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In this paper we construct examples which answer three questions in the general area
of noncommutative Noetherian local rings and rings of finite global dimension. The
examples are formed in the same basic way, beginning with a commutative polynomial
ring A over a field A: and a ^-derivation 6 of A, taking the skew polynomial ring
R =A[x;6] and localizing at a prime ideal of the form IR, where / is a prime ideal of A
invariant under 8. The localization is possible by a result of Sigurdsson [13].

Walker [14] generalized the commutative regular local rings by defining a right
Noetherian local ring to be H-dimensional regular if its Jacobson radical is generated by a
regular normalizing sequence of n elements. By means of an example, he showed that, in
contrast with the commutative case, such a regular local ring need not be a unique
factorization domain in the sense of [4]. Recently there has been interest in the question
of whether a regular local ring R must be a Noetherian UFR in the sense of [3], that is
whether every non-zero prime ideal of R must contain a non-zero principal prime ideal.
The general construction described above yields several examples of regular local rings
which are not Noetherian UFRs. In our first examples of this kind the regular normalizing
sequences of generators for the Jacobson radical were not centralizing. One such example
can be formed by localizing the ring given as Example 2.10 by Bell and Sigurdsson [1]. In
Section 2, we present an example of a regular local ring which is not a Noetherian UFR
and in which the Jacobson radical is generated by a regular centralizing sequence of three
elements. As P. F. Smith has pointed out to the author, three is the least possible
dimension for such an example.

The rings which we discuss all have finite global dimension, usually two, and they
share many of the properties of the three examples described by Brown, Hajarnavis and
MacEacharn [2, Section 7] in their study of Noetherian rings of finite global dimension. In
particular we construct, in Section 3, a polycentral Noetherian local ring S of global
dimension two, finitely generated as a module over its centre, which is not regular in
Walker's sense. This closes the gap between the positive results (for global dimension
one) and negative results (for global dimension three) in [2, p. 368].

Our third example, described in Section 4, answers a question asked by Maury [9]. It
is of a regular local ring with a height one prime ideal which is not completely prime.

The first section of the paper includes definitions and some general results applying
to the examples given later. Any unexplained terminology is used as in [11].

I would like to thank P. F. Smith and A. W. Chatters for stimulating my interest in
the problems considered here.

1. Generalities. The rings which we consider are either skew polynomial rings of
the form A[x; 8], where 8 is a derivation of a commutative ring A, or localizations of
such rings. Since A[x; 8] has an involution mapping x to -x and acting as the identity
map on A, all our results and arguments are right-left symmetrical. Hence such terms as
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Noetherian, localizable, AR-property, global dimension, Krull dimension will be used
without qualification by the words 'right' or 'left'.

The Jacobson radical of a ring R will be denoted J(R) and R will be said to be local
(resp. scalar local) if R/J(R) is simple Artinian (resp. a division ring). This terminology
follows [2] and the differences with that of [14] cause no difficulty here.

We shall assume that the reader is familiar with the terms normal element,
normalizing sequence, centralizing sequence, regular normalizing sequence and regular
centralizing sequences. References for these include [2], [11] and [14]. A ring R is
poly central if every ideal of R has a centralizing sequence of generators. An n-
dimensional regular local ring is a Noetherian local ring R in which J(R) has a regular
normalizing sequence of n generators:

A Noetherian UFR [3] is a Noetherian prime ring in which every non-zero prime
ideal contains a non-zero principal prime ideal. (For fhe purpose of this paper, an ideal of
R is principal if it has the form aR = Ra for some a e R. In all instances where we use the
term, this is equivalent to being of the form aR = Rb for some a, b e R, see [3, Remark

For the remainder of this section, let A be a commutative Noetherian ring with a
derivation 6 and a prime ideal / such that 6(1) c I and let R be the skew polynomial ring
A[x; 8]. Thus R consists of polynomials anx" + . . . + axx + a0 over A with xa = ax + d(a)
for all a eA and is Noetherian. Let P = IR which, by [6, Lemma 1.3], is a prime ideal of
R. Sigurdsson [13, Theorem 2.7] has shown that P is a localizable prime ideal. Since A/I
and RIP are domains, the localization 5 = RP is Noetherian scalar local with 7(5) = PS
and S/J(S) isomorphic to the quotient division ring of RIP.

PROPOSITION 1.1. Let A, I, R, P and S be as above. Suppose further that A is a UFD
and that I is generated by two non-associate irreducible elements t, w of A. Then:

(i) 5 has global dimension two;
(ii) J(S) is not principal.

Proof, (i) It is easily checked that 7(5) = wS + tS and that wS D tS = wtS. It follows,
by [11, 7.3.16], that S/J(S) has projective dimension two as a right 5-module. Combining
this with the left-sided version of [11, 7.3.14], we see that 5 has global dimension two.

(ii) This follows from (i) using [11, 7.3.7]. Alternatively, it can be checked directly.

PROPOSITION 1.2. Let S be a Noetherian local ring. If either S is regular or S has the
form RP, R =A[x; 8], described above then J(S) has the AR-property.

Proof. Since the Jacobson radical of any ring is invariant under all automorphisms of
the ring, [11, 4.2.7(i)] deals with the regular case. In the other case, P has the
AR-property by [13, Proposition 2.3] and hence J(S) = PS also has the AR-property.

It follows from Proposition 1.2 and [2, Proposition 5.3] that a 2-dimensional regular
local ring must be a Noetherian UFR. This fact was pointed out to the author by P. F.
Smith who gave a more direct proof.

2. A regular local ring which is not a UFR. We shall present an example of a
regular local ring 5 of dimension 3 which is not a UFR. In this example, 7(5) has a
regular centralizing sequence u, w, t of generators and w and t generate a non-principal
height one prime ideal.
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Let k be a field of characteristic zero, let A be the commutative polynomial ring
k[u, w, t] in three indeterminates, let 8 be the A:-derivation ut d/dw + (w2 + wt)d/dt of A
and let R be the skew polynomial ring A[x; 8]. Let / and H be the prime ideals
uA + wA + tA and wA + tA respectively. Note that both / and H are 6-invariant. Let
P = IR and Q = HR. These are completely prime ideals of R and both are localizable by
[13, Theorem 2.7]. Let S = RP, as in Section 1, and let T = RQ. By [11, 2.1.16(vii)], QS is
a prime ideal of 5. Since P and Q are completely prime with Qc.P, QS is localizable with

Since 8(u) = 0, 8(w) e uA and 8(t) euA + wA, u, w, t is a centralizing sequence in
5. It is clearly regular and generates J(S) = PS. Thus 5 is a 3-dimensional regular local
ring.

PROPOSITION 2.1. The prime ideal QS of S is not principal.

Proof. If QS were principal then so too would be the maximal ideal QT =J(T) of T.
But J(T) is not principal by Proposition l.l(ii).

PROPOSITION 2.2. The prime ideal QS of S has height one.

Proof. Suppose that there is a prime ideal Q' of 5 such that 0<= Q' c QS. Then, by
[11, 2.1.16(vii)], Q'HR is a prime ideal of R and 0 c Q' HR <= Q. By [7, Lemma 1],
Q'DA is non-zero and, by [6, Lemma 1.3, Lemma 2.1 and Theorem 2.2], Q'C\A is a
prime ideal of A. Since Q = HR, 0<=QT\A<=H. By [8, Theorem 5], Q'HA, being a
height one prime ideal, is principal generated by, say, /. But then 8{f)efA and, by
Lemma 2.3 below, f ek[u](lH = 0. Hence Q' does not exist and so QS has height
one.

LEMMA 2.3. LetfeA be such that 8(f) efA. Then f e k[u].

Proof. Note that if aeA is homogeneous of degree m then 8(a), if non-zero, is
homogeneous of degree m + 1. It follows, by considering the homogeneous components
of/of least and greatest degree, that S(f) = bf, where b has the form txu + /3w 4- yt, a, {$,
y e k, and that 6(/j) = bf for each of the homogeneous components f of/. Thus there is
no loss of generality in assuming that / is homogeneous of degree m.

If a i= 0 then the leading term of bf in the lexicographic ordering with u > w > t
cannot appear in 8(f). Thus a = 0. Similarly, using the lexicographic ordering with
t > w > u, we can see that y = 0. Thus 8(f) = /3w/.

For / ̂  0, let Vt be the A:-subspace of homogeneous polynomials in u, w, t of degree i
and let dt = (i + l)(i + 2)/2, the dimension of Vh For i ̂  0 and A e k, let 6ik: Vt,->• Vi+l be
the linear transformation such that diik(v) = 8(v) - Xwv for all v e Vt. Thus / is in the
kernel of 0mJ3. We shall show, inductively, that the rank of 6ik is dt if A=£0 and d, — 1 if
A = 0. Consequently the kernel of 8m ^ is either zero or is spanned by um. Thus / e k[u],
as required.

For each Vt we take the basis consisting of all monomials in u, w, t of degree i,
ordered lexicographically with u>w>t. Let Aik be the di+x by dt matrix representing
6ik relative to these bases. For v e V;_!, dik{uv) = M0,_I,A(U) and, for O^j^i,
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Thus, for i > 0, A,u has the form

A-l.A

0

0

B,

where B, is the i + 1 by i + 1 matrix

"0

i 0

0

and Citx is the i + 2 by i + 1 matrix

1

0

rowd,_,

row dj

row d,i + l

0

o

2 0

1 0

00 1-A 2

0 2 - A ' - .

0 " •. i - 1

" •. i - 1 - A i

0 i - A

0 _

If A $ {0, 1, 2, . . . , i} then it is clear that

rank A,u = rank A- I .A + (' + !)• (*)

If A = i then (*) is seen to hold on interchanging rows d, and di+x - 1 of AiX and then
adding row dt+l - 2 to row di+l - 1. Finally suppose that A e {0, 1, 2 , . . . , i - 1}. In this
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case
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0
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0

0
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, row A + 2

0

1 Oj

row A + 2

and C.-LJI is obtained from Cik by deleting the last row and column. Observe that row
A + 2 of C,-_IJA is a linear combination of rows A + l, A + 3, A + 4, . . . , / . Hence the row
space of i4,_! x has a basis X excluding row di_l + A + 2. It follows that the row space of
At A has a basis consisting of the rows which are extrapolations of the elements of X, row
A + 2 of 5, and rows 1,2,. . . , A, A + 2, . . . , i + 1 of C, A. Thus (*) holds in this case also.
Since d,_i + t + l = d, and 0O,A has rank 0 if A = 0 and rank 1 otherwise, it follows,
inductively, that for i § 0 and A e k, 0, A has rank d,, — 1 if A = 0 and rank dt otherwise. As
indicated above, this completes the proof.

The above results establish that S has the properties claimed for it. There are some
other features of the rings S and T which may be of interest.

REMARK 2.4. The Noetherian local ring T, which is the localization of the regular
local ring S at a height one prime ideal, is not itself regular. It has classical Krull
dimension one and, by Proposition 1.1, global dimension 2. Its Krull dimension is also 2,
as can be deduced from [14, Theorem 2.7] and [11, 6.5.9 and 6.5.3 Proposition].

REMARK 2.5. The regular local ring 5 has saturated chains of prime ideals,
0 c uS c uS + wS c PS and 0 <= QS c PS, of different lengths and so does not have the
catenary property.

REMARK 2.6. There are two questions in the literature concerning reflexive prime
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ideals in maximal orders upon which these examples have some bearing. Maury [9]
proved that regular local rings are maximal orders and, as Question 1, asked whether the
reflexive prime ideals of a regular local ring must be principal. The ring S does not answer
this question as the prime ideal QS is not reflexive. If it were then, by [10, IV.2.15], QT
would be principal which, by Proposition 1.1, it is not.

In [10, p. 181], Maury and Raynaud asked whether there exists a maximal order in a
simple Artinian ring having a height one prime which is not reflexive. Hajarnavis and
Williams [5] have pointed out that the ring of [2, Example 7.2] is such a ring. The above
comments show that the regular local ring 5 is another such example. So too is the local
ring T, which is a maximal order by [10, IV.2.1] and in which the unique non-zero prime
ideal QT is not reflexive.

3. A polycentral scalar local ring of global dimension two which is not regular. Let
it be a field of characteristic 5, let A be the commutative polynomial ring k[w, t] in two
indeterminates, let 8 be the &-derivation t d/dw + w2 d/dt and let R be the skew
polynomial ring A\x; &]. Let / be the maximal ideal wA + tA and observe that <5(/) c / .
As in Section 1, let P be the localizable prime ideal IR of R and let 5 be the local ring RP.
Then 5 is Noetherian scalar local with 7(S) = PS and with S/J(S) isomorphic to the
rational function field k(x). It can be checked that 85(w) = 0 = <55(f) and it follows, since
85 is a derivation, that 85 = 0. The ring R is finitely generated as a module over the
Noetherian subring k[w5, t5, x5] of its centre and hence as a module over its Noetherian
centre Z. It follows, by standard arguments (see [12, Section 3.1] for more general
arguments), that 5 is the localization of R at the central set Z\P. Hence S is also finitely
generated as a module over its centre. The next result shows that R is polycentral and it
follows easily that 5 is also polycentral. A derivation 8 of a ring A is locally nilpotent if,
for all r eA, there exists n such that 8"(r) = 0.

PROPOSITION 3.1. Let A be a commutative Noetherian ring with a locally nilpotent
derivation 6. Then A[x; 8] is polycentral.

Proof. Let R =A[x; 8]. Since R is Noetherian, it suffices to show that for all ideals /,
J of R with IczJ, J/I has non-zero intersection with the centre of R/I. Let / =
fnx" +.. . +/o be of minimal degree in A/. The natural extension of 8 to R is an inner
derivation of R; so 8'{f)eJ for all i. Since 8 is locally nilpotent on A, it is locally
nilpotent on R; so, for some i, 8'(f) = 0 e /. Let / ^ 0 be maximal such that # ( / ) e J\I.
We may assume that j = 0 and that 8(f) e /. Thus, in R/I, f commutes with x. Now let
r e A. Then rf -freJ and has degree less than n. By the choice off, rf -fr e I. Thus, in
R/I, /commutes with f. Since R/I is generated by x and A, f is central in R/I.

When applied to the rings R and 5 under consideration in this section, the above
argument produces the centralizing sequence of generators t2 + w3, wt, w2, t, w for P
in R and for PS in R and for PS in 5. Note that t2 + w3 generates prime ideals Px of R
and PXS of 5; so that P and PS have height at least 2. Also P is minimal over
(t2 + w3)R + (wt)R; so, by [11, 4.1.13], P and PS have height 2. Thus the Krull dimension
and classical Krull dimension of 5, which are equal by [11, 13.6.6], are 2. By Proposition
1.1, the global dimension of 5 is also 2. The next step is to show that S is not regular.

If S is regular then, by [14, Theorem 2.7], it is 2-dimensional; so J(S) is generated by
a regular normalizing sequence p, q. By [14, Lemma 2.6], pS is a prime ideal of 5,
necessarily of height one.
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PROPOSITION 3.2.
(i) Every normal element of R in P is in P2.

(ii) Every height one prime ideal of R is generated by a normal element.
(iii) Every height one prime ideal ofSis generated by a normal element of S belonging

to J(S)2.

Proof, (i) It can be checked that a non-zero element rnx" +. . . + rxx + r0 of R is
normal if and only if 5 divides / for all i such that r, =£ 0 and there exists b e A such that
6(r,) = rtb for all i. It therefore suffices to show that I (IN cl2, where N = {aeA: d(a) e
aA} and / = wA + tA. Suppose that a e I n N\I2. Then a has the form Aw + fit + aw2 +
fiwt + yt2 + b, where b eI3, A, \i, a, /3, yek , with A, /x not both zero. Also
d(a) = a(a0 + axt + 02^ + c), where c e I2. Comparing coefficients of t, w and w2, gives us
successively A = aOjU, 0 = a0A (whence A = 0 and a0 = 0) and // = 0, a contradiction.

(ii) This is a consequence of [3, Theorem 5.4].
(iii) Let P' be a height one prime of S. Then P' D 7? is a height one prime of R with

(/" D K)S = P' so that, by (i) and (ii), P' =pS for some p e P2. By symmetry, P' = Sq for
some q e S and, by [3, Remark 1], P' =pS = Sp.

COROLLARY 3.3. The ring S is not a regular local ring.

Proof. Let J = /(£) = PS and suppose that S is regular. By the remarks preceding
Proposition 3.2, J =pS + qS for some regular normalizing sequence p, q in 5 and pS is a
height one prime of 5. By Proposition 3.2(iii), peJ2. Hence J = J2 + qS and, by
Nakayama's Lemma, / = qS. By symmetry, / = Sq. But then 5 would be 1-dimensional
which is false. Thus 5 is not regular.

REMARK 3.4. The local ring 5 shares with Example 7.3 of [2] the property that 0, S
and S/J(S) are the only factor rings of 5 of finite global dimension. The argument given
below to show this is similar to that used in [2, Example 7.3] but one difference between
the two is that 5 does have a completely prime height one prime (r2 + w3)S.

Let / ¥= 0, and let J(S) be a proper ideal of 5 such that S/I has finite global
dimension. The ring S/I is polycentral and so satisfies the hypothesis of [2, Corollary 4.3].
Hence 5 / / is a domain and / is a prime ideal of 5 of height one. By Proposition 3.2(iii),
l = aS = Sa for some a e/(5) and, by [11, 7.3.7], 5 / / has global dimension one. But then
[2, Theorem 5.2] applies to show that 5 / / is 1-dimensional regular local and this would
imply that 5 is 2-dimensional regular local, which is false. Thus / does not exist.

4. An incompletely prime height one prime ideal in a regular local ring. Maury [9,
Question 2] asked whether, in a regular local ring, the reflexive prime ideals must be
completely prime. We shall present a regular local ring S with a non-zero principal ideal
which is not completely prime. The ring 5 is scalar local, hence local in the sense of [9]
and [14].

Let k be a field of non-zero characteristic p, let A be the commutative polynomial
ring k[w, t] in two indeterminates, let <5 be the ^-derivation w d/dt of A and let R be the
skew polynomial ring A[x; 6]. Let / be the maximal ideal wA + tA of L, let P = IR and,
as in Section 1, let 5 be the local ring RP.
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PROPOSITION 4.1.

(i) 5 is a 2-dimensional regular local ring.
(ii) 5 has a non-zero principal prime ideal which is not completely prime.

Proof, (i) The sequence w, t is a regular centralizing sequence of generators for
/(5)(see [14, Lemma 3.6]).

(ii) The prime ideal tA is not <5-invariant; so, by [3, Proposition 5.3(b)], fA is the
largest 6-invariant ideal contained in tA. By [6, Theorem 2.2 and Lemma 1.3], tpR is a
prime ideal of R. Consequently tpS is a prime ideal of S [11, 2.1.16(vii)]. It is clear that
t$tpS; so tpS is not completely prime.

REMARK 4.2. The element f above is central in S. By methods used elsewhere in this
paper, it can be checked that S is polycentral, a finitely generated module over its
Noetherian centre and that S/tpS has infinite global dimension.
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