world coordinate system at pose xi. TW
i and ti

I are displayed as the purple dashed line. TW
i represents

the 3D vector of the LiDAR sensor, and ti
I represents the 3D vector of the observed intersection in

the current LiDAR coordinate system. Therefore, the observation zW
I of the intersection in the world

coordinate system can be denoted as:
WzI = tW

I = TW
i +RW

i ti
I (21)

where RW
i is the rotation matrix of the LiDAR coordinate system to the world coordinate system.

The error between the intersection observation WzI at pose xi and the prior intersection location pro-
vided by the intersection semantic knowledge database �

t
W

I constitutes the residual function eI
(
zW

I , χ i

)
of the current intersection pose constraint factor:

eI
(
zW

I , χ i

)= �

t
W

I − tW
i −RW

i ti
I (22)

where the variables to be optimized are as follows:

χ i = {RW
i , TW

i , ti
I} (23)

Similarly, since the rotation matrix RW
i is not closed under the addition and subtraction, the derivative

of the residue function eI
(
zW

I , χ i

)
with respect to the RW

i cannot be computed directly. It is required to
convert the rotation matrix RW

i into Lie algebra form for derivation. The rotation matrix R is known as
the special orthogonal group SO(3), and the Lie algebra form of SO(3) is φ.

Thus, the Lie algebra form of rotation matrix RW
Li in the residual function eI

(
zW

I , χ i

)
(Eq. (22)) is

defined as φi. Then, the derivative of the residue function eI
(
zW

I , χ i

)
with respect to the RW

i can be
denoted as:

∂eI(zW
I , χ i)

∂φi
= ∂(−RW

i ti
I)

∂φi
= ∂(− exp (φ∧i )ti

I)

∂φi
(24)
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By introducing the left perturbation terms δφ i, the derivative of the residual function eI
(
zW

I , xi
)

with
respect to the rotation φi is equal to:

∂eI(zW
I , χ i)

∂φi

= lim
δφi→0

− exp
((
δφi

)∧)
exp

(
φ∧i

)
ti
I − exp

(
φ∧i

)
ti
I

δφ i
(25)

Expanding exp
((
δφi

)∧) in Eq. (25) with Taylor function, the derivation ∂eI (zW
I ,χ i)

∂φi
can be simplified

as:
∂eI(zW

I , χ i)

∂δφi
= lim

δφi→0

− (
E3 + (δφi)

∧) exp
(
φ∧i

)
ti
I − exp

(
φ∧i

)
ti
I

δφi

= lim
δφi→0

−(
δφ i

)∧
exp

(
φ∧i

)
ti
I

δφi

= lim
δφi→0

δφi

(
exp

(
φ∧i

)
ti
I

)∧
δφ i

=(
RW

i ti
I

)∧

(26)

In addition, according to Eq. (22), the derivatives of the residual function ∂eI(zW
I , χ i) with respect to

the optimization variables TW
i and ti

I are as follows:

∂eI(zW
I , χ i)

∂tW
i

=−E3 (27)

∂eI(zW
I , χ i)

∂ti
I

=−RW
i (28)

To construct the intersection pose constraint factor, it is also important to analyze the uncertainty
of the intersection observation by estimating the covariance matrix �I . Based on the registered points
correspondence between the current keyframe and the matched intersection in the semantic knowledge
database, the covariance matrix �I can be calculated. Assuming WpIf

and ipIf
are a pair of registered

feature points in the semantic knowledge database and the ith keyframe, they will obey the following
projection function:

ipIf
=Ri

W

(
WpIf
− tW

i

)
(29)

Then, the covariance matrix �I can be estimated by calculating the sum of the distance among
all matched feature points between the ith keyframe and intersection in the semantic knowledge
database:

�I
(WzI , χ i

)=
NIf∑

m=1

QT−1
I Q (30)

where NIf is the total number of matched point pairs. I is the zero-mean Gaussian noise matrix of
matched intersections. Based on Eq. 29, the Jocabi matrix Q is defined as:

Q=
[(

WpIf

)∧ −Ri
W

]
(31)

Based on the PWCV descriptor generation process proposed in [40], the nonzero portion of the wall
contour component of the final formed PWCV descriptor is tightly correlated with the relative pose
between the current UAV and the detected intersection geometric invariant point. Therefore, the com-
pleteness of the wall contour component of the PWCV descriptor is proposed to estimate the noise
matrixI . Figure 5(a) shows the PWCV descriptor of an example intersection in the semantic database,
and its nonzero eigenvalue dimensions of the wall contour component is kb. Figure 5(b) is the PWCV
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Figure 5. UAV flight localization experiment in the Edgar Mine environment. (a) The Edgar Mine
deployed in the ROS Gazebo. (b) The UAV simulation platform in the ROS Gazebo.

descriptor of the detected intersection during UAV flight, and its nonzero eigenvalue dimensions of the
wall contour component is kc. The noise matrix I is defined as:

I =

⎡
⎢⎢⎢⎢⎢⎣

kc

kb

0 0

0
kc

kb

0

0 0
kc

kb

⎤
⎥⎥⎥⎥⎥⎦

(32)

Thus, the relative pose constraint factor residual function (Eq. (11)) and its covariance matrix
(Eq. (16)), and the intersection pose constraint factor residual function (Eq. (22)) and its covariance
matrix (Eq. (30)) have been established. By substituting the residual functions and their covariance
matrices to the UAV pose factor graph model (Eq. (7)), the UAV pose can be optimized in nonlinear
iterations based on the results of deviations (Eq. (13), Eq. (14), Eq. (26), and Eq. (27)).

4. Experiments and results
In this section, two UAV localization tests are conducted in the large-scale Edgar Mine and a mine-like
indoor corridor environment. In the two experiments, we compared the localization accuracy with two
typical LiDAR-based localization methods, that is, LOAM and Scan Context. LOAM is an open-loop
laser odometry localization method. LOAM+Scan Context adds the Scan Context global point cloud
descriptor to LOAM for scene recognition. The loop constraints based on Scan Context are added to
correct the cumulative localization error during UAV flight after recognizing the same scene.

4.1. UAV localization in Edgar Mine
The first UAV localization experiment is conducted in the simulated Edgar Mine. The simulated Edgar
Mine is developed by importing the Edgar Mine environment model file from DARPA [48] on the ROS
Gazebo platform. As shown in Figure 5 (a), the total length of Edgar Mine is 2.8 km and it consists of a
number of narrow roadways and several intersections. The DJI UAV platform equipped with Velodyne
16 LiDAR and Realsense D435 camera is added to the ROS Gazebo for mine exploration, as shown in
Figure 5 (b).

First, the UAV is controlled manually to fly slowly along the Edgar Mine tunnel for one cycle to record
the LiDAR data and RGB-D image data. The Edgar Mine point cloud map is reconstructed based on
our previous work [39] and the obtained sensor data. Furthermore, the semantic topology information
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Figure 6. The UAV flight trajectory.

is segmented from the pre-built map to construct a semantic knowledge database for the Edgar Mine.
Finally, a long-distance flight trajectory is recorded for UAV flight localization accuracy comparison.
The trajectory is shown in Figure 6. The total length of this trajectory is 5.68 km. The LiDAR point
cloud data and the ground truth pose are recorded during the UAV flight. In particular, the ground truth
pose is obtained by a high-precision IMU sensor without zero drift.

4.1.1. Semantic knowledge database construction
With reference to the point cloud fusion framework [39], the LiDAR data and depth image are fused
based on the Bayesian Kriging model to reconstruct a single-frame high-precision dense point cloud
of the mine roadway. Furthermore, the ISS3D key points and FPFH descriptors are extracted from the
reconstructed single-frame dense point cloud for spatial feature coarse matching and ICP registration.
The reconstructed point cloud map of Edgar Mine is shown in Figure 7.

The roadway of Edgar Mine is complicated and contains several loops and intersections (the ID of
each intersection is shown in the yellow box in Figure 7). To construct the intersection semantic knowl-
edge database, the intersection dense point cloud is first segmented from the reconstructed map. Then,
the intersection type, geometric invariant points location, the PWCV descriptors, and CWC descrip-
tors are generated for each intersection based on our previous work [40]. The constructed intersection
semantic knowledge database is shown in Figure 8.

4.1.2. UAV localization accuracy analysis
Figure 9 shows the estimated pose trajectory of UAV based on competing methods and the proposed
localization method. Comparing the trajectories plotted in Figure 9, it can be found that the trajectory
estimated by LOAM gradually deviates from the ground truth trajectory. This is because the LOAM
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Figure 7. The reconstructed environmental map of Edgar Mine.

Figure 8. The intersection semantic knowledge database of the Edgar Mine.
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Figure 9. The estimated trajectories during UAV flight based on different methods in Edgar Mine.

localization algorithm only relies on the neighboring point cloud registration for pose estimation, which
results in error accumulation during long-distance flights in underground mines with similar geometry.
LOAM+Scan Context shows a large localization deviation. This is due to the fact that the similar mine
roadways cause Scan Context to recognize the scene incorrectly. In contrast, the localization method
proposed in this paper can accurately recognize different intersections without false scene recognition.
Therefore, in the case where the prior map is not pre-built, the accumulated error at the same intersection
can be eliminated, resulting in a reduction of the whole trajectory error. Furthermore, by establishing
the semantic knowledge database, the intersection pose constraint between the current frame and the
intersection in the semantic knowledge database can be added. Once a stable intersection is detected
during flight, the accumulated localization error between the last detected intersection and the current
intersection can be eliminated immediately.

To quantitatively analyze the localization error of each method [49], the maximum error (MAE), root
mean square error (RMSE), and the relative error percentage (REP) are used to evaluate the localization
accuracy. REP-1, REP-2, REP-3, REP-4, and REP-5 stand for 20%, 40%, 60%, 80%, and 100% of the
trajectory. The localization errors are listed in Table I.

As listed in Table I, the MAE, RMSE, and REP-5 of LOAM are 39.15 m, 10.15 m, and 0.51 %,
respectively. The MAE, RMSE, and REP-5 of LOAM+Scan Context are 6.62 m, 2.63 m, and 0.22 %,
which cannot completely eliminate the accumulated error of LOAM. In comparison, the MAE, RMSE,
and REP-5 of the proposed method are 2.22 m, 1.22 m, and 0.17 %. By adding the intersection pose con-
straint based on the semantic knowledge database with the pre-built map, the MAE, RMSE, and REP-5
of the proposed method are 2.06 m, 0.60 m, and 0.13 %, which shows over three times performance
improvement compared to LOAM. It can be concluded that the proposed method can achieve accurate
localization by optimizing the accumulative error of open-loop LOAM.

To further analyze the relationship between the distribution of localization error and the flight tra-
jectory, the localization error maps of the comparison methods and the proposed method are plotted in
Figure 10.

It can be seen from Figure 10(a) that the localization error of LOAM continuously increases with
the increase in the UAV flight distance. The error distribution map in Figure 10(b) shows that the
LOAM+Scan Context can detect a loop in the same scene with a small pose change. However, the
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Table I. UAV flight trajectory errors analysis in Edgar Mine environment.

Method MAE (m) RMSE (m) REP REP REP REP REP
−1(%) −2(%) −3(%) −4(%) −5(%)

LOAM 39.15 10.15 2.18 1.32 0.84 1.04 0.51
LOAM+Scan Context 6.62 2.63 1.09 0.52 0.32 0.32 0.22

Ours(no map) 2.22 1.22 1.26 0.67 0.19 0.28 0.17
Ours(map) 2.06 0.60 1.38 0.66 0.22 0.31 0.13

Figure 10. The localization error maps with different methods. (a) The error distribution of LOAM.
(b) The error distribution of LOAM+ Scan context. (c) The error distribution of ours(no map). (d) The
error distribution of ours (map).

localization error still accumulates with the fight distance, resulting in a maximum error of up to 6.6 m.
As shown in Figure 10(c), based on detecting the same intersection from different directions without
a pre-built map, the proposed method can establish stable loop constraints. Then, the maximum error
is reduced to 2.2 m. Figure 10(d) shows the error distribution map of the proposed method based on
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Figure 11. The UAV hardware platform.

the semantic knowledge database. When an intersection in the semantic knowledge database is detected
during UAV flight, the localization error is eliminated immediately. The localization error only remains
between two intersections.

4.2. UAV localization in mine-like indoor corridor
To evaluate the localization accuracy and adaptability of the proposed method in real environments, a
UAV hardware platform same as the simulated UAV platform is designed and applied to conduct local-
ization experiments in the mine-like indoor corridor. The components of the UAV hardware platform
are shown in Figure 11.

Since the ground truth pose of UAV cannot be directly measured in a narrow indoor corridor, a
localization accuracy evaluation method based on multiple Apriltag [50] is applied to compare the local-
ization error of different methods. As shown in Figure 12(a), the first experiment was conducted in an
indoor corridor. The total length of the indoor corridor is 210 m and its minimum width is 1.3 m. As
shown in Figure 12(b), 20 Apriltags were deployed for positioning accuracy evaluation. The position
of each Apriltag is listed in Table II. Figure 12(c) shows an example of Apriltag pasted on the wall. To
ensure the safety of the localization experiment, the UAV was mounted on a mobile tripod, making it
easy to adjust the pose change during flight.

4.2.1. Semantic knowledge database construction
Firstly, the indoor corridor prior map can be reconstructed with the point cloud data scanned by the
Velodyne 16 and depth images measured by the Realsense D435, based on our previous work [39]. The
reconstructed point cloud map of the indoor corridor is shown in Figure 13.

It can be seen from Figure 13 that the indoor corridor contains five intersections, which are num-
bered 1 to 5. The dense point cloud of each intersection is segmented from the map for constructing
the semantic knowledge database, where the segmented point cloud is shown in Figure 14. It can be
found from Figure 14 that the geometric structure of intersections 1, 2, and 5 are similar, resulting in
the difficulty of distinguishing them only relying on the point cloud data.

Based on our previous work [40], the geometric invariant point of each intersection is detected for
generating PWCV and CWC descriptors, which are shown in Figure 15. Correspondingly, the PWCV
and CWC similarity matrices are computed for recognizing different intersections. The results are shown
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Figure 12. The experiment of UAV localization in the indoor corridor environment. (a) The 2D map
of the indoor corridor. (b) The distribution of apriltag in indoor corridor. (c) An example of Apriltag
pasted on the wall of the indoor corridor. (d) The process of data recording.

in Figure 16. It can be seen that the PWCV and CWC similarities of different intersections are less than
0.8. In the UAV localization experiment, the minimum similarity threshold is set as 0.8 so that the
different intersections can be recognized correctly. Based on the segmented intersection point cloud,
detected invariant point, and the descriptor, the semantic knowledge database of the indoor corridor is
constructed, where the structure is the same as Figure 8.

4.2.2. UAV localization accuracy analysis
The UAV platform was driven in the indoor corridor for data recording, and the UAV pose was changed
by adjusting the tripod to simulate the flight process. The driving trajectory is shown as the red line
of Figure 17. The trajectory passed sequentially through the Apriltags numbered 0-1-2-3-4-5-6-7-8-9-
10-11-12-13-14-15-14-13-12-11-10-9-8-7-6-5-16-17-18-19-0, and the total length of the trajectory is
420 m.

Based on the recorded LiDAR data, the UAV pose is estimated by LOAM, LOAM+Scan Context,
and the proposed method. The localization errors are computed by calculating the difference between the
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Table II. The 3D location of Apriltag QR codes on the wall surfaces.

Tag ID XW (m) YW (m) ZW (m) Tag ID XW (m) YW (m) ZW (m)
0 0.00 0.00 0.00 10 74.203 0.075 −18.443
1 4.177 0.107 −5.920 11 74.00 0.070 −5.193
2 4.177 0.035 −22.196 12 73.910 0.240 7.312
3 5.118 0.079 −24.418 13 58.085 0.105 23.137
4 14.365 0.105 −24.418 14 53.043 0.220 28.179
5 25.270 0.070 −24.498 15 41.701 0.262 39.521
6 34.235 −0.011 −24.103 16 17.435 0.135 −23.155
7 44.420 −0.060 −24.103 17 17.435 0.059 −5.63
8 66.020 0.145 24.103 18 13.695 0.150 −3.180
9 73.990 0.177 −24.103 19 5.255 0.340 −3.180

Figure 13. The reconstructed point cloud map of the indoor corridor environment.

estimated locations of Apriltags and the ground truth locations of Apriltags, which are listed in Table II.
The localization error curves of each method are plotted in Figure 18. The horizontal coordinate repre-
sents the IDs of the 31 Apriltags passed by the UAV in sequence, and the vertical coordinate represents
the calculated localization error.

As shown in Figure 18, the localization error of LOAM is increasing continuously with the increase
of driving distance, where the average error is 14.18 m and the maximum error is 51.8 m. This is due to
the similar geometric structure of the indoor corridor. At the same time, the similar geometric structure
also results in mismatches of LOAM+Scan Context, with an average error of 20.9 m, which is higher
than that of the open-loop LOAM positioning method. As the red curve shows in Figure 18, the pro-
posed localization method can decrease the average localization error to 5.0 m without a prior map. The
proposed localization method (no map) can accurately recognize the same intersection from different
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Figure 14. The dense point clouds of each intersection in the indoor corridor environment. (a)– (e)
The point cloud of intersection 1 to 5, respectively.

Figure 15. The generated descriptors of each intersection. (a) The PWCV descriptors. (b) The CWC
descriptors.

directions, thereby constructing stable loop constraints. Furthermore, after adding the intersection con-
straint factor provided by the prior map, the proposed method can eliminate the accumulated localization
error from the previous intersection to the current intersection when passing through the intersection
in the semantic knowledge database. Thus, the localization error of the proposed method (with map) is
optimized in segments, which greatly improves the accuracy of pose estimation and reduces the average
positioning error to 1.7 m.
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Figure 16. The similarities of PWCV descriptors and CWC descriptors in the indoor corridor.

Figure 17. The trajectory of UAV in indoor corridor.

5. Conclusion
In this paper, a semantic knowledge database-based localization method is proposed for UAV inspection
in the perceptually degraded underground mine. First, the relative pose constraint factor is constructed
based on the spatial geometry features between neighboring LiDAR keyframes to realize the UAV local
pose estimation. Furthermore, the dense point cloud of each intersection is extracted from the prior map.
The geometrical invariant point, PWCV, and CWC descriptors are generated for constructing the seman-
tic knowledge database. Moreover, the intersection pose constraint factor is constructed by comparing
the semantic topology of the current LiDAR keyframe with the intersections in the semantic knowledge
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Figure 18. The estimated trajectory error curves with different methods in the indoor corridor.

database. Based on the pose factor graph model, the relative pose constraint factor and the intersection
pose constraint factor are combined to optimize the UAV flight pose. Finally, the experimental results
in the Edgar Mine and the mine-like indoor corridor demonstrate that the proposed UAV localization
method proposed in this paper can realize the segmentation elimination of accumulative error, achieve
high localization accuracy, and meet the needs of underground inspection and positioning.
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