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Abstract

Bovine tuberculosis (bTB) is prevalent among livestock and wildlife inmany countries including
New Zealand (NZ), a country which aims to eradicate bTB by 2055. This study evaluates
predictions related to the numbers of livestock herds with bTB inNZ from2012 to 2021 inclusive
using both statistical and mechanistic (causal) modelling. Additionally, this study made pre-
dictions for the numbers of infected herds between 2022 and 2059. This study introduces a new
graphical method representing the causal criteria of strength of association, such as R2, and the
consistency of predictions, such asmean squared error.Mechanisticmodelling predictions were,
on average, more frequently (3 of 4) unbiased than statistical modelling predictions (1 of 4).
Additionally, power model predictions were, on average, more frequently (3 of 4) unbiased than
exponential model predictions (1 of 4). The mechanistic power model, along with annual
updating, had the highest R2 and the lowest mean squared error of predictions. It also exhibited
the closest approximation to unbiased predictions. Notably, significantly biased predictions
were all underestimates. Based on the mechanistic power model, the biological eradication of
bTB fromNewZealand is predicted to occur after 2055. Disease eradication planningwill benefit
from annual updating of future predictions.

Introduction

Bovine tuberculosis (bTB) is prevalent in New Zealand (NZ) and has been the focus of
eradication efforts [1–4]. These efforts have been made ongoing for several decades and involve
disease testing of livestock (cattle and farmed deer), culling of positive reactors, livestock
movement controls, and control of wildlife hosts, especially of brushtail possums (Trichosurus
vulpecula). Brushtail possums are an important wildlife host of bTB [5–7]. Experimental control
measures targeting possums have proven effective in decreasing the incidence of bTB in cattle
[8]. In response to the bTB challenge, the broad bTB control approach was revised, and a new
strategy was adopted in 2004, which was again revised in 2011 and a new plan was adopted in
2016 [1–4]. The current national aims are to achieve bTB-free livestock by 2026 and bTB-free
brushtail possums by 2040 and aim for NZ to be biologically free of bTB by 2055 [7].

Making predictions and evaluating them is a fundamental part of science and can be highly
useful in the management of wildlife and their diseases. Predictions generated by bTB models in
possums have largely remained untested [9]. Predictions from an earlier study indicated that bTB
eradication in NZ could be achievable within 30 years from 2009 [2]. In Britain, predictions
regarding breakdowns in bTB control demonstrated high success rates [10]. The validation of
predictions in wildlife management studies is encouraged as part of both causal and statistical
inference.Many examples have been highlighted in the literature [11, 12]. This study distinguishes
between causal inference, which focuses on using logic and evaluating the strength of evidence to
determine whether a proposed cause has the observed effect, and statistical inference, which
focuses on parameter estimation and inferring population parameter values from a random
sample.

The aim of this study is to evaluate the bias and precision of predictions of the number of
livestock herds infected with bTB in New Zealand, as part of bTB eradication efforts. These
predictions are generated by statistical modelling, which uses trends across years in bTB-infected
herds, and mechanistic (causal) modelling, which uses the costs associated with control efforts.
These predictions are compared with observed numbers of bTB-infected herds to evaluate bias
andprecision. The implications for bTB eradication are then described through future predictions.

Methods

The framework of analyses is analogous to a factorial design with three factors, each having two
levels, resulting in a total of eight (23) combinations. The factors are statistical versus mechanistic
inference, power versus exponential models, and no updating versus updating of predictions.
Statistical modelling focuses on estimating relationships and parameters without specifying any
mechanism(s). Trends refer to patterns in diseased herds over time, and since time is not a cause
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[13], trends do not reveal or infer mechanisms or causes. Mechan-
istic modelling focuses on evidence of a mechanism(s) generating a
pattern. A mechanism is an important aspect of evidence support-
ing a cause-and-effect relationship [11, 12, 14, 15]. The comparison
of predictions not using and those using updating of predictions
examines if updating of predictions influences their bias and
precision.

Data consisted of the number of livestock herds (cattle and
farmed deer) with at least one positive reactor to a bTB test at
30 June each year. It also included the annual costs associated with
disease control and vector control published in annual reports of
the sequence of agencies responsible for coordinating bTB eradi-
cation, which include the Animal Health Board, TB Free NZ, and
OSPRI [7]. Disease control costs include expenses related to testing
livestock herds, such as bTB skin tests. Vector control costs include
expenses incurred in controlling brushtail possums. Total annual
costs were calculated by adding of disease and vector costs, and the
annual costs were summed starting from and including 1995 to
estimate cumulative costs. Other annual costs, as detailed in the
annual reports, were not included in the present study. Recent data
from 2005 onwards were used, corresponding to the adoption of the
new bTB eradication strategy in 2004 extending up to the present
year. This period also encompasses a later review in 2011, during
which a new objective was developed and adopted [7].

Statistical modelling of trends

Two models for analysing trends were evaluated: a power equation
(H= aYb) and an exponential equation (H= aebY), whereH denotes
the number of bTB herds and Y denotes year. Additionally, a linear
regression which assumed a constant annual change in the number
of positive herds, was evaluated, and preliminary analysis showed it
was highly biased; hence, it was not examined further. Both the
power and exponential models are based on the assumption of
diminishing returns. The exponential model assumes a constant
proportional change annually. In all analyses involving the power
and exponential equations, logarithms with base e were used, either
as loge-loge or loge–linear regression. Furthermore, for each model,
the mean squared error (MSE = bias2 + variance) [16], was also
calculated. Statistical modelling allows a comparison of model
predictions with management aims; however, it does not make
any inferences about causes.

Mechanistic (causal) modelling

The relationship between the annual number of bTB herds (H) and
the cumulative costs of eradication (C) was examined, assuming a
curved relationship, as reported previously [17], and was derived
from a cattle–possum bTB model [18]. The power model was
analysed using loge-loge regression, corresponding to an inverse
relationship (H = aCb when b < 0) on an arithmetic scale and a
linear relationship on a loge-loge scale. This power relationship is
expected to occur as disease cases, like pest abundance in general,
tend to be inversely related to effort (cost) [17, 19]. Additionally,
considering the possibility of exponential growth or decline in
disease cases [19, 20], an exponential model H = aebC, was also
assessed. In the case of exponential decline, b < 0. The costs of
eradication were represented by the cumulative costs (NZ$ mil-
lions) of possum and livestock disease control, starting from and
including 1995. The cumulative costs were used as they provided an
overall representation of the combined effects of both current and
past controls, without an attempt to separate the effects of each.

These costs were not discounted over the years, reflecting a higher
value placed on future costs than the case where discounting is
applied. In reviews on climate change in the UK [21] and Australia
[22], very low discount rates were used, with the latter using
discount rates of 1.35% and 2.65%. Previous studies have used
discount rates of 7.5%, 8% [2], and 5% [19, 23] when discounting
future costs.

Validation of predictions

In this study, validation refers to the process of comparing observed
and predicted values of a parameter. The analysis involved the
estimation of a regression relationship, hereafter referred to as
the calibration regression, using data from 2005 to 2011 inclusive
and then using the out-of-sample [24] data from 2012 to 2021 to
evaluate the accuracy of predictions. The predictions were of two
types, namely, those derived from the original calibration regres-
sion, which projected further into the future progressively, hereafter
referred to as no updating. This approach is similar to modelling
trends in foot-and-mouth disease (FMD) in the UK in 2001
[25]. The second set of predictions were annually updated by
re-estimating the calibration regression each year, resulting in
one-year-ahead predictions, hereafter referred to as updated, which
is similar to the method used for one-year-ahead predictions of
mallard (Anas platyrhynchos) abundance in parts of NorthAmerica
[26]. The terms prediction, projection, and forecasting are used
interchangeably. The focus is on evaluating quantitative predictions
of continuous data, such as abundance, rather than presence/
absence data.

The bias and precision of predictions were evaluated using two
measures: strength of association (which examines the relationship
between predicted and observed data) and difference (which deter-
mines whether the observed difference between predicted and
expected values includes 0.0, if there is no bias on average). In the
association analysis, predicted data were placed on the y axis and
observed data were placed on the x axis [27].

Causal criteria of strength of association (coefficient of deter-
mination R2) and consistency [14] (using its inverse measure of
mean squared error (MSE)) [16] can be combined graphically
(Figure 1). MSE is the vertical (y) axis, and R2 is the horizontal
(x) axis (Figure 1). A perfect association in a calibration regression
has an R2 of 1.0 (or 100%), and perfect predictions have no bias and
a zero variance, resulting in an MSE of 0. This ideal scenario is a
point located at the bottom right corner of the graph at (1,0)
(Figure 1). The worst association and predictions have an R2 of
0 and a highMSE, positioning them towards the upper left corner of
the graph. Multi-model analysis can measure association using
Akaike weights which range, like R2, between 0 and 1.0 [28], thus
can be an alternative measure used on the x axis.

Results

Statistical modelling of trends: Calibration regression

The curved relationship between bTB herds (H) and years (Y) was
strongly supported. The power model on a logeH vs logeY scale
revealed a significant negative linear relationship (F1,5 = 137.00,
P < 0.0001, R2 = 0.97) from 2005 to 2011 inclusive. The estimated
slope was �328.259 (95%CI -400.350 to �256.168) and intercept
was 2501.300 (95%CI of 1953.056 to 3049.544). After back-
transformation, the relationship exhibited a curved, concave-up
pattern (Figure 2a). The exponential model on a logeH vs Y scale
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also demonstrated a highly significant linear relationship
(F1,5 = 137.08, P < 0.0005, R2 = 0.97), with a slope of �0.1635
(95%CI -0.1994 to �0.1276) and an intercept of 333.1882 (95%CI
261.1155 to 405.2608).

Statistical modelling of trends: No updating

In the association analyses, the predicted number of bTB-infected
herds of the power and exponential models was significantly and
positively related (Figure 2b) to the observed number of bTB-
infected herds (Table 1). The 95%CI of the estimated slopes
included 1.0 and those of the intercepts included 0.0 (Table 1),
indicating that both parameters had no bias. However, in the
difference analysis, the power model showed a mean bias of 12.0
herds (+/� 4.0 SE), with a 95%CI of 3.0 to 21.0, and a paired t value
of 3.0 (df = 9, P < 0.025), indicating that the power model was
significantly biased as it underestimated the number of bTB herds
(Table 2). The exponential model exhibited a similar bias
(mean = 12.3 herds, +/� 4.0 SE), with a 95%CI of 3.3 to 21.2
(paired t = 3.1, df = 9, P < 0.025) (Table 2). The mean squared
errors (MSEs) of the power and exponential models were 301 and
308, respectively (Table 3, Figure 1).

Statistical modelling of trends: With annual updating

In the association analysis, one-year-ahead updated predic-
tions of the power model showed a significant and positive
relationship with the observed number of bTB herds, with
unbiased slope and intercept (Table 1). In the difference
analysis, the mean bias (observed – predicted) was 5.8 herds
(+/� 4.6 SE), and it was not different from 0.0 (paired t = 1.3,
df = 9, P > 0.2) (Table 2). The MSE was 244 (Table 3,
Figure 1). However, for the one-year-ahead updated predic-
tions of the exponential model, there was no significant

relationship with the observed number of bTB herds (Table 1).
In the difference analysis, the exponential model provided
biased predictions (Table 2). The MSE of the exponential
model predictions was 486 (Table 3, Figure 1).

Statistical modelling of trends: Future predictions

There was a significant negative linear relationship (F1,15 = 138.10,
P < 0.0001, R2 = 0.90) between number of bTB herds (H) and years
(Y) on a logeH –logeY scale from 2005 to 2021 inclusive. The power
model had a slope of�249.513 (95%CI -294.768 to�204.258) and
an intercept of 1902.433 (95%CI 1558.161 to 2246.706). After back-
transformation, the relationship displayed a clear curved, concave-
up pattern (Figure 3). The exponential model on a logeH vs Y scale
also demonstrated a similar relationship (F1,15 = 137.65, P < 0.0001,
R2 = 0.90), with an estimated slope of �0.124 (95%CI -0.147 to
�0.101) and an intercept of 253.766 (95%CI 208.443 to 299.088).
Both fitted regressions predicted that the number of positive bTB
herds was 24 in 2022, which coincided with the observed number.
They also projected a decrease to 3 in the year 2040 and ultimately
the eradication of bTB by 2055 (Table 4).

Mechanistic modelling: Calibration regression

The curved relationship between bTB herds (H) and cumulative
costs (C) was strongly supported. The power model showed a
significant negative linear relationship (F1,5 = 107.29, P = 0.00014,
R2 = 0.96) between bTB herds (H) and cumulative costs (C) on a
logeH vs logeC scale. After back-transformation, the relationship
with predictions was a clear curved, concave-up pattern (Figure 4a).
The exponential model showed a significant negative linear rela-
tionship (F1,5 = 136.230, P < 0.00001, R2 = 0.97) on a logeH vs C
scale. After back-transformation, this relationship also displayed a
clear curved, concave-up pattern (Figure 4a).

 )rorre derauqs nae
m( ycnetsisno

C

Strength of association (R squared)

Figure 1. Graphical relationship between causal criteria [14] of strength of association (x axis, R2) and consistency (y axis, mean squared error of predictions). A perfect set of
predictions is shown as the large solid circle at (1, 0) and a poor set of predictions as a large open circle (0, 400). Powermodels are shown as open symbols and exponentialmodels as
closed symbols for the same combination of inference and updating. Statistical inferences with no updating are denoted as squares andwith updating as small circles. Mechanistic
inferences with no updating are represented as diamonds andwith updating as triangles. The combination closest to the ideal (large closed circle) usesmechanistic inference and a
power model (open diamond).
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Mechanistic modelling: With no updating

In the association analysis, the power model showed a significant
positive linear relationship between predicted and observed values
(Table 1, Figure 4b). However, the slope of the linear regression
(0.501, 95%CI 0.191 to 0.812) was less than 1.0, indicating a negative
bias, and the intercept (28.733, 95%CI 11.987 to 45.479) was greater
than 0.0, indicating a positive bias (Table 1). In the difference
analysis, the mean bias of predictions was�3.7 (+/� 4.1 SE), which
was not significantly different from 0.0 (paired t = �0.9, df = 9,
P > 0.20) (Table 2). On the other hand, in the association analysis,

the exponential model showed that predicted values were signifi-
cantly related to the observed values of herds with bTB (Table 1,
Figure 4b). The estimated slope was 0.656 (95%CI 0.253 to 1.059),
which was not different to 1.0 and hence not biased, and the
intercept on the y axis was 6.985 (95%CI -14.760 to 28.730), which
was not different to 0 and was unbiased (Table 1). However, in the
difference analysis, the mean difference between observed and
predicted bTB herds was 10.3 herds (+/� 3.9 SE), indicating bias
(paired t = 2.6, df = 9, P < 0.05), with predictions tending to be, on
average, underestimates (Table 2). The mean squared errors of the

BTb
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Observed herds with bTB
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Figure 2. The annual number of herds infected with bovine tuberculosis (bTB) in New Zealand. The data points are shown as solid circles for years 2005 to 2021 inclusive. (a) The
solid line is the fitted power model, and the dashed line shows predicted herds with bTB during 2012 to 2021 inclusive. The exponential model is also included in the figure but
cannot be seen separately from the power model. (b) Relationships between predicted (y) and observed (x) numbers of bTB herds. The equality line is shown as the dotted line.
Relationships for the power and exponential models are included, although cannot be seen separately.
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Table 1. Results of association analyses of the predicted (y) and observed (x) numbers of bTB-infected herds in New Zealand from 2012 to 2021 inclusive

Inference Statistical Mechanistic (causal)

Model Power Exponential Power Exponential

No updating of predictions

F1,8 14.14 14.14 13.88 14.10

P 0.01 0.01 0.01 0.01

R2 0.64 0.64 0.63 0.64

Slope 0.716 0.713 0.501a 0.656

LCL 0.277 0.276 0.191 0.253

UCL 1.155 1.151 0.812 1.059

Intercept 2.306 2.156 28.733b 6.985

LCL �21.384 �21.453 11.987 �14.760

UCL 25.996 25.766 45.479 28.730

Annual updating of predictions

F1,8 8.33 2.79 8.93 8.06

P 0.02 0.13 0.02 0.02

R2 0.51 0.26 0.53 0.50

Slope 0.564 0.303a 0.551a 0.524a

LCL 0.113 �0.116 0.126 0.098

UCL 1.015 0.721 0.976 0.950

Intercept 16.126 22.143 23.830b 19.428

LCL �8.195 �0.432 0.882 �3.547

UCL 40.447 44.718 46.777 42.404

Note: Analyses use statistical inference of trends in bTB herds over the years andmechanistic inference of bTB herds relative to costs. For each form of inference, there are twomodels (power and
exponential).
Abbreviations: LCL, lower limit of 95%CI; UCL, upper limit of 95%CI.
anegatively biased.
bpositively biased.

Table 2. Mean bias in difference analyses using statistical and mechanistic (causal) inference for each of power and exponential models with no updating and with
annual updating of predictions

Inference Statistical Mechanistic (causal)

Model Power Exponential Power Exponential

No updating of predictions 12* 12* �4 10*

(+/� 4) (+/� 4) (+/� 4) (+/� 4)

Annual updating of predictions 6 13* �1 5

(+/� 5) (+/� 6) (+/� 5) (+/� 5)

Note: Shown are the numerical values of themean differences (+/� SE) between observed and predicted numbers of bTB-infected herds in New Zealand from 2012 to 2021 inclusive.*P < 0.05 in a
paired t test. All significant means are underestimates.

Table 3. Mean squared errors (MSEs) of the predicted number of bTB-infected herds in New Zealand from 2012 to 2021 inclusive, using statistical and mechanistic
(causal) inference for each of power and exponential models with no updating, and with annual updating

Inference Statistical Mechanistic (causal)

Model Power Exponential Power Exponential

No updating of predictions 301 308 181 261

Annual updating of predictions 244 486 203 233
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power and exponential models were 181 and 261, respectively
(Table 3, Figure 1).

Mechanistic modelling: With annual updating

In the association analysis, the power model generated one-year-
ahead predictions of the number of livestock herds with bTB, and
these predictions were positively associated with the observed
number of bTB herds (Table 1, Figure 5). However, the fitted
linear regression had an estimated slope of 0.551 (95%CI 0.126 to
0.976), indicating a negative bias, and an estimated intercept of
23.830 (95%CI 0.882 to 46.777), suggesting a positive bias
(Table 1). In the difference analysis, the mean bias (observed –

predicted) was �1.2 herds (+/� 4.5 SE), which was not different
from 0.0 (paired t = �0.3, df = 9, P > 0.5) (Table 2). The mean

squared error of this model was 203 (Table 3, Figure 1). Similarly,
in the association analysis, the exponential model provided one-
year-ahead predictions that were positively associated with
observed herds (Table 1, Figure 5). However, the estimated slope
was 0.524 (95%CI 0.098 to 0.950), indicating a negative bias, and
the intercept was 19.428 (95%CI -3.547 to 42.404), indicating no
bias (Table 1). In the difference analysis, the mean bias was 4.5
herds (+/� 4.6 SE), which was not different from 0.0 (paired
t = 1.0, df = 9, P > 0.20) (Table 2). The mean squared error was
233 (Table 3, Figure 1). The mechanistic power model with
updating shows a temporal trend of damped oscillations in bias
(Figure 6). This suggests that differences between the observed
number of bTB herds and the predicted number vary over the
years, but the amplitude of the differences decreases, approaching
zero (Figure 6).

BTb hti
w sdre

H

Year
Figure 3. Trends in herds infected with bovine tuberculosis (bTB) in New Zealand and fitted updated power (solid line) and exponential (dashed and dotted line) models, although
the fitted lines cannot be seen separately.

Table 4. Predictions by years of the number of herds infected with bTB in New Zealand by statistical inference (trends in herds with bTB by years) and by
mechanistic (causal) inference (cumulative costs), for each of the power and exponential models

Inference Statistical Mechanistic (causal)

Year Aim Power Exponential Power Exponential

2022 NA 24 24 31 26

2026 Livestock 15 15 24 17

2040 Possums 3 3 12 4

2055 Biological 0 0 7 1

2059 Biological 0 0 6 0

Note: The selected years correspond to aims of the national programme of bTB eradication with either or both of livestock and brushtail possums ‘free’ of bTB. The independently observed
number of bTB herds in 2022 was 24 [7].
Abbreviation: NA, not applicable.
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Mechanistic modelling: Future predictions

Predictions were also made for the future number of herds with
bTB using data from 2005 to 2021 inclusive. The power model
showed a high level of significance (F1,15 = 163.72, P < 0.0001,
R2 = 0.92). The fitted equation is as follows:

log eH= 17:184 – 1:8571 logeC:

The equation predicted that the number of bTB herds (H) would be
31 in 2022, 24 in 2026, and 7 in 2055 (Table 4), assuming annual
costs remain at the current level of NZ$59million. The actual
number of bTB herds in 2022 was 24. According to the fitted power
equation, there is a marginal benefit of a reduction of 6 bTB herds
when the cumulative cost increases from NZ$1,600 million to NZ
$1,800million and a reduction of 2 bTB herds when the cumulative
cost increases from NZ$2,800 million to NZ$3,000 million.

H
er

ds
 w

ith
 b

TB

Cumulative cost (NZ$mill.)

sdreh BTb detciderP

Observed bTB herds
Figure 4. (a) The number of herds infectedwith bovine tuberculosis (bTB) in New Zealand and the cumulative cost (NZ$millions) of bTB control starting in 1995. The data points are
shown as solid circles for years 2005 to 2021 inclusive, and the solid line is the fitted power function (loge-loge regression line) for data from 2005 to 2011 inclusive. The predicted
number of bTB herds is shown as a dashed line. The dashed and dotted line is the fitted exponential function, with its corresponding predictions shown as the long dash and dotted
line. (b) The significant association between the non-updated predicted (y) and observed (x) numbers of bTB herds from 2012 to 2021 inclusive. Data for the powermodel are shown
as solid circles with the fitted regression as a dashed line. Data for the exponential model are shown as open circles with the fitted regression as the dashed and dotted line. The
dotted line is the equality line.
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Figure 6. Temporal trends in the differences between the observed number of bovine tuberculosis (bTB)-infected herds inNewZealand and the annually updated number predicted
by the mechanistic power model.

sdreh BTb fo snoitciderp detadp
U

Observed bTB herds
Figure 5. The association between annually updated predictions of themechanistic powermodel (solid circles) and observed herds infectedwith bovine tuberculosis (bTB) and the
exponential model (open circles) and observed herds. The dotted line is the equality line, the power model’s fitted linear regression is the dashed line, and the exponential model’s
regression is the dashed and dotted line.
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The exponential model was highly significant (F1,15 = 159.11,
P < 0.0001, R2 = 0.91). The fitted is as follows:

log eH= 6:325 – 0:0019C:

The exponential equation predicted the number of bTB herds
(H) would be 26 in 2022, 17 in 2026, and 1 in 2055 (Table 4). The
actual number of bTB herds in 2022 was 24. According to the fitted
exponential equation, there is a marginal benefit of a reduction of
8 bTB herds when the cumulative cost increases from NZ$1,600
million to NZ$1,800 million and a reduction of 1 bTB herd when
the cumulative cost increases from NZ$2,800 million to NZ$3,000
million.

The power model estimates that reducing the number of bTB-
infected herds to 1.0 would require a cumulative cost of NZ$10,437
million. On the other hand, the exponential model estimates that
achieving the same goal would require a cumulative cost of NZ
$3,382 million. In 2021, the cumulative cost was NZ$1,587 million.

Discussion

The present study has demonstrated that the number of bTB-
infected herds in New Zealand (NZ) can be predicted with low
bias. Mechanistic models that imply causal relationships received
more support than statistical models, and these models described
diminishing returns on investments. Specifically, the power model
had less biased predictions than the exponential model. Both
measures of association and difference yielded some similar find-
ings, but there were also some differences in the results. Future
predictions suggest that bTB eradicationmay take longer than 2055
if the predictions remain unbiased and current strategies and costs
of control are maintained.

The control and eradication efforts for bTB in NZ have shown
impressive progress [1, 2, 4]. Previous predictions regarding the
feasibility of bTB eradication [2] are broadly supported by the
findings of the present study, although some differences exist. The
current predictions imply that NZ’s livestock will likely be provision-
ally free of bTB by 2026, which is consistent with the current
situation. The statistical models predict biological freedom from
bTB by 2055, aligning with the national aims. In contrast, the
mechanistic models do not predict biological freedom by 2055 (-
Table 4), assuming that funding for disease control and possum
control remains at current levels. It is worth noting that as the
number of bTB-infected herds reaches very low levels, predicting
thenumbermaybebecomedifficult because of the very lownumbers.
Additionally, if strategies change, for example, depopulation of bTB-
infected herds and using sentinel animals to detect infection in
livestock and wildlife, it may further complicate predictions.

The study does not formally evaluate the aim of achieving bTB-
free possums in NZ by 2040 because it is challenging to distinguish
the separate effects of concurrent livestock disease control and
possum control. Other studies have evaluated various aspects of
surveillance and control of possums as bTB hosts [23]. It is note-
worthy that Australia eradicated bTB in livestock [29, 30], though
Australia did not have a widespread wildlife bTB host, in contrast to
possums in NZ. Of the cumulative costs incurred since 2004, 75%
(NZ$841.2 m) was spent on possum control and related adminis-
tration and research, and 25% (NZ$287.4 m) was spent on disease
testing and control in livestock. Advancements in disease surveil-
lance, including efforts in wildlife [23, 31, 32], increase the prob-
ability of achieving bTB eradication.

Given the substantial costs associated with bTB eradication, it is
important to demonstrate benefits [33]. In this study, the clear
reduction in bTB-affected herds over the years serves as a demon-
strated benefit. It is important to note that the cumulative costs
reported here may not be directly comparable to the previously
reported results [2]. The curved trends observed in bTB herds in
this study (Figure 3) are similar to the curved trends observed in
countries with smallpox during the final stages of its eradication
[34, Figure 10.4]. A previous study [17] and the current study
clearly demonstrate diminishing returns on investments. This pat-
tern of diminishing returns holds implications for other countries
engaging in bTB eradication, such as Ireland, which has shown a
trend in bTB cases with a possible asymptote above zero, rather
than a decline towards zero [35].

A comparison between statistical and mechanistic modelling of
climate change revealed that mechanistic modelling yielded less
biased results than statistical modelling [36, 37]. Similarly, the
results reported here show thatmechanisticmodels produced fewer
biased predictions than statistical models (Table 2). The damped
oscillations in the bias of the updated mechanistic power model are
encouraging and implies increased confidence in the predictions.
These damped oscillations are a form of convergence, which has
been reported as the correlation between observed and predicted
values increasing with larger datasets, suggested as a metric for
causal inference [38]. However, correlation alone is not a basis for
causal inference. Occurrence of convergence through updating of
predictions highlights the importance of annual updating to assess
on-going progress in bTB eradication efforts. Annual updating is
already established in the management of mallards and their har-
vest in North America [26]. The utility of validating predictions
both for statistical and causal inference has been emphasised in
wildlife studies and management [11, 12]. The present study dem-
onstrates that this can be extended to livestock production and
disease control.

The study has several limitations. The use of cumulative costs
for bTB control may introduce limitations. Firstly, how the same
amount of money is spent may differ between years, thus gener-
ating extra variation in the x variable in the mechanistic models.
This variation could reduce the estimated slope of the linear
regression between predicted and observed numbers [16] in the
association analyses and lead to biased predictions. Secondly, in
some analyses, the x variables are not independent as they use
cumulative costs. This may increase the risk of a type 1 error
(concluding there is a significant relationship when it actually does
not exist); however, due to the lack of multiple sites, there was no
alternative. Thirdly, this study is observational, rather than experi-
mental, which may lead to weaker causal inferences. Fourthly, the
use of bTB numbers from one site across multiple years could
provide more precise data than having the same sample size from
different sites in a single year. The higher precision might increase
the risk of a type 1 error.

In summary, the present study concludes that mechanistic
(causal) models provide less biased predictions of the number of
bTB-infected herds in New Zealand than statistical models. The
results indicate that New Zealand is progressing towards bTB
eradication, although it may take longer than the target year of
2055.
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