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Abstract. Let A be a Banach algebra, and let φ be a nonzero character on A. For a closed ideal I of A
with I /⊆ ker φ such that I has a bounded approximate identity, we show that WAP(A), the space of
weakly almost periodic functionals on A, admits a right (left) invariant φ-mean if and only if WAP(I)
admits a right (left) invariant φ∣I-mean. This generalizes a result due to Neufang for the group algebra
L1(G) as an ideal in the measure algebra M(G), for a locally compact group G. Then we apply this
result to the quantum group algebra L1(G) of a locally compact quantum group G. Finally, we study
the existence of left and right invariant 1-means on WAP(T▷(G)).

1 Introduction

Let A be a Banach algebra. Then A∗ is canonically a Banach A-bimodule with the
actions

⟨x ⋅ a, b⟩ = ⟨x , ab⟩, ⟨a ⋅ x , b⟩ = ⟨x , ba⟩

for all a, b ∈ A and x ∈ A∗. There are two naturally defined products, which we denote
by ◻ and ◇ on the second dual A∗∗ of A, each extending the product on A. For
m, n ∈ A∗∗ and x ∈ A∗, the first Arens product ◻ in A∗∗ is given as follows:

⟨m ◻ n, x⟩ = ⟨m, n ⋅ x⟩,

where n ⋅ x ∈ A∗ is defined by ⟨n ⋅ x , a⟩ = ⟨n, x ⋅ a⟩ for all a ∈ A. Similarly, the second
Arens product◇ in A∗∗ satisfies

⟨m◇ n, x⟩ = ⟨n, x ⋅m⟩,

where x ⋅m ∈ A∗ is given by ⟨x ⋅m, a⟩ = ⟨m, a ⋅ x⟩ for all a ∈ A. The Banach algebra
A is called Arens regular if ◻ and◇ coincide on A∗∗.

We denote the spectrum of A by sp(A). Let φ ∈ sp(A), and let X be a Banach right
A-submodule of A∗ with φ ∈ X. Then a left invariant φ-mean on X is a functional
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m ∈ X∗ satisfying

⟨m, φ⟩ = 1, ⟨m, x ⋅ a⟩ = φ(a)⟨m, x⟩ (a ∈ A, x ∈ X).

Right and (two-sided) invariant φ-means are defined similarly. The Banach algebra
A is called left φ-amenable if there exists a left invariant φ-mean on A∗ (see [7]).
This notion generalizes the concept of left amenability for Lau algebras, a class of
Banach algebras including all convolution quantum group algebras, which was first
introduced and studied in [10].

A Banach right (resp. left) A-submodule X of A∗ is called left (resp. right)
introverted if X∗ ⋅ X ⊆ X (resp. X ⋅ X∗ ⊆ X). In this case, X∗ is a Banach algebra
with the multiplication induced by the first (resp. second) Arens product ◻ (resp.◇)
inherited from A∗∗. A Banach A-subbimodule X of A∗ is called introverted if it is
both left and right introverted (see [2, Chapter 5] for details).

An element x of A∗ is weakly almost periodic if the map λx ∶ a ↦ a ⋅ x from A

into A∗ is a weakly compact operator. Let WAP(A) denote the closed subspace
of A∗ consisting of the weakly almost periodic functionals on A. Then WAP(A)
is an introverted subspace of A∗ containing sp(A). We would like to recall from
[2, Proposition 3.11] that m ◻ n = m◇ n for all m, n ∈WAP(A)∗. Now suppose
that I is a closed ideal in A with a bounded approximate identity. Then, by
[2, Proposition 3.12] WAP(I) is a neo-unital Banach I-bimodule; that is, WAP(I) =
I ⋅WAP(I) =WAP(I) ⋅ I. Moreover, WAP(I) becomes a Banach A-bimodule (see
[14, Proposition 2.1.6]).

In the case that A is the group algebra L1(G) of a locally compact group G, it is
known that WAP(L1(G)) admits an invariant mean, which is unique, that is, a norm
one functional m ∈ L1(G)∗∗ with ⟨m, 1⟩ = 1 and

⟨m, f ⋅ x⟩ = ⟨m, x ⋅ f ⟩ = f (1)⟨m, x⟩

for all x ∈WAP(L1(G)) and f ∈ L1(G) (see [17]).
Furthermore, it is known from [3, Proposition 5.16] that if G is discrete or

amenable, then WAP(M(G)) admits an invariant mean, which is unique, where
M(G) denotes the measure algebra of G. Recently, Neufang in [12] generalized this
latter result to arbitrary locally compact groups, thereby answering a question posed
in [3].

In this article, we generalize the main result of [12] to an arbitrary Banach algebra
A. More precisely, for φ ∈ sp(A), we show that if I is a closed ideal ofAwith a bounded
approximate identity such that I /⊆ ker φ, then WAP(A) admits a right (left) invariant
φ-mean if and only if WAP(I) admits a right (left) invariant φ∣I-mean. Applying our
results to algebras over locally compact (quantum) groups, we show that, if I is a closed
ideal of L1(G)with a bounded approximate identity such that I /⊆ ker 1, then I is Arens
regular if and only if it is reflexive.

Finally, for a locally compact quantum group G, we characterize the existence of
left and right invariant 1-means on WAP(T▷(G)), where T▷(G) denotes the trace
class operators on L2(G), but equipped with a product different from composition
(see [6].
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2 Preliminaries

The class of locally compact quantum groups was first introduced and studied by
Kustermans and Vaes [8, 9]. Recall that a (von Neumann algebraic) locally com-
pact quantum group is a quadruple G = (L∞(G), Δ, ϕ, ψ), where L∞(G) is a von
Neumann algebra with identity element 1 and a co-multiplication Δ ∶ L∞(G) →
L∞(G)⊗̄L∞(G). Moreover, ϕ and ψ are normal faithful semifinite left and right Haar
weights on L∞(G), respectively. Here, ⊗̄ denotes the von Neumann algebra tensor
product.

The predual of L∞(G) is denoted by L1(G)which is called quantum group algebra
of G. Then the pre-adjoint of the co-multiplication Δ induces on L1(G) an associative
completely contractive multiplication Δ∗ ∶ L1(G)⊗̂L1(G) → L1(G), where ⊗̂ is the
operator space projective tensor product. Therefore, L1(G) is a Banach algebra under
the product ∗ given by f ∗ g ∶= Δ∗( f ⊗ g) ∈ L1(G) for all f , g ∈ L1(G). Moreover, the
module actions of L1(G) on L∞(G) are given by

f ⋅ x ∶= (id⊗ f )(Δ(x)), x ⋅ f ∶= ( f ⊗ id)(Δ(x))

for all f ∈ L1(G) and x ∈ L∞(G).
For every locally compact quantum group G, there is a left fundamental

unitary operator W ∈ L∞(G)⊗̄L∞(Ĝ) and a right fundamental unitary operator
V ∈ L∞(Ĝ)′⊗̄L∞(G) which the co-multiplication Δ can be given in terms of W and
V by the formula

Δ(x) =W∗(1⊗ x)W = V(x ⊗ 1)V∗ (x ∈ L∞(G)) ,

where L∞(Ĝ) ∶= {( f ⊗ id)(W) ∶ f ∈ L1(G)}
′′

. The Gelfand–Naimark–Segal (GNS)
representation space for the left Haar weight will be denoted by L2(G). Put Ŵ =
σW∗σ , where σ denotes the flip operator on B(L2(G) ⊗ L2(G)), and define

Δ̂ ∶ L∞(Ĝ) → L∞(Ĝ)⊗̄L∞(Ĝ), x ↦ Ŵ∗(1⊗ x)Ŵ ,

which is a co-multiplication. One can also define a left Haar weight φ̂ and a right Haar
weight ψ̂ on L∞(Ĝ) that Ĝ = (L∞(Ĝ), �̂, φ̂, ψ̂), the dual quantum group of G, turn it
into a locally compact quantum group. Moreover, a Pontryagin duality theorem holds,
that is, ̂̂G = G (for more details, see [8, 9]). The reduced quantum group C∗-algebra of
L∞(G) is defined as

C0(G) ∶= {(id⊗ ω)(W); ω ∈ B(L2(G))∗}
∥.∥

.

We say that G is compact if C0(G) is a unital C∗-algebra. The co-multiplication
Δ maps C0(G) into the multiplier algebra M(C0(G) ⊗ C0(G)) of the minimal
C∗-algebra tensor product C0(G) ⊗ C0(G). Thus, we can define the completely
contractive product ∗ on C0(G)∗ = M(G) by

⟨ω ∗ ν, x⟩ = (ω ⊗ ν)(Δx) (x ∈ C0(G), ω, ν ∈ M(G)),

whence (M(G), ∗) is a completely contractive Banach algebra and contains L1(G)
as a norm closed two-sided ideal. If X is a Banach right L1(G)-submodule of L∞(G)
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with 1 ∈ X, then a left invariant mean on X, is a functional m ∈ X∗ satisfying

∥m∥ = ⟨m, 1⟩ = 1, ⟨m, x ⋅ f ⟩ = ⟨ f , 1⟩⟨m, x⟩ ( f ∈ L1(G), x ∈ X).

Right and (two-sided) invariant means are defined similarly. A locally compact
quantum group G is said to be amenable if there exists a left (equivalently, right, or
two-sided) invariant mean on L∞(G) (see [4, Proposition 3]). A standard argument,
used in the proof of [10, Theorem 4.1] on Lau algebras shows that G is amenable if and
only if L1(G) is left 1-amenable. We also recall that, G is called co-amenable if L1(G)
has a bounded approximate identity.

The right fundamental unitary V of G induces a co-associative co-multiplication

Δr ∶ B (L2(G)) ∋ x ↦ V(x ⊗ 1)V∗ ∈ B (L2(G)) ⊗̄B (L2(G)) ,

and the restriction of Δr to L∞(G) yields the original co-multiplication Δ on L∞(G).
The pre-adjoint of Δr induces an associative completely contractive multiplication on
space T (L2(G)) of trace class operators on L2(G), defined by

▷ ∶ T (L2(G)) ⊗̂T (L2(G)) ∋ ω ⊗ τ ↦ ω▷ τ = Δr
∗(ω ⊗ τ) ∈ T (L2(G)) ,

where ⊗̂ denotes the operator space projective tensor product.
It was shown in [6, Lemma 5.2], that the pre-annihilator L∞(G)⊥ of L∞(G) in

T (L2(G)) is a norm closed two-sided ideal in (T (L2(G)) ,▷) and the complete
quotient map

π ∶ T (L2(G)) ∋ ω ↦ f = ω∣ L∞(G) ∈ L1(G)

is a completely contractive algebra homomorphism from T▷(G) ∶= (T (L2(G)) ,▷)
onto L1(G). The multiplication▷ defines a canonical T▷(G)-bimodule structure on
B (L2(G)). Note that since V ∈ L∞(Ĝ′)⊗̄L∞(G), the bimodule action on L∞(Ĝ)
becomes rather trivial. Indeed, for x̂ ∈ L∞(Ĝ) and ω ∈ T▷(G), we have

x̂ ▷ ω = (ω ⊗ ι)V(x̂ ⊗ 1)V∗ = ⟨ω, x̂⟩1, ω▷ x̂ = (ι ⊗ ω)V(x̂ ⊗ 1)V∗ = ⟨ω, 1⟩x̂ .

This implies that L∞(Ĝ) ⊆WAP(T▷(G)). It is also known from [6, Proposition 5.3]
that B(L2(G)) ▷ T▷(G) ⊆ L∞(G). In particular, the actions of T▷(G) on L∞(G)
satisfies

ω▷ x = π(ω) ⋅ x , x ▷ ω = x ⋅ π(ω)

for all ω ∈ T▷(G) and x ∈ L∞(G).

3 Invariant means on weakly almost periodic functionals

Let I be a closed ideal of the Banach algebra A. Then for every b ∈ I and x ∈ I∗, define
x ● b, b ● x ∈ A∗ as follows:

⟨x ● b, a⟩ = ⟨x , ba⟩, ⟨b ● x , a⟩ = ⟨x , ab⟩ (a ∈ A) .
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We note that, given a ∈ A, b1 , b2 ∈ I, and x ∈ I∗, for a′ ∈ A, we have

⟨a ⋅ ((b1 ⋅ x) ● b2), a′⟩ = ⟨(b1 ⋅ x) ● b2 , a′a⟩ = ⟨b1 ⋅ x , b2a′a⟩ = ⟨x , b2a′ab1⟩
= ⟨ab1 ⋅ x , b2a′⟩ = ⟨(ab1 ⋅ x) ● b2 , a′⟩,

so that, a ⋅ ((b1 ⋅ x) ● b2) = (ab1 ⋅ x) ● b2.

Lemma 3.1 Let A be a Banach algebra, and let I be a closed ideal of A with a bounded
approximate identity. Then

WAP(I) ● I ⊆WAP(A), I ●WAP(I) ⊆WAP(A).

Proof Let x ∈WAP(I) and b1 , b2 ∈ I. Suppose that (an) is a bounded sequence in
A. Then (anb1) is a bounded sequence in I and so by weak compactness of the map
λx ∶ I → I∗, there is a subsequence (an j b1) of (anb1) such that (an j b1 ⋅ x) converges
weakly in I∗ to some y ∈ I∗. Now, for each m ∈ A∗∗, define the functional b2 ●m ∈ I∗∗
as follows:

⟨b2 ●m, z⟩ = ⟨m, z ● b2⟩ (z ∈ I∗).

It follows that

⟨m, an j ⋅ ((b1 ⋅ x) ● b2)⟩ = ⟨m, (an j b1 ⋅ x) ● b2⟩

= ⟨b2 ●m, an j b1 ⋅ x⟩ → ⟨b2 ●m, y⟩
= ⟨m, y ● b2⟩

for all m ∈ A∗∗. That is, (b1 ⋅ x) ● b2 ∈WAP(A). Since I has a bounded right approxi-
mate identity, it follows from [2, Proposition 3.12] that I ⋅WAP(I) =WAP(I). This
shows that WAP(I) ● I ⊆WAP(A). The inclusion I ●WAP(I) ⊆WAP(A) can be
proved similarly. ∎

Theorem 3.2 Let A be a Banach algebra with φ ∈ sp(A), and let I be a closed ideal
of A with a bounded approximate identity such that I /⊆ ker φ. Then the following
statements are equivalent:
(i) WAP(I) has a right (left) invariant φ∣I-mean.
(ii) WAP(A) has a right (left) invariant φ-mean.

Proof We only prove the right version of the theorem. Similar arguments will
establish the left side version.

(i) ⇒ (ii). Let m be a right invariant φ∣I-mean on WAP(I). This means that for
every x ∈WAP(I) and b ∈ I, we have

⟨m, b ⋅ x⟩ = φ(b)⟨m, x⟩.

We denote by ı ∶ I → A the canonical embedding map. By [18, Corollary to Lemma 1],
the map R ∶= ı∗ ∶ A∗ → I∗ maps WAP(A) to WAP(I). Define m̃ ∶= m ○ R ∈ A∗∗. It
is easy to see that ⟨m̃, φ⟩ = 1. Let (eα) be a bounded approximate identity for I.
By [2, Proposition 3.12], we have I ⋅WAP(I) =WAP(I) ⋅ I =WAP(I). Thus, limα eα ⋅
R(y) = R(y) for all y ∈WAP(A). Moreover, by [14, Proposition 2.1.6], WAP(I)
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becomes a Banach A-bimodule and since I is an ideal in A, it is not hard check
that R(a ⋅ y) = a ⋅ R(y) for all a ∈ A and y ∈WAP(A). Therefore, for every a ∈ A and
y ∈WAP(A), we have

⟨m̃, a ⋅ y⟩ = ⟨m, R(a ⋅ y)⟩ = ⟨m, a ⋅ R(y)⟩
= lim

α
⟨m, a ⋅ (eα ⋅ R(y))⟩ = lim

α
⟨m, aeα ⋅ R(y)⟩

= lim
α

φ(aeα)⟨m, R(y)⟩ = φ(a)φ(eα)⟨m̃, y⟩ = φ(a)⟨m̃, y⟩.

Thus, m̃ is a right invariant φ-mean on WAP(A).
(ii) ⇒ (i). Let m ∈ A∗∗ be a right invariant φ-mean on WAP(A). Fix b0 ∈ I

with φ(b0) = 1. Since WAP(I) ● b0 ⊆WAP(A), by Lemma 3.1, we can define m̃ ∈
WAP(I)∗ as follows:

⟨m̃, x⟩ = ⟨m, x ● b0⟩ (x ∈WAP(I)) .

It is easily verified that

⟨m̃, φ∣I⟩ = ⟨m, φ∣I ● b0⟩ = ⟨m, φ⟩ = 1.

Moreover, for every b ∈ I and x ∈WAP(I), we have

⟨m̃, b ⋅ x⟩ = ⟨m, (b ⋅ x) ● b0⟩ = ⟨m, b ⋅ (x ● b0)⟩
= φ∣ I (b) ⟨m, x ● b0⟩
= φ∣ I (b) ⟨m̃, x⟩.

Therefore, m̃ is a right φ∣ I-mean on WAP(I). ∎

Remark 3.3 We would like to point out the following fact related to right and left
invariant φ-means on WAP(A). Suppose that m is a left invariant φ-mean and n
is a right invariant φ-mean on WAP(A). Using weak∗-continuity of the maps p ↦
p ◻m and p ↦ n◇ p on WAP(A)∗, we obtain that m = n(φ)m = n ◻m = n◇m =
m(φ)n = n. In particular, if there is an invariant φ-mean on WAP(A), then it is
unique.

We now consider some special cases. Suppose that G is a locally compact quantum
group. Then G has a canonical co-involution R, called the unitary antipode of G.
That is,R ∶ L∞(G) �→ L∞(G) is a ∗-anti-homomorphism satisfyingR2 = id and Δ ○
R = σ(R⊗R) ○ Δ, where σ is the flip map on L2(G) ⊗ L2(G). Then R induces a
completely isometric involution on L1(G) defined by

⟨x , f ′⟩ = ⟨ f ,R(x∗)⟩ (x ∈ L∞(G), f ∈ L1(G)).

Hence, L1(G) becomes an involutive Banach algebra.
Now, assume that m is a left (resp. right) invariant 1-mean on WAP(L1(G)),

and let m̃ ∈ L∞(G)∗ be a Hahn–Banach extension of m. It is not hard to see that
n ∶= m̃○∣WAP(L1(G) is a right (resp. left) invariant 1-mean on WAP(L1(G)), where
○ ∶ L∞(G)∗ → L∞(G)∗ , m ↦ m○ is the unique weak∗-weak∗ continuous extension
of the involution on L1(G) which is called the linear involution (see [2, Chapter 2,
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p. 18]. Thus, by Remark 3.3, we obtain that any left (resp. right) invariant 1-mean on
WAP(L1(G)) is unique and (two-sided) invariant.

Our next result yields a generalization of [12, Theorem 2.3] which is concerned
with the group algebra L1(G) as an ideal in the measure algebra M(G), for a locally
compact group G.

Corollary 3.4 Let G be a co-amenable locally compact quantum group. Then
WAP(L1(G)) has a right invariant 1-mean or equivalently has an invariant 1-mean if
and only if WAP(M(G)) has an invariant 1-mean.

Proposition 3.5 Let A is a Banach algebra, and let I is a closed ideal in A. Let
φ ∈ sp(A) be such that I /⊆ ker φ. Then A∗ admits a right invariant φ-mean if and only
if I∗ admits a right invariant φ∣I-mean.

Proof To see this, first note that, since we can identify I∗∗ with I⊥⊥, it follows that
I∗∗ is a closed ideal inA∗∗ (see [2, p. 17]). Fix b0 ∈ I with φ(b0) = 1. Now, suppose that
m ∈ A∗∗ is a right invariant φ-mean on A∗. Since I∗∗ is an ideal in A∗∗, we obtain
that b0 ◻m ∈ I∗∗. Furthermore, ⟨b0 ◻m, φ⟩ = 1 and

(b0 ◻m) ◻ b = φ(b)b0 ◻m

for all b ∈ I. Thus, b0 ◻m is a right invariant φ∣I-mean on I∗. For the converse, suppose
that m ∈ I∗∗ is a right invariant φ∣I-mean on I∗. Then

m ◻ a = (m ◻ b0) ◻ a = m ◻ (b0a) = φ(b0a)m = φ(a)m

for all a ∈ A. This shows that m is a right invariant φ-mean on A∗. ∎

Before giving the next result, we recall that a Banach algebra A is weakly sequen-
tially complete if every weakly Cauchy sequence in A is weakly convergent in A.
For example, preduals of von Neumann algebras are weakly sequentially complete
(see [15]).

Proposition 3.6 Let G be a locally compact quantum group such that WAP(L1(G))
has an invariant 1-mean, and let I be a closed ideal of L1(G) with a bounded approxi-
mate identity such that I /⊆ ker 1. If I is Arens regular, then G is compact.

Proof By assumption and Theorem 3.2, we conclude that WAP(I) has a right
invariant 1-mean. Since I is Arens regular, we have that WAP(I) = I∗. This implies
that I is right 1-amenable. Now, by Proposition 3.5, we obtain that L1(G) is right
1-amenable or equivalently, G is amenable. Thus, there is an invariant 1-mean on
L∞(G). Again by two-sided version of Proposition 3.5, we conclude that there is an
invariant 1-mean m on I∗. Since I is Arens regular and weakly sequentially complete,
it follows from [7, Theorem 3.9] that m ∈ I. Therefore, for every f ∈ L1(G), we have

f ∗m = f ∗ (m ∗m) = ( f ∗m) ∗m = ⟨ f ∗m, 1⟩m = ⟨ f , 1⟩m.

Thus, m is a left invariant 1-mean belonging to L1(G), and equivalently G is compact
(see [1, Proposition 3.1]). ∎
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Theorem 3.7 Let G be a locally compact quantum group such that WAP(L1(G)) has
an invariant 1-mean, and let I be a closed ideal of L1(G) with a bounded approximate
identity such that I /⊆ ker 1. Then I is Arens regular if and only if it is reflexive.

Proof If I is reflexive, then I is clearly Arens regular. Conversely, suppose that I
is Arens regular. Then G is compact by Proposition 3.6 and so by [13, Theorem 3.8],
L1(G) is an ideal in its bidual. Since I has a bounded approximate identity, Cohen’s
Factorization theorem implies that I ∗ I = {a ∗ b ∶ a, b ∈ I} = I. Hence, we drive that

I ◻ I∗∗ = (I ∗ I) ◻ I∗∗ ⊆ I ◻ (I ◻ L1(G)∗∗) ⊆ I ∗ L1(G) ⊆ I.

This shows that I is a right ideal in its bidual. Thus, by [16, Corollar ies 3.7 and 3.9],
we obtain that I is reflexive. ∎

Dually to [5, Proposition 3.14], we obtain the result below for the group algebra
L1(G) of a locally compact group G. We would like to recall that WAP(L1(G)) admits
an invariant mean.

Corollary 3.8 Let G be a locally compact group, and let I be a closed ideal of L1(G)
with a bounded approximate identity such that I /⊆ ker 1. Then I is Arens regular if and
only if it is reflexive.

4 Convolution trace class operators

We recall from [10] that a Lau algebra A is a Banach algebra such that A∗ is a
von Neumann algebra whose unit 1 lies in the spectrum of A. Let G be a locally
compact quantum group. Then it is easy to see that 1 = 1 ○ π ∈ sp(T▷(G)). Now, since
B(L2(G)) is a von Neumann algebra, it follows that T▷(G) is a Lau algebra. In this
section, we are interested to study the relation between the existence of left or right
invariant 1-means on WAP(T▷(G)) and on WAP(L1(G)).

Lemma 4.1 Let G be a locally compact quantum group. Then

WAP(T▷(G)) ▷ T▷(G) ⊆WAP(L1(G)).

Proof Suppose that x ∈WAP(T▷(G)) and w ∈ T▷(G). Let ( fk)k be a bounded
sequence in L1(G). For each k, let wk ∈ T▷(G) be a normal extension of fk . By weak
compactness of the map λx ∶ T▷(G) → B(L2(G)), there is a subsequence (wk j) of
(wk) such that (wk j ▷ x) converges weakly in B(L2(G)) to some y ∈ B(L2(G)). It
is easy to check that (wk j ▷ x ▷w) converges weakly in B(L2(G)) to y▷w. Now,
let m ∈ L∞(G)∗, and let m̃ ∈ B(L2(G))∗ be a Hahn–Banach extension of m. Since
B(L2(G)) ▷ T▷(G) ⊆ L∞(G), we have

⟨m, fk j ⋅ (x ▷w)⟩ = ⟨m̃, wk j ▷ x ▷w⟩ → ⟨m̃, y▷w⟩ = ⟨m, y▷w⟩.

This shows that x ▷w ∈WAP(L1(G)). ∎

Theorem 4.2 Let G be a locally compact quantum group. Then WAP(L1(G)) has a
right invariant 1-mean if and only if WAP(T▷(G)) has a right invariant 1-mean.
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Proof Let m be a right invariant 1-mean on WAP(L1(G)). Define m̃ ∈WAP
(T▷(G))∗ by ⟨m̃, x⟩ = ⟨m, x ▷w0⟩ for all x ∈WAP(T▷(G)), where w0 ∈ T▷(G)
with ∥w0∥ = ⟨w0 , 1⟩ = 1. Then it is easy to check that ⟨m̃, 1⟩ = 1. Moreover, we have

⟨m̃, w▷ x⟩ = ⟨m, w▷ (x ▷w0)⟩
= ⟨m, π(w) ⋅ (x ▷w0)⟩
= ⟨w , 1⟩⟨m, x ▷w0⟩
= ⟨w , 1⟩⟨m̃, x⟩

for all w ∈ T▷(G) and x ∈WAP(T▷(G)), proving that m̃ is a right invariant 1-mean
on WAP(T▷(G)).

Conversely, suppose that n is a right invariant 1-mean on WAP(T▷(G)). Since
π ∶ T▷(G) → L1(G) is a continuous algebra homomorphism, it follows from [18,
Corollary to Lemma 1] that the map π∗ maps WAP(L1(G)) to WAP(T▷(G)). Thus,
we can define ñ ∈WAP(L1(G))∗ by ñ ∶= n ○ π∗. It is easily verified that ⟨ñ, 1⟩ = 1. For
every f ∈ L1(G) and x ∈WAP(L1(G)), let w ∈ T▷(G) be a normal extension of f.
Then we have

⟨π∗( f ⋅ x), w′⟩ = ⟨ f ⋅ x , π(w′)⟩ = ⟨x , π(w′) ∗ π(w)⟩
= ⟨π∗(x), w′▷w⟩
= ⟨w▷ π∗(x), w′⟩,

for all w′ ∈ T▷(G). Therefore,

⟨ñ, f ⋅ x⟩ = ⟨n, π∗( f ⋅ x)⟩
= ⟨n, w▷ π∗(x)⟩
= ⟨w , 1⟩⟨n, π∗(x)⟩
= ⟨ f , 1⟩⟨ñ, x⟩.

That is, ñ is a right invariant 1-mean on WAP(L1(G)). ∎

Before giving the next result, recall that if G = L∞(G) for a locally compact group
G, then T▷(G) is the convolution algebra introduced by Neufang in [11].

Corollary 4.3 Let G be a locally compact group, and let G = L∞(G). Then
WAP(T▷(G)) admits a right invariant 1-mean.

Theorem 4.4 Let G be a locally compact quantum group. Then WAP(T▷(G)) has a
left invariant 1-mean if and only if G is trivial.

Proof Let m be a left invariant 1-mean on WAP(T▷(G)). Then for every x ∈
WAP(T▷(G)), we have m ⋅ x = ⟨m, x⟩1, by left invariance. Now, consider the map

E ∶WAP(T▷(G)) →WAP(T▷(G))
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defined by E(x) = m ⋅ x = ⟨m, x⟩1 for all x ∈WAP(T▷(G)). Then for every x̂ ∈
L∞(Ĝ), we have

E(x̂) = m ⋅ x̂ = ⟨m, 1⟩x̂ = x̂ .

These prove that L∞(Ĝ) = E(L∞(Ĝ)) ⊆ C1. Therefore, L∞(Ĝ) = C1 and so G is
trivial. ∎
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