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A Strong Form of a Problem of
R. L. Graham

Kevin Ford

Abstract. If A is a set of M positive integers, let G(A) be the maximum of ai/ gcd(ai , a j ) over ai , a j ∈

A. We show that if G(A) is not too much larger than M, then A must have a special structure.

1 Introduction

In 1970, R. L. Graham [3] conjectured that for any set of n positive integers, there
are two of them, say a and b, such that a/(a, b) ≥ n. Here (a, b) is the greatest com-

mon divisor of a and b. Graham’s conjecture was proved for all large n independently
by Zaharescu [5] and Szegedy [4] in the mid-1980s. Introducing several new ideas,
and making use of explicit bounds for prime number counting functions, Balasub-
ramanian and Soundararajan [1] recently proved the conjecture for all n. They also

noted that their method of proof could be used to prove a stronger form of Graham’s
conjecture, but gave no details.

For a set A = {a1, . . . , an} of positive integers, define

A∗
=

{

L

a1

,
L

a2

, . . . ,
L

an

}

, L = lcm[a1, a2, . . . , an],

which we refer to as the dual of A. Let G(A) be the maximum over all i, j of ai

(ai ,a j )
. We

will confine our discussion to sets with gcd(a1, . . . , an) = 1, since G(A) = G(dA),

where dA = {da1, . . . , dan}. Also, since ai

(ai ,a j )
=

L/a j

(L/ai ,L/a j )
for all i, j, it follows that

G(A) = G(A∗).

Theorem BS (Balasubramanian-Soundararajan [1]) Let n > 4. For every set A of n

positive integers, G(A) ≥ n. Furthermore, if G(A) = n then either A or A∗ is equal to

{1, 2, . . . , n}.

The strengthening of Graham’s conjecture which we are concerned with is an ex-
tension of the second part of the conjecture. We show that if A is a set of M positive
integers and G(A) = N with N “not too much larger” than M, then either A or A∗

lies in {1, 2, . . . , N}.

Definition Let f (N) denote the largest number R so that the following holds: for
every set A of M positive integers with N − R ≤ M ≤ N and G(A) ≤ N , either A or
A∗ lies in {1, 2, . . . , N}.
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A Strong Form of a Problem of R. L. Graham 359

Theorem 1 We have f (N) ≥ cN log log N

log2 N
for large N, where c > 0 is an absolute

constant.

Lower bounds for f (N) have an application to a problem of determining the max-
imum number of k-term arithmetic progressions of real numbers one can have, any

two of which have two elements in common (see [2]). This in fact was the motivation
for this work. (In [2] a crude bound f (N) ≥ 0.156 N

log3 N
for N ≥ e10000 is proved). In

this paper we concentrate only on the behavior of the bound for large N , as a totally
explicit version of Theorem 2 would require a great deal of extra computation. By
Theorem BS, f (N) ≥ 0 for N ≥ 5. A natural question is to determine the smallest

X so that f (N) ≥ 1 for N ≥ X. The example A = {2, 3, 4, 6, 8, 9, 10, 12, 18} shows
that f (10) = 0. Perhaps one can prove that f (N) ≥ 1 for N ≥ 11 using the methods
in [1].

Remark Balasubramanian and Soundararajan claim that their method yields
f (N) ≥ cN

log N log log N
, but this appears to be too optimistic.

We can also show a non-trivial upper bound on f (N).

Theorem 2 We have f (N) = O
(

N
log log N

)

.

Proof Suppose that N is large, set L =
1
2

log N and let H be the product of the

primes ≤ L. By the Prime Number Theorem, N2/5 ≤ H ≤ N3/5 for large N . Let
N0 = H⌊N/H⌋ so that N ≥ N0 ≥ N − H ≥ N − N3/5. Here ⌊x⌋ denotes the largest
integer ≤ x. Let

A = {m ≤ N0 : (m, H) > 1} ∪ {2N0}.
It is clear that G(A) ≤ N and neither A nor A∗ is a subset of {1, 2, . . . , N}. Also

|A| = N0 + 1 − φ(N0) = N0 + 1 − N0

∏

p≤L

(1 − 1/p)

≥ N0 −
c1N0

log L
≥ N − c2N

log log N
.

Here c1, c2 are positive absolute constants.

2 General Lower Bounds

We first need to introduce some of the notation from [1]. Suppose A = {a1, . . . , aM},
gcd(a1, . . . , aM) = 1, N ≥ 7 and G(A) ≤ N . If p is a prime in (1.5N, 2N) and
p − N ≤ m ≤ N , define

(2.1) Rp(m) =

{

pairs (ai , a j) :
ai

(ai , a j)
= m,

a j

(ai , a j)
= p − m

}

and put rp(m) = |Rp(m)|. Our proof is based on upper and lower bounds for
averages of rp(m). Suppose that neither A nor A∗ lies in {1, 2, . . . , N}, and that
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N/2 + 2 < M ≤ N . We need not consider M outside this range, since the set
A = {a ≤ N : (6, N) > 1}∪ {6 ⌊N/3⌋} shows that f (N) ≤ N/3− 1 < N/2− 2 for

N ≥ 7. By Lemmas 4.1 and 4.2 of [2],

∑

p+1

2
≤m≤N

rp(m)≥2

(rp(m) − 1) ≥
∑

p+1

2
≤m≤N

rp(m)=0

1 − (N − M)

≥ π(N) − π(p − N − 1) − (N − M),

(2.2)

where π(x) denotes the number of primes ≤ x. Let

(2.3) KD,N (m) =

∣

∣{m = abc : 1 < a < b ≤ D, (a, b) = 1, b
a
≤ N

m
}
∣

∣ .

For any triple (a, b, c) counted in KD,N (m), we have

(2.4)
m

N − m
≤ a ≤ D − 1, a + 1 ≤ b ≤ N

m
a, c ≤ N

b2
.

In particular, b ≤
√

N, so

(2.5) KD,N (m) = K√
N,N (m) (D ≥

√
N).

Let

D(p, A) = max
p−N≤m≤N

max
(ai ,a j ),(ai ′ ,a j ′ )∈Rp(m)

{

gcd(ai , a j)

gcd(ai, a j , ai ′ , a j ′)

}

.

Lemma 2.1 If D = D(p, A), then

D = 1 or
N

2N − p
≤ D ≤ N,

and for
p+1

2
≤ m ≤ N we have

rp(m) ≤ (KD,N (m) + 1)(KD,N (p − m) + 1).

Proof This follows from Lemmas 2.3, 2.4 and 2.5 of [1].

It follows from Lemma 2.1 and the definition of D(p, A) that rp(m) ≤ 1 for all m if

and only if D(p, A) = 1.

The next lemma, a slightly weaker form of Lemma 4.1 of [1], shows that A cannot
contain many elements divisible by primes > 2ND−1/3.

Lemma 2.2 Suppose p is a prime in (1.5N, 2N −
√

N) and D = D(p, A) > 1. With

the possible exception of two primes, no prime q > 2ND−1/3 can divide an element of A.
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A version of the Prime Number Theorem with crude error term will also be
needed:

(2.6) π(x) =

∫ x

2

dt

log t
+ O

(

x

log10 x

)

.

We may now state the fundamental lower bound for f (N). Here P+(n) denotes
the largest prime factor of n.

Theorem 3 Suppose N is large and let P be a subset of the primes in (1.5N, 2N−
√

N).

Then

(2.7) f (N) ≥ −1 + min
( N

3(log N)3/2
,

|P|−1 min√
log N≤D≤

√
N

∑

p∈P

{S1(p, N, D) − S2(p, N, D)}
)

,

where

S1(p, N, D) =

∣

∣

∣
{m ∈ [p − N, N] : P+(m) > 2ND−1/3}

∣

∣

∣
− 2N − p

ND−1/3
− 2,

S2(p, N, D) =

∑

p+1

2
≤m≤N

(

(KD,N (m) + 1)(KD,N (p − m) + 1) − 1
)

.

Proof Suppose |A| = M, G(A) ≤ N and neither A nor A∗ is contained in {1, 2,
. . . , N}. Let

D0 = max
1.5N<p<2N−

√
N

D(p, A).

If D0 = 1, let p be the smallest prime > 1.5N . By (2.6), p ≤ 1.6N . Since D(p, A) =

1, rp(m) ≤ 1 for p − N ≤ m ≤ N and thus by (2.2) and (2.6),

N − M ≥ π(N) − π(p − N − 1) ≥ N

3 log N
.

If 1 < D0 ≤
√

log N, let p be the smallest prime > 2N − N/D0. By (2.6), p ≤
2N − N/(2D0). By Lemma 2.1, D(p, A) = 1 and we similarly obtain from (2.2) and
(2.6) the bound

N − M ≥ π(N) − π(p − N − 1) ≥ N

3D0 log N
≥ N

3(log N)3/2
.

Lastly, if D0 >
√

log N , then we apply Lemma 2.2. Let q1, . . . , qs be the primes in the

interval (2ND−1/3, N]. Since 2ND−1/3 ≥ N2/3, each number m ≤ N is divisible by
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at most one prime qi . Fix p ∈ P and let Ri be the number of m ∈ [p−N, N] divisible
by qi . Then rp(m) = 0 for at least S0(p, N, D0) values of m ∈ [ p+1

2
, N], where

S0(p, N, D0) = min
T⊂{1,2,...,s}
|T|=s−2

∑

i∈T

Ri.

By (2.2), Lemma 2.1 and the fact that KD ′,N (m) ≤ KD,N (m) if D ′ ≤ D,

N − M ≥ S0(p, N, D0) − S2(p, N, D(p, A)) ≥ S0(p, N, D0) − S2(p, N, D0).

Averaging over p ∈ P gives

(2.8) N − M ≥ |P|−1
∑

p∈P

[

S0(p, N, D0) − S2(p, N, D0)
]

.

Since S0(p, N, D) is an increasing function of D and S2(p, N, D) is constant for
N1/2 ≤ D ≤ N by (2.5), the minimum over D0 of the right side of (2.8) occurs
for some D0 ≤ N1/2. Finally, S0(p, N, D) ≥ S1(p, N, D) and this completes the

proof.

3 Lower Bounds for S1

Lemma 3.1 Suppose N is large, 1.98N ≤ p ≤ 2N−N/ log5 N and 100 ≤ D ≤
√

N.

Then

S1(p, N, D) ≥ (2N − p) log D

6 log N
.

Proof Let R =

p−N

2ND−1/3
and note that R ≤ 1

2
N1/6. At most one prime q > 2ND−1/3

can divide any number in [p − N, N], so

S1(p, N, D) ≥
∑

1≤r≤R

(

π

(

N

r

)

− π

(

p − N

r

) )

− 2N − p

N5/6
− 2.

By hypothesis, 2 ≤ 2(2N − p)N−5/6. Thus, by (2.6),

S1(p, N, D) ≥
∑

1≤r≤R

(
∫ N/r

(p−N)/r

dt

log t
− O

(

N

r log10 N

) )

− 3(2N − p)

N5/6
.

The integral is

≥ 2N − p

r log(N/r)
≥ 2N − p

r log N

and
∑

r≤R

1

r
≥

∫ R+1

1

dt

t
≥ log

(

0.98

2
D1/3

)

≥ 0.178 log D

since D ≥ 100. For large N the result follows.
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4 Upper Bounds for S2

Lemma 4.1 If max(N/D, 2N5/6) ≤ λ ≤ N/50, then

∑

N−λ≤m≤N

KD,N (m) ≤ λ2

2(N − λ)

(

log

(

λD

N

)

+ 4
λ

N
+

D2

2(N − λ)

)

.

Remark 1 When λ < N/D, the left side is zero by (2.4).

Proof Ignoring the condition (a, b) = 1 in (2.3), the left side in the lemma is at
most the number of triples (a, b, c) with

N − λ ≤ abc ≤ N, 1 <
b

a
≤ N

abc
, b ≤ D.

By (2.4),

(4.1)
N − λ

ab
≤ c ≤ N

b2
, a ≥ N − λ

λ
, b ≤ (1 + β)a, β =

λ

N − λ
.

Let E be a parameter in [ N
λ , D], let T1 be the number of triples with a ≤ E − 1 and

T2 be the number of remaining triples.
We first estimate T1. For each pair (a, b), the number of c is at most

N

b2
− N − λ

ab
+ 1 =

N

b

(

1

b
− 1

a(1 + β)

)

+ 1.

This is a decreasing function of b and is positive for b ≤ (1 + β)a, so for each a, the
number of pairs (b, c) is

≤ aβ +

∫ aβ

0

N

(a + t)2
− N − λ

a(a + t)
dt = aβ +

βN

a(1 + β)
− (N − λ) log(1 + β)

a

≤ aβ +
1

a

(

λ − (N − λ)(β − 1
2
β2)

)

= aβ +
λ2

2(N − λ)a
.

Thus

T1 ≤ βE2

2
+

λ2

2(N − λ)

∫ E

N/λ−2

dt

t

=

λ2

2(N − λ)

(

log

(

Eλ

N

)

− log(1 − 2λ/N) +
E2

λ

)

≤ λ2

2(N − λ)

(

log

(

Eλ

N

)

+ 2.1
λ

N
+

E2

λ

)

.

When D ≤ N1/3, we take E = D, so that T2 = 0 and

E2

λ
≤ N2/3

λ
≤ λ

4N
.
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This gives the lemma in this case. Next assume D > N1/3. To bound T2, note that

N − λ

D2
≤ c <

N

E2
.

For fixed c, we count the number of (a, b) for which

N − λ√
Nc

≤ a < b ≤ N√
Nc

, b ≥ N − λ

ac
.

By symmetry (counting solutions with b < a also), this is

=

1

2

[

∣

∣

{ N − λ√
Nc

≤ a ≤ N√
Nc

,
N − λ

ac
≤ b ≤ N√

Nc

}
∣

∣

−
∣

∣

{

√

N − λ

c
≤ a ≤ N√

Nc

}
∣

∣

]

≤ 1

2

[

∑

a

(

N√
Nc

− N − λ

ac
+ 1

)

−
(

N√
Nc

−
√

N − λ

c
− 1

)]

≤ 1

2

[
∫ N√

Nc

N−λ√
Nc

N√
Nc

− N − λ

ac
+ 1 da +

λ√
Nc

+ 2 −
√

N −
√

N − λ√
c

]

≤ 1

2

[

λ

c
+

2λ√
Nc

− N − λ

c
log

N

N − λ
+ 2 − λ

2
√

Nc

]

≤ 1 +
3λ

4
√

Nc
+

λ2

4c(N − λ)
.

Next we sum over c, using for 0 < x < y the bounds

∑

x≤c≤y

c−1/2 < 2
√

y,
∑

x≤c≤y

c−1 ≤ 1/x + log(y/x).

We conclude that

T2 ≤
N

E2
+

3λ

2E
+

λ2

4(N − λ)

(

D2

N − λ
+ log

ND2

(N − λ)E2

)

≤ λ2

2(N − λ)

(

D2

2(N − λ)
+ 0.51

λ

N
+ log

D

E
+

3N

Eλ
+

2N2

λ2E2

)

.

Take E = N1/3, which is close to optimal. Then combine the bounds for T1 and T2,

using the bound λ ≥ 2N5/6 to simplify the expression. This completes the proof for
D > N1/3.

Lemma 4.2 Uniformly in x ≥ y ≥ 2 we have

∑

y≤n≤x

1

φ(n)
≪ log

x

y
+

log x

y
.
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Proof Start with the identity

n

φ(n)
=

∑

d|n

µ2(d)

φ(d)
.

Then

∑

y≤n≤x

1

φ(n)
=

∑

d≤x

µ2(d)

dφ(d)

∑

y/d≤m≤x/d

1

m

≤
∑

d≤x

µ2(d)

dφ(d)

(

d

y
+ log

x

y

)

≤ 1

y

∏

p≤x

(

1 +
1

p − 1

)

+

(

log
x

y

) ∞
∑

d=1

µ2(d)

dφ(d)

≪ log
x

y
+

log x

y
.

Let PB be the set of primes in [N − 2B, N − B], where 2N5/6 < B ≤ N/100.
Making the substitution m → p − m in the definition of S2, we see that

(4.2)
∑

p∈PB

S2(p, N, D) =

∑

p∈PB

p−N≤m≤N

1

2
KD,N (m)KD,N (p − m) + KD,N (m).

Suppose N
2B

≤ D ≤
√

N. By (2.6) and Lemma 4.1,

(4.3)
∑

p∈PB

p−N≤m≤N

KD,N (m) ≪ B3

N log N

(

log
2BD

N
+

B + D2

N

)

.

Lemma 4.3 Suppose 2N5/6 ≤ B ≤ N/100, N/(2B) ≤ D ≤
√

N and N − 2B ≤
m ≤ N. Then

∑

2N−2B≤p≤N+m

KD,N (p − m) ≪ B2 log D

N log N
.

Proof By (2.4) and (4.1), the left side is at most the number of triples (a, b, c) with
abc + m prime and

N − 2B

ab
≤ c ≤ N

b2
,

N − 2B

2B
≤ a < b ≤ (1 + β)a, β =

2B

N − 2B
.
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Put E = min(D, N1/3), let T1 be the number of triples with a ≤ E − 1 and T2 be the
number of remaining triples. For fixed a < b ≤ E, the number of c is at most the

number of primes in [2N − 2B, 2N] which are ≡ m (mod ab). This is

≪ B

φ(ab) log(2B/(ab))
≪ B

φ(a)φ(b) log N

by the Brun-Titchmarsh inequality and the inequality φ(ab) ≥ φ(a)φ(b). By Lemma
4.2,

∑

a

1

φ(a)

∑

b

1

φ(b)
≪

∑

a

1

φ(a)

(

log(1 + β) +
log a

a

)

≪ B

N

(

log
2BE

N − 2B
+

B log E

N

)

+
∑

a≥N/(3B)

log a

aφ(a)

≪ B

N

(

log
2BE

N
+ log E + log

N

B

)

≪ B log E

N
.

Therefore,

(4.4) T1 ≪
B2 log E

N log N
.

If D ≤ N1/3, then T2 = 0 and the lemma follows from (4.4). Otherwise we bound
T2 starting with the inequalities

N − 2B

D2
≤ c ≤ N

E2
= N1/3

and
N − 2B√

Nc
≤ a < b ≤ N√

Nc
.

In particular, bc ≤ N2/3. For fixed b, c the number of a is at most the number of
primes in [2N − 2B, 2N] which are ≡ m (mod bc). By the Brun-Titchmarsh in-
equality, this is

≪ B

φ(bc) log( 2B
bc

)
≪ B

φ(b)φ(c) log N
.

By Lemma 4.2 again,

∑

b,c

1

φ(b)φ(c)
≪

∑

c

1

φ(c)

(

log
N

N − 2B
+

log N

E

)

≪ B

N

∑

c

1

φ(c)

≪ B

N

(

log
D

E
+

B

N
+

D2 log N

N

)

.
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Therefore

(4.5) T2 ≪
B2

N log N

(

log
D

E
+

B

N
+

D2 log N

N

)

.

Together, (4.4) and (4.5) give the lemma in the case D > N1/3 because log D ≫
log N ≫ (D2/N) log N .

If D < N
2B

, then the left side of (4.2) is zero. Otherwise, putting together (4.2),

(4.3) and Lemmas 4.1 and 4.3 gives the following.

Lemma 4.4 If 2N5/6 ≤ B ≤ N/100 and 1 ≤ D ≤
√

N, then

∑

p∈PB

S2(p, N, D) ≪ B4 log2 D

N2 log N
+

B3 log D

N log N
.

5 Proof of Theorem 1

Take B =
c1N

log N
, where c1 is a sufficiently small positive constant, and put P = PB. By

(2.6), |PB| ≫ B/ log N . Consequently, by Lemma 3.1,

∑

p∈PB

S1(p, N, D) ≫ B2 log D

log2 N
.

By Theorem 3 and Lemma 4.4, there are absolute constants c2, c3, so that when N is
large we have

f (N) ≥ min

(

N

3(log N)3/2
,

min√
log N≤D≤

√
N

[

c2B log D

log N
− c3

(

B2 log D

N
+

B3 log2 D

N2

)])

.

The minimum of the inner expression occurs at D =

√

log N if c1 is small enough,
and this completes the proof.
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