

Invariant means on weakly almost periodic functionals with application to quantum groups

Ali Ebrahimzadeh Esfahani, Mehdi Nemati, and Mohammad Reza Ghanei

Abstract. Let \mathcal{A} be a Banach algebra, and let φ be a nonzero character on \mathcal{A} . For a closed ideal I of \mathcal{A} with $I \notin \ker \varphi$ such that I has a bounded approximate identity, we show that WAP(\mathcal{A}), the space of weakly almost periodic functionals on \mathcal{A} , admits a right (left) invariant φ -mean if and only if WAP(I) admits a right (left) invariant φ | $_I$ -mean. This generalizes a result due to Neufang for the group algebra $L^1(G)$ as an ideal in the measure algebra M(G), for a locally compact group G. Then we apply this result to the quantum group algebra $L^1(\mathbb{G})$ of a locally compact quantum group \mathbb{G} . Finally, we study the existence of left and right invariant 1-means on WAP($\mathcal{T}_{\mathcal{D}}(\mathbb{G})$).

1 Introduction

Let $\mathcal A$ be a Banach algebra. Then $\mathcal A^*$ is canonically a Banach $\mathcal A\text{-bimodule}$ with the actions

$$\langle x \cdot a, b \rangle = \langle x, ab \rangle, \quad \langle a \cdot x, b \rangle = \langle x, ba \rangle$$

for all $a, b \in A$ and $x \in A^*$. There are two naturally defined products, which we denote by \Box and \diamond on the second dual A^{**} of A, each extending the product on A. For $m, n \in A^{**}$ and $x \in A^*$, the first Arens product \Box in A^{**} is given as follows:

$$\langle m \Box n, x \rangle = \langle m, n \cdot x \rangle,$$

where $n \cdot x \in A^*$ is defined by $\langle n \cdot x, a \rangle = \langle n, x \cdot a \rangle$ for all $a \in A$. Similarly, the second Arens product \Diamond in A^{**} satisfies

$$\langle m \diamondsuit n, x \rangle = \langle n, x \cdot m \rangle,$$

where $x \cdot m \in \mathcal{A}^*$ is given by $\langle x \cdot m, a \rangle = \langle m, a \cdot x \rangle$ for all $a \in \mathcal{A}$. The Banach algebra \mathcal{A} is called Arens regular if \Box and \diamondsuit coincide on \mathcal{A}^{**} .

We denote the spectrum of \mathcal{A} by sp(\mathcal{A}). Let $\varphi \in$ sp(\mathcal{A}), and let X be a Banach right \mathcal{A} -submodule of \mathcal{A}^* with $\varphi \in X$. Then a left invariant φ -mean on X is a functional

Received by the editors January 5, 2023; revised January 5, 2023; accepted January 9, 2023.

Published online on Cambridge Core January 16, 2023.

AMS subject classification: 22D15, 43A07, 46H10.

Keywords: Closed ideal, locally compact quantum group, invariant mean, weakly almost periodic functional.

 $m \in X^*$ satisfying

$$\langle m, \varphi \rangle = 1, \quad \langle m, x \cdot a \rangle = \varphi(a) \langle m, x \rangle \quad (a \in \mathcal{A}, x \in X).$$

Right and (two-sided) invariant φ -means are defined similarly. The Banach algebra \mathcal{A} is called left φ -amenable if there exists a left invariant φ -mean on \mathcal{A}^* (see [7]). This notion generalizes the concept of left amenability for Lau algebras, a class of Banach algebras including all convolution quantum group algebras, which was first introduced and studied in [10].

A Banach right (resp. left) \mathcal{A} -submodule X of \mathcal{A}^* is called left (resp. right) introverted if $X^* \cdot X \subseteq X$ (resp. $X \cdot X^* \subseteq X$). In this case, X^* is a Banach algebra with the multiplication induced by the first (resp. second) Arens product \Box (resp. \diamondsuit) inherited from \mathcal{A}^{**} . A Banach \mathcal{A} -subbimodule X of \mathcal{A}^* is called introverted if it is both left and right introverted (see [2, Chapter 5] for details).

An element x of \mathcal{A}^* is weakly almost periodic if the map $\lambda_x : a \mapsto a \cdot x$ from \mathcal{A} into \mathcal{A}^* is a weakly compact operator. Let WAP(\mathcal{A}) denote the closed subspace of \mathcal{A}^* consisting of the weakly almost periodic functionals on \mathcal{A} . Then WAP(\mathcal{A}) is an introverted subspace of \mathcal{A}^* containing sp(\mathcal{A}). We would like to recall from [2, Proposition 3.11] that $m \square n = m \diamondsuit n$ for all $m, n \in WAP(\mathcal{A})^*$. Now suppose that I is a closed ideal in \mathcal{A} with a bounded approximate identity. Then, by [2, Proposition 3.12] WAP(I) is a neo-unital Banach I-bimodule; that is, WAP(I) = $I \cdot WAP(I) = WAP(I) \cdot I$. Moreover, WAP(I) becomes a Banach \mathcal{A} -bimodule (see [14, Proposition 2.1.6]).

In the case that *A* is the group algebra $L^1(G)$ of a locally compact group *G*, it is known that WAP($L^1(G)$) admits an invariant mean, which is unique, that is, a norm one functional $m \in L^1(G)^{**}$ with $\langle m, 1 \rangle = 1$ and

$$\langle m, f \cdot x \rangle = \langle m, x \cdot f \rangle = f(1) \langle m, x \rangle$$

for all $x \in WAP(L^1(G))$ and $f \in L^1(G)$ (see [17]).

Furthermore, it is known from [3, Proposition 5.16] that if G is discrete or amenable, then WAP(M(G)) admits an invariant mean, which is unique, where M(G) denotes the measure algebra of G. Recently, Neufang in [12] generalized this latter result to arbitrary locally compact groups, thereby answering a question posed in [3].

In this article, we generalize the main result of [12] to an arbitrary Banach algebra \mathcal{A} . More precisely, for $\varphi \in \operatorname{sp}(\mathcal{A})$, we show that if *I* is a closed ideal of \mathcal{A} with a bounded approximate identity such that $I \notin \ker \varphi$, then WAP(\mathcal{A}) admits a right (left) invariant φ -mean if and only if WAP(*I*) admits a right (left) invariant $\varphi|_I$ -mean. Applying our results to algebras over locally compact (quantum) groups, we show that, if *I* is a closed ideal of $L^1(G)$ with a bounded approximate identity such that *I* $\notin \ker 1$, then *I* is Arens regular if and only if it is reflexive.

Finally, for a locally compact quantum group \mathbb{G} , we characterize the existence of left and right invariant 1-means on WAP($\mathcal{T}_{\rhd}(\mathbb{G})$), where $\mathcal{T}_{\rhd}(\mathbb{G})$ denotes the trace class operators on $L^2(\mathbb{G})$, but equipped with a product different from composition (see [6].

928

2 Preliminaries

The class of locally compact quantum groups was first introduced and studied by Kustermans and Vaes [8, 9]. Recall that a (*von Neumann algebraic*) *locally compact quantum group* is a quadruple $\mathbb{G} = (L^{\infty}(\mathbb{G}), \Delta, \phi, \psi)$, where $L^{\infty}(\mathbb{G})$ is a von Neumann algebra with identity element 1 and a co-multiplication $\Delta : L^{\infty}(\mathbb{G}) \rightarrow L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$. Moreover, ϕ and ψ are normal faithful semifinite left and right Haar weights on $L^{\infty}(\mathbb{G})$, respectively. Here, \otimes denotes the von Neumann algebra tensor product.

The predual of $L^{\infty}(\mathbb{G})$ is denoted by $L^{1}(\mathbb{G})$ which is called *quantum group algebra* of \mathbb{G} . Then the pre-adjoint of the co-multiplication Δ induces on $L^{1}(\mathbb{G})$ an associative completely contractive multiplication $\Delta_{*} : L^{1}(\mathbb{G}) \widehat{\otimes} L^{1}(\mathbb{G}) \to L^{1}(\mathbb{G})$, where $\widehat{\otimes}$ is the operator space projective tensor product. Therefore, $L^{1}(\mathbb{G})$ is a Banach algebra under the product * given by $f * g := \Delta_{*}(f \otimes g) \in L^{1}(\mathbb{G})$ for all $f, g \in L^{1}(\mathbb{G})$. Moreover, the module actions of $L^{1}(\mathbb{G})$ on $L^{\infty}(\mathbb{G})$ are given by

$$f \cdot x := (\mathrm{id} \otimes f)(\Delta(x)), \quad x \cdot f := (f \otimes \mathrm{id})(\Delta(x))$$

for all $f \in L^1(\mathbb{G})$ and $x \in L^{\infty}(\mathbb{G})$.

For every locally compact quantum group \mathbb{G} , there is a left fundamental unitary operator $W \in L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\widehat{\mathbb{G}})$ and a right fundamental unitary operator $V \in L^{\infty}(\widehat{\mathbb{G}})' \otimes L^{\infty}(\mathbb{G})$ which the co-multiplication Δ can be given in terms of W and V by the formula

$$\Delta(x) = W^*(1 \otimes x)W = V(x \otimes 1)V^* \quad (x \in L^{\infty}(\mathbb{G})),$$

where $L^{\infty}(\widehat{\mathbb{G}}) := \{(f \otimes id)(W) : f \in L^1(\mathbb{G})\}^{''}$. The Gelfand–Naimark–Segal (GNS) representation space for the left Haar weight will be denoted by $L^2(\mathbb{G})$. Put $\widehat{W} = \sigma W^* \sigma$, where σ denotes the flip operator on $B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G}))$, and define

$$\widehat{\Delta}: L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}}), \quad x \mapsto \widehat{W}^{*}(1 \otimes x) \widehat{W},$$

which is a co-multiplication. One can also define a left Haar weight $\hat{\varphi}$ and a right Haar weight $\hat{\psi}$ on $L^{\infty}(\widehat{\mathbb{G}})$ that $\widehat{\mathbb{G}} = (L^{\infty}(\widehat{\mathbb{G}}), \widehat{\Gamma}, \hat{\varphi}, \hat{\psi})$, the *dual quantum group* of \mathbb{G} , turn it into a locally compact quantum group. Moreover, a Pontryagin duality theorem holds, that is, $\widehat{\mathbb{G}} = \mathbb{G}$ (for more details, see [8, 9]). The *reduced quantum group* C^* -*algebra* of $L^{\infty}(\mathbb{G})$ is defined as

$$C_0(\mathbb{G}) := \overline{\{(\mathrm{id} \otimes \omega)(W); \ \omega \in B(L^2(\mathbb{G}))_*\}}^{\|.\|}.$$

We say that \mathbb{G} is *compact* if $C_0(\mathbb{G})$ is a unital C^* -algebra. The co-multiplication Δ maps $C_0(\mathbb{G})$ into the multiplier algebra $M(C_0(\mathbb{G}) \otimes C_0(\mathbb{G}))$ of the minimal C^* -algebra tensor product $C_0(\mathbb{G}) \otimes C_0(\mathbb{G})$. Thus, we can define the completely contractive product * on $C_0(\mathbb{G})^* = M(\mathbb{G})$ by

$$\langle \omega * v, x \rangle = (\omega \otimes v)(\Delta x) \quad (x \in C_0(\mathbb{G}), \omega, v \in M(\mathbb{G}))$$

whence $(M(\mathbb{G}), *)$ is a completely contractive Banach algebra and contains $L^1(\mathbb{G})$ as a norm closed two-sided ideal. If *X* is a Banach right $L^1(\mathbb{G})$ -submodule of $L^{\infty}(\mathbb{G})$

with $1 \in X$, then a left invariant mean on *X*, is a functional $m \in X^*$ satisfying

$$||m|| = \langle m, 1 \rangle = 1, \quad \langle m, x \cdot f \rangle = \langle f, 1 \rangle \langle m, x \rangle \quad (f \in L^1(\mathbb{G}), x \in X).$$

Right and (two-sided) invariant means are defined similarly. A locally compact quantum group \mathbb{G} is said to be amenable if there exists a left (equivalently, right, or two-sided) invariant mean on $L^{\infty}(\mathbb{G})$ (see [4, Proposition 3]). A standard argument, used in the proof of [10, Theorem 4.1] on Lau algebras shows that \mathbb{G} is amenable if and only if $L^1(\mathbb{G})$ is left 1-amenable. We also recall that, \mathbb{G} is called *co-amenable* if $L^1(\mathbb{G})$ has a bounded approximate identity.

The right fundamental unitary V of \mathbb{G} induces a co-associative co-multiplication

$$\Delta^{r}: \mathcal{B}\left(L^{2}(\mathbb{G})\right) \ni x \mapsto V(x \otimes 1)V^{*} \in \mathcal{B}\left(L^{2}(\mathbb{G})\right) \bar{\otimes} \mathcal{B}\left(L^{2}(\mathbb{G})\right),$$

and the restriction of Δ^r to $L^{\infty}(\mathbb{G})$ yields the original co-multiplication Δ on $L^{\infty}(\mathbb{G})$. The pre-adjoint of Δ^r induces an associative completely contractive multiplication on space $\mathcal{T}(L^2(\mathbb{G}))$ of trace class operators on $L^2(\mathbb{G})$, defined by

$$\triangleright: \Im\left(L^2(\mathbb{G})\right) \widehat{\otimes} \Im\left(L^2(\mathbb{G})\right) \ni \omega \otimes \tau \mapsto \omega \vartriangleright \tau = \Delta^r_*(\omega \otimes \tau) \in \Im\left(L^2(\mathbb{G})\right),$$

where $\widehat{\otimes}$ denotes the operator space projective tensor product.

It was shown in [6, Lemma 5.2], that the pre-annihilator $L^{\infty}(\mathbb{G})_{\perp}$ of $L^{\infty}(\mathbb{G})$ in $\mathcal{T}(L^{2}(\mathbb{G}))$ is a norm closed two-sided ideal in $(\mathcal{T}(L^{2}(\mathbb{G})), \triangleright)$ and the complete quotient map

$$\pi: \mathcal{T}(L^2(\mathbb{G})) \ni \omega \mapsto f = \omega|_{L^{\infty}(\mathbb{G})} \in L^1(\mathbb{G})$$

is a completely contractive algebra homomorphism from $\mathfrak{T}_{\rhd}(\mathbb{G}) \coloneqq (\mathfrak{T}(L^2(\mathbb{G})), \triangleright)$ onto $L^1(\mathbb{G})$. The multiplication \triangleright defines a canonical $\mathfrak{T}_{\rhd}(\mathbb{G})$ -bimodule structure on $\mathcal{B}(L^2(\mathbb{G}))$. Note that since $V \in L^{\infty}(\widehat{\mathbb{G}}') \otimes L^{\infty}(\mathbb{G})$, the bimodule action on $L^{\infty}(\widehat{\mathbb{G}})$ becomes rather trivial. Indeed, for $\hat{x} \in L^{\infty}(\widehat{\mathbb{G}})$ and $\omega \in \mathfrak{T}_{\rhd}(\mathbb{G})$, we have

$$\hat{x} \rhd \omega = (\omega \otimes \iota) V(\hat{x} \otimes 1) V^* = \langle \omega, \hat{x} \rangle \mathbf{1}, \quad \omega \rhd \hat{x} = (\iota \otimes \omega) V(\hat{x} \otimes 1) V^* = \langle \omega, 1 \rangle \hat{x}.$$

This implies that $L^{\infty}(\widehat{\mathbb{G}}) \subseteq WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$. It is also known from [6, Proposition 5.3] that $B(L^{2}(\mathbb{G})) \triangleright \mathcal{T}_{\triangleright}(\mathbb{G}) \subseteq L^{\infty}(\mathbb{G})$. In particular, the actions of $\mathcal{T}_{\triangleright}(\mathbb{G})$ on $L^{\infty}(\mathbb{G})$ satisfies

$$\omega \triangleright x = \pi(\omega) \cdot x, \quad x \triangleright \omega = x \cdot \pi(\omega)$$

for all $\omega \in \mathcal{T}_{\triangleright}(\mathbb{G})$ and $x \in L^{\infty}(\mathbb{G})$.

3 Invariant means on weakly almost periodic functionals

Let *I* be a closed ideal of the Banach algebra A. Then for every $b \in I$ and $x \in I^*$, define $x \bullet b, b \bullet x \in A^*$ as follows:

$$\langle x \bullet b, a \rangle = \langle x, ba \rangle, \quad \langle b \bullet x, a \rangle = \langle x, ab \rangle \quad (a \in \mathcal{A}).$$

We note that, given $a \in A$, $b_1, b_2 \in I$, and $x \in I^*$, for $a' \in A$, we have

$$\langle a \cdot ((b_1 \cdot x) \bullet b_2), a' \rangle = \langle (b_1 \cdot x) \bullet b_2, a'a \rangle = \langle b_1 \cdot x, b_2 a'a \rangle = \langle x, b_2 a'a b_1 \rangle$$

= $\langle ab_1 \cdot x, b_2 a' \rangle = \langle (ab_1 \cdot x) \bullet b_2, a' \rangle,$

so that, $a \cdot ((b_1 \cdot x) \bullet b_2) = (ab_1 \cdot x) \bullet b_2$.

Lemma 3.1 Let A be a Banach algebra, and let I be a closed ideal of A with a bounded approximate identity. Then

$$WAP(I) \bullet I \subseteq WAP(\mathcal{A}), \quad I \bullet WAP(I) \subseteq WAP(\mathcal{A}).$$

Proof Let $x \in WAP(I)$ and $b_1, b_2 \in I$. Suppose that (a_n) is a bounded sequence in \mathcal{A} . Then (a_nb_1) is a bounded sequence in I and so by weak compactness of the map $\lambda_x : I \to I^*$, there is a subsequence $(a_{n_j}b_1)$ of (a_nb_1) such that $(a_{n_j}b_1 \cdot x)$ converges weakly in I^* to some $y \in I^*$. Now, for each $m \in \mathcal{A}^{**}$, define the functional $b_2 \bullet m \in I^{**}$ as follows:

$$\langle b_2 \bullet m, z \rangle = \langle m, z \bullet b_2 \rangle \quad (z \in I^*).$$

It follows that

$$\langle m, a_{n_j} \cdot ((b_1 \cdot x) \bullet b_2) \rangle = \langle m, (a_{n_j} b_1 \cdot x) \bullet b_2 \rangle$$

= $\langle b_2 \bullet m, a_{n_j} b_1 \cdot x \rangle \rightarrow \langle b_2 \bullet m, y \rangle$
= $\langle m, y \bullet b_2 \rangle$

for all $m \in \mathcal{A}^{**}$. That is, $(b_1 \cdot x) \bullet b_2 \in WAP(\mathcal{A})$. Since *I* has a bounded right approximate identity, it follows from [2, Proposition 3.12] that $I \cdot WAP(I) = WAP(I)$. This shows that $WAP(I) \bullet I \subseteq WAP(\mathcal{A})$. The inclusion $I \bullet WAP(I) \subseteq WAP(\mathcal{A})$ can be proved similarly.

Theorem 3.2 Let A be a Banach algebra with $\varphi \in sp(A)$, and let I be a closed ideal of A with a bounded approximate identity such that $I \notin \ker \varphi$. Then the following statements are equivalent:

(i) WAP(I) has a right (left) invariant $\varphi|_I$ -mean.

(ii) WAP(A) has a right (left) invariant φ -mean.

Proof We only prove the right version of the theorem. Similar arguments will establish the left side version.

(i) \Rightarrow (ii). Let *m* be a right invariant $\varphi|_I$ -mean on WAP(*I*). This means that for every $x \in WAP(I)$ and $b \in I$, we have

$$\langle m, b \cdot x \rangle = \varphi(b) \langle m, x \rangle.$$

We denote by $\iota : I \to \mathcal{A}$ the canonical embedding map. By [18, Corollary to Lemma 1], the map $R := \iota^* : \mathcal{A}^* \to I^*$ maps WAP(\mathcal{A}) to WAP(I). Define $\widetilde{m} := m \circ R \in \mathcal{A}^{**}$. It is easy to see that $\langle \widetilde{m}, \varphi \rangle = 1$. Let (e_α) be a bounded approximate identity for I. By [2, Proposition 3.12], we have $I \cdot \text{WAP}(I) = \text{WAP}(I) \cdot I = \text{WAP}(I)$. Thus, $\lim_{\alpha} e_{\alpha} \cdot R(y) = R(y)$ for all $y \in \text{WAP}(\mathcal{A})$. Moreover, by [14, Proposition 2.1.6], WAP(I) becomes a Banach A-bimodule and since I is an ideal in A, it is not hard check that $R(a \cdot y) = a \cdot R(y)$ for all $a \in A$ and $y \in WAP(A)$. Therefore, for every $a \in A$ and $y \in WAP(A)$, we have

$$\langle \widetilde{m}, a \cdot y \rangle = \langle m, R(a \cdot y) \rangle = \langle m, a \cdot R(y) \rangle$$

= $\lim_{\alpha} \langle m, a \cdot (e_{\alpha} \cdot R(y)) \rangle = \lim_{\alpha} \langle m, ae_{\alpha} \cdot R(y) \rangle$
= $\lim_{\alpha} \varphi(ae_{\alpha}) \langle m, R(y) \rangle = \varphi(a) \varphi(e_{\alpha}) \langle \widetilde{m}, y \rangle = \varphi(a) \langle \widetilde{m}, y \rangle.$

Thus, \widetilde{m} is a right invariant φ -mean on WAP(\mathcal{A}).

(ii) \Rightarrow (i). Let $m \in \mathcal{A}^{**}$ be a right invariant φ -mean on WAP(\mathcal{A}). Fix $b_0 \in I$ with $\varphi(b_0) = 1$. Since WAP(I) • $b_0 \subseteq$ WAP(\mathcal{A}), by Lemma 3.1, we can define $\tilde{m} \in$ WAP(I)* as follows:

$$\langle \tilde{m}, x \rangle = \langle m, x \bullet b_0 \rangle$$
 $(x \in WAP(I)).$

It is easily verified that

$$\langle \tilde{m}, \varphi |_I \rangle = \langle m, \varphi |_I \bullet b_0 \rangle = \langle m, \varphi \rangle = 1.$$

Moreover, for every $b \in I$ and $x \in WAP(I)$, we have

$$\langle \tilde{m}, b \cdot x \rangle = \langle m, (b \cdot x) \bullet b_0 \rangle = \langle m, b \cdot (x \bullet b_0) \rangle$$

= $\varphi |_I (b) \langle m, x \bullet b_0 \rangle$
= $\varphi |_I (b) \langle \tilde{m}, x \rangle.$

Therefore, \tilde{m} is a right $\varphi|_{I}$ -mean on WAP(I).

Remark 3.3 We would like to point out the following fact related to right and left invariant φ -means on WAP(A). Suppose that m is a left invariant φ -mean and n is a right invariant φ -mean on WAP(A). Using weak*-continuity of the maps $p \mapsto p \Box m$ and $p \mapsto n \diamondsuit p$ on WAP(A)*, we obtain that $m = n(\varphi)m = n \Box m = n \diamondsuit m = m(\varphi)n = n$. In particular, if there is an invariant φ -mean on WAP(A), then it is unique.

We now consider some special cases. Suppose that \mathbb{G} is a locally compact quantum group. Then \mathbb{G} has a canonical co-involution \mathcal{R} , called the unitary antipode of \mathbb{G} . That is, $\mathcal{R} : L^{\infty}(\mathbb{G}) \longrightarrow L^{\infty}(\mathbb{G})$ is a *-anti-homomorphism satisfying $\mathcal{R}^2 = \text{id and } \Delta \circ \mathcal{R} = \sigma(\mathcal{R} \otimes \mathcal{R}) \circ \Delta$, where σ is the flip map on $L^2(\mathbb{G}) \otimes L^2(\mathbb{G})$. Then \mathcal{R} induces a completely isometric involution on $L^1(\mathbb{G})$ defined by

$$\langle x, f' \rangle = \overline{\langle f, \mathcal{R}(x^*) \rangle} \quad (x \in L^{\infty}(\mathbb{G}), f \in L^1(\mathbb{G})).$$

Hence, $L^1(\mathbb{G})$ becomes an involutive Banach algebra.

Now, assume that *m* is a left (resp. right) invariant 1-mean on WAP($L^1(\mathbb{G})$), and let $\widetilde{m} \in L^{\infty}(\mathbb{G})^*$ be a Hahn–Banach extension of *m*. It is not hard to see that $n := \widetilde{m}^\circ|_{WAP(L^1(\mathbb{G}))}$ is a right (resp. left) invariant 1-mean on WAP($L^1(\mathbb{G})$), where $\circ : L^{\infty}(\mathbb{G})^* \to L^{\infty}(\mathbb{G})^*, m \mapsto m^\circ$ is the unique weak^{*}-weak^{*} continuous extension of the involution on $L^1(\mathbb{G})$ which is called the linear involution (see [2, Chapter 2,

932

p. 18]. Thus, by Remark 3.3, we obtain that any left (resp. right) invariant 1-mean on WAP($L^1(\mathbb{G})$) is unique and (two-sided) invariant.

Our next result yields a generalization of [12, Theorem 2.3] which is concerned with the group algebra $L^1(G)$ as an ideal in the measure algebra M(G), for a locally compact group G.

Corollary 3.4 Let \mathbb{G} be a co-amenable locally compact quantum group. Then WAP($L^1(\mathbb{G})$) has a right invariant 1-mean or equivalently has an invariant 1-mean if and only if WAP($M(\mathbb{G})$) has an invariant 1-mean.

Proposition 3.5 Let A is a Banach algebra, and let I is a closed ideal in A. Let $\varphi \in sp(A)$ be such that $I \notin ker \varphi$. Then A^* admits a right invariant φ -mean if and only if I^* admits a right invariant $\varphi|_I$ -mean.

Proof To see this, first note that, since we can identify I^{**} with $I^{\perp \perp}$, it follows that I^{**} is a closed ideal in \mathcal{A}^{**} (see [2, p. 17]). Fix $b_0 \in I$ with $\varphi(b_0) = 1$. Now, suppose that $m \in \mathcal{A}^{**}$ is a right invariant φ -mean on \mathcal{A}^* . Since I^{**} is an ideal in \mathcal{A}^{**} , we obtain that $b_0 \square m \in I^{**}$. Furthermore, $\langle b_0 \square m, \varphi \rangle = 1$ and

$$(b_0 \Box m) \Box b = \varphi(b)b_0 \Box m$$

for all $b \in I$. Thus, $b_0 \square m$ is a right invariant $\varphi|_I$ -mean on I^* . For the converse, suppose that $m \in I^{**}$ is a right invariant $\varphi|_I$ -mean on I^* . Then

$$m \square a = (m \square b_0) \square a = m \square (b_0 a) = \varphi(b_0 a)m = \varphi(a)m$$

for all $a \in A$. This shows that *m* is a right invariant φ -mean on A^* .

Before giving the next result, we recall that a Banach algebra A is weakly sequentially complete if every weakly Cauchy sequence in A is weakly convergent in A. For example, preduals of von Neumann algebras are weakly sequentially complete (see [15]).

Proposition 3.6 Let \mathbb{G} be a locally compact quantum group such that WAP($L^1(\mathbb{G})$) has an invariant 1-mean, and let I be a closed ideal of $L^1(\mathbb{G})$ with a bounded approximate identity such that $I \notin \ker 1$. If I is Arens regular, then \mathbb{G} is compact.

Proof By assumption and Theorem 3.2, we conclude that WAP(*I*) has a right invariant 1-mean. Since *I* is Arens regular, we have that WAP(*I*) = I^* . This implies that *I* is right 1-amenable. Now, by Proposition 3.5, we obtain that $L^1(\mathbb{G})$ is right 1-amenable or equivalently, \mathbb{G} is amenable. Thus, there is an invariant 1-mean on $L^{\infty}(\mathbb{G})$. Again by two-sided version of Proposition 3.5, we conclude that there is an invariant 1-mean *m* on I^* . Since *I* is Arens regular and weakly sequentially complete, it follows from [7, Theorem 3.9] that $m \in I$. Therefore, for every $f \in L^1(\mathbb{G})$, we have

$$f * m = f * (m * m) = (f * m) * m = \langle f * m, 1 \rangle m = \langle f, 1 \rangle m.$$

Thus, *m* is a left invariant 1-mean belonging to $L^1(\mathbb{G})$, and equivalently \mathbb{G} is compact (see [1, Proposition 3.1]).

Theorem 3.7 Let \mathbb{G} be a locally compact quantum group such that WAP($L^1(\mathbb{G})$) has an invariant 1-mean, and let I be a closed ideal of $L^1(\mathbb{G})$ with a bounded approximate identity such that $I \notin \ker 1$. Then I is Arens regular if and only if it is reflexive.

Proof If *I* is reflexive, then *I* is clearly Arens regular. Conversely, suppose that I is Arens regular. Then \mathbb{G} is compact by Proposition 3.6 and so by [13, Theorem 3.8], $L^1(\mathbb{G})$ is an ideal in its bidual. Since *I* has a bounded approximate identity, Cohen's Factorization theorem implies that $I * I = \{a * b : a, b \in I\} = I$. Hence, we drive that

$$I \square I^{**} = (I * I) \square I^{**} \subseteq I \square (I \square L^1(\mathbb{G})^{**}) \subseteq I * L^1(\mathbb{G}) \subseteq I.$$

This shows that *I* is a right ideal in its bidual. Thus, by [16, Corollar ies 3.7 and 3.9], we obtain that *I* is reflexive.

Dually to [5, Proposition 3.14], we obtain the result below for the group algebra $L^1(G)$ of a locally compact group *G*. We would like to recall that WAP($L^1(G)$) admits an invariant mean.

Corollary 3.8 Let G be a locally compact group, and let I be a closed ideal of $L^1(G)$ with a bounded approximate identity such that $I \notin \text{ker } 1$. Then I is Arens regular if and only if it is reflexive.

4 Convolution trace class operators

We recall from [10] that a Lau algebra \mathcal{A} is a Banach algebra such that \mathcal{A}^* is a von Neumann algebra whose unit 1 lies in the spectrum of \mathcal{A} . Let \mathbb{G} be a locally compact quantum group. Then it is easy to see that $1 = 1 \circ \pi \in \operatorname{sp}(\mathcal{T}_{\rhd}(\mathbb{G}))$. Now, since $B(L^2(\mathbb{G}))$ is a von Neumann algebra, it follows that $\mathcal{T}_{\rhd}(\mathbb{G})$ is a Lau algebra. In this section, we are interested to study the relation between the existence of left or right invariant 1-means on WAP($\mathcal{T}_{\rhd}(\mathbb{G})$) and on WAP($L^1(\mathbb{G})$).

Lemma 4.1 Let \mathbb{G} be a locally compact quantum group. Then

WAP($\mathfrak{T}_{\triangleright}(\mathbb{G})) \triangleright \mathfrak{T}_{\triangleright}(\mathbb{G}) \subseteq WAP(L^{1}(\mathbb{G})).$

Proof Suppose that $x \in WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$ and $w \in \mathcal{T}_{\triangleright}(\mathbb{G})$. Let $(f_k)_k$ be a bounded sequence in $L^1(\mathbb{G})$. For each k, let $w_k \in \mathcal{T}_{\triangleright}(\mathbb{G})$ be a normal extension of f_k . By weak compactness of the map $\lambda_x : \mathcal{T}_{\triangleright}(\mathbb{G}) \to B(L^2(\mathbb{G}))$, there is a subsequence (w_{k_j}) of (w_k) such that $(w_{k_j} \triangleright x)$ converges weakly in $B(L^2(\mathbb{G}))$ to some $y \in B(L^2(\mathbb{G}))$. It is easy to check that $(w_{k_j} \triangleright x \triangleright w)$ converges weakly in $B(L^2(\mathbb{G}))$ to $y \triangleright w$. Now, let $m \in L^{\infty}(\mathbb{G})^*$, and let $\tilde{m} \in B(L^2(\mathbb{G}))^*$ be a Hahn–Banach extension of m. Since $B(L^2(\mathbb{G})) \triangleright \mathcal{T}_{\triangleright}(\mathbb{G}) \subseteq L^{\infty}(\mathbb{G})$, we have

$$\langle m, f_{k_i} \cdot (x \triangleright w) \rangle = \langle \widetilde{m}, w_{k_i} \triangleright x \triangleright w \rangle \rightarrow \langle \widetilde{m}, y \triangleright w \rangle = \langle m, y \triangleright w \rangle$$

This shows that $x \triangleright w \in WAP(L^1(\mathbb{G}))$.

Theorem 4.2 Let \mathbb{G} be a locally compact quantum group. Then WAP($L^1(\mathbb{G})$) has a right invariant 1-mean if and only if WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$) has a right invariant 1-mean.

Proof Let *m* be a right invariant 1-mean on WAP($L^1(\mathbb{G})$). Define $\widetilde{m} \in WAP$ $(\mathcal{T}_{\rhd}(\mathbb{G}))^*$ by $\langle \widetilde{m}, x \rangle = \langle m, x \rhd w_0 \rangle$ for all $x \in WAP(\mathcal{T}_{\rhd}(\mathbb{G}))$, where $w_0 \in \mathcal{T}_{\rhd}(\mathbb{G})$ with $||w_0|| = \langle w_0, 1 \rangle = 1$. Then it is easy to check that $\langle \widetilde{m}, 1 \rangle = 1$. Moreover, we have

$$\langle \widetilde{m}, w \triangleright x \rangle = \langle m, w \triangleright (x \triangleright w_0) \rangle$$

= $\langle m, \pi(w) \cdot (x \triangleright w_0) \rangle$
= $\langle w, 1 \rangle \langle m, x \triangleright w_0 \rangle$
= $\langle w, 1 \rangle \langle \widetilde{m}, x \rangle$

for all $w \in \mathcal{T}_{\triangleright}(\mathbb{G})$ and $x \in WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$, proving that \widetilde{m} is a right invariant 1-mean on WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$).

Conversely, suppose that *n* is a right invariant 1-mean on WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$). Since $\pi : \mathcal{T}_{\triangleright}(\mathbb{G}) \to L^{1}(\mathbb{G})$ is a continuous algebra homomorphism, it follows from [18, Corollary to Lemma 1] that the map π^{*} maps WAP($L^{1}(\mathbb{G})$) to WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$). Thus, we can define $\tilde{n} \in WAP(L^{1}(\mathbb{G}))^{*}$ by $\tilde{n} := n \circ \pi^{*}$. It is easily verified that $\langle \tilde{n}, 1 \rangle = 1$. For every $f \in L^{1}(\mathbb{G})$ and $x \in WAP(L^{1}(\mathbb{G}))$, let $w \in \mathcal{T}_{\triangleright}(\mathbb{G})$ be a normal extension of f. Then we have

$$\begin{aligned} \langle \pi^*(f \cdot x), w' \rangle &= \langle f \cdot x, \pi(w') \rangle = \langle x, \pi(w') * \pi(w) \rangle \\ &= \langle \pi^*(x), w' \triangleright w \rangle \\ &= \langle w \triangleright \pi^*(x), w' \rangle, \end{aligned}$$

for all $w' \in \mathcal{T}_{\triangleright}(\mathbb{G})$. Therefore,

$$\langle \widetilde{n}, f \cdot x \rangle = \langle n, \pi^*(f \cdot x) \rangle$$

$$= \langle n, w \triangleright \pi^*(x) \rangle$$

$$= \langle w, 1 \rangle \langle n, \pi^*(x) \rangle$$

$$= \langle f, 1 \rangle \langle \widetilde{n}, x \rangle.$$

That is, \tilde{n} is a right invariant 1-mean on WAP($L^1(\mathbb{G})$).

Before giving the next result, recall that if $\mathbb{G} = L^{\infty}(G)$ for a locally compact group *G*, then $\mathcal{T}_{\triangleright}(\mathbb{G})$ is the convolution algebra introduced by Neufang in [11].

Corollary 4.3 Let G be a locally compact group, and let $\mathbb{G} = L^{\infty}(G)$. Then WAP $(\mathcal{T}_{\triangleright}(\mathbb{G}))$ admits a right invariant 1-mean.

Theorem 4.4 Let \mathbb{G} be a locally compact quantum group. Then WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$) has a left invariant 1-mean if and only if \mathbb{G} is trivial.

Proof Let *m* be a left invariant 1-mean on WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$). Then for every $x \in$ WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$), we have $m \cdot x = \langle m, x \rangle$ 1, by left invariance. Now, consider the map

$$E: WAP(\mathcal{T}_{\triangleright}(\mathbb{G})) \to WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$$

defined by $E(x) = m \cdot x = \langle m, x \rangle$ for all $x \in WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$. Then for every $\hat{x} \in L^{\infty}(\hat{\mathbb{G}})$, we have

$$E(\hat{x}) = m \cdot \hat{x} = \langle m, 1 \rangle \hat{x} = \hat{x}.$$

These prove that $L^{\infty}(\widehat{\mathbb{G}}) = E(L^{\infty}(\widehat{\mathbb{G}})) \subseteq \mathbb{C}1$. Therefore, $L^{\infty}(\widehat{\mathbb{G}}) = \mathbb{C}1$ and so \mathbb{G} is trivial.

Acknowledgment The authors are grateful to the referee for his/her careful reading of the paper and valuable suggestions.

References

- E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups. Internat. J. Math. 14 (2003), 865–884.
- [2] H. G. Dales and A. T.-M. Lau, *The second duals of Beurling algebras*. Mem. Amer. Math. Soc. 177 (2005), 836.
- [3] H. G. Dales, A. T.-M. Lau, and D. Strauss, Second duals of measure algebras. Dissertationes Math. 481 (2012), 1–121.
- [4] P. Desmedt, J. Quaegebeur, and S. Vaes, Amenability and the bicrossed product construction. Ill inois J. Math. 46 (2002), 1259–1277.
- [5] B. Forrest, Arens regularity and discrete groups. Pacific J. Math. 151 (1991), 217–227.
- [6] Z. Hu, M. Neufang, and Z.-J. Ruan, Completely bounded multipliers over locally compact quantum groups. Proc. Lond. Math. Soc. 103 (2011), 1–39.
- [7] E. Kaniuth, A. T.-M. Lau, and J. Pym, On character amenability of Banach algebras. J. Math. Anal. Appl. 344 (2008), 942–955.
- [8] J. Kustermans and S. Vaes, Locally compact quantum groups. Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), 837–934.
- J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92 (2003), 68–92.
- [10] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math. 118 (1983), 161–175.
- M. Neufang, Abstrakte harmonische analyse und Modulhomomorphismen über von Neumann-algebren. Ph.D. thesis, Universität des Saarlande, 2000.
- [12] M. Neufang, Topological invariant means on almost periodic functionals: solution to problems by Dales-Lau-Strauss and daws. Proc. Amer. Math. Soc. 145 (2017), 3595–3598.
- V. Runde, Characterizations of compact and discrete quantum groups through second duals. J. Operator Theory 60 (2008), 415–428.
- [14] V. Runde, Amenable Banach algebras: a panorama. Springer Monographs in Mathematics, Springer, New York, 2020.
- [15] M. Takesaki, *Theory of operator algebras. Vol. 1*, Springer, Berlin, 1979.
- [16] A. Ulger, Arens regularity sometimes implies R.N.P. Pacific J. Math. 143 (1990), 377–399.
- [17] J. C. S. Wong, Topologically stationary locally compact groups and amenability. Trans. Amer. Math. Soc. 144 (1969), 351–363.
- [18] N. J. Young, Periodicity of functionals and representations of normed algebras on reflexive spaces. Proc. Edinb. Math. Soc. 20 (1976/77), 99–120.

Department of Mathematical Sciences, Isfahan Uinversity of Technology, Isfahan 84156-83111, Iran e-mail: ali.ebrahimzadeh@math.iut.ac.ir m.nemati@iut.ac.ir

Department of Mathematics, Khansar Campus, University of Isfahan, Isfahan, Iran e-mail: mrg.ghanei@gmail.com m.r.ghanei@khc.ui.ac.ir

936