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Abstract

We present two more characterizations of maps which preserve orthogonal decompositions defined
on Hilbert spaces ordered by natural cones.

1980 Mathematics subject classification (Amer. Math. Soc): 46 A 40.

Let M be a von Neumann algebra on a Hilbert space H. We shall assume that
there is a cyclic and separating vector £0 e H for M. Then, by the Tomita-Takesaki
theory, there are the conjugation operator J and the modular operator A
associated with £0 such that

H+= {xj(x)lo:xeM} =

defines the "natural" positive cone of H, where j(x) = JxJ and M+ is the set of
all positive elements of M. Then, every element £ of H such that £ = J | admits a
unique orthogonal decomposition: £ = £ + - £~, £ + e H+, £~e H+ and (£+, £~) =
0. For the details of these facts, see [1] and [2]. A continuous linear operator </>:
H -* H is called an o.d. homomorphism if <J>£ = <J>|+— <j>£~ is also an orthogonal
decomposition. This is equivalent to that (j>(H+) c H+ and (</>£, <J>TJ) = 0 whenever
| e i / + , i) G i / + and (£, TJ) = 0. The following fact has been proved in [3].

THEOREM 1. Let </>: H -* H be a continuous linear operator. Then, </> is an o.d.
homomorphism if and only if <j>(H+) c H+ and <j>*<j> e M n M ' (the center of M).
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The aim of this note is to add two more characterizations of o.d. homomor-
phisms.

THEOREM 2. Let <f>: H -* H be a continuous linear operator such that <f>(H+) c
H+. The following conditions are equivalent.

(1) <j> is an o.d. homomorphism.
(2) <j>*x<t> G M D M' for every x e M n M'.

PROOF. (1) =» (2). Let x e (Af n A/')+. When £ e # + , 17 e # + and (£, TJ) = 0,
it follows from the condition (1) that <f>£ e H+, </>TJ G # + and (4>£,4>TJ) = 0.
Furthermore,

where p ^ = [M'<j>£] and ^ ^ = [Af'^ij] are cyclic projections. Since x1/2(H+) c
H+, this imphes that x1/24> is an o.d. homomorphism. Hence, by Theorem 1,

(2) => (1). For x = 1, the identity of M, we have </>*<£ e Af n AT. Hence, by
Theorem 1, <#> is an o.d. homomorphism.

COROLLARY 3. Let <f>: H -* H be a continuous linear operator such that
+) c H+. Then, if<f>*x<j> e M for every x e M, <> w an o.d. homomorphism.

PROOF. By the Tomita-Takesaki theory, we have J* =J and M' =j(M).
Since <j>(H+) c H+, we have <f>J = J<f>. Hence, for any x' e M', we can take
x e A/ such that x ' = _/(x) and

It then follows from the assumption that $*(M n Af')<> c M n Af''. Hence, <f> is
an o.d. homomorphism by Theorem 2.

The second characterization has its origin in the following lemma which, when
<f> is a unitary operator, is due to [2].

LEMMA 4. Let <£: H -* H be a continuous linear bijection such that $(H+) = H+.
Then, for any cyclic and separating vector £ e H+ for M, there is a unital Jordan
*-isomorphism a^ ̂  of M such that

4#«* ,«(*)** = 4>(AY4*£) for all x e Af,

wAere Af and A ^ are /Ae modular operators associated with the cyclic and
separating vectors £ and <j>£ respectively.
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(Since <j> is bijective and </>(//+) = H+, <j>£ is also a cyclic and separating vector
for M by [2], Lemma 4.3.)

PROOF. Let //£ = (TJ e H: -X£ < TJ < X£ for some \ > 0), H^ = {rj <E H:
-<t>i < V < 4>£ for some X > 0} and Af* be the set of all self-adjoint elements of
M. Since <#> is bijective and <t>(H+) = H+, <}> maps H^ onto H^ bijectively. On
the other hand, by [1], Lemma 2.5.40, and [2], Proposition 1.2, there are bijective
order isomorphisms

b(: Mh -> Hk and 6^ : Mh -» / / ^

defined by

bt(x) = &(4xS and bH{x) = $£xrt

for all x e M*. Hence, we can define a bijection a ^ : M* -* Mh by

^ all x G M".

By the linearity, a^ f(x) is defined for all x e M. It satisfies a^^l ) = 1 and
a<i, j ( ^ + ) = M+. Therefore, by a theorem of Kadison [4] (see also [1], Theorem
3.2.3), a^£ is a Jordan "-isomorphism.

We shall prove that a continuous linear operator <J>: H -» / / such that ^>{H+)
= i / + is an o.d. homomorphism if and only if a^ = a^ for every cyclic and
separating vector £ e ^ + for M, where a.j, = a ,̂{0- It is known that the equality
a<f> = a« i holds for a special class of o.d. homomorphisms. For example, it has
been shown in [2], Theorem 3.2 (see also [1], Theorem 3.2.15) that, when u is a
unitary operator such that u(H+) = H+, we have the equality au = au<i for every
cyclic and separating vector £ e H+ for M, and, conversely, for any unital Jordan
"-isomorphism a^: M -» M, there is a unique unitary operator ua such that
ua(H

+) = H+ and

«a(A
1/4**) = &&ai(x)uai for all * e M

for all cyclic and separating vector £ e i / + for M. These facts and the symbol ua

will be used in the following discussion.
By definition, an o.d. isomorphism is a continuous linear bijection <j>: H -> H

such that <|» and </rx are both o.d. homomorphisms. It has been proved in [3],
(3.1), that bijective o.d. homomorphisms are o.d. isomorphisms. Obviously, a
unitary operator u is an o.d. isomorphism if and only if u(H+) = H+.

THEOREM 5. Let </>: H -> H be a continuous linear bijection such that <j>(H+) =
H+. The following conditions are equivalent.

(1) <j> is an o.d. isomorphism.
(2) For the polar decomposition <f> = u\<f>\,
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(i) |</>| is an o.d. isomorphism and a^ ^ = 1 for all cyclic and separating

vector £ e H+ for M.

(ii) u is an o.d. isomorphism, a^ = au andu = ua.

(3) a^ = a^ ^ for every cyclic and separating vector £ e H+.

(4) l l ^ i r 1 " ^ < ** < \\4>\\ujforall £ e H\

PROOF. (1) => (2). (i). Since |̂ >| G (M n M')+ by Theorem 1, we have
= \<t>\1/2j(Wl/2)(H+) c ^ + - Hence, it follows from Theorem 1 that |</>| is an o.d.
homomorphism. Since it is bijective, it is, in fact, an o.d. isomorphism. Now, let
| e H+ be a cyclic and separating vector for M. Then, |<J>|£ is also a cyclic and
separating vector in H+ and, since |<J>| is an invertible element of (M n Af')+, we
have A1/^ = A1/4. Hence,

This is equivalent to <xw ^(x) = x for all x e M. To prove (ii), we first note that
u = ^l^l"1 is an o.d. isomorphism because <f> and l^p1 are. Then, by (#),

for all x e M . Therefore, a^ = «„. Furthermore, for every j t £ M ,

that is,

where u*ua is a unitary operator such that u*ua(H
+) = # + . This equation

shows that the unital Jordan *-isomorphism determined by u*ua is the identity
map. Hence, u*ua — 1, or, u = ua.

(2) => (3). Let | e ^ + be a cyclic and separating vector for M. Then, since

for all x G M. This implies â , 4 = au = a^.
(3) => (4). For any cyclic and separating vector £ e /f
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for every x e M . Therefore,

I &g*x«ftl 1 < Ik II1A1/4^ 1 for every x e M.
By [2], Lemma 3.13, this inequality is equivalent to

Since this inequality holds for every cyclic and separating vector £ e H+ and such

vectors are dense in H+, we have

for every £ e # + .

Since ua(H
+) = i/+, this is equivalent to

**<II*IK* for every £e / / + .
Starting with if)'1 instead of <j>, we arrive at

4T1! < ||4T1||u*£ for every * e i / + .

(4) => (1). We only need to show that (</>£, ̂ TJ) = 0 whenever £ e / / + , TJ e / / +

and (£,•»?) = 0. However, this is obvious because ua satisfies this condition.
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