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Multiplication Formulas and Canonical
Bases for Quantum Affine g ln
Dedicated to Professor Leonard Scott on the occasion of his 75th birthday.

Jie Du and Zhonghua Zhao

Abstract. Wewill give a representation-theoretic proof for themultiplication formula in the Ringel–
Hall algebraH∆(n) of a cyclic quiver ∆(n). As a ûrst application, we see immediately the existence
of Hall polynomials for cyclic quivers, a fact established by J. Y. Guo and C. M. Ringel, and derive
a recursive formula to compute them. We will further use the formula and the construction of
a monomial basis for H∆(n) given by Deng, Du, and Xiao together with the double Ringel–Hall
algebra realisation of the quantum loop algebraUv(ĝln) given byDeng, Du, and Fu to develop some
algorithms and to compute the canonical basis for U+v (ĝln). As examples, we will show explicitly
the part of the canonical basis associated with modules of Lowey length at most 2 for the quantum
group Uv(ĝl2).

1 Introduction

_e investigation of quantum algebras associated with aõneHecke algebras hasmade
signiûcant progress recently. In the aõne type A case, an algebraic approach was
developed in [4] for the Schur–Weyl theory associated with the quantum loop algebra
of gln , aõne q-Schur algebras andHecke algebras of the aõne symmetric groups. _is
approach, motivated by the algebraic approach for quantum gln , is diòerent from the
geometric approach developed in [15,23]. Further in [10,11], new realisations for these
quantum loop algebras and their integral Lusztig type form are obtained using aõne
q-Schur algebras. _is generalises the work of Beilinson–Lusztig–MacPherson [1]
to this aõne case. For aõne types of other than A, Fan et al. used aõne q-Schur
algebras of type C to construct in [13] various types of quantum symmetric pairs.
_e multiplication formulas there are much more complicated, but can be used to
study the modiûed versions of these quantum algebras and their canonical basis. In
this paper, we will see how a new multiplication formula discovered in [10] is used
to compute certain slices of the canonical basis for the +-part of the quantum loop
algebra of gln .

_e key ingredient of the approach developed in [4] is the double Ringel–Hall al-
gebra characterisation for the Drinfeld’s quantum loop algebra of gln [7]. In this way,
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the Ringel–Hall algebra of a cyclic quiver and its opposite algebra become the ±-part
of the quantum loop algebra of gln , and their generators associated with the semisim-
ple modules of the cyclic quiver play the role as done by usual Chevalley generators.
In particular, the quantum aõne Schur–Weyl duality can be described by explicit ac-
tions of these (inûnitelymany) generators associated with semisimple representations
and a new realisation, i.e., a new construction of the quantum loop algebra of gln , is
achieved through a beautiful multiplication formula of a basis element by a semisim-
ple generator. It should be pointed out that these multiplication formulas are derived
in the aõne q-Schur algebras with most of the computation done within the aõne
Hecke algebras. However, when the formulas restrict to the ±-part, they result in
multiplication formulas for (generic) Ringel–Hall algebras of a cyclic quiver. _us, a
natural question arises: Is there a direct proof for these formulas as a quantumization1

of Hall numbers associated with representations of a cyclic quiver over ûnite ûelds?
In this paper, we ûrst provide a representation-theoretic proof for the multipli-

cation formula in the Ringel–Hall algebra (_eorem 2.1). One key idea used in the
proof is the bijective correspondence between the m-dimensional subspaces of an n-
dimensional space and the reduced row echelon form ofm×nmatrices of rankm. We
then use the multiplication formula to show in general the existence of Hall polyno-
mials for cyclic quivers (cf. [12,27]). As a further application of the formula, we derive
a recursive formula for computing Hall polynomials and compute the canonical ba-
sis for (the +-part of) a quantum aõne gln . _is requires a systematic construction
of a certain monomial basis. _anks to [6], we will use the theory there to derive a
couple of algorithms on matrices and will then follow them to produce the required
monomial basis. Computing canonical bases is in general very diõcult. Besides some
lower rank cases of ûnite type (see, e.g., [19, §3] for types A1 and A2 and [30, 31] for
type A3 , B2) and certain tight monomials for quantum aõne sl2 ([22]), there seem
to be no explicit aõne examples done in the literature. We now use the multiplica-
tion formula to compute several inûnite series of the canonical basis for Uv(ĝl2). To
ease the diõculty, we divide the basis into the so-called “slices” labelled by the Lowey
length ℓ(M) and the periodicity p(M) associated with a representation M of a cyclic
quiver. We explicitly compute all slices of the canonical basis associated withmodules
of Lowey length at most 2 for quantum aõne gl2. In a forthcoming paper, we will give
further applications to the theory of quantum loop algebras of sln developed in [6].

_e paper is roughly divided into two parts. _e ûrst part fromSections 2 to 4 deals
with the theory of integral Hall algebras associated with ûnite ûelds, including the ex-
istence of Hall polynomials (_eorem 2.2) and a recursive formula (Corollary 4.8).
_e remaining sections focus on computation of canonical basis for the (generic and
twisted) Ringel–Hall algebras and quantum aõne gln . With a selected monomial ba-
sis, we formulate Algorithm 5.5 to compute the canonical basis. Five slices of the
canonical basis for quantum aõne gl2 are explicitly worked out; see Propositions 6.1
and 6.4 and_eorems 7.4 and 8.1.

Notation For a positive integer n, let M△,n(Z) be the set of all Z × Z matrices
A = (a i , j)i , j∈Z with a i , j ∈ Z such that

1See the deûnition on [5, p. 17].
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(a) a i , j = a i+n , j+n for i , j ∈ Z, and
(b) for every i ∈ Z, both the set { j ∈ Z ∣ a i , j /= 0} and { j ∈ Z ∣ a j, i /= 0} are ûnite.

Let Θ△(n) = M△,n(N) be the subset of M△,n(Z) consisting of matrices with
entries from N. Let

Θ+
△(n) = {A ∈ Θ△(n) ∣ a i j = 0 for i ⩾ j} ,

Θ−
△(n) = {A ∈ Θ△(n) ∣ a i j = 0 for i ⩽ j} .

For A ∈ Θ△(n), write A = A+ + A0 + A− , where A0 is the diagonal submatrix of A,
A+ ∈ Θ+

△(n), and A− ∈ Θ−
△(n).

_e core of amatrix A in Θ+
△(n) is the n× l submatrix of A consisting of rows from

1 to n and columns from 1 to l , where l is the column index of the right most non-zero
entry in the given n rows.

Set

Zn
△ = {(λ i)i∈Z ∣ λ i ∈ Z, λ i = λ i−n for i ∈ Z} ,

Nn
△ = {(λ i)i∈Z ∈ Zn

△ ∣ λ i ⩾ 0 for i ∈ Z} .

For each A ∈ M△,n(Z), let
row(A) = (Σ j∈Za i , j)i∈Z ∈ Zn

△ , col(A) = (Σ i∈Za i , j) j∈Z ∈ Zn
△ .

Deûne an order relation ⩽ on Nn
△ by

λ ⩽ µ⇐⇒ λ i ⩽ µ i (1 ⩽ i ⩽ n).
We say λ < µ if λ ⩽ µ and λ /= µ.

Let Q(v) be the fraction ûeld of Z ∶= Z[v , v−1]. For integers N , t with t ⩾ 0 and
µ ∈ Zn

△ and λ ∈ Nn
△, deûne Gaussian polynomials and their symmetric version in Z:

⟦Nt ⟧ =
⟦N⟧!

⟦t⟧!⟦N − t⟧! = ∏1⩽i⩽t

v2(N−i+1)−1

v2i − 1
and [Nt ] = v−t(N−t) ⟦Nt ⟧ ,

where ⟦t⟧ = ⟦1⟧⟦2⟧ ⋅ ⋅ ⋅ ⟦t⟧ with ⟦m⟧ = v2m−1
v2−1 .

For a prime power q, we write ⟦ N
t ⟧q for the value of the polynomial at v2 = q.

2 The Integral Hall Algebras of Cyclic Quivers and Hall Polynomi-
als

Let ∆ = ∆(n) (n ⩾ 2) be the cyclic quiver with vertex set I ∶= Z/nZ = {1, 2, . . . , n}
and arrow set {i → i + 1 ∣ i ∈ I}, and let k∆ be the path algebra of ∆ over a ûeld k.
For a representation M = (Vi , f i)i of ∆, let dimM = (dimV1 , dimV2 , . . . , dimVn) ∈
NI = Nn and dimM = ∑n

i=1 dimVi denote the dimension vector and the dimension
of M, respectively, and let [M] denote the isoclass (isomorphism class) of M.
A representation M = (Vi , f i)i of ∆ over k (or a k∆-module) is called nilpotent

if the composition fn ⋅ ⋅ ⋅ f2 f1∶V1 → V1 is nilpotent, or equivalently, one of the maps
f i−1 ⋅ ⋅ ⋅ f1 fn ⋅ ⋅ ⋅ f i ∶Vi → Vi (2 ⩽ i ⩽ n) is nilpotent. By Rep0 ∆(n) = Rep0k ∆(n) we
denote the category of ûnite dimensional nilpotent representations of ∆(n) over k.
For each vertex i ∈ I, there is a one-dimensional representation S i = S i ,k inRep0 ∆(n)
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satisfying (S i)i = k and (S i) j = 0 for j /= i. It is known that {S i ∣ i ∈ I} forms a
complete set of simple objects in Rep0 ∆(n).
For M ∈ Rep0 ∆(n), we denote by rad(M) the radical ofM, i.e. the intersection of

all maximal submodules of M, and by top(M) = M/ rad(M), the top of M.
Up to isomorphism, all non-isomorphic indecomposable representations in

Rep0 ∆(n) are given by S i[l] (i ∈ I and l ⩾ 1) of length l with top S i . Note that
S i[l] can be described by vector spaces and linear maps around the cyclic quiver:

(2.1) 0
0Ð→ k

1Ð→ k
1Ð→ ⋅ ⋅ ⋅ 1Ð→ k

1Ð→ k
0Ð→ 0 ⋅ ⋅ ⋅

Here, the number of k’s is l and the ûrst k is at vertex i, the second at i + 1, . . . , the
(n + i)-th is again at vertex i = n + i, etc.
For any A = (a i , j) ∈ Θ+

△(n), let
M(A) = Mk(A) = ⊕

1⩽i⩽n , i< j
a i , jS i[ j − i].

_en the set {Mk(A) ∣ A ∈ Θ+
△(n)} forms a complete set of all non-isomorphic ûnite

dimensional nilpotent representations of ∆(n). If k is a ûnite ûeld of q = qk elements,
we write Mq(A) = Mk(A).
Every element α = (α i)i∈Z ∈ Nn

△ deûnes a semisimple representation

Sα = Sα ,k = ⊕n
i=1α iS i .

A matrix A = (a i , j) ∈ Θ+
△(n) is called aperiodic if, for each l ⩾ 1, there exists

i ∈ Z such that a i , i+l = 0. Otherwise, A is called periodic. A nilpotent representation
M(A) is called aperiodic (resp. periodic) if A is aperiodic (resp. periodic). Denote by
Θap
△ (n) the subset of all aperiodic elements in Θ+

△(n).
Associated with a cyclic quiver, Ringel introduced an associative algebra, the Hall

algebra, which can be deûned at two levels: the integral level and the generic level.
For A, B,C ∈ Θ+

△(n) and any prime power q, let hMq(A)
Mq(B),Mq(C) be the number of

submodules N of Mq(A) such that

N ≅ Mq(C) and Mq(A)/N ≅ Mq(B).

More generally, given A, B1 , B2 , . . . , Bm ∈ Θ+
△(n), denote by hMq(A)

Mq(B1),Mq(B2), . . . ,Mq(Bm)
the number of ûltrations

Mq(A) = M0 ⊇ M1 ⊇ M2 ⊇ ⋅ ⋅ ⋅ ⊇ Mm−1 ⊆ Mm = 0

such that Mt−1/Mt ≅ Mq(Bt) for 1 ⩽ t ⩽ m.
_e (integral) Hall algebraH◇

△(n, q) associated withRep0k ∆(n) over a ûnite ûeld k
of q elements, is the free Z-module spanned by basis {uA,q ∶= u[Mq(A)] ∣ A ∈ Θ+

△(n)}
with multiplication2 given by

uB ,q ◇ uC ,q = ∑
A∈Θ+

△(n)
h
Mq(A)
Mq(B),Mq(C)uA,q .

By a result in [12, 27], the Hall numbers hMq(A)
Mq(B),Mq(C) are polynomials in q with

integral coeõcients. We now provide an independent proof for the fact, building on
the following multiplication formula. A generic version of this formula is given by Fu

2In [6] the multiplication is denoted by ○.

https://doi.org/10.4153/CJM-2017-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-009-4


Multiplication Formulas and Canonical Bases for Quantum Aõne gln 777

and the ûrst author in [10] and is obtained by using the techniques of Hecke algebras,
aõne q-Schur algebras, and the new realisation of the quantum loop algebra of gln .

_eorem 2.1 For A ∈ Θ+
△(n), α = (α i)i∈Z ∈ Nn

△, we have the following multiplica-
tion formula in the Hall algebra H◇

△(n, q):

uα ,q ◇ uA,q = ∑
T∈Θ+

△(n)
row(T)=α

q
∑1⩽i⩽n

i<l< j
(a i j t i l−t i j t i+1, l )

∏
1⩽i⩽n
j∈Z, j>i

⟦a i j + t i j − t i−1, j
t i j

⟧
q
uA+T−T̂+ ,q ,

where ̂ ∶Θ△(n) → Θ△(n),A = (a i , j) ↦ Â = (â i , j) is the row-descending map
deûned by â i , j = a i−1, j for all i , j ∈ Z and T̂+ denotes the upper triangular submatrix
of T̂.

We will prove this result in the next section. We ûrst use the formula to prove the
existence of Hall polynomials.

LetM be the set of all isoclasses of representation inRep0 ∆(n). Given two objects
M ,N ∈ Rep0 ∆(n), there exists a unique (up to isomorphism) extensionG ofM by N
withminimumdimEnd(G)[2,3,5,24]. _e extensionG is called the generic extension3

of M by N and is denoted by G = M ∗ N . If we deûne [M] ∗ [N] = [M ∗ N], then it
is known from [24] that ∗ is associative and (M, ∗) is a monoid with identity [0].
Besides the monoid structure, M has also a poset structure. For two nilpotent

representations M ,N ∈ Rep0 ∆(n) with dimM = dimN , deûne

N ⩽dg M⇐⇒ dimHom(X ,N) ⩾ dimHom(X ,M), for all X ∈ Rep0 ∆(n);
see [33]. _is gives rise to a partial order on the set of isoclasses of representations
in Rep0 ∆(n), called the degeneration order. _us, it also induces a partial order on
Θ+
△(n) by setting

A ⩽dg B⇐⇒M(A) ⩽dg M(B).
Following [1, 9] we can deûne the order relation ≼ on M△,n(Z) as follows. For

A ∈ M△,n(Z) and i /= j ∈ Z, let

σi , j(A) =
⎧⎪⎪⎨⎪⎪⎩

∑s⩽i ,t⩾ j as ,t , if i < j,
∑s⩾i ,t⩽ j as ,t , if i > j.

For A, B ∈ M△,n(Z), deûne
B ≼ A if and only if σi , j(B) ⩽ σi , j(A) for all i /= j.

Set B ≺ A if B ≼ A, and for some (i , j) with i /= j, σi , j(B) < σi , j(A).
Note that restricting the order relation to Θ+

△(n) gives a poset (Θ+
△(n), ≼). Note

also from [9, _. 6.2] that, if A, B ∈ Θ+
△(n), then

(2.2) B ⩽dg A⇐⇒ B ≼ A and dimM(A) = dimM(B).
_us, (Θ+

△(n), ⩽dg) is also a poset.
An element λ ∈ Nn

△ is called sincere if λ i > 0 for all i ∈ I. Let

Isin = {all sincere vectors in Nn
△} and Ĩ = I ∪ Isin .

3_ere exists a geometrical description when the ûeld k is algebraically closed; for details, see [24].
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For X ∈ {I, Isin , Ĩ}, let ΣX be the set of words on the alphabet X and let Σ̃ = Σ Ĩ .
For each w = a1a2 ⋅ ⋅ ⋅ am ∈ Σ̃, we set M(w) = Sa1 ∗ Sa2 ∗ ⋅ ⋅ ⋅ ∗ Sam . _en there is

a unique A ∈ Θ+
△(n) such that M(w) ≅ M(A), and we set ℘(w) = A, which induces

a surjective map ℘∶ Σ̃ → Θ+
△(n),w ↦ ℘(w). Note that ℘ induces a surjective map

℘∶Σ → Θap
△ (n).

For a ∈ Ĩ, set ua ,q = u[Sa ,q]. For any w = a1a2 ⋅ ⋅ ⋅ am ∈ Σ̃ and A ∈ Θ+
△(n), repeat-

edly applying _eorem 2.1 shows that there exists a polynomial φAw ∈ Z[q] such that
φAw(q) = hM

M1 ,M2 ,⋅⋅⋅,Mm
with M i ≅ Sa i ,q and M ≅ Mq(A).

Any word w = a1a2 ⋅ ⋅ ⋅ am ∈ Σ̃ can be uniquely expressed in the tight form w =
be11 b

e2
2 ⋅ ⋅ ⋅ be tt where e i = 1 if b i is sincere, and e i is the number of consecutive occur-

rence of b i if b i ∈ I. By [6, Lem. 5.1] (see also the proof of [3, Prop. 9.1]), φAw is divisible
by∏t

i=1⟦e i⟧! for every A ⪯ ℘(w). _us, there exists γAw ∈ Z[q] such that

φAw =
t

∏
i=1

⟦e i⟧!γAw ∈ Z[q].

Note that the polynomials γAw are also Hall polynomials. In fact, for a ûnite ûeld k of
q elements, we have γAw(q) = hM

N1 ,N2 , . . . ,Nm
with N i ≅ e iSb i ,q andM ≅ Mq(A). A word

w is called distinguished if the Hall polynomial γ℘(w)
w = 1.

As a ûrst application, we now use themultiplication formula to prove the existence
of Hall polynomials. _is result was ûrst given in [12], [27, 8.1].

_eorem 2.2 _e Hall numbers hMq(A)
Mq(B),Mq(C) associated with A, B,C ∈ Θ+

△(n) and
any prime power q are polynomials in q. In other words, there exist φAB ,C ∈ Z[q] such
that φAB ,C(q) = h

Mq(A)
Mq(B),Mq(C) for all such q.

Proof For w = b1b2 ⋅ ⋅ ⋅ bt ∈ Σ̃, if we write in H◇
△(n, q),

uw ,q = ub1 ,q ◇ ⋅ ⋅ ⋅ ◇ ubm ,q = ∑
B′⪯℘(w)

hB
′

w uB′ ,q ,

_en, by _eorem 2.1, there exist polynomials φB
′

w such that φB
′

w (q) = hB
′

w . Assume
now thatw is distinguished (see [6,_. 6.2]) such that B = ℘(w). _en φBw = ∏t

i=1⟦e i⟧!
and φB

′
w /φBw = γB

′
w are all polynomials.

Now, by _eorem 2.1 again, the Hall numbers in uw ,q ◇ uC ,q = ∑A⪯B∗C h
A
w ,CuA,q

are the values of certain polynomials φAw ,C at q. On the other hand,

uw ,q ◇ uC ,q = ∑
B′⪯B

hB
′

w (uB′ ,q ◇ uC ,q)

= hBw(uB ,q ◇ uC ,q) + ∑
B′≺B

hB
′

w (uB′ ,q ◇ uC ,q)

= hBw(uB ,q ◇ uC ,q) + ∑
A≺B∗C

( ∑
B′≺B

hB
′

w hAB′ ,C)uA,q .
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By equating coeõcients, we see that all polynomials φAw ,C is divisible by φBw . _us, we
have

hBw(uB ,q ◇ uC ,q) = ∑
A⪯B∗C

hAw ,CuA,q − ∑
A≺B∗C

( ∑
B′≺B

hB
′

w hAB′ ,C)uA,q .

Now the assertion follows from induction on ⪯.

In Section 4, wewill give algorithms to compute distinguishedwordswA associated
with each A ∈ Θ+

△(n) and to derive a recursive formula for Hall polynomials.

3 Proof of Theorem 2.1

Recall that a matrix over a ûeld in row-echelon form is said to be in reduced row-
echelon form (RREF) if every leading column has 1 at the leading entry and 0 else-
where.

Lemma 3.1 Let Rm ,n ⊆ Mm ,n(Fq) be the subset consisting of all m × n matrices in
reduced row-echelon form and of rank m. _en

∣Rm ,n ∣ = ⟦n
m⟧

v2=q
.

Proof Let Vm ,n be the set of all dimension m subspaces of Fn
q . _en, for T ∈ Rm ,n ,

the rows of T spans a subspace VT of dimension m. _us, we have a map

f ∶Rm ,n Ð→ Vm ,n , T z→ VT .

Clearly, f is surjective. It is not hard to see that f is also injective. Now the assertion
follows from the bijection.

Proposition 3.2 For i ∈ I, at , dt ,m ∈ Z with at ⩾ dt ⩾ 0, m ⩾ 1, t = 1, 2, . . . ,m, and
representations

L = a1S i ⊕ a2S i[2] ⊕ ⋅ ⋅ ⋅ ⊕ amS i[m], M = (d1 + ⋅ ⋅ ⋅ + dm)S i , and

N = (a1 − d1)S i ⊕ ((a2 − d2)S i[2] ⊕ d2S i+1) ⊕ ⋅ ⋅ ⋅
⊕ ((am − dm)S i[m] ⊕ dmS i+1[m − 1]) ,

in Rep0
k(∆(n)), the Hall number hL

M ,N is a polynomial in q = qk :

hL
M ,N = q∑1⩽k<l⩽m dk(a l−d l ) ⟦a1d1

⟧
q
⟦a2
d2

⟧
q
⋅ ⋅ ⋅ ⟦am

dm
⟧
q
.

Proof Without loss of generality, we may assume i = 1. Represent the modules L,N
by vector spaces and linear maps around the cyclic quiver as follows (cf. (2.1)):

L∶ ka1+a2+⋅⋅⋅+am p1Ð→ ka2+a3+⋅⋅⋅+am
p2Ð→ ka3+⋅⋅⋅+am

p3Ð→ ⋅ ⋅ ⋅ pm−2Ð→ kam−1+am pm−1Ð→ kam

N ∶ ka1−d1+a2−d2+⋅⋅⋅+am−dm fÐ→ ka2+a3+⋅⋅⋅+am
p2Ð→ ka3+⋅⋅⋅+am

p3Ð→ ⋅ ⋅ ⋅
pm−2Ð→ kam−1+am pm−1Ð→ kam .

https://doi.org/10.4153/CJM-2017-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-009-4


780 J. Du and Z. Zhao

Here p i is the projection map deûned by the matrix (0a i , I ã i+1), where

ã i ∶= a i + ⋅ ⋅ ⋅ + am

and 0a i is the ã i+1×a i zeromatrix, while f is the restriction of p1. _us, f projects the
component ka1−d1 to 0 and imbeds the component ka i−d i for i ≥ 2 into the component
ka i via the a i × (a i − d i) matrix J i = ( Iai−di

0 ). In other words, f is deûned by the
ã2 × (ã1 − d̃1) matrix A whose ûrst a1 − d1 columns are zero columns and having
blocks J1 , J2 , . . . , Jm on the diagonal of the remaining submatrix.

Let U ≤ L be a submodule such that U ≅ N , L/U ≅ M. _en U = Ker(g) for some
module epimorphism g∶ L → M. _us, the short exact sequence 0 → U → L → M →
0 gives the following commutative diagram:

U

ι
��

Ker g1

ι1
��

p1 // ka2+a3+⋅⋅⋅+am

id
��

p2 // ka3+⋅⋅⋅+am

id
��

p3 // ⋅ ⋅ ⋅
pm−2// kam−1+am

id
��

pm−1 // kam

id
��

L

g

��

ka1+a2+⋅⋅⋅+am

g1
��

p1 // ka2+a3+⋅⋅⋅+am

��

p2 // ka3+⋅⋅⋅+am

��

p3 // ⋅ ⋅ ⋅
pm−2// kam−1+am

��

pm−1 // kam

��
M

��

kd1+d2+⋅⋅⋅+dm

��

// 0 // 0 // ⋅ ⋅ ⋅ // 0 // 0

0 0

Since g is surjective, it is easy to see Ker g1 ≅ ka1−d1+⋅⋅⋅+am−dm as vector spaces. Rep-
resent the linear map g1∶ ka1+⋅⋅⋅+am → kd1+⋅⋅⋅+dm by a d̃1 × ã1 matrix TU in reduced
row-echelon form. Since g1 is onto, TU is an upper triangular matrix with d̃1 lead-
ing columns and ℓ = ã1 − d̃1 non-leading columns, corresponding to ℓ free variables
x i1 , x i2 , . . . , x iℓ . Let v j be the solution to TUx = 0 obtained by setting x i j = 1 and other
free variables to 0. _en, Ker g1 has a basis v1 , v2 , . . . , vℓ .

Since U ≅ N , there exists a linear isomorphism ϕ = (ϕ1 , ϕ2 , ⋅ ⋅ ⋅ , ϕm) making the
following diagram commute

U

≅ ϕ

��

Ker g1

ϕ1
��

p1 // ka2+a3+⋅⋅⋅+am

ϕ2

��

p2 // ka3+⋅⋅⋅+am

ϕ3

��

p3 // ⋅ ⋅ ⋅
pm−2// kam−1+am

ϕm−1

��

pm−1// kam

ϕm

��
N ka1−d1+a2−d2+⋅⋅⋅+am−dm f // ka2+a3+⋅⋅⋅+am

p2 // ka3+⋅⋅⋅+am
p3 // ⋅ ⋅ ⋅

pm−2// kam−1+ampm−1// kam

Hence, the images of p i ⋅ ⋅ ⋅ p2p1 in the top row maps must have the same dimension
as that of the map p i ⋅ ⋅ ⋅ p2 f below. Since the dimension of Im( f ) is ã2 − d̃2, p1 must
send v1 , . . . , va1−d1 to 0. _is forces the ûrst a1 columns contains d1 leading columns.
Similarly, dim Im(p2p1) = dim Im(p2 f ) forces the next a2 columns in TU contains
d2 leading columns, and so on. _is proves that, if TU is divided in d i × a j blocks,
then TU is upper triangular with m (d i × a i)-blocks on the diagonal each of which
has rank d i .

Let T be the subset of all T ∈ Md̃1 , ã1
(Fq) such that T is in RREF and T has m

(d i × a i)-blocks B i on the diagonal each of which has rank d i . _e argument above
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shows that the map U ↦ TU is a bijection from the set {U ⊆ L ∣ U ≅ N , L/U ≅ M} to
T. Hence, hL

M ,N = ∣T∣.
Now, to form such a matrix T , by Lemma 3.1, the number of the (d1 × a1)-block

B1 is ⟦ a1
d1 ⟧ and the number of other (d1 × a i)-blocks for i ≥ 2 in the ûrst d1 rows is

qd1(a2−d2+a3−d3+⋅⋅⋅+am−dm). Counting the number of the blocks in the next d2 rows, d3
rows, . . . , similarly, yields

∣T∣ = qd1(a2−d2+a3−d3+⋅⋅⋅+am−dm) ⟦a1d1
⟧
q
× qd2(a3−d3+⋅⋅⋅+am−dm) ⟦a2

d2
⟧
q
× ⋅ ⋅ ⋅

× qdm−1(am−dm) ⟦ m
dm

⟧
q
,

as desired.

Remark 3.3 A dual version of the above result, where the roles M and N are
swapped, is known in [28, §2.2] and was used in [14, Lem. 2.3.5]. Unlike the rep-
resentation-theoretic proof above, the proof in loc. cit. involves the geometry of the
Grassmanian variety.

Lemma 3.4 For nilpotent representations L,M ,N of△(n), if N ≤ L and L/N ≅ M
is semisimple, then there exist submodules L i ≤ L, N i ≤ N, and M i ≤ M such that
L = ⊕n

i=1 L i , N = ⊕n
i=1 N i , M = ⊕n

i=1 M i , and

hL
M ,N =

n

∏
i=1

hL i
M i ,N i

.

Proof Let top(L)i denote the isotypic component of top(L) associatedwith S i . _en
L = ⊕n

i=1L i where top(L i) = top(L)i . _us, if M i denotes the isotypic component of
M associated with S i and π∶ L → M denotes the quotient map, then restriction de-
ûnes an epimorphism π i = π∣L i ∶ L i → M i . Let N i = π−1

i (M i). _en N i = L i ∩ N and
N = ⊕n

i=1N i . Now, our assertion follows from the following bijection:
n

∏
i+1

{U i ≤ L i ∣ U i ≅ N i , L i/U i ≅ M i} Ð→ {U ≤ L ∣ U ≅ N , L/U ≅ M},

(U1 , . . . ,Un) z→ U1 + ⋅ ⋅ ⋅ +Un ,

noting that U = (U ∩ L1) + ⋅ ⋅ ⋅ + (U ∩ Ln).

We are now ready to give a representation-theoretic proof for the multiplication
formula in [10, _. 4.5]. As mentioned in the introduction, this formula is the re-
striction of certain multiplication formulas to the positive part for the quantum loop
algebra of gln [10, Prop. 4.2], which is obtained from li�ing some multiplication for-
mulas in the aõne q-Schur algebras associated with the aõne Hecke algebra. See
[14, Prop. 2.3.6] for a geometric proof building on the Hall polynomials computed in
[28, §2.2].

Proof of_eorem 2.1 We ûrst claim that if L is an extension of the semisimple rep-
resentation Sα by N = M(A), then L ≅ M(A + T − T̂+) for some T ∈ Θ+

△(n)
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with α = row(T). Indeed, suppose L ≅ M(C) for some C = (c i , j) and decompose
L = ⊕n

i=1L i as in Lemma 3.4. If U ≤ L is a submodule isomorphic to N , then there
exist t i j ∈ N such that U i = U ∩ L i ≅ ⊕i< j((c i j − t i j)S i[ j − i] ⊕ t i jS i+1[ j − i − 1]),
where∑i< j t i j = α i . _us, U ≅ N becomes

n
⊕
i=1
⊕
i< j

((c i j − t i j)S i[ j − i] ⊕ t i jS i+1[ j − i − 1]) ≅
n
⊕
i=1
⊕
i< j
a i jS i[ j − i].

By the Krull–Remak–Schmidt theorem, we have

(3.1) c i j − t i j + t i−1, j = a i j for all i < j with i = 1, 2, ⋅ ⋅ ⋅ , n.
Hence, if we form the upper triangular matrix T = (t i , j) ∈ Θ+

△(n), then C = A+ T −
T̂+, proving the claim.
For C = A+ T − T̂+, by Lemma 3.4, we have

hCSα ,A =
n
∏
i=1

hL i
M i ,N i

,

where

L i ≅⊕
j>i

(a i j + t i j − t i−1, j)S i[ j − i], M i ≅⊕
j>i

t i jS i , and

N i ≅⊕
j>i

(a i j − t i−1, j)S i[ j − i] ⊕ t i jS i+1[ j − i − 1].

Applying Proposition 3.2 with a l = a i , i+l + t i , i+l − t i−1, i+l , d l = t i , i+l yields

hL i
M i ,N i

= q
∑ l , j∈Z

i<l< j
t i l (a i j−t i−1, j)

∏
j∈Z, i< j

⟦a i j + t i j − t i−1, j
t i j

⟧
q

(q = qk).

Finally, it remains to prove

(3.2)
n

∑
i=1
∑

i<l< j
t i l(a i j − t i−1, j) =

n

∑
i=1
∑

i<l< j
(a i j t i l − t i j t i+1, l),

or, equivalently, to prove

∑
1⩽i⩽n
i<l< j

t i l t i−1, j = ∑
1⩽i⩽n
i<l< j

t i j t i+1, l .

_is follows from the fact that the sets J1 = {t i l t i−1, j /= 0 ∣ 1 ⩽ i ⩽ n, i < l < j} and J2 =
{t i j t i+1, l /= 0 ∣ 1 ⩽ i ⩽ n, i < l < j} are identical. To see this, take t i l t i−1, j ∈ J1 where
i < l < j. If 2 ⩽ i ⩽ n, then t i−1, j t(i−1)+1, l ∈ J2. If i = 1, then t1, l t0, j = tn ,n+ j tn+1, l+n ∈ J2.
Hence, J1 ⊆ J2. Similarly, J2 ⊆ J1 and so J1 = J2.

Corollary 3.5 (i) By the extension of modules, we have

t i j ∈
⎧⎪⎪⎨⎪⎪⎩

[0,min{α i , a i+1, j}], if ∣ j − i∣ > 1,
[0, α i], if ∣ j − i∣ = 1,

and for any i = 1, 2, . . . , n, ∑ j>i t i j = α i .
(ii) _e power of q,∑1⩽i⩽n

i<l< j
(a i j t i l − t i j t i+1, l), is non-negative.
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Proof Since c i j ⩾ t i j , it follows from (3.1) that a i j ⩾ t i−1, j , proving (i). _en (ii)
follows from (3.2).

4 Distinguished Words and a Recursive Formula

For A ∈ Θ+
△(n), denote by ℓ(A) = ℓ(M(A)) the Loewy length of M(A) and deûne

the periodicity of M(A) by

p(A) =
⎧⎪⎪⎨⎪⎪⎩

max{l ∈ N ∣ a i , i+l /= 0 for all 1 ⩽ i ⩽ n}, if A is periodic,
0, if A is aperiodic.

Clearly, 0 ⩽ p(A) ⩽ ℓ(A). _us, p(A) = 0 means that A is aperiodic. If p(A) = ℓ(A),
A is called strongly periodic.

We now record several results in [6] stated in multisegments in terms of matrices.
Note that if Π is the set of all multisegments, then there is a bijection

Π Ð→ Θ+
△(n), π = ∑

i∈I , l⩾1
π i , l [i; l) z→ Aπ = (a i , i+l)i∈I , l⩾1 with a i , i+l = π i , l .

Proposition 4.1 ([6, §4]) (i) For any A ∈ Θ+
△(n), there exists uniquely a pair

(A′ ,A′′) associated with A such that A′ is strongly periodic, A′′ is aperiodic, and
M(A) ≅ M(A′′) ∗M(A′).

(ii) For aperiodic part A′′, there exists a distinguished word wA′′ = je11 je22 ⋅ ⋅ ⋅ je tt ∈
ΣI ∩ ℘−1(A′′).

(iii) For strongly periodic part A′, there exists a distinguished word wA′ = a1a2 ⋅ ⋅ ⋅ ap ∈
ΣIsin ∩ ℘−1(A′), moreover, Sas ≅ socp−s+1 M(A′)/ socp−s M(A′), 1 ⩽ s ⩽ p =
p(A).

(iv) wA′′wA′ = je11 je22 ⋅ ⋅ ⋅ je tt a1a2 ⋅ ⋅ ⋅ ap is a distinguished word of A.

A construction of distinguished words of the strongly periodic part and aperiodic
part has been given in [6]. Building on this, we now introduce some matrix algo-
rithms to compute certain distinguished words in order to provide a monomial basis
for computing the canonical basis.

If we take A = (a i , j), then M(A) = ⊕n
i=1⊕ j>i a i jS i[ j − i] and soc(S i[ j − i]) =

S j−1, soc2(S i[ j − i]) = S j−2[2], . . . , socl(S i[ j − i]) = S j−l [l]. Here we understand
j − l ≡ j′(mod n) and if l ⩾ j − i, socl(S i[ j − i]) = S i[ j − i].

We review the construction of producing the unique pair (A′ ,A′′) in Proposition
4.1(i). For A ∈ Θ+

△(n) with p = p(A), then socp(M(A)) = M(A′) and M(A′′) ≅
M(A)/M(A′).

Deûnition 4.2 ForA ∈ Θ+
△(n)with p = p(A), deûne the distinguished pair (A′ ,A′′)

as follows.
(i) _e matrix A′ = (a′i , j), called the strongly periodic part of A, is obtained by

setting

a′i , j =
⎧⎪⎪⎨⎪⎪⎩

a i , j , if j < i + p,
∑i0⩽i a i0 , j , if j = i + p.
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In other words, A′ is the matrix obtained by replacing the “p-th-diagonal”
(a i , i+p)i∈Z by col(B), where B is the matrix obtained from A by vanishing all
the entries below the p-th-diagonal.

(ii) _e matrix A′′ = (a′′i , j), called the aperiodic part, is obtained by setting

a′′i , j = a i , j+p .

First, based on the structure of soct M(A) for strongly aperiodicA ∈ Θ+
△(n), t ∈ N,

we give a matrix algorithm of [6, Lemma 4.2] as follows.

Algorithm 4.3 (for the strongly periodic part) SupposeA′ is strongly periodic. _en
p = p(A′) = ℓ(A′) and the algorithm runs p steps:
put B = (b i , j) ∶= A′
for j from 1 to p do
T ∶= ∑n

i=1 b i , i+p− j+1E i , i+p− j+1, B ∶= B − T + T̂+, a j = row(T) enddo
output wA′ = a1a2 ⋅ ⋅ ⋅ ap .

Remark 4.4 Every a i is sincere and is uniquely determined by A. For λ = (λ i)i∈Z ∈
Nn
△, set λ

[1] = (λ[1]i )i∈Z, where λ[1]i = λ i−1 for all i ∈ Z. It is easy to prove that there is
one to one correspondence between strongly periodic matrix A with ℓ(A) = p and a
sincere sequence a1a2 ⋅ ⋅ ⋅ ap with a[1]i ⩽ a i+1, for 1 ⩽ i ⩽ p − 1.

Second, for B = (b i , j) ∈ Θap
△ (n) and i ∈ I, we setM(B) = ⊕i∈IM i(B) andM i(B) =

⊕ j>ib i , jS i[ j − i]. We take the maximal index in every step in [6, Prop. 4.3]; then we
give the following matrix algorithm.

Algorithm 4.5 (for the aperiodic part) Suppose A′′ is aperiodic with l = ℓ(A′′);
consider the following run:
put B = (b i , j) ∶= A′′; for i from 1 to l, do
if the (l − i + 1)th diagonal b1,1+l−i+1 , b2,2+l−i+1 , . . . , bn ,n+l−i+1
is nonzero, choose the rightmost b j, j+l−i+1 /= 0 such that
b j+1, j+1+l−i+1 /= 0; choose the minimal j′ ≤ l − i + 1 such that
b j, j+ j′ /= 0 and j′ > ℓ(M j+1(B));
do

T ∶=
l−i+1

∑
k= j′

b j, j+kE j, j+k , B ∶= B − T + T̂+ , e i , j ∶=
l−i+1

∑
k= j′

b j, j+k , x i , j = je i , j ;

enddo; loop until the (l − i + 1)th diagonal is zero.
next i; enddo;
output wA′′ = x 1, j1 ⋅ ⋅ ⋅ x 1, ja ⋅ ⋅ ⋅ x l ,k1 ⋅ ⋅ ⋅ x l ,kb

_e two algorithms give a distinguished section

W (n) = {wA = wA′′wA′ ∈ ℘−1(A) ∩ Σ̃ ∣ A ∈ Θ+
△(n)} .

When restricting to Θap
△ (n), we obtain a distinguished section of Σ over Θap

△ (n).
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We explain the algorithms by the following example. Recall that every matrix in
Θ+
△(n) is identiûed as its core. Sometimes, we indicate the diagonal with boldface

entries for clarity.

Example 4.6 Suppose n = 3 and

A = ( 0 1 1 0 3 1 2 1 3
0 0 0 2 3 1 0 1 1
0 0 0 3 0 1 1 1 0

);

then p(A) = 4, ℓ(A) = 8 and

A′ = ( 0 1 1 0 6 0 0
0 0 0 2 3 6 0
0 0 0 3 0 1 3

), A′′ = ( 0 1 2 1 3
0 0 0 1 1
0 0 0 1 0

),

with ℓ(A′) = ℓ(A′′) = 4.
Applying Algorithm 4.3 to A′ gives

i = 1 ∶ T = ( 0 0 0 0 6 0 0
0 0 0 0 0 6 0
0 0 0 0 0 0 3

), B = ( 0 1 1 3 0 0
0 0 0 2 9 0
0 0 0 3 0 7

), a1 = (6, 6, 3),

i = 2 ∶ T = ( 0 0 0 3 0 0
0 0 0 0 9 0
0 0 0 0 0 7

), B = ( 0 1 8 0 0
0 0 0 5 0
0 0 0 3 9

), a2 = (3, 9, 7),

i = 3 ∶ T = ( 0 0 8 0 0
0 0 0 5 0
0 0 0 0 9

), B = ( 0 10 0 0
0 0 8 0
0 0 0 8

), a3 = (8, 5, 9),

i = 4 ∶ T = ( 0 10 0 0
0 0 8 0
0 0 0 8

), B = 0, a4 = (10, 8, 8).

_e algorithm stops with the output wA′ = a1a2a3a4 .
Applying Algorithm 4.5 to A′′ gives

i = 1 ∶ T = ( 0 0 0 0 3
0 0 0 0 0
0 0 0 0 0

), B = ( 0 1 2 1 0
0 0 0 1 4
0 0 0 1 0

), x 1,1 = 13 ,

i = 2 ∶ T = ( 0 0 0 0 0
0 0 0 1 4
0 0 0 0 0

), B = ( 0 1 2 1 0
0 0 0 0 0
0 0 0 2 4

), x2,2 = 25 ,

T = ( 0 1 2 1
0 0 0 0
0 0 0 0

), A = ( 0 0 0 0 0
0 0 2 1 0
0 0 0 2 4

), x2,1 = 14 ,

i = 3 ∶ T = ( 0 0 0 0 0
0 0 0 0 0
0 0 0 2 4

), B = ( 0 4 0 0 0
0 0 2 1 0
0 0 0 0 0

), x3,3 = 36 ,

T = ( 0 0 0 0
0 0 2 1
0 0 0 0

), B = ( 0 4 0 0
0 0 0 0
0 0 0 1

), x3,2 = 23 ,

i = 4 ∶ T = ( 0 0 0 0
0 0 0 0
0 0 0 1

), B = ( 0 4 0 0
0 0 0 0
0 0 0 0

), x4,3 = 31 ,

T = ( 0 4 0 0
0 0 0 0
0 0 0 0

), B = ( 0 0 0 0
0 0 0 0
0 0 0 0

), x4,1 = 14 .

_e algorithm has output wA′′ = x 1,1x2,2x2,1x3,3x3,2x4,3x4,1. _us, it produces the
following distinguished word associated with A:

wA = wA′′wA′ = x 1,1x2,2x2,1x3,3x3,2x4,3x4,1a1a2a3a4 .

Remark 4.7 In [18], a diòerent matrix algorithm is used to get a certain triangular
relation similar to [1, Prop. 3.9] for the aõne q-Schur algebraS. However, it is not clear
if such a relation can be li�ed to a relation similar to [1, 5.4(c)]. _us, it is not clear
how their algorithm produces a monomial basis for the Ringel–Hall algebra H△(n)
(or the +-part of the quantum aõne gln).

https://doi.org/10.4153/CJM-2017-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-009-4


786 J. Du and Z. Zhao

For a ûxed A ∈ Θ+
△(n), let

(4.1) ΘA = (0,A] ∶= {B ∈ Θ+
△(n) ∣ B ⩽dg A} and Θ≺A = {B ∈ ΘA ∣ B ≺ A} .

_e proof of _eorem 2.2 shows that every φAwB ,C is divisible by φBwB . Let γ
A
wB ,C =

φAwB ,C/φ
B
wB . _e following result shows that the Hall polynomials φAB ,C can be com-

puted by a recursive formula.

Corollary 4.8 For any A, B,C ∈ Θ+
△(n), let wB be the distinguished word obtained

by applying Algorithms 4.3 and 4.5 to B and, for any B′ ⩽dg B, let γB
′

wB and γAwB ,C be
obtained by the multiplication formula given in _eorem 2.1. _en the Hall polynomial
φAB ,C can be computed by the recursive formula

φAB ,C =
⎧⎪⎪⎨⎪⎪⎩

γAwB ,C −∑B′∶B′≺B γB
′

wBφ
A
B′ ,C , if A ∈ ⋃B′≺B Θ≺B′∗C ;

γAwB ,C , if A ∈ ΘB∗C/⋃B′≺B Θ≺B′∗C .

5 Ringel–Hall Algebras, Quantum Affine gln, and their Canonical
Bases

_e generic Hall algebra H◇
△(n) of ∆(n) is by deûnition the free Z[q]-module with

basis {uA ∶= u[M(A)] ∣ A ∈ Θ+
△(n)} and multiplication given by

uB ◇ uC = ∑
A∈Θ+

△(n)
φAB ,CuA.

For a ûnite ûeld k of q elements, by specializing q to q, we obtain the integral Hall
algebra H◇

△(n, q) associated with Rep0 ∆(n), as discussed in Sections 2–4.
C. M. Ringel [25, 26] further twisted the multiplication, using the Euler form, to

obtain the Ringel–Hall algebra that connects to the corresponding quantum group.
For a = (a i) ∈ Zn

△ and b = (b i) ∈ Zn
△, the Euler form associated with the cyclic

quiver ∆(n) is the bilinear form ⟨ ⋅ , ⋅ ⟩∶Zn
△ ×Zn

△ → Z deûned by

⟨a, b⟩ = ∑
i∈I
a ib i −∑

i∈I
a ib i+1 .

_e (generic) Ringel–Hall algebraH△(n) of ∆(n) is by deûnition the algebra over
Z = Z[v , v−1] (v2 = q)with basis {uA = u[M(A)] ∣ A ∈ Θ+

△(n)} and themultiplication
is twisted by the Euler form

uBuC = v⟨dimM(B),dimM(C)⟩ ∑
A∈Θ+

△(n)
φAB ,CuA.

It is well known that for two A, B ∈ Θ+
△(n), there holds

⟨dimM(A), dimM(B)⟩ = dimk Hom(M(A),M(B)) − dimk Ext
1(M(A),M(B)) .

_eZ-subalgebra C△(n) ofH△(n) generated by u(m)
i = um

i /[m]!, i ∈ I andm ⩾ 1,
is called the (generic) composition subalgebra. _enC△(n) is also generated by u[mS i],
since u(m)

i = vm(m−1)u[mS i]. Clearly, H△(n) and C△(n) admit natural Nn-grading
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by dimension vectors:

H△(n) = ⊕
d∈Nn

H△(n)d and C△(n) = ⊕
d∈Nn

C△(n)d ,

where H△(n)d is spanned by all uA with dimM(A) = d and C△(n)d = C△(n) ∩
H△(n)d.
Base change gives the Q(v)-algebra H△(n) = H△(n) ⊗Z Q(v) and C△(n) =

C△(n) ⊗Z Q(v). Denote byH−
△(n) the opposite algebra ofH+

△(n) (=H△(n)).
By extending H△(n) to Hopf algebras

H△(n)⩾0 =H+
△(n) ⊗Q(v)[K±1

1 , . . . ,K
±1
n ],

H△(n)⩽0 = Q(v)[K±1
1 , . . . ,K

±1
n ] ⊗H−

△(n),

we deûne the double Ringel–Hall algebraD△(n) (cf. [4, 32]) to be a quotient algebra
of the free productH△(n)⩾0∗H△(n)⩽0 via a certain skewHopf paringψ∶H△(n)⩾0×
H△(n)⩽0 → Q(v). In particular, there is a triangular decomposition

D△(n) =D+
△(n) ⊗D0

△(n) ⊗D−
△(n),

whereD+
△(n) ≅H+

△(n),D0
△(n) ≅ Q[K±1

1 , . . . ,K
±1
n ] andD−

△(n) ≅H−
△(n).

_eorem 5.1 ([4,_. 2.5.3]) LetUv(ĝln) be the quantum loop algebra of gln deûned
in [7] or [4, §2.5]. _en there is a Hopf algebra isomorphism D△(n) ≅ Uv(ĝln).

Let U = U(n) = Uv(ŝln) be the quantum aõne sln(n ⩾ 2) over Q(v), and let
E i , Fi ,K±

i (i ∈ I) be the generators; for details see [16, 21]. _en U admits a triangular
decompositionU = U−U0U+, whereU+(resp. U− ,U0) is the subalgebra generated by
the E i (resp. Fi , K±

i (i ∈ I)). Denote by U+
Z the Lusztig integral form of U+, which is

generated by all the divided powers E(m)
i = Em

i
[m]! . _e relation of Ringel–Hall algebras

and quantum aõne sln is described in the following theorem.

_eorem 5.2 ([27]) _ere is a Z-algebra isomorphism

C△(n) ∼→ U+
Z(n), u(m)

i z→ E(m)
i , i ∈ I, m ⩾ 1,

and by base change to Q(v), there is an algebra isomorphism C△(n) ∼→ U+(n).

We now review an algorithm for computing the canonical basis. _e ûrst ingredi-
ent required in the algorithm is the following modiûed multiplication formula.
For A ∈ Θ+

△(n), let δ(A) = dimEnd(M(A)) − dimM(A) and

ũA = vδ(A)uA = vdimEnd(M(A))−dim M(A)uA.

Lemma 5.3 ([10, p. 14]) For α ∈ Nn
△ ,A ∈ Θ+

△(n), the twisted multiplication formula
in the Ringel–Hall algebra H△(n) over Z is given by

ũα ũA = ∑
T∈Θ+△(n)

row(T)=α

v fA,T ∏
1⩽i⩽n

j∈Z, j>i

⟦a i j + t i j − t i−1, j
t i j

⟧ũA+T−T̂+ ,
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where

fA,T = ∑
1⩽i⩽n
j⩾l⩾i+1

a i , j t i , l − ∑
1⩽i⩽n
j>l⩾i+1

a i+1, j t i , l − ∑
1⩽i⩽n
j⩾l⩾i+1

t i−1, j t i , l + ∑
1⩽i⩽n
j>l⩾i+1

t i , j t i , l .

For eachw = a1a2 ⋅ ⋅ ⋅ am ∈ Σ̃ with tight formw = be11 b
e2
2 ⋅ ⋅ ⋅ be tt , deûne a monomial

associated with w in H△(n):

m(w) = ũe1b1 ⋅ ⋅ ⋅ ũe tb t .

_e monomials associated with the distinguished words wA = wA′′wA′ produced by
Algorithms 4.3 and 4.5 will be denoted simply by

m(A) = m(wA) = m(wA′′)m(wA′) .

We now apply [6, _. 6.2] to this particularly selected monomial set.

Lemma 5.4 (i) For A ∈ Θ+
△(n), we have a triangular relation

(5.1) m(A) = ũA + ∑
T≺A,T∈Θ+

△(n)
dimM(A)=dimM(T)

vδ(A)−δ(T)γT
wA(v

2)ũT ,

In particular, H△(n) is generated by {u(m)
i , uα = u[Sα] ∣ i ∈ I, α ∈ Isin ,m ∈ N},

where Sα = ⊕n
i=1α iS i is the semisimple representation of ∆(n) associated with α.

(ii) _e set
(5.2)

M (ĝln)+ = {m(A) ∣ A ∈ Θ+
△(n)} (resp.,M (ĝln)ap = {m(A) ∣ A ∈ Θap

△ (n)})
forms a Z-basis for H△(n) (resp., U+

Z(n)).

_e ingredients to deûne a canonical basis of an algebra include a basis with index
set P, a bar involution on the algebra, and a poset structure on P that satisûes a certain
triangular condition when applying the bar to a basis element. In the current case, the
basis is {ũA ∣ A ∈ Θ+

△(n)}, the poset is (Θ+
△(n), ⩽dg), and the bar involution (see,

e.g., [29, Proposition 7.5]) is given by
−∶H△(n) Ð→ H△(n), m(A) z→ m(A) , v z→ v−1 .

We now use the selected monomials m(A) to verify the triangular relation.
Restricting to A ∈ Θ+

△(n)d , d ∈ Nn
△, by (5.1)

(5.3) m(A) = ũA + ∑
B≺A,B∈Θ+

△(n)d
hB ,AũB , hB ,A = vδ(A)−δ(T)γBwA(v

2).

Solving the above gives

ũA = m(A) + ∑
B≺A,B∈Θ+

△(n)d
gB ,Am(B) .

Applying the bar involution, we obtain

ũA = m(A) + ∑
B∈Θ+

△(n)d ,B≺A
gB ,Am(B) = ũA + ∑

B∈Θ+
△(n)d ,B≺A

rB ,AũB .
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Now, by [19, 7.10] (or [5, §0.5],[8]), the system

pB ,A = ∑
B≼C≼A

rB ,C pC ,A for B ≼ A,A, B ∈ Θ+
△(n)d

has a unique solution satisfying pA,A = 1, pB ,A ∈ v−1Z[v−1] for B ≺ A. Moreover, the
elements

cA = ∑
B≼A,B∈Θap

△ (n)
pB ,AũB , A ∈ Θ+

△(n)d ,

satisfying cA = cA, form a Z-basis for H△(n)d. _e basis

C (ĝln)+ = {cA ∣ A ∈ Θ+
△(n)}

is called the canonical basisofH△(n)with respect to the PBWtype basis {ũA}A∈Θ+
△(n),

the bar involution, and the poset (Θ+
△(n), ⩽dg).

In practice, if relation (5.3) can be computed explicitly, then we can follow the
following algorithm to compute the cA (or pB ,A) inductively on the poset ideal ΘA
deûned in (4.1). Write

Θ≺A = Θ1
≺A ∪Θ2

≺A ∪ ⋅ ⋅ ⋅ ∪Θt
≺A for some t ∈ N,

where

Θ1
≺A = {maximal elements of Θ≺A},

Θi
≺A = {maximal elements of Θ≺A ∖

i−1
⋃
j=1

Θ j
≺A}

for 2 ⩽ i ⩽ t. Let
′Θa

≺A = {B ∈ Θa
≺A ∣ hB ,A /∈ v−1Z[v−1]}.

In the summation (5.3), assume ′Θa
≺A /= ∅ with a minimal. _en pB ,A ∶= hB ,A ∈

v−1Z[v−1] for all B ∈ Θi
≺A with i < a or B ∈ Θa

≺A/′Θa
≺A. For each B ∈ ′Θa

≺A, hB ,A ∉
v−1Z[v−1] has a unique decomposition hB ,A = h′B ,A + pB ,A with h′B ,A = h′B ,A and
pB ,A ∈ v−1Z[v−1]. _en

m(A) − ∑
B∈′Θa

≺A

h′B ,Am
(B) = ũA + ∑

B∈Θ i
≺A

i⩽a

pB ,AũB + ∑
B∈Θ i

≺A
i>a

gB ,AũB .

Continue this argument with gB ,A if necessary; we eventually obtain

m(A) − ∑
B∈′Θ≺A

h′B ,Am
(B) ∈ ũA + ∑

B<dgA
B∈Θ+

△(n)

v−1Z[v−1]ũB ,

where ′Θ≺A is a union of those ′Θa
≺A. Since

m(A) − ∑
B∈′Θ≺A

h′B ,Am(B) = m(A) − ∑
B∈′Θ≺A

h′B ,Am
(B) ,

by the uniqueness of the canonical basis ofH△(n)with respect to the PBW type basis
ũA, we have proved the following algorithm.
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Algorithm 5.5 For A ∈ Θ+
△(n), there exist a recursively constructed subset ′Θ≺A of

ΘA and elements h′B ,A ∈ Z[v , v−1] for all B ∈ ′Θ≺A such that h′B ,A = h′B ,A and

cA = m(A) − ∑
B∈′Θ≺A

h′B ,Am
(B)

is the canonical basis element associated with A.

If ′Θ≺A = ∅, then cA = m(A). Such a cA is called a tight monomial, following [22].

6 Slices of the Canonical Basis

In certain ûnite type cases, the canonical bases can be explicitly computed. See, for
example, Lusztig [19, §3] for types A1 and A2 and [30,31] for types A3 and B2. It is nat-
ural to expect that this is the case for quantum aõne gl2. However, this is much more
complicated. In the next three sections, we present explicit formulas of the canon-
ical basis for ûve “slices”. We will see that if a module’s Loewy length increases, the
computation becomes more diõcult.

_e slices of the canonical basis are deûned according to the Loewy length and
periodicity of modules. In other words, for (l , p) ∈ N2 with l ≥ 1, l ≥ p ≥ 0, let

C (ĝln)(l ,p) = {cA ∣ ℓ(A) = l , p(A) = p}
(resp.,M (ĝln)(l ,p) = {m(A) ∣ ℓ(A) = l , p(A) = p}),

which is called a canonical (resp., monomial) slice. Clearly, each of the canonical and
monomial bases is a disjoint union of slices.

In the sequel, we will compute the slices C (ĝl2)(l ,p) for l ≤ 2. We ûrst compute
the cases (l , p) ∈ {(1, 0), (1, 1), (2, 0)}, which are relatively easy.

Proposition 6.1 For (l , p) = (1, 0) or (1, 1), we have

C (ĝl2)(1,0) = M (ĝl2)(1,0) = {ũaS1 , ũbS2 ∣ a, b ∈ N − 0},
C (ĝl2)(1,1) = M (ĝl2)(1,1) = {ũaS1⊕bS2 ∣ a, b ∈ N, ab /= 0}.

For (l , p) = (2, 0), all modules are aperiodic. If we put

M (ĝln)ap = {m(A) ∣ A ∈ Θap
△ (n)}

(cf. (5.2)), then the structure of the monomial basis M (ĝl2)ap for the +-part U+
Z(2)

of quantum aõne sl2 has a very simple description.
A sequence (a1 , a2 , . . . , a l) ∈ Nl is called a pyramidic if there exists k, 1 ≤ k ≤ l ,

such that

a1 ⩽ a2 ⩽ ⋅ ⋅ ⋅ ⩽ ak , ak ⩾ ak+1 ⩾ ⋅ ⋅ ⋅ ⩾ a l .

We identify the positive part U+
Z(n) with the composition algebra under the iso-

morphism C△(n) ∼→ U+
Z(n), u

(m)
i ↦ E(m)

i as given in _eorem 5.2.

https://doi.org/10.4153/CJM-2017-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-009-4


Multiplication Formulas and Canonical Bases for Quantum Aõne gln 791

Lemma 6.2 We have

M (ĝl2)ap =

{E(a1)
i E(a2)

i+1 E
(a3)
i E(a4)

i+1 ⋅ ⋅ ⋅ E(a l )
i′ ∣ i ∈ Z2 , (a1 , a2 , . . . , a l) is pyramidic, ∀l ∈ N} ,

where i′ = i if l is odd and i′ = i + 1 if l is even.

Proof Applying Algorithm 4.5 to A ∈ Θap
△ (2), we know that m(A) has the desired

form.
Conversely, for a given

E(i , a) = E(a1)
i E(a2)

i+1 E
(a3)
i E(a4)

i+1 ⋅ ⋅ ⋅ E(ak)
k ⋅ ⋅ ⋅ E(a l )

l ,

where
0 < a1 ⩽ a2 ⩽ ⋅ ⋅ ⋅ ⩽ ak , ak ⩾ ak+1 ⩾ ⋅ ⋅ ⋅ ⩾ a l > a l+1 = 0,

we construct an A ∈ Θap
△ (2) such that m(A) = E(i , a). Since there are 8 cases for

(i , k, l), we only prove the case where (i , k, l) = (1, 1, 1). _e proof for other cases is
similar.
First, the matrix giving E(ak)

1 ⋅ ⋅ ⋅ E(a l )
1 by the algorithm has the form

(0 ak − ak+1 ak+1 − ak+2 ⋅ ⋅ ⋅ a l−1 − a l a l
0 0 0 ⋅ ⋅ ⋅ 0 0 ) .

For ak−1, there exists a unique i0 ∈ N such that ak+i0 ⩾ ak−1 > ak+i0+1, and so ak+i0 −
ak+i0+1 = (ak+i0−ak−1)+(ak−1−ak+i0+1). Now, thematrix giving E(ak−1)

2 E(ak)
1 ⋅ ⋅ ⋅ E(a l )

1
has the form

(0 ak − ak+1 ak+1 − ak+2 ⋅ ⋅ ⋅ ak+i0 − ak−1 0 0 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0 ak−1 − ak+i0+1 ⋅ ⋅ ⋅ a l−1 − a l a l

) .

Continuing this pattern for ak−2 , . . . , a2 , a1 eventually yields the required matrix A.

We give an example to illustrate the construction.

Example 6.3 Consider

E(2)
1 E(3)

2 E(5)
1 E(8)

2 E(9)
1 E(6)

2 E(4)
1 E(3)

2 E(1)
1 .

First, the matrix giving E(9)
1 E(6)

2 E(4)
1 E(3)

2 E(1)
1 is

( 0 9−6 6−4 4−3 3−1 1
0 0 0 0 0 0 ) = ( 0 3 2 1 2 1

0 0 0 0 0 0 ) .

Since 9 > 8 > 6, the matrix giving E(8)
2 E(9)

1 E(6)
2 E(4)

1 E(3)
2 E(1)

1 is

( 0 9−8 0 0 0 0 0 0
0 0 0 8−6 6−4 4−3 3−1 1 ) = ( 0 1 0 0 0 0 0 0

0 0 0 2 2 1 2 1 ) .

Due to 6 > 5 > 4, the matrix giving E(5)
1 E(8)

2 E(9)
1 E(6)

2 E(4)
1 E(3)

2 E(1)
1 is

( 0 9−8 0 0 5−4 4−3 3−1 1
0 0 0 8−6 6−5 0 0 0 ) = ( 0 1 0 0 1 1 2 1

0 0 0 2 1 0 0 0 ) .

Since 4 > 3 ⩾ 3, the matrix giving E(3)
2 E(5)

1 E(8)
2 E(9)

1 E(6)
2 E(4)

1 E(3)
2 E(1)

1 is

( 0 9−8 0 0 5−4 4−3 0 0 0 0
0 0 0 8−6 6−5 0 0 3−3 3−1 1 ) = ( 0 1 0 0 1 1 0 0 0 0

0 0 0 2 1 0 0 0 2 1 ) .
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Finally, since 3 > 2 > 1, the matrix giving E(2)
1 E(3)

2 E(5)
1 E(8)

2 E(9)
1 E(6)

2 E(4)
1 E(3)

2 E(1)
1

has the form

( 0 9−8 0 0 5−4 4−3 0 0 2−1 1
0 0 0 8−6 6−5 0 0 3−3 3−2 0 ) = ( 0 1 0 0 1 1 0 0 1 1

0 0 0 2 1 0 0 0 1 0 ) .

Now we are ready to describe the slice C (ĝl2)(2,0), which is similar to the slices in
Proposition 6.1.

Proposition 6.4 For (l , p) = (2, 0), we have

C (ĝl2)(2,0) = M (ĝl2)(2,0)
= {E(a+b)

1 E(b)
2 , E(b)

2 E(a+b)
1 , E(b)

1 E(a+b)
2 , E(a+b)

2 E(b)
1 ∣ a, b ∈ N, b > 0} .

Proof Suppose A ∈ Θ+
△(2) with (ℓ(A), p(A)) = (2, 0); then A is one of the follow-

ing matrices

( 0 a b
0 0 0 ), ( 0 0 0 0

0 0 a b ), ( 0 0 b
0 0 a ), ( 0 a 0 0

0 0 0 b ), ∀ a, b ∈ N, b > 0.

Applying Algorithm 4.5 to these matrices or by Lemma 6.2, the monomial m(A) has
the following form

E(a+b)
1 E(b)

2 , E(a+b)
2 E(b)

1 , E(b)
1 E(a+b)

2 , E(b)
2 E(a+b)

1 .

We now prove that these monomials are tight monomials. We only look at the ûrst
case; the other cases are similar. We now apply the formula in Lemma 5.3 to compute

m( 0 a b0 0 0 ) = E(a+b)
1 E(b)

2 = ũ(a+b)S1 ũbS2 .

Since α = (a + b, 0), the matrix T in the sum must be of the form ( 0 a+b−t t
0 0 0 ). _us,

m( 0 a b0 0 0 ) = ∑
t⩽b

v−(a+b−t)(b−t)ũ( 0 a+b−t t
0 0 b−t )

= ũ( 0 a b0 0 0 )
+∑

t<b
v−(a+b−t)(b−t)ũ( 0 a+b−t t

0 0 b−t )
,

which is the canonical basis element associated with ( 0 a b
0 0 0 ), since v−(a+b−t)(b−t) ∈

v−1Z[v−1] for all t < b.

In the three slices above, the recursively constructed subset ′Θ≺A in Algorithm 5.5
is empty. So they consist of tight monomials.

7 Computing the Slice C (ĝl2)(2,1)
For computing the slices C (ĝl2)(2,1) and C (ĝl2)(2,2) in this and next sections, we
consider a matrix of the form

A = (0 a c 0
0 0 b d) ∈ Θ+

△(2)

satisfying ℓ(A) = 2, p(A) > 0, where a, b, c, d ∈ N. _en c + d /= 0 and ab + cd /= 0.
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Lemma 7.1 For the A as given above, we have

ΘA = (0,A] = {A(k1 ,k2) ∣ k1 , k2 ∈ N, (k1 , k2) ⩽ (c, d)} ,
where

A(k1 ,k2) = (0 a + c + d − k1 − k2 k1 0
0 0 b + c + d − k1 − k2 k2

) .

Proof _e proof is straightforward by (2.2). Note also that

A(t1 ,t2) ⩽dg A(k1 ,k2) ⇐⇒ (t1 , t2) ⩽ (k1 , k2).

For cd /= 0, the poset ideal can be described by its Hasse diagram H(c, d); see
Figure 1.

(c, d)

(c, d − 1)(c − 1, d)

(c − 2, d)
(c − 1, d − 1)

(c, d − 2)

(c, 0)

(0, d)

(0, 0)

Figure 1: H(c, d)

For B = A(k1 ,k2), by Deûnition 4.2, we have B′ = ( 0 a+c+d−k1 0
0 0 b+c+d−k2 ) and B

′′ =
( 0 k1 0
0 0 k2 ). _e following follows immediately from Lemma 5.3.
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Lemma 7.2 Putting ũ(k1 ,k2) = ũA(k1 ,k2) and m(k1 ,k2) = m(A(k1 ,k2)), we have

m(k1 ,k2) = ũ
( 0 k1 0
0 0 k2

)
ũ
( 0 a+c+d−k1 0
0 0 b+c+d−k2

)

= ∑
t1⩽k1 ,t2⩽k2

v(a−b−k1+k2+t1−t2)(k1−k2−t1+t2)⟦ a+c+d−t1−t2
k1−t1 ⟧⟦ b+c+d−t1−t2

k2−t2 ⟧ũ(t1 ,t2) .

We now compute the canonical basis elements for those A with c = 0 or d = 0
(but not both zero). In other words, p(A) = 1. We need the following identities for
symmetric Gaussian polynomials.

Lemma 7.3 ([30, Section 3.1]) (i) Assume that m ⩾ k ⩾ 0, δ ∈ N. _en
δ

∑
i=0

(−1)iv i(m−k) [k − 1 + i
k − 1 ] [ m

δ − i] = v−kδ [m − k
δ ] .

(ii) Assume that m ⩾ k ⩾ 0, δ, n ∈ N. _en

δ

∑
i=0

(−1)iv i(m−k−n) [k − 1 + i
k − 1 ] [m + n

δ − i ] =
min{δ ,n}
∑
t=0

v−k(δ−t)−nδ+t(m+n) [m − k
δ − t ] [

n
t] .

We now perform Algorithm 5.5 to compute the slice C (ĝl2)(2,1). In this case, the
recursively constructed subset ′Θ≺A in the Algorithm 5.5 is ′Θ≺A = Θ≺A.

_eorem 7.4 If A ∈ Θ+
△(2) with (ℓ(A), p(A)) = (2, 1), then A is of the form

(0 a c
0 0 b) or (0 a 0 0

0 0 b d) (a, b, c, d ∈ N⩾1).

(i) For A = ( 0 a c
0 0 b ), cA = m(A) is a tight monomial if and only if a ⩽ b. _e canonical

basis element associated with A with a > b has the form

cA =
c

∑
k=0

(−1)c−k [a − b − 1 + c − k
a − b − 1 ]m(k ,0) =

c

∑
t=0

v−t(a−b+t)⟦b + t
t ⟧ũ(c−t ,0) ,

where ũ(k ,0) = ũA(k ,0) and A(k ,0) = ( 0 a+c−k k
0 0 b+c−k ).

(ii) For A = ( 0 a 0 0
0 0 b d ), cA = m(A) is a tight monomial if and only if a ⩾ b. _e

canonical basis element associated with A with a < b has the form

cA =
d

∑
l=0

(−1)d−l [b − a − 1 + d − l
b − a − 1 ]m(0, l) =

d

∑
t=0

v−t(b−a+t)⟦a + t
t ⟧ũ(0,d−t) ,

where ũ(0, l) = ũA(0, l) and A(0, l) = ( 0 a+d−l 0 0
0 0 b+d−l l ).

Proof We only prove (i); the proof for (ii) is similar. In this case, the Hasse diagram
H(c, 0) is a linear ûgure. In other words, we have A = A(c ,0) >dg A(c−1,0) >dg ⋅ ⋅ ⋅ >dg
A(1,0) >dg A(0,0). Note that in this case A′ = ( 0 a 0

0 0 b+c ) and A′′ = ( 0 c
0 0 ). _us,

m(A) = m(A′′)m(A′) = ũA′′ ũA′ .
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We now apply the formula in Lemma 5.3. We have here α = (c, 0). If T ∈ Θ+
△(2)

satisfyingA′−T+T̂+ ∈ Θ+
△(2) and row(T) = α, then T = ( 0 c−t t

0 0 0 ) for some 0 ≤ t ≤ c.
_us, A′ − T + T̂+ = A(t ,0) and

fA′ ,T = a(c − t) − (b + c)(c − t) + t(c − t) = (c − t)(a − b − c + t).

Hence,

m(A) = ∑
0⩽t⩽c

v(c−t)(a−b−c+t)⟦a + c − t
c − t ⟧ũ(t ,0)

= ũA + ∑
0⩽t⩽c−1

v(c−t)(a−b−c+t)⟦a + c − t
c − t ⟧ũ(t ,0) .

Consequently,m(A) becomes a canonical basis element (or a tightmonomial) if a ⩽ b.
By the calculation above, we have A(k ,0) = ( 0 a+c−k k

0 0 b+c−k ) for k = 0, 1, 2, . . . , c,
and so, by Lemma 7.2,

m(k ,0) = ũ( 0 k
0 0 )ũ( 0 a+c−k 0

0 0 b+c )
= ∑

0⩽t⩽k
v(k−t)(a+t−b−k)⟦a + c − t

k − t ⟧ũ(t ,0)

= ∑
0⩽t⩽k

v(k−t)(t−b−c) [a + c − t
k − t ] ũ(t ,0) .

Assume now that a > b and consider the following bar ûxed sum:

M(c) ∶=
c

∑
k=0

(−1)c−k [a − b − 1 + c − k
a − b − 1 ]m(k ,0)

=
c

∑
k=0

(−1)c−k [a − b − 1 + c − k
a − b − 1 ](

k

∑
t=0

v(k−t)(t−b−c) [a + c − t
k − t ] ũ(t ,0))

=
c

∑
k=0

k

∑
t=0

(−1)c−kv(k−t)(t−b−c) [a − b − 1 + c − k
a − b − 1 ] [a + c − t

k − t ] ũ(t ,0)

=
c

∑
t=0

(
c

∑
k=t

(−1)c−kv(k−t)(t−b−c) [a − b − 1 + c − k
a − b − 1 ] [a + c − t

k − t ]) ũ(t ,0)

= ũA +
c−1

∑
t=0

(
c

∑
k=t

(−1)c−kv(k−t)(t−b−c) [a − b − 1 + c − k
a − b − 1 ] [a + c − t

k − t ]) ũ(t ,0) .

However, for ûxed t,

f(t ,0) ∶=
c

∑
k=t

(−1)c−kv(k−t)(t−b−c) [a − b − 1 + c − k
a − b − 1 ] [a + c − t

k − t ]

=
c′

∑
k′=0

(−1)c
′−k′v−k′(b+c′) [a − b − 1 + c′ − k′

a − b − 1 ] [a + c
′

k′ ] (c′ = c − t, k′ = k − t)

= v−c
′(b+c′)

c′

∑
i=0

(−1)iv i(b+c′) [a − b − 1 + i
a − b − 1 ] [a + c

′

c′ − i ] (i = c′ − k′).

https://doi.org/10.4153/CJM-2017-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-009-4


796 J. Du and Z. Zhao

Let k = a − b, m = a + c′ and δ = c′. Applying Lemma 7.3(i) gives

f(t ,0) = v−c
′(b+c′)v−c

′(a−b) [b + c
′

c′ ] = v−c
′(a+c′) [b + c

′

c′ ]

= v−c
′(a−b+c′)⟦b + c

′

c′ ⟧ ∈ v−1Z[v−1],

since a > b. Hence, M(c) ∈ ũA + ∑c−1
t=0 v

−1Z[v−1]ũ(t ,0) . On the other hand, M(c) =
M(c). Consequently, cA = M(c), as desired.

8 Computing the Slice C (ĝl2)(2,2)
In the last section, we compute the canonical basis associated with the matrix A =
( 0 a c 0
0 0 b d ) with ℓ(A) = 2 = p(A) and a, b, c, d ∈ N. _us, cd /= 0.

_eorem 8.1 Maintain the notation as set in Lemmas 7.1 and 7.2. Suppose A =
( 0 a c 0
0 0 b d ) ∈ Θ+

△(2) with ℓ(A) = 2 = p(A) and a, b, c, d ∈ N. _en the canonical
basis element cA associated with A is given as follows.
(i) If a = b, then cA = m(c ,d) −m(c−1,d−1) .
(ii) If a > b, then

cA =
c

∑
k1=0

(−1)c−k1 [a − b − 1 + c − k1
a − b − 1 ]m(k1 ,d)

−
c−1

∑
l1=0

(−1)c−1−l1 [a − b − 2 + c − l1
a − b − 1 ]m(l1 ,d−1) .

(iii) If a < b, then

cA =
d

∑
k1=0

(−1)d−k1 [b − a − 1 + d − k1
b − a − 1 ]m(c ,k1)

−
d−1

∑
l1=0

(−1)d−1−l1 [b − a − 2 + d − l1
b − a − 1 ]m(c−1, l1) .

We can see the symmetry of the three cases from the big diamond H(c, d), Figure
1. _e recursively constructed subset in Algorithm 5.5 has the form:

′Θ≺A =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{A(c−1,d−1)}, in (i),
{A(i ,d) ,A( j,d−1) ∣ 0 ⩽ i , j ⩽ c, i < c}, in (ii),
{A(c , i) ,A(c−1, j) ∣ 0 ⩽ i , j ⩽ d , i < d}, in (iii).
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Proof We ûrst prove (i), and thus assume a = b. _en the formula in Lemma 7.2
with (k1 , k2) = (c, d) becomes

m(c ,d) = ∑
t1⩽c ,t2⩽d

v−(c−d−t1+t2)2⟦ a+c+d−t1−t2
c−t1 ⟧⟦ a+c+d−t1−t2

d−t2 ⟧ũ(t1 ,t2)

= ∑
t1⩽c ,t2⩽d
c−t1=d−t2

⟦ a+c+d−t1−t2
c−t1 ⟧

2
ũ(t1 ,t2)

+ ∑
t1⩽c ,t2⩽d
c−t1 /=d−t2

v−(c−t1−d+t2)2⟦ a+c+d−t1−t2
c−t1 ⟧⟦ a+c+d−t1−t2

d−t2 ⟧ũ(t1 ,t2) .

Since ⟦ a+c+d−t1−t2
c−t1 ⟧

2
− 1 ∈ v−1Z[v−1] (= 0 if (t1 , t2) = (c, d)) and the coeõcients in

the second sum are all in v−1Z[v−1], it follows that

m(c ,d) =
⎧⎪⎪⎨⎪⎪⎩

ũ(c ,d) + ũ(c−1,d−1) + ⋅ ⋅ ⋅ + ũ(c−d ,0) + X , if c ≥ d,
ũ(c ,d) + ũ(c−1,d−1) + ⋅ ⋅ ⋅ + ũ(0,d−c) + Y , if c < d,

where X ,Y ∈ ∑(t1 ,t2)<(c ,d) v
−1Z[v−1]ũ(t1 ,t2) .

Similarly, we have

m(c−1,d−1) = ∑
t1⩽c−1,t2⩽d−1

v−(c−d−t1+t2)2⟦ a+c+d−t1−t2
c−1−t1 ⟧[⟦ a+c+d−t1−t2

d−1−t2 ⟧ũ(t1 ,t2)

= ∑
t1⩽c−1,t2⩽d−1
c−t1=d−t2

⟦ a+c+d−t1−t2
c−1−t1 ⟧

2
ũ(t1 ,t2)

+ ∑
t1⩽c−1,t2⩽d−1
c−t1 /=d−t2

v−(c−d−t1+t2)2⟦ a+c+d−t1−t2
c−1−t1 ⟧⟦ a+c+d−t1−t2

d−1−t2 ⟧ũ(t1 ,t2) .

and

m(c−1,d−1) =
⎧⎪⎪⎨⎪⎪⎩

ũ(c−1,d−1) + ũ(c−2,d−2) + ⋅ ⋅ ⋅ + ũ(c−d ,0) + X′ , if c ≥ d,
ũ(c−1,d−1) + ũ(c−2,d−2) + ⋅ ⋅ ⋅ + ũ(0,d−c) + Y ′ , if c < d,

where X′ ,Y ′ ∈ ∑(t1 ,t2)<(c−1,d−1) v−1Z[v−1]ũ(t1 ,t2) . Hence,

m(c ,d) −m(c−1,d−1) = ũ(c ,d) + Z , where Z ∈ ∑
(t1 ,t2)<(c ,d)

v−1Z[v−1]ũ(t1 ,t2) .

_is proves that cA = m(c ,d) − m(c−1,d−1) is the canonical basis element associated
with A in this case.
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Next we prove (ii). Fix a > b and let

M(c, d) =
c

∑
k1=0

(−1)c−k1 [a − b − 1 + c − k1
a − b − 1 ]m(k1 ,d)

−
c−1

∑
l1=0

(−1)c−1−l1 [a − b − 2 + c − l1
a − b − 1 ]m(l1 ,d−1)

= ũ(c ,d) +
c−1

∑
t1=0

f (c ,d)(t1 ,d)ũ(t1 ,d) +
d−1

∑
t2=0

f (c ,d)(c ,t2)ũ(c ,t2)

+ ∑
(t1 ,t2)≪(c ,d)

( f (c ,d)(t1 ,t2) − f
(c−1,d−1)
(t1 ,t2) )ũ(t1 ,t2) ,

where (t1 , t2) ≪ (c, d) means t1 < c and t2 < d, and
c

∑
k1=0

(−1)c−k1 [a − b − 1 + c − k1
a − b − 1 ]m(k1 ,d) = ∑

(t1 ,t2)⩽(c ,d)
f (c ,d)(t1 ,t2)ũ(t1 ,t2) ,

c−1

∑
l1=0

(−1)c−1−l1 [a − b − 2 + c − l1
a − b − 1 ]m(l1 ,d−1) = ∑

(t1 ,t2)≪(c ,d)
f (c−1,d−1)
(t1 ,t2) ũ(t1 ,t2) .

Expanding the le�-hand sides by Lemma 7.2 yields, for (t1 , t2) ≪ (c, d),

f (c ,d)(t1 ,t2) =
c

∑
k1=t1

(−1)c−k1v(a−b−k1+d+t1−t2)(k1−d−t1+t2)

× [ a−b−1+c−k1
a−b−1 ]⟦ a+c+d−t1−t2

k1−t1 ⟧⟦ b+c+d−t1−t2
d−t2 ⟧,

f (c−1,d−1)
(t1 ,t2) =

c−1

∑
l1=t1

(−1)c−1−l1v(a−b−l1+d−1+t1−t2)(l1−d+1−t1+t2)

× [ a−b−2+c−l1
a−b−1 ]⟦ a+c+d−t1−t2

l1−t1 ⟧⟦ b+c+d−t1−t2
d−1−t2 ⟧.

In particular, since a > b,

f (c ,d)(c ,t2) = v(a−b+d−t2)(−d+t2)⟦b + d − t2
d − t2

⟧

= v−t′2(a−b+t′2)⟦b + t′2
t′2

⟧ ∈ v−1Z[v−1] (t′2 = d − t2 ≥ 0).

and, by Lemma 7.3(i), we have as seen at the end of the proof of _eorem 7.4,

f (c ,d)(t1 ,d) =
c

∑
k1=t1

(−1)c−k1v(a−b−k1+t1)(k1−t1) [a − b − 1 + c − k1
a − b − 1 ]⟦a + c − t1

k1 − t1
⟧

= v−t′1(a+t′1) [b + t′1
t′1

] = v−t′1(a−b+t′1)⟦b + t′1
t′1

⟧ ∈ v−1Z[v−1] (t′1 = c − t1).

Assume now that (t1 , t2) ≪ (c, d) and let

g(c ,d)(t1 ,t2) ∶= f
(c ,d)
(t1 ,t2) − f

(c−1,d−1)
(t1 ,t2) .
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If (t1 , t2) = (0, 0), then g(c ,d)(0,0) ∈ v
−1Z[v−1]. _is is done in LemmaA.1 of Appendix A.

It remains to prove that g(c ,d)(t1 ,t2) ∈ v
−1Z[v−1] for all (0, 0) < (t1 , t2) ≪ (c, d). _is

follows from the following recursive formula: for all (0, 0) < (t1 , t2) ≤ (c′ , d′) ≪
(c, d),

g(c
′+1,d′+1)

(t1 ,t2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g(c
′+1,d′)

(t1 ,t2−1) , if t2 ≥ 1,

g(c
′ ,d′+1)

(t1−1,0) , if t2 = 0,

which can be seen as follows.
First, the coeõcient g(c

′+1,d′+1)
(t1 ,t2) of ũ(t1 ,t2) in M(c′ + 1, d′ + 1) has the form

c′+1

∑
k1=t1

(−1)c
′+1−k1v(a−b−k1+d′+1+t1−t2)(k1−d′−1−t1+t2)

× [ a−b+c′−k1
a−b−1 ]⟦ a+c′+d′+2−t1−t2

k1−t1
⟧⟦ b+c

′+d′+2−t1−t2
d′+1−t2

⟧

−
c′

∑
l1=t1

(−1)c
′−l1v(a−b−l1+d′+t1−t2)(l1−d′−t1+t2)

× [ a−b−1+c′−l1
a−b−1 ]⟦ a+c′+d′+2−t1−t2

l1−t1
⟧⟦ b+c

′+d′+2−t1−t2
d′−t2

⟧.

If t2 ⩾ 1, then the coeõcient g(c
′+1,d′)

(t1 ,t2−1) of ũ(t1 ,t2−1) in M(c′ + 1, d′) has the form

c′+1

∑
k1=t1

(−1)c
′+1−k1v(a−b−k1+d′+t1−t2+1)(k1−d′−t1+t2−1)

× [ a−b+c′−k1
a−b−1 ]⟦ a+c′+1+d′−t1−t2+1

k1−t1
⟧⟦ b+c

′+1+d′−t1−t2+1
d′−t2+1 ⟧

−
c′

∑
l1=t1

(−1)c
′−l1v(a−b−l1+d′−1+t1−t2+1)(l1−d′+1−t1+t2−1)

× [ a−b−1+c′−l1
a−b−1 ]⟦ a+c′+1+d′−t1−t2+1

l1−t1
⟧⟦ b+c

′+1+d′−t1−t2+1
d′−1−t2+1 ⟧,

which is the same as that of ũ(t1 ,t2) in M(c′ + 1, d′ + 1), proving the ûrst recursive
formula.

If t2 = 0, t1 ⩾ 1, the coeõcient g(c
′ ,d′+1)

(t1−1,0) of ũ(t1−1,0) in M(c′ , d′ + 1) has the form

c′

∑
k1=t1−1

(−1)c
′−k1v(a−b−k1+d′+1+t1−1)(k1−d′−1−t1+1)

× [ a−b−1+c′−k1
a−b−1 ]⟦ a+c′+d′+1−t1+1

k1−t1+1 ⟧⟦ b+c′+d′+1−t1+1
d′+1

⟧

−
c′−1

∑
l1=t1−1

(−1)c
′−1−l1v(a−b−l1+d′+t1−1)(l1−d′−t1+1)

× [ a−b−2+c′−l1
a−b−1 ]⟦ a+c′+d′+1−t1+1

l1−t1+1 ⟧⟦ b+c′+d′+1−t1+1
d ⟧.
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Putting k′1 = k1 + 1, l ′1 = l1 + 1, we obtain

g(c
′ ,d′+1)

(t1−1,0) =
c′+1

∑
k′1=t1

(−1)c
′−k′1+1v(a−b−k′1+d

′+1+t1)(k′1−d
′−1−t1)

× [ a−b+c′−k′1
a−b−1

]⟦ a+c
′+d′+2−t1
k′1−t1

⟧⟦ b+c′+d′+2−t1
d′+1

⟧

−
c′

∑
l ′1=t1

(−1)c
′−l ′1 v(a−b−l ′1+d

′+t1)(l ′1−d
′−t1)

× [ a−b−1+c−l ′1
a−b−1

]⟦ a+c
′+d′+2−t1
l ′1−t1

⟧⟦ b+c′+d′+2−t1
d′

⟧,

which is the same as that of ũ(t1 ,0) in M(c′ + 1, d′ + 1), proving the second recursive
formula.

Repeatedly applying the recursive formula yields, for all (0, 0) < (t1 , t2) ≪ (c, d),

g(c ,d)(t1 ,t2) = g(c−t1 ,d−t2)
(0,0) .

By Lemma A.1 again, g(c ,d)(t1 ,t2) ∈ v
−1Z[v−1]. _is completes the proof of (ii).

_e proof of (iii) can also be reduced by induction to prove that the coeõcient of
ũ(0,0) belongs to v−1Z[v−1], which is given in Lemma A.1 of Appendix A.

A The Coefficient of ũ(0,0)

To complete the proof of _eorem 8.1, we need the following result. We ûrst rewrite
the identity in Lemma 7.3(ii) as

(A.1)
δ

∑
i=0

(−1)iv i(2δ−2n−i−1)+2δ(n+k)⟦ k−1+i
k−1 ⟧⟦ m+n

δ−i ⟧ =

min{δ ,n}
∑
t=0

v2t(δ+n+k−t)⟦ m−k
δ−t ⟧⟦ n

t ⟧.

for all m ⩾ k ⩾ 0, δ, n ∈ N.

Lemma A.1 For the numbers a, b, c, d ∈ N with c, d ⩾ 1 as given in _eorem 8.1, we
have

g(c ,d)(0,0) ∈ v
−1Z[v−1],

where, for a > b,

g(c ,d)(0,0) =
c

∑
k1=0

(−1)c−k1v(a−b−k1+d)(k1−d)[ a−b−1+c−k1
a−b−1 ]⟦ a+c+dk1

⟧⟦ b+c+dd ⟧

−
c−1

∑
l1=0

(−1)c−1−l1v(a−b−l1+d−1)(l1−d+1)[ a−b−2+c−l1
a−b−1 ]⟦ a+c+dl1 ⟧⟦ b+c+dd−1 ⟧;
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while, for a < b,

g(c ,d)(0,0) =
d

∑
k1=0

(−1)d−k1v(b−a−k1+c)(k1−c)[ b−a−1+d−k1
b−a−1 ]⟦ a+c+dc ⟧⟦ b+c+dk1

⟧

−
d−1

∑
l1=0

(−1)d−1−l1v(b−a−l1+c−1)(l1−c+1)[ b−a−2+d−l1
b−a−1 ]⟦ a+c+dc−1 ⟧⟦ b+c+dl1 ⟧.

Proof We only prove the a > b case; the other case can be proved similarly. Rewrite
g(c ,d)(0,0) as

g(c ,d)(0,0) =
c

∑
k1=0

(−1)c−k1v(a−b−k1+d)(k1−d)+(c−k1)(a−b−1)⟦ a−b−1+c−k1
a−b−1 ⟧⟦ a+c+dk1

⟧ ⋅ ⟦ b+c+dd ⟧

−
c−1

∑
l1=0

(−1)c−1−l1v(a−b−l1+d−1)(l1−d+1)+(a−b−1)(c−1−l1)

× ⟦ a−b−2+c−l1
a−b−1 ⟧⟦ a+c+dl1 ⟧ ⋅ ⟦ b+c+dd−1 ⟧.

If c ⩽ d, then rearranging gives

g(c ,d)(0,0) = (−1)cv−d(a−b+d)+c(a−b−1)⟦ a−b−1+c
a−b−1 ⟧⟦ b+c+dd ⟧

+
c

∑
k1=1

(−1)c−k1v(a−b−k1+d)(k1−d)+(c−k1)(a−b−1)⟦ a−b−1+c−k1
a−b−1 ⟧(⟦ a+c+dk1

⟧

× ⟦ b+c+dd ⟧ − ⟦ a+c+dk1−1 ⟧⟦ b+c+dd−1 ⟧) .
Since a > b and c ⩽ d, −d(a − b + d)+ c(a − b − 1) = (a − b − 1)(c − d)− d(1+ d) < 0
and so the ûrst term is in v−1Z[v−1]. Since the diòerence of the product of Gaussian
polynomials is in v−1Z[v−1], and (a − b − k1 + d)(k1 − d) + (c − k1)(a − b − 1) =
(a−b− 1)(c−d)+(1+d − k1)(k1 −d) ⩽ 0, this proves g(c ,d)(0,0) ∈ v

−1Z[v−1] in this case.

We now assume that c > d. By rearranging the exponents of v, g(c ,d)(0,0) has the form

g(c ,d)(0,0) = v−(a−b)(c+d)−c
2−d2⟦ b+c+dd ⟧ ⋅ S1

− v2(a−b+c+d−1)−(a−b)(c+d)−c2−d2⟦ b+c+dd−1 ⟧ ⋅ S2 ,

where

S1 =
c

∑
k1=0

(−1)c−k1v(c−k1)(c+k1−2d−1)+2c(a−b+d)⟦ a−b−1+c−k1
a−b−1 ⟧⟦ a+c+dk1

⟧,

S2 =
c−1

∑
l1=0

(−1)c−1−l1v(c−1−l1)(c+l1−2d)+2(c−1)(a−b+d−1)⟦ a−b−2+c−l1
a−b−1 ⟧⟦ a+c+dl1 ⟧.

Applying (A.1) (i.e., Lemma 7.3(ii)) to S1 with k = a − b,m = a + c, n = d , i =
c − k1 , δ = c and to S2 with k = a − b,m = a + c + 1, n = d − 1, i = c − 1 − l1 , δ = c − 1
yields

S1 =
d

∑
t=0

v2t(a+c+d−b−t)⟦ b+cc−t ⟧⟦ dt ⟧, S2 =
d−1

∑
t=0

v2t(a+c+d−b−2−t)⟦ b+c+1
c−1−t ⟧⟦ d−1

t ⟧.
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_us,

g(c ,d)(0,0) = v−(a−b)(c+d)−c
2−d2⟦ b+c+dd ⟧⟦ b+cc ⟧

+ v−(a−b)(c+d)−c
2−d2⟦ b+c+dd ⟧(

d

∑
t=1

v2t(a+c+d−b−t)⟦ b+cc−t ⟧⟦ dt ⟧)

− v2(a−b+c+d−1)−(a−b)(c+d)−c2−d2⟦ b+c+dd−1 ⟧

× (
d−1

∑
t=0

v2t(a+c+d−b−2−t)⟦ b+c+1
c−1−t ⟧⟦ d−1

t ⟧) .

Changing the running index t ∈ {0, 1, . . . , d − 1} to t ∈ {1, 2, . . . , d} in the last sum
gives

g(c ,d)(0,0) =v
−(a−b)(c+d)−c2−d2⟦ b+c+dd ⟧⟦ b+cc ⟧

+
d

∑
t=1

v−(a−b)(c+d)−c
2−d2+2t(a+c+d−b−t)

× (⟦ b+c+dd ⟧⟦ b+cc−t ⟧⟦ dt ⟧ − ⟦ b+c+dd−1 ⟧⟦ b+c+1
c−t ⟧⟦ d−1

t−1 ⟧) .

_e ûrst term is clear in v−1Z[v−1] since a > b. Now, c > d implies that

− (a − b)(c + d) − c2 − d2 + 2t(a + c + d − b − t)
⩽ −(a − b)(c + d) − c2 − d2 + 2d(a + c − b)
= −(c − d)(a − b + c − d) < 0

for any t = 1, 2, . . . , d. Hence, g(c ,d)(0,0) ∈ v
−1Z[v−1].

Added in proof Lemma 3.1 has already been observed by D. E. Knuth [17].
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