CMS
}ZSMC

http://dx.doi.org/10.4153/CJM-2017-009-4

Canad. J. Math. Vol. 70 (4), 2018 pp. 773-803 ]
© Canadian Mathematical Society 2017

Multiplication Formulas and Canonical
Bases for Quantum Affine gl,

Dedicated to Professor Leonard Scott on the occasion of his 75th birthday.
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Abstract. 'We will give a representation-theoretic proof for the multiplication formula in the Ringel-
Hall algebra £, (n) of a cyclic quiver A(n). As a first application, we see immediately the existence
of Hall polynomials for cyclic quivers, a fact established by J. Y. Guo and C. M. Ringel, and derive
a recursive formula to compute them. We will further use the formula and the construction of
a monomial basis for $x(n) given by Deng, Du, and Xiao together with the double Ringel-Hall
algebra realisation of the quantum loop algebra U, (gl,,) given by Deng, Du, and Fu to develop some
algorithms and to compute the canonical basis for U ( a[n) As examples, we will show explicitly
the part of the canonical basis associated with modules of Lowey length at most 2 for the quantum

group U, (gl,).

1 Introduction

The investigation of quantum algebras associated with affine Hecke algebras has made
significant progress recently. In the affine type A case, an algebraic approach was
developed in [4] for the Schur-Weyl theory associated with the quantum loop algebra
of gl,,, affine g-Schur algebras and Hecke algebras of the affine symmetric groups. This
approach, motivated by the algebraic approach for quantum gl,,, is different from the
geometric approach developed in [15,23]. Further in [10,11], new realisations for these
quantum loop algebras and their integral Lusztig type form are obtained using affine
q-Schur algebras. This generalises the work of Beilinson-Lusztig—-MacPherson [1]
to this affine case. For affine types of other than A, Fan et al. used affine g-Schur
algebras of type C to construct in [13] various types of quantum symmetric pairs.
The multiplication formulas there are much more complicated, but can be used to
study the modified versions of these quantum algebras and their canonical basis. In
this paper, we will see how a new multiplication formula discovered in [10] is used
to compute certain slices of the canonical basis for the +-part of the quantum loop
algebra of gl,,.

The key ingredient of the approach developed in [4] is the double Ringel-Hall al-
gebra characterisation for the Drinfeld’s quantum loop algebra of gl,, [7]. In this way,
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the Ringel-Hall algebra of a cyclic quiver and its opposite algebra become the +-part
of the quantum loop algebra of g[,,, and their generators associated with the semisim-
ple modules of the cyclic quiver play the role as done by usual Chevalley generators.
In particular, the quantum affine Schur-Weyl duality can be described by explicit ac-
tions of these (infinitely many) generators associated with semisimple representations
and a new realisation, i.e., a new construction of the quantum loop algebra of g, is
achieved through a beautiful multiplication formula of a basis element by a semisim-
ple generator. It should be pointed out that these multiplication formulas are derived
in the affine g-Schur algebras with most of the computation done within the affine
Hecke algebras. However, when the formulas restrict to the +-part, they result in
multiplication formulas for (generic) Ringel-Hall algebras of a cyclic quiver. Thus, a
natural question arises: Is there a direct proof for these formulas as a quantumization'
of Hall numbers associated with representations of a cyclic quiver over finite fields?

In this paper, we first provide a representation-theoretic proof for the multipli-
cation formula in the Ringel-Hall algebra (Theorem 2.1). One key idea used in the
proof is the bijective correspondence between the m-dimensional subspaces of an -
dimensional space and the reduced row echelon form of 7 x n matrices of rank m. We
then use the multiplication formula to show in general the existence of Hall polyno-
mials for cyclic quivers (cf. [12,27]). As a further application of the formula, we derive
a recursive formula for computing Hall polynomials and compute the canonical ba-
sis for (the +-part of) a quantum afline gl,,. This requires a systematic construction
of a certain monomial basis. Thanks to [6], we will use the theory there to derive a
couple of algorithms on matrices and will then follow them to produce the required
monomial basis. Computing canonical bases is in general very difficult. Besides some
lower rank cases of finite type (see, e.g., [19, §3] for types A; and A, and [30, 31] for
type As, B;) and certain tight monomials for quantum affine sl, ([22]), there seem
to be no explicit affine examples done in the literature. We now use the multiplica-
tion formula to compute several infinite series of the canonical basis for U, (gl, ). To
ease the difficulty, we divide the basis into the so-called “slices” labelled by the Lowey
length €(M) and the periodicity p(M) associated with a representation M of a cyclic
quiver. We explicitly compute all slices of the canonical basis associated with modules
of Lowey length at most 2 for quantum affine gl,. In a forthcoming paper, we will give
further applications to the theory of quantum loop algebras of sl,, developed in [6].

The paper is roughly divided into two parts. The first part from Sections 2 to 4 deals
with the theory of integral Hall algebras associated with finite fields, including the ex-
istence of Hall polynomials (Theorem 2.2) and a recursive formula (Corollary 4.8).
The remaining sections focus on computation of canonical basis for the (generic and
twisted) Ringel-Hall algebras and quantum affine gl,,. With a selected monomial ba-
sis, we formulate Algorithm 5.5 to compute the canonical basis. Five slices of the
canonical basis for quantum affine gl, are explicitly worked out; see Propositions 6.1
and 6.4 and Theorems 7.4 and 8.1.

Notation For a positive integer n, let M ,(Z) be the set of all Z x Z matrices
A= (a,-,j),-,jez with ai,j € Z such that

ISee the definition on [5, p- 17].
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(@) ai,j = Ajpn,jon fori, jeZ,and
(b) foreveryieZ,boththeset {jeZ|a;;#0}and {jeZ|aj;+#0} are finite.

Let ®a(n) = Ma,,(N) be the subset of M ,(Z) consisting of matrices with
entries from N. Let

OL(n)= {Ae Oa(n)|aij=0fori Zj},
Ox(n)={Ae®x(n)|a;j=0forix j}.
For A € @x(n), write A = A* + A® + A~, where A® is the diagonal submatrix of A,
AT € @%(n),and A~ € O, (n).
The core of a matrix A in ®% (n) is the n x | submatrix of A consisting of rows from
1to n and columns from 1 to [, where [ is the column index of the right most non-zero

entry in the given » rows.
Set

2% ={(AM)iez | A € Z, A = iy for i € Z},
NA ={(A)iez € Zx | Ai > 0fori e Z}.
For each A € Ma ,(Z), let
row(A) = (Zjezaij)iez € Zn, col(A) = (Ziezai,j)jer € Zn.
Define an order relation < on N’ by
A<pe=Li<pu (1<i<n).

Wesay A < pif A< pand A # p.
Let Q(v) be the fraction field of Z := Z[v,v™"]. For integers N, t with ¢ > 0 and
y € Z' and A € N, define Gaussian polynomials and their symmetric version in Z:

N _ [N]! _ H p2N=i+1)-1 ind N _ v N
t) [N -] g vR-1 t t)’

where [¢] = [1][2] --- [t] with [m] = 2]

v2-1"*
For a prime power g, we write [ % ], for the value of the polynomial at v = q.

2 The Integral Hall Algebras of Cyclic Quivers and Hall Polynomi-
als

Let A = A(n) (n > 2) be the cyclic quiver with vertex set I := Z/nZ = {1,2,...,n}
and arrow set {i - i +1| i € I}, and let kA be the path algebra of A over a field k.
For a representation M = (V;, f;); of A, let dimM = (dim V;,dim V5, ...,dim V,,) €
NI = N* and dim M = ¥, dim V; denote the dimension vector and the dimension
of M, respectively, and let [ M] denote the isoclass (isomorphism class) of M.

A representation M = (V;, f;); of A over k (or a kA-module) is called nilpotent
if the composition f, --- f2fi: Vi - V; is nilpotent, or equivalently, one of the maps
ficro fufuce fir Vi > Vi (2 < i < n) is nilpotent. By Rep® A(n) = Repg A(n) we
denote the category of finite dimensional nilpotent representations of A(#) over k.
For each vertex i € I, there is a one-dimensional representation S; = S; x in Rep® A(n)
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satisfying (S;); = k and (S;); = 0 for j # i. It is known that {S; | i € I'} forms a
complete set of simple objects in Rep® A(n).

For M € Rep® A(n), we denote by rad (M) the radical of M, i.e. the intersection of
all maximal submodules of M, and by top(M) = M/ rad(M), the top of M.

Up to isomorphism, all non-isomorphic indecomposable representations in
Rep’ A(n) are given by S;[1] (i € I and I > 1) of length [ with top S;. Note that
S;[1] can be described by vector spaces and linear maps around the cyclic quiver:

2.1 0—wk—k— - —k—k—0---

Here, the number of k’s is [ and the first k is at vertex i, the second at i + 1,.. ., the
(n + i)-th is again at vertex i = n + i, etc.

Forany A = (a;,;) € ®% (n), let

M(A) = Mi(A) = @D ai;Si[j-i].
1<i<n,i<j

Then the set { My (A) | A € ®% (n)} forms a complete set of all non-isomorphic finite
dimensional nilpotent representations of A(#n). If k is a finite field of g = gy elements,
we write My (A) = Mi(A).

Every element a = (a;);ez € N’ defines a semisimple representation

S,x = Sa,k = 69?:10(,-51-.

A matrix A = (a;,j) € % (n) is called aperiodic if, for each | > 1, there exists
i € Z such that a; ;,; = 0. Otherwise, A is called periodic. A nilpotent representation
M(A) is called aperiodic (resp. periodic) if A is aperiodic (resp. periodic). Denote by

%7 (n) the subset of all aperiodic elements in @7 ().

Assoc1ated with a cyclic quiver, Ringel introduced an associative algebra, the Hall

algebra, which can be defined at two levels: the 1ntegral level and the generic level.

For A, B, C € ®% (n) and any prime power g, let hM (B; M, (C) be the number of
submodules N of M, (A) such that

N=My (C) and M,(A)/N = M,(B).

More generally, given A, By, B,, ..., B, € @4 (1), denote bth Eg)) M, (B2),.os My (B)
1) g (D2 )5.» q m

the number of filtrations
My(A)=Mo2M; 2 My 2--2My_1 EM,, =0
such that M, /M, = My(B;) for1<t<m
The (integral) Hall algebra %, (n, q) associated with Rep} A () over a finite field k
of g elements, is the free Z-module spanned by basis {u,4 := ua,(a)) | A € OX (1)}
with multiplication® given by
My (A)

UB,q ©UcC,q = . @Z:( )th(B) M,(C)H4sq-

By a result in [12, 27], the Hall numbers pa M ( B M, (c) 3re polynomials in g with
integral coefficients. We now provide an independent proof for the fact, building on
the following multiplication formula. A generic version of this formula is given by Fu

2In [6] the multiplication is denoted by o.
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and the first author in [10] and is obtained by using the techniques of Hecke algebras,
affine g-Schur algebras, and the new realisation of the quantum loop algebra of gl,,.

Theorem 2.1 For A e ®%(n), a = («a;)iz € N\, we have the following multiplica-
tion formula in the Hall algebra % (n, q):

Yicisn(@ijti—tijtivg)
A > Aii+tii—tiq;
— i<l< ij ij i 1,] _
UagOUag= Y, 4 J H [[ b ﬂ Upor T g
T Y
row(T)=a J€L4s]

where ~:@a(n) » Oa(n),A = (a;;) = A = (@i,;) is the row-descending map
defined by a; j = a;_yj forall i, j € Z and T* denotes the upper triangular submatrix
of T.

We will prove this result in the next section. We first use the formula to prove the
existence of Hall polynomials.

Let M be the set of all isoclasses of representation in Rep” A(n). Given two objects
M, N € Rep’ A(n), there exists a unique (up to isomorphism) extension G of M by N
with minimum dim End(G)[2,3,5,24]. The extension G is called the generic extension’
of M by N and is denoted by G = M * N. If we define [M] = [N] = [M * N], then it
is known from [24] that = is associative and (M, *) is a monoid with identity [0].

Besides the monoid structure, M has also a poset structure. For two nilpotent
representations M, N € Rep” A(n) with dimM = dimN, define

N <gg M <= dimHom(X,N) > dim Hom(X, M), for all X € Rep® A(n);
see [33]. This gives rise to a partial order on the set of isoclasses of representations
in Rep® A(n), called the degeneration order. Thus, it also induces a partial order on
©7% (n) by setting
A Sdg B<— M(A) Sdg M(B)

Following [1, 9] we can define the order relation < on Ma ,(Z) as follows. For

AeMay,(Z)andi# jeZ,let

e ifi<i,
o4y = Bt 1<
Yssitej st 1> ]
For A,B € Ma ,(Z), define
B < Aifand only if 0; ;(B) < 0y,j(A) forall i # j.
Set B < A if B < A, and for some (i, j) with i # j, 0; j(B) < g; ;(A).
Note that restricting the order relation to ®% (n) gives a poset (% (n), <). Note
also from [9, Th. 6.2] that, if A, B € @% (n), then
(2.2) B <4y A<= B < Aand dimM(A) = dimM (B).
Thus, (@7 (1), <4g) is also a poset.
An element A € N, is called sincere if A; > 0 for all i € I. Let

™ = {all sincere vectors in N } and T=1uUI"",

3There exists a geometrical description when the field k is algebraically closed; for details, see [24].
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For X € {I,I",T}, let Zx be the set of words on the alphabet X and let ¥ = 3~

Foreachw = aja,---a,, € 2, we set M(w) =S4, * Sa, * -+ * S,,,. Then there is
a unique A € O} (n) such that M(w) = M(A), and we set p(w) = A, which induces
a surjective map p:3 — @% (n),w ~ p(w). Note that p induces a surjective map
p:2 - 05 (n).

ForaeT, setu,, = ugs,,]- Forany w = ayay - a,, € Y and A € ©% (n), repeat-
edly applying Theorem 2.1 shows that there exists a polynomial ¢2 € Z[q] such that
9 (q) = D3 a, nr, With M 2 S5, o and M = My (A).

Any word w = a;a,---a,, € 2 can be uniquely expressed in the tight form w =
bi'b3 -+ b;' where e; = 1if b; is sincere, and e; is the number of consecutive occur-
rence of b; if b; € I. By [6, Lem. 5.1] (see also the proof of [3, Prop. 9.1]), (p‘:‘; is divisible
by [Ti_,[e:]' for every A < p(w). Thus, there exists y € Z[q] such that

ot - lﬁlﬂeiﬂ!yﬁ ¢ 7[q].

Note that the polynomials y# are also Hall polynomials. In fact, for a finite field k of
q elements, we have y;,(q) = by v,y with N; = €;Sp, g and M = My (A). A word
w is called distinguished if the Hall polynomial y5(*) = 1.

As afirst application, we now use the multiplication formula to prove the existence

of Hall polynomials. This result was first given in [12], [27, 8.1].

.....

Theorem 2.2  The Hall numbers hﬁ“gg; M, (C) associated with A, B, C € @4 (n) and
q >

any prime power q are polynomials in q. In other words, there exist ¢} . € Z[q] such

My(A
that 93 c(q) = bM:EB;,Mq(C)for all such gq.

Proof Forw = byb,---b, € 3, if we write in $ (1, q),

_ _ B
Up,q = Upy,q O O Up, q = Z b, Up g
B'<p(w)

Then, by Theorem 2.1, there exist polynomials 2 such that ¢ (q) = b2, Assume
now that w is distinguished (see [6, Th. 6.2]) such that B = p(w). Then ¢ = TT!_,[e;]'
and (pf,’ [9E = yf,’ are all polynomials.

Now, by Theorem 2.1 again, the Hall numbers in u,, 4 © uc,g = 3 4<psc f);‘;’cuA,q
are the values of certain polynomials ¢, . at g. On the other hand,

!
Up,g ©UC,qg = Z bfr (”B’,q < ”C,q)
B'<B

!
= f)f,(uB,q oUc,q) + Z bg (uprq 0 uc,q)
B’<B

= bﬁ(uB,q © uC,q) + Z ( Z hﬁlhg’,c) Ua,q-

A<B*C = B’<B
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By equating coefficients, we see that all polynomials ¢} . is divisible by ¢%. Thus, we

have
B _ A B\ A
by (up,q © tic,q) = Z Bi,ctiag — Z ( Z b bB’,C) Ua,g-
A<BxC A<BxC  B’<B
Now the assertion follows from induction on <. |

In Section 4, we will give algorithms to compute distinguished words w4 associated
with each A € ®% (n) and to derive a recursive formula for Hall polynomials.

3 Proof of Theorem 2.1

Recall that a matrix over a field in row-echelon form is said to be in reduced row-
echelon form (RREF) if every leading column has 1 at the leading entry and 0 else-
where.

Lemma 3.1 Let Ry, © My, (IFy) be the subset consisting of all m x n matrices in
reduced row-echelon form and of rank m. Then

R | = M‘ .
m 2
vi=q

Proof LetV,, , be the set of all dimension m subspaces of IF:I’. Then, for T € Ry,
the rows of T spans a subspace V7 of dimension m. Thus, we have a map

f: :Rm,n — Vm,ns T +— VT'

Clearly, f is surjective. It is not hard to see that f is also injective. Now the assertion

follows from the bijection. ]
Proposition 3.2 Foriel, a;,d,meZwitha;>d; >0, m21,t=12,...,m,and
representations

L=aS;®aS;[2]® - ®ap,Si[m], M=(d+-+dy,)S;, and
N=(a1-di)S;i®((ar-d>)Si[2] ®dr8i1) &+
@ ( (am —dw)Si[m] & dySisa[m - 1]) ,
in Rep) (A(n)), the Hall number b \ is a polynomial in q = qy:

hL = q21sk<13m di(ar—di) a az . Gm
M.N dl d2 dm ’
q q q

Proof Without loss of generality, we may assume i = 1. Represent the modules L, N
by vector spaces and linear maps around the cyclic quiver as follows (cf. (2.1)):

L f@tartotan b1 At asttam p2 st am bs  Pm2 fm-1tam Pm-1 Km
N,kal—d1+azfd2+---+um—dm f kaatasttanm P2 f@3ttam ps3

—

P2 pamtam Pl pam
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Here p; is the projection map defined by the matrix (0,,, Iz,,, ), where
E[i =a;+--tay

and 0, is the ;41 x a; zero matrix, while f is the restriction of p;. Thus, f projects the
component k*~% to 0 and imbeds the component k%~% for i > 2 into the component
k% via the a; x (a; — d;) matrix J; = (I“fo‘di ) In other words, f is defined by the
a, x (a; - Jl) matrix A whose first a; — d; columns are zero columns and having
blocks Ji, J2, . - ., Jm on the diagonal of the remaining submatrix.

Let U < L be a submodule such that U @ N, L/U = M. Then U = Ker(g) for some
module epimorphism g: L — M. Thus, the short exact sequence0 - U - L - M —
0 gives the following commutative diagram:

U Kergl L) fGatasttam £> fsttam Pi) . PL;Z f@n-1+an Pl;l e
! h id id g iid

L k@t azttan g_ fA2tastotan g Jas+tan g pl;z fm-t+an Ig o
g & l l l l

M ftdattdu 0 0 N ! !

0 0

Since g is surjective, it is easy to see Ker g; = k@—dit+am=—dn a5 vector spaces. Rep-

resent the linear map g: k*+ % — fhtrdm by a dy x @ matrix Ty in reduced
row-echelon form. Since g; is onto, Ty is an upper triangular matrix with dy lead-
ing columns and ¢ = a; — dy non-leading columns, corresponding to ¢ free variables
Xi;» Xiy» - - . > Xi,. Let v; be the solution to Tyx = 0 obtained by setting xi; =1 and other
free variables to 0. Then, Ker g; has a basis v1,v,, ..., vp.

Since U 2 N, there exists a linear isomorphism ¢ = (1, ¢2,-+, ¢, ) making the
following diagram commute

U Kergl P ka2tasttan P;_ ks ttam P; .. .szkam_1+ump”;l kam

P T T

N ka-ditar—dattam—dn 5 ar+azt+an Pz kas+~--+amp; ,,,Pj;zkam-1+ampg‘kam

Hence, the images of p; --- p, p; in the top row maps must have the same dimension
as that of the map p; --- p, f below. Since the dimension of Im( f) is @, — da, py must
send vy, ..., vV4,—q, to 0. This forces the first a; columns contains d; leading columns.
Similarly, dim Im(p,p;) = dimIm(p,f) forces the next a, columns in Ty contains
d, leading columns, and so on. This proves that, if Ty is divided in d; x a; blocks,
then Ty is upper triangular with m (d; x a;)-blocks on the diagonal each of which
has rank d;.

Let T be the subset of all T ¢ Mg . (F,) such that T is in RREF and T has m
(di x a;)-blocks B; on the diagonal each of which has rank d;. The argument above
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shows that the map U — Ty is a bijection from theset {UcL | U 2 N,L/U = M} to
TJ. Hence, bl v = 1|7].

Now, to form such a matrix T, by Lemma 3.1, the number of the (d; x a;)-block
B, is H fﬂ] and the number of other (d; x a;)-blocks for i > 2 in the first d; rows is
g (aa=datas=dyttan=dn) Counting the number of the blocks in the next d, rows, ds
rows, . .., similarly, yields

|‘J—|:qd1(az—d2+a3—d3+<--+am—dm) a quz(ag—d3+---+am—dm) a N
dq . d, .

dm-1(am—dm) || m
X q ﬂdmﬂq’

as desired. [ |

Remark 3.3 A dual version of the above result, where the roles M and N are
swapped, is known in [28, §2.2] and was used in [14, Lem. 2.3.5]. Unlike the rep-
resentation-theoretic proof above, the proof in loc. cit. involves the geometry of the
Grassmanian variety.

Lemma 3.4  For nilpotent representations L, M, N of A(n), if N<Land LN = M
is semisimple, then there exist submodules L; < L, N; < N, and M; < M such that
L=@",Li, N=@,N;, M =D} M;, and

n
L Li
barN = H bM,-,Ni'
i=1

Proof Lettop(L); denotetheisotypic component of top(L) associated with S;. Then
L = @! | L; where top(L;) = top(L);. Thus, if M; denotes the isotypic component of
M associated with S; and 7: L — M denotes the quotient map, then restriction de-
fines an epimorphism 7; = 7|;,: L; - M;. Let N; = n;*(M;). Then N; = L; n N and
N = @, N;. Now, our assertion follows from the following bijection:

n
[[{Ui<Li| Ui 2 N;,L;/JU; 2 M;} — {U<L|U=N,L/U = M},
i+1

(Ul""’Un)’_’Ul"'"'-i-Un,
noting that U = (U N Ly) +---+ (UN Ly,). .

We are now ready to give a representation-theoretic proof for the multiplication
formula in [10, Th. 4.5]. As mentioned in the introduction, this formula is the re-
striction of certain multiplication formulas to the positive part for the quantum loop
algebra of gl,, [10, Prop. 4.2], which is obtained from lifting some multiplication for-
mulas in the affine g-Schur algebras associated with the affine Hecke algebra. See
[14, Prop. 2.3.6] for a geometric proof building on the Hall polynomials computed in
[28, §2.2].

Proof of Theorem 2.1 We first claim that if L is an extension of the semisimple rep-
resentation S, by N = M(A), then L = M(A+ T - T*) for some T € O®% (n)
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with & = row(T). Indeed, suppose L = M(C) for some C = (c;,;j) and decompose
L =@} |L;asin Lemma 3.4. If U < L is a submodule isomorphic to N, then there
exist t,'j € N such that U,’ =Un Li = @i<j((cij - tij)Si[j - l] [$) tijSi+1[j —-i- 1]),
where };_; tij = a;. Thus, U = N becomes

n n

D P ((C,‘j - tij)S,'[j— l:| ® tijSi+1[j —-i- 1]) P P a,-jSi[j - l:|

i=1i<j i=1i<j
By the Krull-Remak-Schmidt theorem, we have
(31) cij—t,-j+t,-,1,j:a,-j foralli<jwithi:1,2,-~~,n.
Hence, if we form the upper triangular matrix T' = (t; ;) € ® (n),thenC=A+ T -
T*, proving the claim.

For C = A+ T - T*, by Lemma 3.4, we have

05,4 =TT B, x,
where
L,' ;@(aij+t,»]-—ti_l,j)Si[j—i], M,’ %@tijsi, and
J>t j>i
N; = @(aij - ti,l,j)S,»[j— l:| ® tijSHl[j —-i- 1]
j>i

Applying Proposition 3.2 with a; = a; j+1 + ti,i+1 — tic1,ivl> d1 = t;,i41 yields

L _ o idl< aij+tij = ti-,j
M,N; 4 / H

Z1,jez tir(aij—ti-1,j)
jeZ,i<j[[

ﬂ (q = qx)-
q

Finally, it remains to prove

n n
(3.2) Z Z til(a,-j - t,'_l,j) = Z Z (aijtil - tijti+1,l)>

i=1i<I<j i=1i<l<j
or, equivalently, to prove

Z tirtioy,j = Z Lijtivai-

1<ign 1<ign
i<l<j i<l<j

This follows from the fact that the sets J; = {t;;¢;_1,; # 0| 1<i<n,i<I<j}and ], =
{tijtic # 0| 1< i <m,i<I< j}areidentical. To see this, take t;;¢;_1,; € J; where
i<l<jIf2<i< n,then tic1,jt(i-1)+1,1 € Jo. Ifi =1, then t,1t0,j = tnyn+jlnet,len € Ja.
Hence, J; € J,. Similarly, J, € J; and so J; = /5. |

Corollary 3.5 (i) By the extension of modules, we have
£ e [O,min{ai,ai+1,j}], lf|j—i|>l,
7o, ifli-il=1

and foranyi=1,2,...,n, ¥ tij = a;.

(ii) The power of q, Yi<i<n(@ijtis — tijti,1), is non-negative.
i<l<j
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Proof Since c¢;; > t;j, it follows from (3.1) that a;; > t;_;,j, proving (i). Then (ii)
follows from (3.2). [ |

4 Distinguished Words and a Recursive Formula

For A € ®% (n), denote by £(A) = £(M(A)) the Loewy length of M(A) and define
the periodicity of M(A) by

(4) = max{l eN|a;;;;#0forall1<i<n}, ifAisperiodic,
P N 0, if A is aperiodic.
Clearly, 0 < p(A) < €(A). Thus, p(A) = 0 means that A is aperiodic. If p(A) = €(A),
A is called strongly periodic.

We now record several results in [6] stated in multisegments in terms of matrices.
Note that if IT is the set of all multisegments, then there is a bijection

IMI— 0Ox(n), n= Z mi[i:1) — Ax = (aii41)ieriz With a; i = 5.
iel,I>1

Proposition 4.1 ([6,$4]) (i) For any A € @%(n), there exists uniquely a pair
(A, A") associated with A such that A’ is strongly periodic, A" is aperiodic, and
M(A) = M(A") » M(A").

(i) For aperiodic part A", there exists a distinguished word war = ji'jit---ji* €
2N pil(A”).

(iii) For strongly periodic part A', there exists a distinguished word wa = a1a,---a, €
Spin N H(A”), moreover, S, = socP T M(A")/socP* M(A'),1<s < p =
p(A).

(iv) warwar = ji'j3? - ji @@y -+ a, is a distinguished word of A.

A construction of distinguished words of the strongly periodic part and aperiodic
part has been given in [6]. Building on this, we now introduce some matrix algo-
rithms to compute certain distinguished words in order to provide a monomial basis
for computing the canonical basis.

If we take A = (a;,j), then M(A) = @}, @j>; ai;S;[j — i] and soc(S;[j - i]) =
Sj-1, s0c*(Si[j - i]) = Sj-2[2],..., soc (Si[j — i]) = Sj_1[I]. Here we understand
j—1=j(modn)andifl > j—1i,soc (S;[j-1i])=Si[j—1i].

We review the construction of producing the unique pair (A’, A”) in Proposition
4.1(i). For A € ®% (n) with p = p(A), then soc? (M(A)) = M(A") and M(A") =
M(A)/M(A).

Definition 4.2 For A € % (n) with p = p(A), define the distinguished pair (A’, A")

as follows.

(i) The matrix A" = (aj ;), called the strongly periodic part of A, is obtained by
setting

i,j

a, _ tli,j, lf] < i+p,
Yig<i Fig,j» i j=i+p.
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In other words, A’ is the matrix obtained by replacing the “p-th-diagonal”
(@i,i+p)iez by col(B), where B is the matrix obtained from A by vanishing all
the entries below the p-th-diagonal.

(i) The matrix A” = (a};), called the aperiodic part, is obtained by setting

no_ oo
ai,j = Qi,j+p-

First, based on the structure of soc’ M (A) for strongly aperiodic A € ®% (n),t € N,
we give a matrix algorithm of [6, Lemma 4.2] as follows.

Algorithm 4.3 (for the strongly periodic part) Suppose A’ is strongly periodic. Then
p=p(A") = £(A") and the algorithm runs p steps:

put B= (b,‘)j) = A

for j from 1 to p do

T:=Yi, biirp-js1Eiisp-js1, B=B-T+ T, a;j=row(T) enddo

output War = @18;--- G,
Remark 4.4 Every aj; is sincere and is uniquely determined by A. For A = (1;);ez €
N7, set Al = (AEI])iez, where )LI[.I] = A;_y for all i € Z. It is easy to prove that there is
one to one correspondence between strongly periodic matrix A with £(A) = pand a
sincere sequence a1a; -~ dp with aEl] <ajforl<i<p-1.

Second, for B = (b;,;) € ©%F (n) and i € I, we set M(B) = ®;c;M;(B) and M;(B) =
®j>ib;,jSi[j — i]. We take the maximal index in every step in [6, Prop. 4.3]; then we
give the following matrix algorithm.

Algorithm 4.5 (for the aperiodic part) Suppose A” is aperiodic with [ = ¢(A");
consider the following run:
put B=(b;;):=A"; for i from 1 to [, do
if the (I-i+1)th diagonal by141-i41>02241-it15-- > Onnsi-isl
is nonzero, choose the rightmost bj,j”,iH%O such that
bji1,js1+1-i+1 # 0; choose the minimal j'<[-i+1 such that
bjjej #0 and j > &(M;j(B));

do
I—i+1 . 1—i+1
. . + — — 1€ij.
T := Z bj)jJrkEj,jJrk; B=B-T+T s ei,j = Z bj,jJrk, xi,]‘—] by
k=jl k=j’

enddo; loop until the (I -i+1)th diagonal is zero.
next i; enddo;

output
P WA" :xl,j]"'xl,ja"'xl,kl"'xl,kh

The two algorithms give a distinguished section

W (n) ={wa=warwa ep (A)NZ|Ac@®L(n)}.

When restricting to %7 (1), we obtain a distinguished section of ¥ over %7 ().
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We explain the algorithms by the following example. Recall that every matrix in
* (n) is identified as its core. Sometimes, we indicate the diagonal with boldface

entries for clarity.

Example 4.6  Suppose n = 3 and

e

oo
oo
[=X=10
wNo
oww
—OoN
-

oW
SN—"

then p(A) = 4,£(A) = 8and

0110600 0121
A':(0002360), A":(oo 1
0003013 0001

3
1 b
0

2
0
0

with £(A") = €(A") = 4.
Applying Algorithm 4.3 to A’ gives

0000600 011300

i=1 T={0000060], B=(000290]),
0000003 000307
000300 01800

i=2 T:(000090) B:(oooso)
000007 00039
00800 01000

i=3 T:(oooso) Bz(ooso)
00009 0008
01000

i=4 T:(oosoy B=0,
0008

The algorithm stops with the output w4 = a1a,a34a4.
Applying Algorithm 4.5 to A" gives

00003 01210
i=1: T:(ooooo) B:(00014)
00000 00010
00000 01210
i=2: T:(00014), B:(ooooo),
00000 00024
0121 00000
T:(oooo), A:(0021o),
0000 00024
00000 04000
i=3 T:(ooooo) B:(OOZIO%
00024 00000
0000 0400
T:(0021» B:(oooo)
0000 0001
0000 0400
i=4: T:(oooo» B:(oooo)
0001 0000
0400 0000
T:(oooo» B:(oooo)
0000 0000

a; = (6,6,3),
a; = (3, 9, 7),

as = (8,5,9),

as = (10,8,8).
x1 =12,
Xy =2,
xy =14,
x35 =3°,
X35 = 2%,
x43 =3,
X41 = 14.

The algorithm has output wa» = x1,1%2,2%3,1X3,3%3,2%X4,3%4,1. Thus, it produces the

following distinguished word associated with A:

WA = WaAnWAr = X1,1X2,2X2,1X3,3X3,2X4,3X4,141420304.

Remark 4.7 In [18], a different matrix algorithm is used to get a certain triangular
relation similar to [1, Prop. 3.9] for the affine g-Schur algebra §. However, it is not clear
if such a relation can be lifted to a relation similar to [1, 5.4(c)]. Thus, it is not clear
how their algorithm produces a monomial basis for the Ringel-Hall algebra $ (1)

(or the +-part of the quantum affine gl,).
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For a fixed A € @} (n), let
(41) ©4=(0,A]:={Be@®L(n)|B<gg A} and ©.4={Be®,|B<A}.

The proof of Theorem 2.2 shows that every ¢, . is divisible by @7 . Let ys - =
go;‘}B,C /9% . The following result shows that the Hall polynomials ¢4 . can be com-
puted by a recursive formula.

Corollary 4.8 For any A, B,C € ®% (n), let wg be the distinguished word obtained

by applying Algorithms 4.3 and 4.5 to B and, for any B’ <45 B, let yf,; and yQB)C be
obtained by the multiplication formula given in Theorem 2.1. Then the Hall polynomial
¢ ¢ can be computed by the recursive formula

A B A : .
(PA ) Vws.c— 2B:B<B Yws 9B .o ifAeUp<g Oprcs
B,C — A .
))WB,C’ lfAE ®B*C\UB’<B ®<B’>(-C'

5 Ringel-Hall Algebras, Quantum Affine gl,, and their Canonical
Bases

The generic Hall algebra % (1) of A(n) is by definition the free Z[ q]-module with
basis {4 = urp(ay] | A € ®% (n)} and multiplication given by

A
Up o Uc = Z (PB,CuA'
Ae®7, (n)

For a finite field k of q elements, by specializing q to g, we obtain the integral Hall
algebra )% (1, q) associated with Rep® A(n), as discussed in Sections 2—4.

C. M. Ringel [25, 26] further twisted the multiplication, using the Euler form, to
obtain the Ringel-Hall algebra that connects to the corresponding quantum group.

Fora = (a;) € Z and b = (b;) € Z', the Euler form associated with the cyclic
quiver A(n) is the bilinear form (-, - ):Z"% x Z'\ — Z defined by

(a,b) = Z a,-bi - Z dibi+1.
iel i€l

The (generic) Ringel-Hall algebra $ 4 (1) of A(n) is by definition the algebra over
Z = Z[v,v"'] (v* = q) withbasis {us = u[pr(a)] | A € ©% (n)} and the multiplication
is twisted by the Euler form

Uplic = y{dimM(B).dimM(C)) S g .

Ae®F (n)
It is well known that for two A, B € ®% (n), there holds
(dimM(A),dimM(B)) = dim; Hom(M(A), M(B)) - dim; Ext'( M(A), M(B)).

The Z-subalgebra € (1) of 4 (n) generated by ul(m) =ul"/[m]l,ielandm>1,
is called the (generic) composition subalgebra. Then € (n) is also generated by Ums,]>

. m —_
since ug ) _ ym(m-1)y,

[ms;]- Clearly, Ha(n) and €4 (1) admit natural N”-grading
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by dimension vectors:

Ha(n) = dgnﬁA(Tl)d and Ca(n)= dg}%ﬂ €a(n)as

where 94 (n)q is spanned by all uy with dimM(A) = dand €4 (n)g = Ca(n) N
~6A(”)d-

Base change gives the Q(v)-algebra $4(n) = Ha(n) ®z Q(v) and €4 (n) =
€a(n) ®2 Q(v). Denote by $ 1 (n) the opposite algebra of $, (1) (= Ha(n)).

By extending $) » (1) to Hopf algebras

Ha(n)?" =95 (n) @ QW)[K;, ..., K],
Ha(m) = QMK ..., K] @ H(n),
we define the double Ringel-Hall algebra D A (1) (cf. [4,32]) to be a quotient algebra

of the free product $ » (1)>° * $ 1 (n)<° via a certain skew Hopf paring y: $ A (n)>" x
$H2(n)° = Q(v). In particular, there is a triangular decomposition

Da(n) =05 (n) @D (n) ® D4 (n),
where D% (n) 2 94 (n), D% (n) 2 Q[K{,...,Ki' and D, (n) = HA(n).

Theorem 5.1 ([4,Th. 2.5.3]) Let U, (gl,) be the quantum loop algebra of gl,, defined
in [7] or [4, $2.5). Then there is a Hopf algebra isomorphism ® x (n) = U, (gl,,).

Let U = U(n) = U,(sl,) be the quantum affine sl,(n > 2) over Q(v), and let
E;, F;, K¥ (i € I) be the generators; for details see [16,21]. Then U admits a triangular
decomposition U = U"UU*, where U* (resp. U, U?) is the subalgebra generated by
the E; (resp. F;, K (i € I)). Denote by U the Lusztig integral form of U™, which is
generated by all the divided powers Efm) = E—, The relation of Ringel-Hall algebras

m
and quantum affine s[,, is described in the following theorem.

Theorem 5.2 ([27]) 'There is a Z-algebra isomorphism
Ca(n) > UL(n), ugm) — Efm), iel, mz>1,
and by base change to Q(v), there is an algebra isomorphism € (n) > U*(n).
We now review an algorithm for computing the canonical basis. The first ingredi-

ent required in the algorithm is the following modified multiplication formula.
For A € ®%(n),let §(A) = dimEnd(M(A)) — dim M(A) and

Tia = vO(A)y, = pAimEnd(M(4)~dim M(4)

Lemma 5.3 ([10,p.14]) For a e N, A € ®X (n), the twisted multiplication formula
in the Ringel-Hall algebra $)x (n) over Z is given by

~ o~ ai~+ti‘—t,‘_1,'~
Haiia =y, v ] |[ T g Qe

. tij
Teel, (m jetng>i !
row(T)=a
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where

far= Y aijtii— Y, @ijtii— Y, ticytii+ Y. tijtig

1<ig<n 1<i<n 1<isn 1<isn
j2lzi+l j>1zi+l j2Izi+l j>1zi+1

For each w = aya; - a,, € 2 with tight form w = b{'b% --- b®', define a monomial
associated with w in 4 (n):

m(W) = ﬁelbl o .’L\[etbt'
The monomials associated with the distinguished words w4 = wa»wy4s produced by
Algorithms 4.3 and 4.5 will be denoted simply by

mA) =y wa) _ (wan)  (war)
We now apply [6, Th. 6.2] to this particularly selected monomial set.

Lemma 5.4 (i) For A€ ®% (n), we have a triangular relation

(5.1) m(A) - gA + Z VS(A)_a(T)})£A(V2)HT)
T<A,Te®% (n)
dimM(A)=dimM(T)

In particular, $a (n) is generated by {ufm), Ug = ups,] | i€ Lo € Ijn, m € N},
where So = @1 ;S; is the semisimple representation of A(n) associated with «.
(ii) The set
(5.2)
A (gl)s = {m™W [Ac@L(n)}  (resp., 4 (gl,)ap = {m™ | A O (n)})
forms a Z-basis for Ha (n) (resp., U (n)).

The ingredients to define a canonical basis of an algebra include a basis with index
set P, a bar involution on the algebra, and a poset structure on P that satisfies a certain
triangular condition when applying the bar to a basis element. In the current case, the
basis is {14 | A € ®% (n)}, the poset is (®% (1), <dg), and the bar involution (see,
e.g., [29, Proposition 7.5]) is given by

“:9A(n) — Ha(n), mA s (A syl
We now use the selected monomials m(4) to verify the triangular relation.

Restricting to A € ©% (n)q, d € N7, by (5.1)

(5.3) mA =7, + Z hpatip, hpa= Va(A)_s(T)YgA(VZ)-
B<A,Be®% (n)q

Solving the above gives

g =m 4+ > gam®.
B<A,Be®7 (n)a

Applying the bar involution, we obtain

uA:m( )+ Z gB,Am( ):MA-‘F Z TB,AUB.
Be®% (n)a,B<A Be@®% (n)q,B<A
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Now, by [19, 7.10] (or [5, §0.5],[8]), the system

PB.A = Z rg,cPc.A fOl‘BﬁA,A,BE@Z(I’l)d
B<Cx<A

has a unique solution satisfying pa a = 1, pp,a € v 'Z[v!] for B < A. Moreover, the
elements

~ +
Ca = > PB,alp, Ac®pL(n)a,
B<A,Be®°F (n)

satisfying C4 = C4, form a Z-basis for ) (n)q. The basis

@ (gl,)+ = {ca | A€ ®L(n)}
is called the canonical basis of ) o (n) with respect to the PBW type basis {4 } aco, (n)>

the bar involution, and the poset (®% (1), <dg)-

In practice, if relation (5.3) can be computed explicitly, then we can follow the
following algorithm to compute the c4 (or pp 4) inductively on the poset ideal ® 4
defined in (4.1). Write

0.,4=0",u0%,u---ud’, forsometeN,
where

@, = {maximal elements of ®_, },
) i1
@, = {maximal elements of @4 \ ‘U1 ®]<A}
i=

for2<i<t. Let
‘0%, = {Be®%, | hpafv ' Z[v]}.
In the summation (5.3), assume '®%, # @ with a minimal. Then pg 4 := hp s €
v 1Z[v'] forall B e ® , withi < aor B e ®,\'®%,. For each B € '®%,, hp 5 ¢
v~'Z[v™'] has a unique decomposition hp s = hj 4 + ppa with hf, . = h} , and
pp,a€v 'Z[v']. Then

A / B) _ ~ ~ ~
m® - > hB,Am( )=+ Y, Peallp+ ), gsallp.
Be'@%, Be@®' , Be®'

i<a i>a

Continue this argument with gg 4 if necessary; we eventually obtain
m@® - S ny m®B i Y vz i,
Be'®-a B<ggA
Be®7, (n)
where '®_4 is a union of those '®% ,. Since

m@® = S m® =m® - S R m®),
Be'®, BeO.,

by the uniqueness of the canonical basis of )  (n) with respect to the PBW type basis
114, we have proved the following algorithm.
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Algorithm 5.5 For A € @% (n), there exist a recursively constructed subset '@ 4 of
©, and elements hy , € Z[v,v™'] forall B € ‘®_, such that h}, , = h} , and

ca=mA - Z hg)Am(B)
Be’'®.y

is the canonical basis element associated with A.

If'®-4 = @, then c4 = m™). Such a c, is called a tight monomial, following [22].

6 Slices of the Canonical Basis

In certain finite type cases, the canonical bases can be explicitly computed. See, for
example, Lusztig [19, §3] for types A; and A, and [30,31] for types A3 and B,. It is nat-
ural to expect that this is the case for quantum affine gl,. However, this is much more
complicated. In the next three sections, we present explicit formulas of the canon-
ical basis for five “slices” We will see that if a module’s Loewy length increases, the
computation becomes more difficult.

The slices of the canonical basis are defined according to the Loewy length and
periodicity of modules. In other words, for (I, p) € N> with I > 1,1 > p > 0, let

G (gl,)1,p) = {Ca | €(A) = 1, p(A) = p}
(resp., 4 (81,) (1,p) = {m™) [ £(4) = 1, p(A) = p}),

which is called a canonical (resp., monomial) slice. Clearly, each of the canonical and
monomial bases is a disjoint union of slices.

In the sequel, we will compute the slices %(&2)(1, p) for I < 2. We first compute
the cases (1, p) € {(1,0), (1,1), (2,0)}, which are relatively easy.

Proposition 6.1 For (1, p) = (1,0) or (1,1), we have

‘5(3[2)(1,(» = «///(5[2)0,0) = {ﬁasl’absz | a,beN- 0}’
€ (8h,) 1) = 4 (8,) (11) = {Has,obs, | a-b €N, ab # 0}.

For (I, p) = (2,0), all modules are aperiodic. If we put

M (gL)ap = {m™ | A @ (n)}
(cf- (5.2)), then the structure of the monomial basis .# (az)ap for the +-part U3 (2)
of quantum affine sl, has a very simple description.
A sequence (ay, a, . ..,a;) € N is called a pyramidic if there exists k, 1 < k < I,
such that

a<ay << ag, g2 g =2 a.

We identify the positive part Uj (n) with the composition algebra under the iso-

morphism €, (n) > U (n), ul™

;e Efm) as given in Theorem 5.2.
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Lemma 6.2 We have
///(az)ap =
{E(a‘)E(aZ)E(a3)E(““) . Eg,a’) ‘ i€Zy, (a1, as,...,a;) is pyramidic, V1 € N},

i+l

where i’ = i iflisodd and i’ = i + 1if | is even.

Proof Applying Algorithm 4.5 to A € ®%7(2), we know that m4) has the desired
form.
Conversely, for a given

E(i,a) = EC E@ @ gD L pla0 . gl

i+l
where
O<a;<ay<---<ay, arzagmq=z2---2a;>ajq=0,
we construct an A € ®%7(2) such that m(4) = E (z, a). Since there are 8 cases for
(i, k, 1), we only prove the case where (i, k, ) = (1,1,1). The proof for other cases is
similar.
First, the matrix giving E1( o) .. -El(“’) by the algorithm has the form

0 ar—0dgy1 Gge1—Gke2 0 A1 —0dp 4]
0 0 0 0 0/

For ay_;, there exists a unique ip € N such that ag,;, > dxk_1 > dkri,+1, and s0 ag.i, —
Akrigr1 = (Bksip—k-1)+(Ak-1—Aksig+1)- NOW, thematnxglvng(a" 1)E(a") . El(a’)

has the form

0 ax — agy1 Gks1 — Ggs2 = Gkrip — k-1 0 0 0 0
0 0 0 0 0 ak-1— Akrigr1 ~-- A1 —ay a;

Continuing this pattern for ax_,, ..., aa, a; eventually yields the required matrix A.
|

We give an example to illustrate the construction.

Example 6.3 Consider
EPEPEPEPED B EVEP ED.

First, the matrix giving E(Q)E(G)E(4)E(3)E(l) is

0% T N -(835440)

Since 9 > 8 > 6, the matrix giving E(S)E(g)E(6)E(4)E(3)E(1) is

09-80 0 0 )( 00000
0866443311 00022 21

Due to 6 > 5 > 4, the matrix giving E<5)E(S’E(9)E<6)E(4’E§3)Ef” is

B%° 3% %7 D-8388133 D).

Since 4 > 3 > 3, the matrix giving E§3)EI(S)Eés)El(g)Egé)El(‘l)Eg)El(l) is

(09—80 0 5-4 4-3 0 00
0 0

0 00):(0 1 0000)
086 6-5 0 0 3-3 3-11 00021 1/

1
000 2
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Finally, since 3 > 2 > 1, the matrix giving EI(Z)ES)EI(S)E§8)E1(9)E§6)E1(4)E§3)E1(1)
has the form

0 9-8 0
(o 7o

0
0 8-

5-4 4-3 0 0 2—11)_(0100110011)
6-5 0 03-33-20/7X0002100010/"

Now we are ready to describe the slice ‘5(3[2)(2,0), which is similar to the slices in
Proposition 6.1.

6

Proposition 6.4 For (1,p) = (2,0), we have

%(az)(z,o) = ///(E[z)(z,o)
= (B D) P ELr) EO B Bl p®) | g p e N, b > 0}

Proof Suppose A € ©% (2) with (£(A), p(A)) = (2,0); then A is one of the follow-
ing matrices

(688) (coas) (888) (8605). vabeNb>o.
Applying Algorithm 4.5 to these matrices or by Lemma 6.2, the monomial 7(4) has
the following form

E1(u+b)E§h) E§a+b)E1(b) El(h)E§u+b) Eéh)El(“b).

> > >

We now prove that these monomials are tight monomials. We only look at the first
case; the other cases are similar. We now apply the formula in Lemma 5.3 to compute

Oab b b ~ .
m(886) = gl p® - H(ars)s,TTos,-

Since a = (a + b, 0), the matrix T in the sum must be of the form (§ @*4=¢ ¢ ). Thus,

m(g 0 g) = Zv’(“”’*t)(h*t)ﬁ(o atb—t t )
t<b 0 0 b-t

_ 77 —(a+b-t)(b-t)~
Hogn)t Y Hgar—s 1)

which is the canonical basis element associated with (8 a (b)), since v~ (a+b=0(b=1) ¢
v 1Z[v!] forall t < b. [ |

In the three slices above, the recursively constructed subset ‘@4 in Algorithm 5.5
is empty. So they consist of tight monomials.

7 Computing the Slice %(512)(2,1)

For computing the slices Cg(az)(z,l) and %(5[2)(2,2) in this and next sections, we
consider a matrix of the form

[0 a ¢ 0 4
A‘(o 0 b d)e(%(z)

satisfying €(A) = 2, p(A) > 0, where a,b,¢c,d e N. Then ¢ +d # 0 and ab + cd # 0.

https://doi.org/10.4153/CJM-2017-009-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-009-4

Multiplication Formulas and Canonical Bases for Quantum Affine gl,

Lemma 7.1 For the A as given above, we have
®A = (O)A] = {A(kl,kz) | k]) k2 € N) (kla k2) < (C) d)})
where
A _ 0 a+c+d—k1—k2 k1 0
(kika) =\ o 0 brc+d-—ki—ky ko)
Proof The proof is straightforward by (2.2). Note also that

Att) Sdg Ak k) = (ti 1) < (kis k).

793

For cd # 0, the poset ideal can be described by its Hasse diagram H(c,d); see

Figure 1.

(0.d)

(0.0)

Figure I: H(c,d)

For B = A, x,), by Definition 4.2, we have B = ( arctd=ki 0 ) and B” =

0 b+c+d—k,
( g 1:)1 ,? ) The following follows immediately from Lemma 5.3.
2
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Lemma 72  Putting u, r,) = EA(kl,kz) and m(kk2) = i (Adain) | we have

kiks) _ ~ ~
m(kka) = ”(0 ki 0 )u(o a+ctd—ky 0 )

00 ky 0 0 b+c+d—k;

(a—b-ki+tka+ti—t2) (ki—ko—ti+t2) [[ a+c+d—ti—t, N[ b+c+d—ti—t2 |7
v [[ ki—t; M[ ky—ty ]]u(flxh)‘

ti<ki, ta<ky

We now compute the canonical basis elements for those A with ¢ = 0O ord = 0
(but not both zero). In other words, p(A) = 1. We need the following identities for
symmetric Gaussian polynomials.

Lemma 7.3 ([30, Section3.1]) (i) Assumethatm >k > 0,8 € N. Then
5 .
- k-1+i|| m m-—k
_1\i,,i(m=k) _,ké
e[S

(i) Assumethatm >k >0,6,n € N. Then

) . min{8,n}

- k-1+i|l|m+n m—k||[n
2: _1\i,,i(m—k-n) _ 2: —k(0-t)-nd+t(m+n)
i=0( Y [ k-1 :||:8_i:|_ ! |:8_t:||:t]‘

t=0

We now perform Algorithm 5.5 to compute the slice ‘5@2)@1). In this case, the
recursively constructed subset ‘@4 in the Algorithm 5.51s '@.4 = O4.

Theorem 7.4 If A€ ®%(2) with (£(A), p(A)) = (2,1), then A is of the form

0 a ¢ 0 a 0 0
(0 0 b) or (O 0 b d) (a,b,c,d e Nyp).

(i) ForA=(58¢),ca= mA) is a tight monomial if and only if a < b. The canonical
basis element associated with A with a > b has the form

< _kla-b-1+c-k e b+t~
CA:];)(_I)C k[ fb1 ]m(k’O)IZV t(a b+t)|[ . ﬂ“(c—t,o)’

t=0

where 1,0y = a0, a1 Agio) = (§ “67* 4.8y )-
(i) For A= (3899), ca = m“) is a tight monomial if and only if a > b. The

canonical basis element associated with A with a < b has the form

d d
lb-a-1+d-1 —t(b— a+t|—
) A L [ TP
1=0

=0
where ﬁ(OJ) = ﬁA(o,z) andA(OJ) = (g u+gil b+(¢)i—l (l))

Proof We only prove (i); the proof for (ii) is similar. In this case, the Hasse diagram

H(c,0) is a linear figure. In other words, we have A = A, o) >dg A(c-1,0) >dg *** >dg

A(1,0) >dg A(0,0)- Note that in this case A’ = (§ ¢ ,%, ) and A” = (J §). Thus,

m m(A”)m(A’) = Ui
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We now apply the formula in Lemma 5.3. We have here a = (¢,0). If T € @%(2)

satisfying A'— T+ T+ € ©% (2) and row(T) = &, then T = (J ¢5* ¢ ) forsome 0 < t < c.

Thus, A’ - T+ T" = A(t,0y and
faor=alc—t)—(b+c)(c—t)+t(c—-t)=(c-t)(a-b-c+1).

Hence,

A = Z V(c—t)(u—b—c+t)[[a +c— tﬂﬁ(t’o)

0<t<c c-t

TS V(c—t)(a—h—c+t)Ha te- tﬂg(m)'

0<t<c-1 c—t

Consequently, m(4) becomes a canonical basis element (or a tight monomial) ifa < b.
By the calculation above, we have Ay o) = (0 ares k ol k) fork =0,1,2,...,¢,
and so, by Lemma 7.2,

~ ~ _ b -t~
m(*0) = (9 k)H(0 avek 0 )= S ylkrilarib k)[[azc ﬂ”(t,o)

0 b+c 0<t<k -t
vt
_ z plk=t)(t=b=c) [“ ¢ :|u(t0)
k-t
0<t<k

Assume now that a > b and consider the following bar fixed sum:

. < c—k a-b-1+c-k k,
M(&) = (D) [ a-b-1 ]m( !
a-b-1+c- ala+tc—t|~
e e O] o Y

k
- Otp-cy|la-b-1+c—-k|la+c—t]|~
D (e )[ a-b-1 H Kt ]”U"’)

t=0

e~k (k—t)(t-b—c) a-b-1+c-kfl|la+c-t|\~
O(kt( DT [ a-b-1 k—t |)H®0)

_ c-1 c . O)(t—b-c a—b—l+c—k< a+c—t|\~
:uA+Z(Z(—1) fntet )[ a-b-1 [ k-t ])”“’0)'
£=0 .

- T IMn T

-
Il

However, for fixed ¢,

. -
) -k (k=D(t-p-cy|a-b-1+c—k|la+c—-t
o= S tnero ot -bretfuve-

’
c

v v fa-b-1+c -k [a+c] ,
D R | O LT

= ¢ (b+c) & C1\ii(b+c") a-b-1+illa+c B
I ,;)( v [a—b—l ][ ](I—C k')

c
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Letk=a-b,m=a+c and § = ¢’. Applying Lemma 7.3(i) gives

- ), —c'(a— b+c —c'(a+c’ b+c
) T oo

!
=y ¢ (azbre )[[b ;c ﬂ ev'zZ[v],

since a > b. Hence, M(c) € s + i=g v"'Z[v"]ti(1,0). On the other hand, M(c) =
M(c). Consequently, c4 = M(c), as desired.

8 Computing the Slice ‘5(5[2)(2,2)

In the last section, we compute the canonical basis associated with the matrix A =
(Sa¢9)withe(A)=2=p(A)anda,b,c,deN. Thus, cd #0.

Theorem 8.1 Maintain the notation as set in Lemmas 7.1 and 72. Suppose A =
(82¢c9) e ®5(2) with £(A) = 2 = p(A) and a,b,c,d € N. Then the canonical
basis element c associated with A is given as follows.

(i) Ifa=b,thency =m(® —ple-bd=1),
(ii) Ifa> b, then

_ < ek a—b—1+c—k1 (k1,d)
e fro [
c-1
B Cye-1-l a—b—2+c—l1 (L,d-1)
l;)( D [ a-b-1 ]m '

(iii) Ifa < b, then

d
wlb-a-1+d-k ks
CA:Z(—l)d k1|: b—a-1 1]m(’k)
k1=0

—a

d-1
b-a-2+d-1
B _1yd-1-h 1], (c-1,h)
zlz=o( 2 [ b -1 ]m .

We can see the symmetry of the three cases from the big diamond H(c, d), Figure
1. The recursively constructed subset in Algorithm 5.5 has the form:

{A(c-na-n ) in (i),
'@ = {AGa)AGay |0< i j<ci<c), in (i),

YA
{A(c,i)>A(c—1,j) | 0<i,jg d,i< d}, in (iii).
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Proof We first prove (i), and thus assume a = b. Then the formula in Lemma 7.2

with (ki, k2) = (¢, d) becomes

med) = Z V—(C—d—f1+tz)2[a+c+d—t1—t2ﬂﬂa+c+d—t1—tzﬂ~

d—t,

c—1t
h<e,tr<d

)
= Z H LHHc‘i;ltlitz ﬂ ﬁ(tlsfz)

hi<c, tr<d
c—t=d—-t,

u(h,tz)

+ Z V—(c—tl—d+t2)2[[ a+crd—ti—t, M atctd—ti—t ﬂ~

d—t,

c—t
ti<c,tr<d
c—tiFd—t,

U(t,ty)

_—2
Since [[“*”C‘f;f"tzﬂ ~1ev'Z[v ' (= 0if (1, t2) = (c,d)) and the coefficients in

the second sum are all in v™'Z[v™"], it follows that

(ed) _ U(e,d) + U(e—t,d-1) * - + U(c—g0) + X,
U(e,d) + U(e—r,d-1) + + Ugo,d—c) + Y,

where X, Y € (4 1,)<(c,d) V_IZ[V_I]H(tI,tZ).
Similarly, we have

ifc>d,
ifc<d,

(c-1,d-1) _ —(c—d—t1+1:)°T a+c+d—ti—t, atcrd—ti—t; =
m - v H c-1-t H[H d-1-t, ﬂu(flytz)
t1<c—1,t,<d-1
+c+d—t—t 2
— atct+a—i—1iz 7
- Z [ c-1-t ﬂ U(n,t)
H<c—1,t<d-1
c—t=d—t,
—(c—d—-t+1)*] atc+d—ti—t; ||| a+c+d—ti—ty |~
+ v |I c-1-1 ]”I d-1-t, H”(tl,tz)'
t<c—1,t,<d-1
c—ti#d—t
and
~ ~ ~ P
m(c—l,d—l) _ U(c-1,d-1) T U(c—2,d-2) + """+ U(c—d,0) + X', ifc>d,
~ ~ ~ P
U(e-1,d-1) t U(c=2,d-2) T " T U0,d-c) + Y, ifc<d,

where X', Y' € ¥4, y<(e-1,a-1) V[V [l (1,1,)- Hence,

m(ed) _ yy(e-ld-1) _ U(caq)+Z, whereZe >

(t1,t2)<(c,d)

V_IZ[V_I]ﬁ(tbtz) .

This proves that ¢, = m(©4) — m(¢=14-1 s the canonical basis element associated

with A in this case.
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Next we prove (ii). Fix a > b and let

M(e,d)= Y (-)h [“ A "1] m ko)
k1=0

a-— 1
_ CZ_I (—1)e1h [a -b- i+ Cl— ll] i (hd=D)
— a - -
c—-1 d-1
_7 (c.d)~ (c.d)~
=Uay t tZ:of(tl,d)”(tbd) + Z f(c,tz)u(c’tl)
=
(c,d) (e=Ld-1)\~
* Z (f(tcl t2) f(tcl t2) )u(tl’tz))

(t1,t2)<(c,d)

where (t1,t;) << (¢,d) means t; < c and t, < d, and
¢ _ a—b—1+c—k1 ki,d) (c,d) ~
Z (_l)c kq [ ]m( nd) _ Z f > u(tl,tz)’
k20 a-b-1 (tt2)2(c.d) (t1,t2)

c-1

c-1-p [a-b-2+c-1 I,d-1 (c-Ld-1)~
Z(_l) [ a-b-1 ]m( )= Z f(tc1 n)  H(tut):
I= (t1,t2)<(c,d)

Expanding the left-hand sides by Lemma 7.2 yields, for (#1, t2) < (¢, d),

,d c ki,,(a—b—ki+d+t1—t2) (ki—d—t1+1t;
((tli tz)) Z (-1 o ki+d+ti—t5)( t+ty)

x [ a—l;—l;cl—kl ] [[ a+czfl—?—t2 M b+c+dd—tztl—t2 H’

1,d-1 c-1-1;, (a—b-1 1—12) (h— 1+
f((tcltz) ) _ Z( 1) 1-1 ( Lh+d-1+t1—t;) (h—d+1-t;+t3)

L=t

o )| il | Ry |

In particular, since a > b,

f(c d) _ | (a-brd—t;)(-d+1;) b+d-t,
(e:t2) d—t,

2

4 ’ 7,
— V—‘z(“—b”z)[[b ; tzﬂ € V_IZ[V_I] (t; =d-t,> 0).

and, by Lemma 7.3(i), we have as seen at the end of the proof of Theorem 7.4,

d < k. (a—b-kytt)(k—ty) |G- b =1+ c—ki||la+c—t
f((tcld)) Z(_l)ckv(abk+t)(k t) 1 1

=ty a-b-1 kl—tl
= y~fiart) [b Jtr, t{] = v"{(”‘b”;)[[b J;, t{ﬂ evIZv] (f=c-t).
1 1
Assume now that (1, f,) < (¢, d) and let

(c;d) ._ g(cd) (e-1,d-1)
(; ty) ° f(tcl t2) f(tc1 £)
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If (1, t;) = (0,0), then géé:g)) e v7'Z[v™"]. This is done in Lemma A.1 of Appendix A.

It remains to prove that gE:l”iz) e v 'Z[v™'] for all (0,0) < (t;, ;) < (¢, d). This
follows from the following recursive formula: for all (0,0) < (#,%) < (¢, d") <

(c.d),
(+1d") .
(c'+1,d"+1) _ g(tl,tzfl) > if t, >1,
(,t2) ) () _
(not0) > f12=0,

which can be seen as follows.

First, the coeflicient g(clﬂ’d’H) of U4, ¢,y in M(c" +1,d" +1) has the form

(t1,t2)
c+1 , , ,
c'+1-ky (a=b-ki+d +1+t1-t2) (k1—d'-1-t1+13)
Z (-1) %
ki=t

X[aberc’—kl] a+c’+d' +2-t1-t, ||| b+’ +d" +2-t,-t,
a-b-1 ki—t d'+1-t,

I’
c
_ Z (_l)c'—hV(u—b—ll+d'+t1—t2)(ll—d'—t1+t2)

h=t;

X[a7b71+c’—ll] at+c’+d +2-t,-t, ||[| b+ +d" +2-t,-t,
a-b-1 L—-t d'—t, .

If t; > 1, then the coefficient gEf} ti’_dl)) of Ut ¢,-1y in M(c¢’ +1,d") has the form
c’+1
Z (_l)c’+1—k1V(a—b—k1+d’+t1—t2+1)(kl—d’—t1+t2—1)

ki=t

% [ a-b+c’ -k, ] a+c’+14d' —ti—to+1 ||| b+c"+1+d" -1 -1, +1
a-b-1 ki—t d' —t)+1

’
c
_ Z (_l)c’—ll v(a—b—ll+d’—1+ ti—ty+1) (Lh—d +1-t+t-1)
L=t

% [a—b—1+c’—ll] a+c’ +14d' —ti—to+1 ||| b+c"+1+d -1t +1
a-b-1 L-t d'-1-t,+1 >

which is the same as that of %y, ;) in M(c’ +1,d’ + 1), proving the first recursive
formula.

If t, = 0, t; > 1, the coefficient g(c A1

(o1 0)) of #(4,_1,0y in M(c’,d" +1) has the form
CZ (_l)c’—klV(u—b—kl+d’+1+t1—1)(kl—d’—l—t1+1)
ki=fi-1

% [a—h—1+c’—k1] a+c’ +d +1-t;+1 b+c’+d +1-t;+1
a-b-1 ki—t1+1 d’ +1

-1

_ Z (_1)c’—l—llV(a—b—ll+d'+t1—1)(ll—d'—t1+1)
h=t;—-1

a-b-2+c'—1; || a+c’+d"+1-t;41 || b+c"+d'+1-t1+1
X[ a-b-1 ][[ L—t+1 H d ]]
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Putting k{ = k; +1,1] = I; + 1, we obtain

c’+1
((c',d'+)1) _ Z (_1)c’—k{+1v(a—b—k{+d’+1+t1)(k{—d’—l—tl)
t,-1,0

/=t1

1

< [ a-b+c'—k| ] H a+c’+d' +2-1 ]]H b+c'+d +2-1 ﬂ
a-b-1 k{—tl d’'+1

I’
[
_ Z (_1)c'—l{v(a—b—ll’+d'+t1)(ll’—d'—tl)
/=t

% [ a-b-l+c-1I] ]H a+c’+d'+2-1 H H b+c'+d +2-1, ]]
a-b-1 -t d’ ’

which is the same as that of %y, o) in M(c’ +1,d’ + 1), proving the second recursive
formula.
Repeatedly applying the recursive formula yields, for all (0,0) < (#1,t2) < (¢, d),

(c;d) _  (c—t1,d-t)
8(t,t) ~ 8(0,0)

By Lemma A.1 again, g((fl’dtz) € v"'Z[v7']. This completes the proof of (ii).
The proof of (iii) can also be reduced by induction to prove that the coeflicient of
i(9,0) belongs to v~'Z[v'], which is given in Lemma A.1 of Appendix A. [

A The Coefficient of ()

To complete the proof of Theorem 8.1, we need the following result. We first rewrite
the identity in Lemma 7.3(ii) as

s
(A1) Z(:](_l)ivi(28—2n—i—1)+26(n+k) H klzflri M ngiin 1=
i=

min{d,n}

2t(8+n+k— m—
x v t(8+n+ t)[[ S—H]H’”]

forallm>k>0,0,neN.

Lemma A.1  For the numbers a, b, c,d € N with ¢,d > 1 as given in Theorem 8.1, we
have

gE;:g)) ev'Z[v],
where, for a > b,

gﬁéjg)) = kzc_:o(—l)C—kxV(a—b—k1+d)(k1—d) [ u—l;—_l;_cl—kl ] [ a+c1+d ﬂ [ h+§+d ﬂ
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while, for a < b,

d .
Slamy = 2 (D koA Lk Lo T

_ dz_:l(_l)dflfllV(h*ufllJrCfl)(l[*CJrl) |: b—u—2+d—ll ]W

b—a-1 c-1 L
11:0

Proof We only prove the a > b case; the other case can be proved similarly. Rewrite

(c.d)
g(; 0y a8

Eg g)) Z ( c k1V(u—b—lird)(kl—d)Jr(cfkl)(u—bfl) H a—ﬁ—_lbtcl—kl I”I u+kcl+d ﬂ . [ b+‘ci+d ﬂ

_ Z (_1)c—l—llV(a—b—ll+d—1)(ll—d+1)+(u—b—1)(c—1—11)
5L=0

o s | e B onasy ¢

If ¢ < d, then rearranging gives

gé;:g)) _ (_l)cv—d(a—b+d)+c(u—b—1) H a;l_y;l—ql-c HH b+§i+d ﬂ

+ i (_1)c—klv(a—b—k1+d)(k1—d)+(c—k1)(a—b—l) [[ a—-b-1+c—k, ﬂ( H a+c+d ﬂ

a-b-1 1
k=1

x Hb+;+dﬂ _ [[a;{-lcj—d ﬂ[[ b;uid ]]) .
Sincea >bandc<d,-d(a- b+d)+c(a b-1)=(a-b-1)(c-d)-d(1+d) <0
and so the first term is in v"'Z[v™']. Since the difference of the product of Gaussmn
polynomials is in v'Z[v™'],and (a = b - ky + d)(ky —=d) + (c = k))(a - b -1) =
(a-b-1)(c—-d)+(1+d-ky)(k; —d) <0, this proves g(c A ey 1Z[v 1] in thls case.

(0,0)
We now assume that ¢ > d. By rearranging the exponents of v, gEO (ﬂ)l)) has the form
gé(c) g)) —(a b)(c+d)-c*—d [[b+c+dﬂ S

_ y2(a=bicrd-1)=(a-b)(ct+d)-c —dZIIb;deﬂ .S,

where

Sl _ kzc: (_I)C_klV(C_kl)(C+kl_2d_1)+zc(a_b+d) |I a_l;_,lhtcl_kl H |I a+c1+d H)
1=0

S, = ICZ;(_I)C_I_I‘V(C_l_ll)(C+ll_Zd)+2(C_l)(a_b+d_l) [ a_l;:itcl_ll I”I a+lcl+d ﬂ
1=

Applying (A1) (i.e., Lemma 73(ii)) to S; withk =a-b,m =a+c¢,n =4d,i =
c—k,0=candtoS;withk=a-bm=a+c+l,n=d-1,i=c-1-5L,6=c-1
yields

S = Zd: vzr(a+c+d—h—t) H 'Zf;f M[ ,,ti ﬂ’ S, = dz_:l v2t(u+c+d—b—2—t) [[ ?tlcjtl HH dt_l H

t=0 t=0
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Thus,

__d -
n v—(u—b)(ﬁd)fcl,dz [[ b+;l+d ﬂ( tz_; Vzt(a+c+d—b7t) [[ Etf ]][[ (? ﬂ)

_ vZ(u—bJchrd—l)—(a—b)(c+d)—cz—d2[[ b+c+d H
d-1

d-1
% ( Z v2t(u+c+d—h—2—t) H ’Ziff} H H d;I ﬂ) .
=0
Changing the running index ¢ € {0,1,...,d -1} to t € {1,2,...,d} in the last sum
gives

d
2 2
i ZV—(a—h)(c+d)—c —d*+2t(a+c+d-b-t)
t=1

(e dledle) -l e
The first term is clear in v™'Z[v™!] since a > b. Now, ¢ > d implies that
~(a-b)(c+d)-F-d*+2t(a+c+d-b-t)
<—(a-b)(c+d)-c*-d*+2d(a+c-b)
=—(c-d)(a-b+c-d)<0

foranyt=1,2,...,d. Hence, gEg’g)) ev'Z[v!]. ]

Added in proof Lemma 3.1 has already been observed by D. E. Knuth [17].
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