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A Strong Form of a Problem of
R. L. Graham

Kevin Ford

Abstract. If Ais a set of M positive integers, let G(A) be the maximum of a;/ gcd(a;, a;) over a;,a; €
A. We show that if G(A) is not too much larger than M, then A must have a special structure.

1 Introduction

In 1970, R. L. Graham [3] conjectured that for any set of n positive integers, there
are two of them, say a and b, such that a/(a, b) > n. Here (a, b) is the greatest com-
mon divisor of a and b. Graham’s conjecture was proved for all large n independently
by Zaharescu [5] and Szegedy [4] in the mid-1980s. Introducing several new ideas,
and making use of explicit bounds for prime number counting functions, Balasub-
ramanian and Soundararajan [1] recently proved the conjecture for all n. They also
noted that their method of proof could be used to prove a stronger form of Graham’s
conjecture, but gave no details.

Foraset A = {ay,...,a,} of positive integers, define
. (L L L
A* = {—, —,...,—}, L =Icmlay,a;,...,a,],
a, ap ap
which we refer to as the dual of A. Let G(A) be the maximum over all i, j of (a“;_) . We
iy
will confine our discussion to sets with ged(ay, ..., a,) = 1, since G(A) = G(dA),
where dA = {day, ..., da,}. Also, since (a“—’a]) = (L/i/i?/a)) for all 4, j, it follows that
G(A) = G(A™).

Theorem BS (Balasubramanian-Soundararajan [1]) Let n > 4. For every set A of n
positive integers, G(A) > n. Furthermore, if G(A) = n then either A or A* is equal to

{1,2,...,n}.

The strengthening of Graham’s conjecture which we are concerned with is an ex-
tension of the second part of the conjecture. We show that if A is a set of M positive
integers and G(A) = N with N “not too much larger” than M, then either A or A*
liesin {1,2,...,N}.

Definition Let f(N) denote the largest number R so that the following holds: for
every set A of M positive integers with N — R < M < N and G(A) < N, either A or
A*liesin {1,2,... ,N}.
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Theorem 1 ~ We have f(N) > Wﬁ# for large N, where ¢ > 0 is an absolute
constant.

Lower bounds for f(N) have an application to a problem of determining the max-
imum number of k-term arithmetic progressions of real numbers one can have, any
two of which have two elements in common (see [2]). This in fact was the motivation
for this work. (In [2] a crude bound f(N) > 0.15610gL3N for N > 099 js proved). In
this paper we concentrate only on the behavior of the bound for large N, as a totally
explicit version of Theorem 2 would require a great deal of extra computation. By
Theorem BS, f(N) > 0 for N > 5. A natural question is to determine the smallest
X so that f(N) > 1 for N > X. The example A = {2,3,4,6,8,9,10,12, 18} shows
that f(10) = 0. Perhaps one can prove that f(IN) > 1 for N > 11 using the methods
in [1].

Remark Balasubramanian and Soundararajan claim that their method yields
f(N) > fozioglogy» ut this appears to be too optimistic.

We can also show a non-trivial upper bound on f(N).
Theorem 2  We have f(N) = O (ﬁ).

Proof Suppose that N is large, set L = %logN and let H be the product of the
primes < L. By the Prime Number Theorem, N> < H < N>/ for large N. Let
Ny = H|N/H| sothat N > Ny > N — H > N — N*/°, Here | x| denotes the largest
integer < x. Let

A={m<Ny:(mH) >1}U{2Ny}.

It is clear that G(A) < N and neither A nor A* is a subset of {1,2,...,N}. Also

Al =No+1—¢(No) =No+1—No [J(1—1/p)

p<L
aN oN
Z NO — 170 > — 27
logL loglog N
Here ¢y, ¢, are positive absolute constants. ]
2 General Lower Bounds
We first need to introduce some of the notation from [1]. Suppose A = {ay, ..., au},

gcd(ay,...,am) = 1, N > 7 and G(A) < N. If p is a prime in (1.5N,2N) and
p — N < m < N, define

(2.1) Ry(m) = {pairs (ai,a;) G _ % ) =p— m}

: m
(ai,a;) " (ai, aj

and put r,(m) = |Rp(m)|. Our proof is based on upper and lower bounds for
averages of r,(m). Suppose that neither A nor A* lies in {1,2,...,N}, and that
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N/2+2 < M < N. We need not consider M outside this range, since the set
A={a<N:(6,N)>1}U{6|N/3]} showsthat f(N) <N/3—-1< N/2-2for
N > 7. By Lemmas 4.1 and 4.2 of [2],

(2.2) Yo mpm-1n= > 1-(N-M)
Pl <m<N 2l <m<N
rp(m)>2 rp(m)=0

>7(N)=7m(p—N—-1)—(N—-M),
where 7(x) denotes the number of primes < x. Let
(2.3) KDTN(m):‘{m:abc:1<a<b§D,(a,b):1 é<N}’.

a — m

For any triple (a, b, c) counted in Kp n(m), we have

Z
Tl =z

(2.4) <a<D-1, a+1<b< —a, c¢c<

N-—m

3

In particular, b < VN, so

(2.5) Kpn(m) = K g n(m) (D= VN).
Let
cd(a;, a;
D(p,A) = max max { ged(ai, a;) }
p—N<m<N (a;,a)),(a;r,0;)ER,(m) | gcd(ai, aj, air,a;r)

Lemma 2.1 IfD = D(p,A), then

D=1 or

<D<N,
2N —-p

and for pT“ < m < N we have
rp(m) < (Kpn(m) + D)(Kpn(p —m) + 1).
Proof This follows from Lemmas 2.3, 2.4 and 2.5 of [1]. [ |

It follows from Lemma 2.1 and the definition of D(p, A) that r,(m) < 1 for all m if
and only if D(p,A) = 1.

The next lemma, a slightly weaker form of Lemma 4.1 of [1], shows that A cannot
contain many elements divisible by primes > 2ND~'/3,

Lemma 2.2 Suppose p is a prime in (1.5N, 2N — +/N) and D = D(p, A) > 1. With
the possible exception of two primes, no prime q > 2ND~'/3 can divide an element of A.
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A version of the Prime Number Theorem with crude error term will also be
needed:

*odt x
2.6 =/ —+0 .
(2.6) 7(x) | logt <log10x>

We may now state the fundamental lower bound for f(N). Here P*(n) denotes
the largest prime factor of n.

Theorem 3 Suppose N is large and let P be a subset of the primes in (1.5N, 2N —+/N).

Then
N
: > — in(
2.7) f(N) > 1+m1n(3(10gN)3/2,
P! min Si(p,N,D) — S,(p,N,D)} |,
7 \/@SDsm;{ v 7 })
where
2N —
Si(p,N,D) = ’{m € [p—N,N]:P*(m) > 2ND’1/3}‘ - ND*U‘Z -2,
$(p,N, D)= Y ((Kpn(m)+ 1) (Kpn(p —m)+1)—1).

Proof Suppose [A] = M, G(A) < N and neither A nor A* is contained in {1, 2,
...,N}. Let
Dy = max D(p,A).
1L5N<p<2N—+/N

If Dy = 1, let p be the smallest prime > 1.5N. By (2.6), p < 1.6N. Since D(p,A) =
1, r,(m) < 1for p— N < m < N and thus by (2.2) and (2.6),

N-M>7n(N)—7(p—N—1)> N
- 7(N) —7(p — N — .
- P ~ 3logN

If 1 < Dy < 4/logN, let p be the smallest prime > 2N — N/Dy. By (2.6), p <
2N — N/(2Dy). By Lemma 2.1, D(p, A) = 1 and we similarly obtain from (2.2) and
(2.6) the bound

N

N-M>a(N)—m(p—N-1) > = '
> w(N) = w(p )2 3Dy 1ogN = 3(logN)?"

Lastly, if Dy > 4/log N, then we apply Lemma 2.2. Let q, . . ., g; be the primes in the
interval 2ND~'/3,N]. Since 2ND~'/*> > N?/3, each number m < N is divisible by
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at most one prime g;. Fix p € P and let R; be the number of m € [p— N, N] divisible
by g;. Then r,(m) = 0 for at least So(p, N, Dy) values of m € [pT“,N], where

S N, Dy) = R;.
0(177 ) 0) nlllZl:l 75}2
\T\—s 2

By (2.2), Lemma 2.1 and the fact that Kp/ y(m) < Kp y(m) if D' < D,
N —M > S(p,N, Do) — S:(p,N,D(p,A)) = So(p, N, Do) — S2(p, N, Dy).
Averaging over p € P gives

(2.8) N—=M>[P|7" Y [So(p,N,Dy) — $:(p, N, Dy)] .
PeEP

Since So(p, N, D) is an increasing function of D and S,(p,N, D) is constant for
N'/2 < D < N by (2.5), the minimum over Dy of the right side of (2.8) occurs
for some Dy < N'2. Finally, So(p,N,D) > Si(p,N,D) and this completes the
proof. ]

3 Lower Bounds for S,
Lemma 3.1 Suppose N islarge, 1.98N < p < 2N—N/ log5 Nand100 < D < +/N.

Then (2N }log D
Sl(paN7D) Z ﬂ
6log N
Proof LetR = ;= =N and note that R < INY/®. At most one prime g > 2ND~ 1/

can divide any number in [p — N, NJ, so

1<r<R

By hypothesis, 2 < 2(2N — p)N~%/6. Thus, by (2.6),

Nt g N 32N — p)
- — .
Si(p,N,D) = Z (/ N/,logt O(rlOgION)> N3/

1<r<R (p—

The integral is
2N —p 2N —-p
>
~ rlog(N/r) = rlogN

and R+1
dt 0.98
Z / = > 1og< D1/3> >0.178log D
r<R
since D > 100. For large N the result follows. |
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4 Upper Bounds for S,
Lemma4.1 Ifmax(N/D,2N%/) < \ < N/50, then
Z K (m) < Aiz lo >\_D + 4& + Diz
PN =N \B\N ) T N Tav = )
N-A<m<N

Remark1 When A\ < N/D, the left side is zero by (2.4).

Proof Ignoring the condition (a,b) = 1 in (2.3), the left side in the lemma is at
most the number of triples (a, b, ¢) with

N—\<abc <N, 1<é§£, b < D.
a — abc
By (2.4),
N-—- X N N A
. <c< — > < = —,
(4.1) —S<esn, azs 5, b<(4fa G-

Let E be a parameter in [%,D], let T; be the number of triples witha < E — 1 and
T, be the number of remaining triples.
We first estimate T). For each pair (a, b), the number of ¢ is at most

N ON-A N
b? ab b \b a(l+p) ‘

This is a decreasing function of b and is positive for b < (1 + 3)a, so for each a, the
number of pairs (b, ¢) is

af +

aarn =BT AT a

2

2(N = Na’

af N N =\ ON (N—/\)log(1+ﬁ)
SLIB”L/O (a+1t)? B

<af+ s (A= (N = N(@ -~ 46) =af +
Thus

E2 2 E
Lo BB X
2 2N=N Jups t

A EX E?
= DY) (log (F) —log(1 —2A\/N) + T)

<)‘721 EA +21i+E—2
SoaN—n UB\N APV

When D < N'/3, we take E = D, so that T, = 0 and
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This gives the lemma in this case. Next assume D > N'/3. To bound T, note that

N-—-\ N
r =T
For fixed ¢, we count the number of (a, b) for which
N-A oy N N2
VNe — ~ VN T ac
By symmetry (counting solutions with b < a also), this is
1 N N-\ N
== <a< , <bh< —
|1 o< g <05 )
- I{ =)
Nc¢
1[ N N-—A N N-—\
<= - 1) — - —1
T2 Z(\/Nc ac ) (\/Nc ¢ ”
1[ (= N - A — —
<= +1da+ A +2—-\/N N-A
2] /a2 ac v/ N¢ Ve
<l -+ 2 N /\10 N +2— A }
“2|c \/Nc gN—A 2v/Nc¢
3\ A2
<1+

/Ne  4e(N—N)

Next we sum over ¢, using for 0 < x < y the bounds

Yooy, Y et < 1/x+logly/x).

x<e<y x<e<y

We conclude that

T<GE+%+ ai D2+b ND?
2= R TN N SNV
A2 D? A D 3N 2N?
< +0.51— +log —=
2(N = )\)

20N —\) N E T T um

Take E = N'/3, which is close to optimal. Then combine the bounds for T} and T5,
using the bound A > 2N°/° to simplify the expression. This completes the proof for
D > N'/3, ]

Lemma 4.2  Uniformly inx > y > 2 we have
log x

1 —o~
2 ¢<><< ng y

y<n<x
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Proof Start with the identity

Then

y<n<x y/d<m<x/d
ﬂz(d) (d x)
< — +log =
dp(d \y Oy
1 X\ o #(d)
< = 1 log X
- E< p_1)+<°gy>;d¢(d)

Let Py be the set of primes in [N — 2B, N — B], where 2N°/¢ < B < N/100.
Making the substitution m — p — m in the definition of S, we see that

1
(4.2) E S:(p,N,D) = E EKD,N(m)KD,N(P —m) + Kp n(m).
pEPs PEPs
p—N<m<N

Suppose % < D<+/N. By (2.6) and Lemma 4.1,

B3 2BD B+ D?
43 Y K log 222 &+ .
(4.3) o (m) < NlogN (Og N N )
pEPs
p—N<m<N

Lemma4.3  Suppose 2N°/° < B < N/100, N/(2B) < D < v/N and N — 2B <
m < N. Then

B?logD

NlogN~

Z KD,N(p — m) <

2N—-2B<p<N+m

Proof By (2.4) and (4.1), the left side is at most the number of triples (4, b, c) with
abc + m prime and

N -2B N N-2B 2B
<c< <a<b<(1+ - .
@b SCSp T sa<bsU+fa f=gTog

https://doi.org/10.4153/CMB-2004-035-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-035-7

366 Kevin Ford

Put E = min(D, N'/3), let T; be the number of triples with a < E — 1 and T, be the
number of remaining triples. For fixed a < b < E, the number of ¢ is at most the
number of primes in [2N — 2B, 2N] which are = m (mod ab). This is
B B
¢(ab) 10g(23/(ab)) (b(a)fb(b) logN

by the Brun-Titchmarsh inequality and the inequality ¢(ab) > ¢(a)@(b). By Lemma

4.2,
1 1 1 loga)
- — K — (log(1+3) +
2 5@ ; 7B <2 5@ ( s
B 2BE BlogE loga
<N (lOgN —B " ) > ad(a)
a>N/(3B)
< 5 (logE +logE + log — )
BlogE
< N
Therefore,
B?logE
(4.4) T, < NTogN"

If D < N3, then T, = 0 and the lemma follows from (4.4). Otherwise we bound
T, starting with the inequalities

N —2B N s
<c< —=N
D? R
and
N—2B< ch< N
a .
vVNc ~ V/Nc¢

In particular, bc < N?/3. For fixed b, ¢ the number of a is at most the number of
primes in [2N — 2B, 2N] which are = m (mod bc). By the Brun-Titchmarsh in-

equality, this is
B B

< S0 log(E) < GB)H0) logN”

By Lemma 4.2 again,

1 N logN
Zsb ¢(c zczqéT(logz\f—zBJr E)
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Therefore

D B D21ogN)

B2
45 Ty < —— (log = + — +
(43) 2<<NlogN<0gE N N

Together, (4.4) and (4.5) give the lemma in the case D > N3 because logD >
log N > (D?/N)logN. [

IfD < %, then the left side of (4.2) is zero. Otherwise, putting together (4.2),

(4.3) and Lemmas 4.1 and 4.3 gives the following.

Lemma4.4 If2N°*/° < B < N/100and1 < D < /N, then

B*log’ D . B*logD
N2logN  NlogN’

Z SZ(paNaD) <

pETB

5 Proof of Theorem 1

Take B = 15;;1\1,\1 , where ¢; is a sufficiently small positive constant, and put P = P5. By

(2.6), |P5| > B/logN. Consequently, by Lemma 3.1,

B?logD
3 Si(p,N.D) >~
o=t log" N

By Theorem 3 and Lemma 4.4, there are absolute constants ¢,, c3, so that when N is
large we have

N) > mi R
fN) 2 mm( 3(log )2’
2 31002
in {CZBlogD_C3<B logD_I_B log2 D)])
Viegn<p<yN| logN N N

The minimum of the inner expression occurs at D = (/logN if ¢, is small enough,
and this completes the proof.
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