

Invariant means on weakly almost periodic functionals with application to quantum groups

Ali Ebrahimzadeh Esfahani, Mehdi Nemati, and Mohammad Reza Ghanei

Abstract. Let A be a Banach algebra, and let *φ* be a nonzero character on A. For a closed ideal *I* of A with $I \notin \ker \varphi$ such that *I* has a bounded approximate identity, we show that WAP(A), the space of weakly almost periodic functionals on A, admits a right (left) invariant *φ*-mean if and only if WAP(*I*) admits a right (left) invariant $\varphi|_I$ -mean. This generalizes a result due to Neufang for the group algebra $L^1(G)$ as an ideal in the measure algebra $M(G),$ for a locally compact group $G.$ Then we apply this result to the quantum group algebra $L^1(\mathbb{G})$ of a locally compact quantum group $\mathbb{G}.$ Finally, we study the existence of left and right invariant 1-means on $\text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G}))$.

1 Introduction

Let A be a Banach algebra. Then A^* is canonically a Banach A-bimodule with the actions

$$
\langle x \cdot a, b \rangle = \langle x, ab \rangle, \quad \langle a \cdot x, b \rangle = \langle x, ba \rangle
$$

for all $a, b \in A$ and $x \in A^*$. There are two naturally defined products, which we denote by \Box and \diamond on the second dual \mathcal{A}^{**} of \mathcal{A} , each extending the product on \mathcal{A} . For *m*, *n* ∈ A^{**} and $x \in A^*$, the first Arens product \Box in A^{**} is given as follows:

$$
\langle m \sqcap n, x \rangle = \langle m, n \cdot x \rangle,
$$

where $n \cdot x \in A^*$ is defined by $\langle n \cdot x, a \rangle = \langle n, x \cdot a \rangle$ for all $a \in A$. Similarly, the second Arens product \diamond in A^{**} satisfies

$$
\langle m \diamond n, x \rangle = \langle n, x \cdot m \rangle,
$$

where $x \cdot m \in A^*$ is given by $\langle x \cdot m, a \rangle = \langle m, a \cdot x \rangle$ for all $a \in A$. The Banach algebra A is called Arens regular if \Box and \diamondsuit coincide on \mathcal{A}^{**} .

We denote the spectrum of A by $sp(A)$. Let $\varphi \in sp(A)$, and let X be a Banach right A-submodule of A^* with $\varphi \in X$. Then a left invariant φ -mean on X is a functional

Received by the editors January 5, 2023; revised January 5, 2023; accepted January 9, 2023. Published online on Cambridge Core January 16, 2023.

AMS subject classification: **22D15**, **43A07**, **46H10**.

Keywords: Closed ideal, locally compact quantum group, invariant mean, weakly almost periodic functional.

m ∈ *X*[∗] satisfying

$$
\langle m, \varphi \rangle = 1, \quad \langle m, x \cdot a \rangle = \varphi(a) \langle m, x \rangle \quad (a \in \mathcal{A}, x \in X).
$$

Right and (two-sided) invariant *φ*-means are defined similarly. The Banach algebra A is called left φ -amenable if there exists a left invariant φ -mean on \mathcal{A}^* (see [\[7\]](#page-9-0)). This notion generalizes the concept of left amenability for Lau algebras, a class of Banach algebras including all convolution quantum group algebras, which was first introduced and studied in [\[10\]](#page-9-1).

A Banach right (resp. left) A-submodule *X* of A[∗] is called left (resp. right) introverted if $X^* \cdot X \subseteq X$ (resp. $X \cdot X^* \subseteq X$). In this case, X^* is a Banach algebra with the multiplication induced by the first (resp. second) Arens product \Box (resp. \diamondsuit) inherited from A∗∗. A Banach A-subbimodule *X* of A[∗] is called introverted if it is both left and right introverted (see [\[2,](#page-9-2) Chapter 5] for details).

An element *x* of A^* is weakly almost periodic if the map $\lambda_x : a \mapsto a \cdot x$ from A into A^* is a weakly compact operator. Let $WAP(A)$ denote the closed subspace of A^* consisting of the weakly almost periodic functionals on A. Then $WAP(A)$ is an introverted subspace of A^* containing sp(A). We would like to recall from [\[2,](#page-9-2) Proposition 3.11] that $m \square n = m \diamond n$ for all $m, n \in \text{WAP}(\mathcal{A})^*$. Now suppose that I is a closed ideal in A with a bounded approximate identity. Then, by [\[2,](#page-9-2) Proposition 3.12] WAP(I) is a neo-unital Banach I -bimodule; that is, WAP(I) = $I \cdot \text{WAP}(I) = \text{WAP}(I) \cdot I$. Moreover, $\text{WAP}(I)$ becomes a Banach A-bimodule (see [\[14,](#page-9-3) Proposition 2.1.6]).

In the case that A is the group algebra $L^1(G)$ of a locally compact group G , it is known that $\operatorname{WAP}(L^1(G))$ admits an invariant mean, which is unique, that is, a norm one functional $m \in L^1(G)^{**}$ with $\langle m, 1 \rangle = 1$ and

$$
\langle m, f \cdot x \rangle = \langle m, x \cdot f \rangle = f(1) \langle m, x \rangle
$$

for all $x \in \text{WAP}(L^1(G))$ and $f \in L^1(G)$ (see [\[17\]](#page-9-4)).

Furthermore, it is known from [\[3,](#page-9-5) Proposition 5.16] that if *G* is discrete or amenable, then $WAP(M(G))$ admits an invariant mean, which is unique, where *M*(*G*) denotes the measure algebra of *G*. Recently, Neufang in [\[12\]](#page-9-6) generalized this latter result to arbitrary locally compact groups, thereby answering a question posed in [\[3\]](#page-9-5).

In this article, we generalize the main result of [\[12\]](#page-9-6) to an arbitrary Banach algebra A. More precisely, for $\varphi \in sp(A)$, we show that if *I* is a closed ideal of *A* with a bounded approximate identity such that $I \notin \text{ker } \varphi$, then WAP(A) admits a right (left) invariant *φ*-mean if and only if WAP(*I*) admits a right (left) invariant *φ*∣*I*-mean. Applying our results to algebras over locally compact (quantum) groups, we show that, if*I* is a closed ideal of $L^1(G)$ with a bounded approximate identity such that $I\notin$ ker 1, then I is Arens regular if and only if it is reflexive.

Finally, for a locally compact quantum group G, we characterize the existence of left and right invariant 1-means on WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$), where $\mathcal{T}_{\triangleright}(\mathbb{G})$ denotes the trace class operators on $L^2(\mathbb{G})$, but equipped with a product different from composition (see [\[6\]](#page-9-7).

2 Preliminaries

The class of locally compact quantum groups was first introduced and studied by Kustermans and Vaes [\[8,](#page-9-8) [9\]](#page-9-9). Recall that a (*von Neumann algebraic*) *locally compact quantum group* is a quadruple $\mathbb{G} = (L^{\infty}(\mathbb{G}), \Delta, \phi, \psi)$, where $L^{\infty}(\mathbb{G})$ is a von Neumann algebra with identity element 1 and a co-multiplication Δ ∶ *L*∞(G) → *L*[∞](G)⊗*L*[∞](G). Moreover, ϕ and ψ are normal faithful semifinite left and right Haar weights on $L^{\infty}(\mathbb{G})$, respectively. Here, $\bar{\otimes}$ denotes the von Neumann algebra tensor product.

The predual of $L^\infty(\mathbb{G})$ is denoted by $L^1(\mathbb{G})$ which is called *quantum group algebra* of G. Then the pre-adjoint of the co-multiplication Δ induces on $L^1(\mathbb{G})$ an associative completely contractive multiplication $\Delta_*: L^1(\mathbb{G}) \widehat{\otimes} L^1(\mathbb{G}) \to L^1(\mathbb{G})$, where $\widehat{\otimes}$ is the operator space projective tensor product. Therefore, $L^1(\mathbb{G})$ is a Banach algebra under the product $*$ given by $f * g := \Delta_*(f \otimes g) \in L^1(\mathbb{G})$ for all $f, g \in L^1(\mathbb{G})$. Moreover, the module actions of $L^1(\mathbb{G})$ on $L^\infty(\mathbb{G})$ are given by

$$
f \cdot x := (\mathrm{id} \otimes f)(\Delta(x)), \quad x \cdot f := (f \otimes \mathrm{id})(\Delta(x))
$$

for all $f \in L^1(\mathbb{G})$ and $x \in L^\infty(\mathbb{G})$.

For every locally compact quantum group G, there is a left fundamental unitary operator $W \in L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$ and a right fundamental unitary operator *V* ∈ *L*[∞]($\widehat{\mathbb{G}}$)′⊗*L*[∞](\mathbb{G}) which the co-multiplication Δ can be given in terms of *W* and *V* by the formula

$$
\Delta(x) = W^*(1 \otimes x)W = V(x \otimes 1)V^* \quad (x \in L^{\infty}(\mathbb{G})),
$$

where $L^\infty(\widehat{\mathbb{G}})\coloneqq\{\text{$(f\otimes\mathrm{id})$}(\text{W})\ :\ f\in L^1(\mathbb{G})\}\H.$ The Gelfand–Naimark–Segal (GNS) representation space for the left Haar weight will be denoted by $L^2(\mathbb{G})$. Put \widehat{W} = *σW*^{*}*σ*, where *σ* denotes the flip operator on $B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G}))$, and define

$$
\widehat{\Delta}: L^{\infty}(\widehat{\mathbb{G}})\to L^{\infty}(\widehat{\mathbb{G}})\tilde{\otimes}L^{\infty}(\widehat{\mathbb{G}}), \quad x\mapsto \widehat{W}^{*}(1\otimes x)\widehat{W},
$$

which is a co-multiplication. One can also define a left Haar weight $φ$ and a right Haar weight *ψ*ˆ on *L*[∞](Ĝ) that Ĝ = (*L*[∞](Ĝ), *-*̂, *φ*ˆ, *ψ*ˆ), the *dual quantum group* of G, turn it into a locally compact quantum group. Moreover, a Pontryagin duality theorem holds, that is, ̂̂ G = G (for more details, see [\[8,](#page-9-8) [9\]](#page-9-9)). The *reduced quantum group C*[∗]*-algebra* of *L*[∞](G) is defined as

$$
C_0(\mathbb{G}) \coloneqq \overline{\{(id \otimes \omega)(W); \ \omega \in B(L^2(\mathbb{G}))_*\}}^{\|\cdot\|}.
$$

We say that $\mathbb G$ is *compact* if $C_0(\mathbb G)$ is a unital C^* -algebra. The co-multiplication Δ maps $C_0(\mathbb{G})$ into the multiplier algebra $M(C_0(\mathbb{G}) \otimes C_0(\mathbb{G}))$ of the minimal *C*[∗]-algebra tensor product *C*₀(\mathbb{G}) ⊗ *C*₀(\mathbb{G}). Thus, we can define the completely contractive product $*$ on $C_0(\mathbb{G})^* = M(\mathbb{G})$ by

$$
\langle \omega * \nu, x \rangle = (\omega \otimes \nu)(\Delta x) \quad (x \in C_0(\mathbb{G}), \omega, \nu \in M(\mathbb{G})),
$$

whence $(M(\mathbb{G}),\ast)$ is a completely contractive Banach algebra and contains $L^1(\mathbb{G})$ as a norm closed two-sided ideal. If *X* is a Banach right *L*¹ (G)-submodule of *L*[∞](G) with 1 ∈ *X*, then a left invariant mean on *X*, is a functional $m \in X^*$ satisfying

$$
||m|| = \langle m, 1 \rangle = 1, \quad \langle m, x \cdot f \rangle = \langle f, 1 \rangle \langle m, x \rangle \quad (f \in L^1(\mathbb{G}), x \in X).
$$

Right and (two-sided) invariant means are defined similarly. A locally compact quantum group G is said to be amenable if there exists a left (equivalently, right, or two-sided) invariant mean on *L*∞(G) (see [\[4,](#page-9-10) Proposition 3]). A standard argument, used in the proof of [\[10,](#page-9-1) Theorem 4.1] on Lau algebras shows that G is amenable if and only if $L^1(\mathbb{G})$ is left 1-amenable. We also recall that, \mathbb{G} is called *co-amenable* if $L^1(\mathbb{G})$ has a bounded approximate identity.

The right fundamental unitary *V* of $\mathbb G$ induces a co-associative co-multiplication

$$
\Delta^r : \mathcal{B}\left(L^2(\mathbb{G})\right) \ni x \mapsto V(x \otimes 1)V^* \in \mathcal{B}\left(L^2(\mathbb{G})\right) \tilde{\otimes} \mathcal{B}\left(L^2(\mathbb{G})\right),
$$

and the restriction of Δ^r to $L^\infty(\mathbb{G})$ yields the original co-multiplication Δ on $L^\infty(\mathbb{G})$. The pre-adjoint of Δ*^r* induces an associative completely contractive multiplication on space $\mathfrak{T}(L^2(\mathbb{G}))$ of trace class operators on $L^2(\mathbb{G})$, defined by

$$
\triangleright : \mathfrak{T}\left(L^{2}(\mathbb{G})\right) \widehat{\otimes} \mathfrak{T}\left(L^{2}(\mathbb{G})\right) \ni \omega \otimes \tau \mapsto \omega \triangleright \tau = \Delta_{*}^{r}\left(\omega \otimes \tau\right) \in \mathfrak{T}\left(L^{2}(\mathbb{G})\right),
$$

where ⊗̂ denotes the operator space projective tensor product.

It was shown in [\[6,](#page-9-7) Lemma 5.2], that the pre-annihilator $L^{\infty}(\mathbb{G})$ _⊥ of $L^{\infty}(\mathbb{G})$ in $\mathfrak{T}(L^2(\mathbb{G}))$ is a norm closed two-sided ideal in $(\mathfrak{T}(L^2(\mathbb{G})), \triangleright)$ and the complete quotient map

$$
\pi: \mathfrak{T}\left(L^2(\mathbb{G})\right) \ni \omega \mapsto f = \omega|_{L^{\infty}(\mathbb{G})} \in L^1(\mathbb{G})
$$

is a completely contractive algebra homomorphism from $\mathcal{T}_{\triangleright}(\mathbb{G}) \coloneqq (\mathcal{T}(L^2(\mathbb{G})), \triangleright)$ onto $L^1(\mathbb{G}).$ The multiplication \vartriangleright defines a canonical $\mathfrak{T}_{\vartriangleright}(\mathbb{G})$ -bimodule structure on $\mathcal{B}\left(L^2(\mathbb{G})\right)$. Note that since $V\in L^\infty(\widehat{\mathbb{G}}')\bar{\otimes}L^\infty(\mathbb{G}),$ the bimodule action on $L^\infty(\widehat{\mathbb{G}})$ becomes rather trivial. Indeed, for $\hat{x} \in L^{\infty}(\widehat{\mathbb{G}})$ and $\omega \in \mathcal{T}_{\infty}(\mathbb{G})$, we have

$$
\hat{x} \triangleright \omega = (\omega \otimes \iota)V(\hat{x} \otimes 1)V^* = (\omega, \hat{x})1, \quad \omega \triangleright \hat{x} = (\iota \otimes \omega)V(\hat{x} \otimes 1)V^* = (\omega, 1)\hat{x}.
$$

This implies that $L^{\infty}(\widehat{\mathbb{G}}) \subseteq \text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G}))$. It is also known from [\[6,](#page-9-7) Proposition 5.3] that $B(L^2(\mathbb{G})) \triangleright \mathcal{T}_D(\mathbb{G}) \subseteq L^\infty(\mathbb{G})$. In particular, the actions of $\mathcal{T}_D(\mathbb{G})$ on $L^\infty(\mathbb{G})$ satisfies

$$
\omega \triangleright x = \pi(\omega) \cdot x, \quad x \triangleright \omega = x \cdot \pi(\omega)
$$

for all $\omega \in \mathcal{T}_{\infty}(\mathbb{G})$ and $x \in L^{\infty}(\mathbb{G})$.

3 Invariant means on weakly almost periodic functionals

Let *I* be a closed ideal of the Banach algebra A. Then for every *b* ∈ *I* and *x* ∈ *I* [∗], define $x \bullet b$, $b \bullet x \in A^*$ as follows:

$$
\langle x \bullet b, a \rangle = \langle x, ba \rangle, \quad \langle b \bullet x, a \rangle = \langle x, ab \rangle \quad (a \in \mathcal{A}).
$$

We note that, given $a \in A$, $b_1, b_2 \in I$, and $x \in I^*$, for $a' \in A$, we have

$$
\langle a \cdot ((b_1 \cdot x) \bullet b_2), a' \rangle = \langle (b_1 \cdot x) \bullet b_2, a' a \rangle = \langle b_1 \cdot x, b_2 a' a \rangle = \langle x, b_2 a' a b_1 \rangle
$$

= $\langle ab_1 \cdot x, b_2 a' \rangle = \langle (ab_1 \cdot x) \bullet b_2, a' \rangle$,

so that, $a \cdot ((b_1 \cdot x) \cdot b_2) = (ab_1 \cdot x) \cdot b_2$.

Lemma 3.1 *Let* A *be a Banach algebra, and let I be a closed ideal of* A *with a bounded approximate identity. Then*

$$
\text{WAP}(I) \bullet I \subseteq \text{WAP}(\mathcal{A}), \quad I \bullet \text{WAP}(I) \subseteq \text{WAP}(\mathcal{A}).
$$

Proof Let $x \in \text{WAP}(I)$ and $b_1, b_2 \in I$. Suppose that (a_n) is a bounded sequence in A. Then $(a_n b_1)$ is a bounded sequence in *I* and so by weak compactness of the map $\lambda_x : I \to I^*$, there is a subsequence $(a_{n_j}b_1)$ of (a_nb_1) such that $(a_{n_j}b_1 \cdot x)$ converges weakly in *I*^{*} to some $y \in I^*$. Now, for each $m \in A^{**}$, define the functional $b_2 \bullet m \in I^{**}$ as follows:

$$
\langle b_2 \bullet m, z \rangle = \langle m, z \bullet b_2 \rangle \quad (z \in I^*).
$$

It follows that

$$
\langle m, a_{n_j} \cdot ((b_1 \cdot x) \bullet b_2) \rangle = \langle m, (a_{n_j}b_1 \cdot x) \bullet b_2 \rangle
$$

= $\langle b_2 \bullet m, a_{n_j}b_1 \cdot x \rangle \rightarrow \langle b_2 \bullet m, y \rangle$
= $\langle m, y \bullet b_2 \rangle$

for all $m \in A^{**}$. That is, $(b_1 \cdot x) \bullet b_2 \in \text{WAP}(\mathcal{A})$. Since *I* has a bounded right approxi-mate identity, it follows from [\[2,](#page-9-2) Proposition 3.12] that $I \cdot \text{WAP}(I) = \text{WAP}(I)$. This shows that $WAP(I) \bullet I \subseteq WAP(A)$. The inclusion $I \bullet WAP(I) \subseteq WAP(A)$ can be proved similarly.

Theorem 3.2 *Let* A *be a Banach algebra with φ* ∈ sp(A)*, and let I be a closed ideal of A with a bounded approximate identity such that I* ⊈ ker *φ*. *Then the following statements are equivalent:*

- (i) WAP(*I*) *has a right (left) invariant φ*∣*I-mean.*
- (ii) WAP(*A*) *has a right (left) invariant φ-mean.*

Proof We only prove the right version of the theorem. Similar arguments will establish the left side version.

(i) \Rightarrow (ii). Let *m* be a right invariant $\varphi|_I$ -mean on WAP(*I*). This means that for every $x \in \text{WAP}(I)$ and $b \in I$, we have

$$
\langle m, b\cdot x\rangle = \varphi(b)\langle m, x\rangle.
$$

We denote by $\iota: I \to A$ the canonical embedding map. By [\[18,](#page-9-11) Corollary to Lemma 1], the map $R := \iota^* : A^* \to I^*$ maps $WAP(\mathcal{A})$ to $WAP(I)$. Define $\widetilde{m} := m \circ R \in \mathcal{A}^{**}$. It is easy to see that $\langle \widetilde{m}, \varphi \rangle = 1$. Let (e_{α}) be a bounded approximate identity for *I*. By [\[2,](#page-9-2) Proposition 3.12], we have $I \cdot \text{WAP}(I) = \text{WAP}(I) \cdot I = \text{WAP}(I)$. Thus, $\lim_{\alpha \to \infty} e_{\alpha}$. $R(y) = R(y)$ for all $y \in \text{WAP}(\mathcal{A})$. Moreover, by [\[14,](#page-9-3) Proposition 2.1.6], WAP(*I*) becomes a Banach A-bimodule and since *I* is an ideal in A, it is not hard check that $R(a \cdot y) = a \cdot R(y)$ for all $a \in A$ and $y \in \text{WAP}(\mathcal{A})$. Therefore, for every $a \in \mathcal{A}$ and $y \in \text{WAP}(\mathcal{A})$, we have

$$
\langle \widetilde{m}, a \cdot y \rangle = \langle m, R(a \cdot y) \rangle = \langle m, a \cdot R(y) \rangle
$$

=
$$
\lim_{\alpha} \langle m, a \cdot (e_{\alpha} \cdot R(y)) \rangle = \lim_{\alpha} \langle m, a e_{\alpha} \cdot R(y) \rangle
$$

=
$$
\lim_{\alpha} \varphi(a e_{\alpha}) \langle m, R(y) \rangle = \varphi(a) \varphi(e_{\alpha}) \langle \widetilde{m}, y \rangle = \varphi(a) \langle \widetilde{m}, y \rangle.
$$

Thus, \widetilde{m} is a right invariant φ -mean on WAP(\mathcal{A}).

(ii) \Rightarrow (i). Let *m* \in A^{**} be a right invariant *φ*-mean on WAP(*A*). Fix *b*₀ \in *I* with $\varphi(b_0) = 1$. Since WAP(*I*) $\bullet b_0 \subseteq \text{WAP}(\mathcal{A})$, by Lemma [3.1,](#page-4-0) we can define $\tilde{m} \in \mathcal{A}$ WAP(*I*)[∗] as follows:

$$
\langle \tilde{m}, x \rangle = \langle m, x \bullet b_0 \rangle \quad (x \in \text{WAP}(I)).
$$

It is easily verified that

$$
\langle \tilde{m}, \varphi |_{I} \rangle = \langle m, \varphi |_{I} \bullet b_0 \rangle = \langle m, \varphi \rangle = 1.
$$

Moreover, for every $b \in I$ and $x \in \text{WAP}(I)$, we have

$$
\langle \tilde{m}, b \cdot x \rangle = \langle m, (b \cdot x) \bullet b_0 \rangle = \langle m, b \cdot (x \bullet b_0) \rangle
$$

= $\varphi|_I(b) \langle m, x \bullet b_0 \rangle$
= $\varphi|_I(b) \langle \tilde{m}, x \rangle$.

Therefore, \tilde{m} is a right $\varphi|_I$ -mean on WAP(*I*).

Remark 3.3 We would like to point out the following fact related to right and left invariant *φ*-means on WAP(A). Suppose that *m* is a left invariant *φ*-mean and *n* is a right invariant φ -mean on WAP(A). Using weak^{*}-continuity of the maps $p \mapsto$ $p \Box m$ and $p \mapsto n \Diamond p$ on $\text{WAP}(\mathcal{A})^*$, we obtain that $m = n(\phi)m = n \Box m = n \Diamond m =$ $m(\varphi)n = n$. In particular, if there is an invariant φ -mean on WAP(A), then it is unique.

We now consider some special cases. Suppose that G is a locally compact quantum group. Then G has a canonical co-involution R , called the unitary antipode of G . That is, $\mathcal{R}: L^{\infty}(\mathbb{G}) \longrightarrow L^{\infty}(\mathbb{G})$ is a ^{*}-anti-homomorphism satisfying $\mathcal{R}^2 = id$ and $\Delta \circ$ $\mathcal{R} = \sigma(\mathcal{R} \otimes \mathcal{R}) \circ \Delta$, where σ is the flip map on $L^2(\mathbb{G}) \otimes L^2(\mathbb{G})$. Then \mathcal{R} induces a completely isometric involution on *L*¹ (G) defined by

$$
\langle x, f' \rangle = \overline{\langle f, \mathcal{R}(x^*) \rangle} \quad (x \in L^{\infty}(\mathbb{G}), f \in L^1(\mathbb{G})).
$$

Hence, *L*¹ (G) becomes an involutive Banach algebra.

Now, assume that *m* is a left (resp. right) invariant 1-mean on WAP(*L*¹ (G)), and let $\widetilde{m} \in L^{\infty}(\mathbb{G})^*$ be a Hahn–Banach extension of *m*. It is not hard to see that $n \coloneqq \widetilde{m}^{\circ}|_{\text{WAP}(L^1(\mathbb{G})}$ is a right (resp. left) invariant 1-mean on $\text{WAP}(L^1(\mathbb{G}))$, where ○ ∶ *L*[∞](G)[∗] → *L*[∞](G)[∗], *m* ↦ *m*○ is the unique weak[∗]-weak[∗] continuous extension of the involution on $L^1(\mathbb{G})$ which is called the linear involution (see [\[2,](#page-9-2) Chapter 2,

p. 18]. Thus, by Remark [3.3,](#page-5-0) we obtain that any left (resp. right) invariant 1-mean on $\operatorname{WAP}(L^1(\mathbb{G}))$ is unique and (two-sided) invariant.

Our next result yields a generalization of [\[12,](#page-9-6) Theorem 2.3] which is concerned with the group algebra $L^1(G)$ as an ideal in the measure algebra $M(G),$ for a locally compact group *G*.

Corollary 3.4 *Let* G *be a co-amenable locally compact quantum group. Then* WAP(*L*¹ (G)) *has a right invariant* 1*-mean or equivalently has an invariant* 1*-mean if and only if* WAP(*M*(G)) *has an invariant* 1*-mean.*

Proposition 3.5 *Let* A *is a Banach algebra, and let I is a closed ideal in* A*. Let φ* ∈ sp(*A*) *be such that I* ⊈ ker *φ*. Then *A*^{*} *admits a right invariant φ-mean if and only if I*[∗] *admits a right invariant φ*∣*I-mean.*

Proof To see this, first note that, since we can identify I^{**} with $I^{\perp\perp}$, it follows that *I*^{**} is a closed ideal in A^{**} (see [\[2,](#page-9-2) p. 17]). Fix $b_0 \in I$ with $\varphi(b_0) = 1$. Now, suppose that *m* ∈ A∗∗ is a right invariant *φ*-mean on A[∗]. Since *I* ∗∗ is an ideal in A∗∗, we obtain that $b_0 \square m \in I^{**}$. Furthermore, $\langle b_0 \square m, \varphi \rangle = 1$ and

$$
(b_0\sqcap m)\sqcap b=\varphi(b)b_0\sqcap m
$$

for all $b \in I$. Thus, $b_0 \square m$ is a right invariant $\varphi|_I$ -mean on I^* . For the converse, suppose that $m \in I^{**}$ is a right invariant $\varphi|_I$ -mean on I^* . Then

$$
m \sqcup a = (m \sqcup b_0) \sqcup a = m \sqcup (b_0 a) = \varphi(b_0 a) m = \varphi(a) m
$$

for all $a \in \mathcal{A}$. This shows that *m* is a right invariant φ -mean on \mathcal{A}^* .

Before giving the next result, we recall that a Banach algebra A is weakly sequentially complete if every weakly Cauchy sequence in A is weakly convergent in A . For example, preduals of von Neumann algebras are weakly sequentially complete (see [\[15\]](#page-9-12)).

Proposition 3.6 Let $\mathbb G$ be a locally compact quantum group such that $\text{WAP}(L^1(\mathbb{G}))$ has an invariant 1-mean, and let I be a closed ideal of $L^1(\mathbb{G})$ with a bounded approxi*mate identity such that* $I \notin \text{ker } I$. If *I* is Arens regular, then $\mathbb G$ is compact.

Proof By assumption and Theorem [3.2,](#page-4-1) we conclude that WAP(*I*) has a right invariant 1-mean. Since *I* is Arens regular, we have that $WAP(I) = I^*$. This implies that *I* is right 1-amenable. Now, by Proposition [3.5,](#page-6-0) we obtain that *L*¹ (G) is right 1-amenable or equivalently, G is amenable. Thus, there is an invariant 1-mean on *L*[∞](\mathbb{G}). Again by two-sided version of Proposition [3.5,](#page-6-0) we conclude that there is an invariant 1-mean *m* on *I* [∗]. Since *I* is Arens regular and weakly sequentially complete, it follows from [\[7,](#page-9-0) Theorem 3.9] that $m \in I$. Therefore, for every $\overline{f} \in L^1(\mathbb{G})$, we have

$$
f * m = f * (m * m) = (f * m) * m = (f * m, 1)m = (f, 1)m.
$$

Thus, m is a left invariant 1-mean belonging to $L^1(\mathbb{G}),$ and equivalently $\mathbb G$ is compact (see $[1,$ Proposition 3.1]).

Theorem 3.7 Let $\mathbb G$ be a locally compact quantum group such that $\mathrm{WAP}(L^1(\mathbb{G}))$ has *an invariant* 1*-mean, and let I be a closed ideal of L*¹ (G) *with a bounded approximate identity such that I* \notin ker 1*. Then I is Arens regular if and only if it is reflexive.*

Proof If *I* is reflexive, then *I* is clearly Arens regular. Conversely, suppose that I is Arens regular. Then G is compact by Proposition [3.6](#page-6-1) and so by [\[13,](#page-9-14) Theorem 3.8], *L*1 (G) is an ideal in its bidual. Since *I* has a bounded approximate identity, Cohen's Factorization theorem implies that $I * I = \{a * b : a, b \in I\} = I$. Hence, we drive that

$$
I \square I^{**} = (I \ast I) \square I^{**} \subseteq I \square (I \square L^1(\mathbb{G})^{**}) \subseteq I \ast L^1(\mathbb{G}) \subseteq I.
$$

This shows that *I* is a right ideal in its bidual. Thus, by [\[16,](#page-9-15) Corollar ies 3.7 and 3.9], we obtain that *I* is reflexive.

Dually to [\[5,](#page-9-16) Proposition 3.14], we obtain the result below for the group algebra $L^1(G)$ of a locally compact group G . We would like to recall that $\operatorname{WAP}(L^1(G))$ admits an invariant mean.

Corollary 3.8 Let G be a locally compact group, and let I be a closed ideal of $L^1(G)$ *with a bounded approximate identity such that I* ⊈ ker 1. Then *I is Arens regular if and only if it is reflexive.*

4 Convolution trace class operators

We recall from [\[10\]](#page-9-1) that a Lau algebra A is a Banach algebra such that A^* is a von Neumann algebra whose unit 1 lies in the spectrum of A. Let G be a locally compact quantum group. Then it is easy to see that $1 = 1 \circ \pi \in sp(\mathcal{T}_{\triangleright}(\mathbb{G}))$. Now, since $B(L^2(\mathbb{G}))$ is a von Neumann algebra, it follows that $\mathcal{T}_{\triangleright}(\mathbb{G})$ is a Lau algebra. In this section, we are interested to study the relation between the existence of left or right invariant 1-means on $\text{WAP}(\mathcal{T}_{\rhd}(\mathbb{G}))$ and on $\text{WAP}(L^1(\mathbb{G})).$

Lemma 4.1 *Let* G *be a locally compact quantum group. Then*

 $\text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G})) \triangleright \mathcal{T}_{\triangleright}(\mathbb{G}) \subseteq \text{WAP}(L^1(\mathbb{G})).$

Proof Suppose that $x \in WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$ and $w \in \mathcal{T}_{\triangleright}(\mathbb{G})$. Let $(f_k)_k$ be a bounded sequence in $L^1(\mathbb{G}).$ For each k , let $w_k \in \mathfrak{T}_\rhd(\mathbb{G})$ be a normal extension of $f_k.$ By weak compactness of the map $\lambda_x : \mathcal{T}_{\triangleright}(\mathbb{G}) \to B(L^2(\mathbb{G}))$, there is a subsequence (w_{k_j}) of (w_k) such that $(w_k, \triangleright x)$ converges weakly in $B(L^2(\mathbb{G}))$ to some $y \in B(L^2(\mathbb{G}))$. It is easy to check that $(w_{k_i} \triangleright x \triangleright w)$ converges weakly in $B(L^2(\mathbb{G}))$ to $y \triangleright w$. Now, let *m* ∈ *L*[∞](\mathbb{G})^{*}, and let \widetilde{m} ∈ *B*($L^2(\mathbb{G})$)^{*} be a Hahn–Banach extension of *m*. Since *B*($L^2(\mathbb{G})$) ⊳ $\mathcal{T}_{\mathcal{D}}(\mathbb{G}) \subseteq L^{\infty}(\mathbb{G})$, we have

$$
\langle m, f_{k_j} \cdot (x \triangleright w) \rangle = \langle \widetilde{m}, w_{k_j} \triangleright x \triangleright w \rangle \rightarrow \langle \widetilde{m}, y \triangleright w \rangle = \langle m, y \triangleright w \rangle.
$$

This shows that $x \triangleright w \in \text{WAP}(L^1(\mathbb{G}))$.

Theorem 4.2 Let $\mathbb G$ be a locally compact quantum group. Then $\text{WAP}(L^1(\mathbb G))$ has a *right invariant* 1*-mean if and only if* $WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$ *has a right invariant* 1*-mean.*

Proof Let *m* be a right invariant 1-mean on WAP(*L*¹ (G)). Define *m*̃ ∈ WAP $(\mathcal{T}_{\triangleright}(\mathbb{G}))^*$ by $\langle \widetilde{m}, x \rangle = \langle m, x \triangleright w_0 \rangle$ for all $x \in \text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G}))$, where $w_0 \in \mathcal{T}_{\triangleright}(\mathbb{G})$ with $||w_0|| = \langle w_0, 1 \rangle = 1$. Then it is easy to check that $\langle \widetilde{m}, 1 \rangle = 1$. Moreover, we have

$$
\langle \widetilde{m}, w \triangleright x \rangle = \langle m, w \triangleright (x \triangleright w_0) \rangle
$$

= $\langle m, \pi(w) \cdot (x \triangleright w_0) \rangle$
= $\langle w, 1 \rangle \langle m, x \triangleright w_0 \rangle$
= $\langle w, 1 \rangle \langle \widetilde{m}, x \rangle$

for all $w \in \mathcal{T}_{\triangleright}(\mathbb{G})$ and $x \in \text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G}))$, proving that \widetilde{m} is a right invariant 1-mean on $WAP(\mathcal{T}_{\infty}(\mathbb{G}))$.

Conversely, suppose that *n* is a right invariant 1-mean on $WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$. Since $\pi: \mathcal{T}_{\triangleright}(\mathbb{G}) \to L^1(\mathbb{G})$ is a continuous algebra homomorphism, it follows from [\[18,](#page-9-11) Corollary to Lemma 1] that the map π^* maps $\mathrm{WAP}(L^1(\mathbb{G}))$ to $\mathrm{WAP}(\mathcal{T}_{\rhd}(\mathbb{G}))$. Thus, we can define $\widetilde{n} \in \mathrm{WAP}(L^1(\mathbb{G}))^*$ by $\widetilde{n} \coloneqq n \circ \pi^*$. It is easily verified that $\langle \widetilde{n}, 1 \rangle = 1$. For every $f \in L^1(\mathbb{G})$ and $x \in \text{WAP}(L^1(\mathbb{G}))$, let $w \in \mathcal{T}_{\triangleright}(\mathbb{G})$ be a normal extension of *f*. Then we have

$$
\langle \pi^*(f \cdot x), w' \rangle = \langle f \cdot x, \pi(w') \rangle = \langle x, \pi(w') * \pi(w) \rangle
$$

=
$$
\langle \pi^*(x), w' \triangleright w \rangle
$$

=
$$
\langle w \triangleright \pi^*(x), w' \rangle,
$$

for all $w' \in \mathcal{T}_{\infty}(\mathbb{G})$. Therefore,

$$
\langle \widetilde{n}, f \cdot x \rangle = \langle n, \pi^*(f \cdot x) \rangle
$$

= $\langle n, w \rangle \pi^*(x) \rangle$
= $\langle w, 1 \rangle \langle n, \pi^*(x) \rangle$
= $\langle f, 1 \rangle \langle \widetilde{n}, x \rangle$.

That is, \widetilde{n} is a right invariant 1-mean on WAP($L^1(\mathbb{G})$).

Before giving the next result, recall that if $\mathbb{G} = L^{\infty}(G)$ for a locally compact group *G*, then $\mathcal{T}_{\infty}(\mathbb{G})$ is the convolution algebra introduced by Neufang in [\[11\]](#page-9-17).

Corollary 4.3 Let G be a locally compact group, and let $\mathbb{G} = L^{\infty}(G)$. Then $WAP(\mathcal{T}_{\triangleright}(\mathbb{G}))$ *admits a right invariant* 1-mean.

Theorem 4.4 Let \mathbb{G} be a locally compact quantum group. Then $\text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G}))$ has a *left invariant* 1*-mean if and only if* G *is trivial.*

Proof Let *m* be a left invariant 1-mean on WAP($\mathcal{T}_{\infty}(\mathbb{G})$). Then for every $x \in$ WAP($\mathcal{T}_{\triangleright}(\mathbb{G})$), we have $m \cdot x = \langle m, x \rangle$, by left invariance. Now, consider the map

$$
E: \text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G})) \to \text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G}))
$$

defined by $E(x) = m \cdot x = \langle m, x \rangle$ 1 for all $x \in \text{WAP}(\mathcal{T}_{\triangleright}(\mathbb{G}))$. Then for every $\hat{x} \in \mathcal{T}_{\triangleright}(\mathbb{G})$. $L^{\infty}(\hat{\mathbb{G}})$, we have

$$
E(\hat{x}) = m \cdot \hat{x} = \langle m, 1 \rangle \hat{x} = \hat{x}.
$$

These prove that $L^{\infty}(\widehat{\mathbb{G}}) = E(L^{\infty}(\widehat{\mathbb{G}})) \subseteq \mathbb{C}$ 1. Therefore, $L^{\infty}(\widehat{\mathbb{G}}) = \mathbb{C}$ 1 and so \mathbb{G} is trivial. ∎

Acknowledgment The authors are grateful to the referee for his/her careful reading of the paper and valuable suggestions.

References

- [1] E. Bédos and L. Tuset, *Amenability and co-amenability for locally compact quantum groups*. Internat. J. Math. **14** (2003), 865–884.
- [2] H. G. Dales and A. T.-M. Lau, *The second duals of Beurling algebras*. Mem. Amer. Math. Soc. **177** (2005), 836.
- [3] H. G. Dales, A. T.-M. Lau, and D. Strauss, *Second duals of measure algebras*. Dissertationes Math. **481** (2012), 1–121.
- [4] P. Desmedt, J. Quaegebeur, and S. Vaes, *Amenability and the bicrossed product construction*. Ill inois J. Math. **46** (2002), 1259–1277.
- [5] B. Forrest, *Arens regularity and discrete groups*. Pacific J. Math. **151** (1991), 217–227.
- [6] Z. Hu, M. Neufang, and Z.-J. Ruan, *Completely bounded multipliers over locally compact quantum groups*. Proc. Lond. Math. Soc. **103** (2011), 1–39.
- [7] E. Kaniuth, A. T.-M. Lau, and J. Pym, *On character amenability of Banach algebras*. J. Math. Anal. Appl. **344** (2008), 942–955.
- [8] J. Kustermans and S. Vaes, *Locally compact quantum groups*. Ann. Sci. Éc. Norm. Supér. (4) **33** (2000), 837–934.
- [9] J. Kustermans and S. Vaes, *Locally compact quantum groups in the von Neumann algebraic setting*. Math. Scand. **92** (2003), 68–92.
- [10] A. T.-M. Lau, *Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups*. Fund. Math. **118** (1983), 161–175.
- [11] M. Neufang, *Abstrakte harmonische analyse und Modulhomomorphismen uber von* ¨ *Neumann-algebren.* Ph.D. thesis, Universität des Saarlande, 2000.
- [12] M. Neufang, *Topological invariant means on almost periodic functionals: solution to problems by Dales–Lau–Strauss and daws*. Proc. Amer. Math. Soc. **145** (2017), 3595–3598.
- [13] V. Runde, *Characterizations of compact and discrete quantum groups through second duals*. J. Operator Theory **60** (2008), 415–428.
- [14] V. Runde, *Amenable Banach algebras: a panorama*. Springer Monographs in Mathematics, Springer, New York, 2020.
- [15] M. Takesaki, *Theory of operator algebras*. *Vol. 1*, Springer, Berlin, 1979.
- [16] A. Ulger, *Arens regularity sometimes implies R.N.P*. Pacific J. Math. **143** (1990), 377–399.
- [17] J. C. S. Wong, *Topologically stationary locally compact groups and amenability*. Trans. Amer. Math. Soc. **144** (1969), 351–363.
- [18] N. J. Young, *Periodicity of functionals and representations of normed algebras on reflexive spaces*. Proc. Edinb. Math. Soc. **20** (1976/77), 99–120.

Department of Mathematical Sciences, Isfahan Uinversity of Technology, Isfahan 84156-83111, Iran e-mail: ali.ebrahimzadeh@math.iut.ac.ir m.nemati@iut.ac.ir

Department of Mathematics, Khansar Campus, University of Isfahan, Isfahan, Iran e-mail: mrg.ghanei@gmail.com m.r.ghanei@khc.ui.ac.ir