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1. INTRODUCTION. Ocean current is neglected when computing the opti-
mal speed in optimal ship routing. In previous papers (see Bijlsma (2008), also for
further references) we observed that ocean current could be included but that in-
clusion complicates things unnecessarily and does not contribute substantially to
the final result. However, we did not indicate how the inclusion of ocean current
could be performed. For the sake of completeness this omission is set right in this
note. The reason is that the wind, which plays a similar role in aviation as ocean
current in shipping (Bijlsma, 2009) in contrast to the effect of ocean current in opti-
mal ship routing, is an important factor in optimal aircraft routing. Therefore it is
convenient to have the disposal of a method, which can handle this kind of optimal
problem.

2. INCLUSION OF THE OCEAN CURRENT IN OPTIMAL SHIP
ROUTING. In order to simplify the computations the navigation area is map-
ped conformally onto a plane. Introducing a Cartesian coordinate system with co-
ordinates x; and x, the equations of motion of the ship read:

X1 =Vcosp+Si(t, x1, X3) ()

Xo = V'sinp+ Sa(t, x1, X3) )

where the dot denotes differentiation to the time 7. The speed V" and heading p are
control variables, and S;(#,x;,x5) and S,(¢,x1,X5) are the x; component and x, com-
ponent of the ocean current. It is assumed that the nonzero fuel consumption per unit
of time is described by the equation

x() =f6([’ X1, Xg, Vrp) (3)

where x, is the fuel consumption. The problem under consideration is to find con-
tinuous control functions V() and p(f) and a corresponding trajectory x(¢)=
(x1(2),x5(2)) satisfying the equations of motion (1) and (2), with initial and end
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conditions x40) = x;5,x,(t;) = x;(i=1,2), which minimize the integral:

15
/ Jfo(t, x1, X2, V, p)dt 4)
0

The necessary condition for the control functions ¥(¢) and p(¢), and the trajectory x(¢)
to be optimal i.e. to give a solution of the optimal problem is that there exist con-
tinuously differentiable multipliers A(¢) = (A¢(1),A1(2),A5(?)), A¢(f) =constant <0 and a
function H(t,x,V.,p,A)=A¢fo+A(V cos p+.S1)+A5(V sin p+.S,) so that the following
conditions hold:

(a) The first necessary condition. On x(t) the Euler-Lagrange equations x;=H;,,
Ai=—H, (i=1,2), Hy=0,H,=0 hold. Variables as subscripts denote partial
differentiation.

(b) The necessary condition of Weierstrass. Along x(f) the inequality
H(t,x(2),V,p,A(1)) < H(1,x(2),V(¢),p(¢),A(f)) must hold for any ¢,0<¢<t. In ad-
dition H(t,,x(t,),V(t),p(t1),A(1;)) =0.

It is supposed here that the arc x(¢) is normal which implies the existence of a one-
parameter family of arcs satisfying Equations (1) and (2) with the given initial and
end conditions, and having x(¢) as one of its members. As a consequence of normality
the equality sign for the parameter A, is excluded. Solutions of the Euler-Lagrange
equations with continuous control functions are called extremals. Observing that
every part of an optimal trajectory is an optimal trajectory itself, which is a direct
consequence of the principle of optimality (Bellman, 1957), the relation H =0 holds
on x(#). We may write the Euler-Lagrange equations as:

2
Al = _Aof()xl - Z /‘LiSixl (5)
i=1
. 2
AZ = _lof()xz - Z liSi)q (6)
i=1
Afor +A1cosp+Aysinp=0 (7
Aofop — (A1 sinp—Az cosp) V=0 8)

We observe that the solution of the optimal problem does not change if 4; and A,
are multiplied by an arbitrary constant. This is the case because 4, can be chosen
arbitrarily and the multipliers 4o, A; and A, are defined up to a common factor of
proportionality. Introducing polar coordinates, the initial values of the multipliers
can be written as 4,(0)=cos a and A,(0)=sin a for every choice of 4,. We choose
Ao= —1. All extremals emanating from the starting point are found by varying the
parameter a.

3. MODIFICATIONS IF OCEAN CURRENT IS IN-
CLUDED. Using H=0, Equations (7) and (8) can be written as:

Hy=—foyV*+f,=0 )
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Figure 1. One-parameter family of extremals along which the sailing time is minimized, using
wave information over the period 17 January-23 January 1970, fictitious ship’s data and a
12-hours time step. The least-time track is indicated by the dashed line.

H,=—fop(A1cosp+Assinp)V* —(Aysinp—Ag cos p) V=0 (10)

where V* =V 4 (4,51 +1555)/(A1 cos p+ A, sin p).
These equations express the necessary conditions so that the function:

(A1 cosp+Assinp)V*/fy (11)

of the variables V" and p attains a maximum value along an extremal. The angle
between (44, 45) and (cos p, sin p) indicating the range of admissible values for p is
acute and is assumed to be chosen to be sufficiently small throughout the region so
that the speed V can satisfy the relations mentioned below. Application of a theorem
on implicit functions (Hestenes, 1966, p. 22) to Hy=0 and H,=0 learns that the
functions Hy and H, and their partial derivatives to }and p must be continuous, and
Hyy Hy,
Hyy Hp,
are continuous functions. This condition also expresses that the equality sign in the
Legendre condition, which is a direct consequence of the condition of Weierstrass,
must be excluded. In that case the arc x(¢) is called non-singular. Foregoing means in
practice that there exist unique values of heading p and speed V along an extremal
which maximize V*/f; (for V) as well as the projection of (cos p, sin p)V*/f, on (44, 4,)
(for p). This is accomplished by maximizing (11).

The discussion that follows concerns solutions of Equations (1), (2), (5) and (6),
which are continuous in their dependence on the parameter a. Application of a the-
orem on the initial value problem for a system of ordinary differential equations
(Walter, 1972, p. 93) gives the following result. Let the right-hand sides of Equations
(1), (2), (5) and (6) be continuous for 0 <7< t, and satisfy a Lipschitz condition with
respect to x;,X5,4; and A,. Then x,(t,a) and A(t,a) (i=1,2; 0<t<t,) as solutions of
Equations (1), (2), (5) and (6) with x,(0)=x;,(i=1,2) are continuously differentiable

that the determinant must be different from zero in order that V and p
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with respect to ¢ and continuous in their dependence on the parameter a defined by
A1(0)=cos a and 44(0)=sin a.

This result makes it possible to introduce a numerical method for the solution of
the optimal problem with the ocean current included. The continuous dependence of
X1,X3,4; and A, on the parameter a is illustrated in Figure 1 showing a one-parameter
family of extremals along which the sailing time is minimized. In this case the ocean
current is not involved in the computation of the optimal ship’s speed, which is the
maximum speed. The optimal track from beginning to end point, which includes the
ocean current, is obtained by selecting that extremal, which ends closest to the des-
tination.

4. CONCLUSION. In this note it is indicated how ocean current could be in-
cluded in the computation of the optimal speed in ship routing. Although the effect
of ocean current in ship routing is generally negligible, inclusion of similar terms in
other applications such as the wind in aircraft routing can be significant.
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