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Abstract. Let R be a Borel equivalence relation with countable equivalence classes
on a measure space M. Intuitively, a 'treeing' of R is a measurably-varying way of
makin each equivalence class into the vertices of a tree. We make this definition
rigorous. We prove that if each equivalence class becomes a tree with polynomial
growth, then the equivalence relation is amenable. We prove that if the equivalence
relation is finite measure-preserving and amenable, then almost every tree (i.e.,
equivalence class) must have one or two ends.

0. Introduction
Classically, ergodic theory has studied actions of the reals or of the integers on
measure spaces. More recently, it has broadened to include actions of Lie groups,
algebraic groups and discrete groups. The most recent trend [6,7,9,11] has been
to consider any kind of groupoid structure, where the unit space is a measure space.
This includes equivalence relations on measure spaces (the case where the groupoid
is principal), for which many of the fundamental techniques were developed in [3-5].

At a conference in Santa Barbara in the late 1970s, Alain Connes suggested the
study of equivalence relations with an additional piece of data: a measurably-varying
simplicial complex structure on each equivalence class (see Definition 1.7). In this
paper, we take up a special case of this, where the simplicial complex is a tree (see
Definition 1.5).

The simplest example of such a 'treed' equivalence relation comes from consider-
ing the orbits of the action of a finitely-generated free group F acting freely on a
measure space. A tree structure is then obtained on each orbit by saying that two
points x and y are 'adjacent' if there is some generator ge F such that gx = y or
gy = x. The resulting tree is homogeneous, i.e., has a vertex transitive automorphism
group. Thus, in a sense, treed equivalence relations are a groupoid analogue of free
groups. In another sense (see Example 1.6.3), treed equivalence relations are
analogous to foliations by manifolds of negative curvature, in the same way as a
homogeneous tree is analogous to hyperbolic space (see [8, Chapter II]).

Amenability is another property of equivalence relations; it is the groupoid
analogue of the property of amenability for groups. It has been studied in detail
by R. Zimmer [10], by Connes et al. [2] and by others. The purpose of this paper
is to study how amenability and treeings interact. One immediate consequence of
[2] is that any amenable equivalence relation is treeable, where each equivalence
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2 S. Adams

class becomes tree isomorphic to the Cayley graph of Z (with generating set {±1}),
i.e., to the tree with two edges belonging to every vertex.

In this paper we prove two less immediate results. First, we show, in the presence
of a finite invariant measure, that if the equivalence relation is amenable, then a.e.
equivalence class has a very simple tree-structure:

THEOREM 5.1. Let (M,R) be an amenable equivalence space with finite R-invariant
measure. Let S be a treeing of (M, R). Then, for a.e. xe M, the tree R(x) has one
or two ends.

We preface with a few remarks about an arbitrary tree with one end. So let T be
any (locally finite) tree with exactly one end. Note that any directed edge is either
directed toward the end or away from it. If ex,..., e2n are the directed edges of
some even length geodesic between two vertices, then we will say that the geodesic
is balanced if e , , . . . , en are directed toward the end, while en+1,... ,e2n are directed
away. Two vertices will be called equivalent if the geodesic connecting one to the
other is balanced. (Thus equivalent implies separated by an even distance.) The
equivalence classes of this equivalence relation are called horocycles. There is a
linear ordering on horocycles: if Ht and H2 are horocyles, then we will write H, < H2

if there exists a geodesic connecting a vertex of //, to a vertex of H2 which is always
directed away from the end of T. It is easy to show from the local finiteness and
one-endedness of T that there exists a unique maximal horocycle H(T) under this
ordering. Note that since H(T) is a horocycle, then any two vertices in H(T) are
separated by an even distance. Note also that half that distance is exactly the number
of horocycles (other than H(T) itself) met by the geodesic between them.

Returning to the theorem at hand, let P denote the union of the sets H(R(x))
as x ranges over M'. Because Pn R(x) = 0 , for a.e. xe M, quasi-invariance implies
that P is of positive measure. As remarked above, we need only verify that (P, R\P)
is amenable. Further, by [10, Theorem 3.6, p. 29], we need only show that R \ P is
hyperfinite, i.e., is a countable union of equivalence relations each of which has
finite equivalence classes. We define the equivalence relation Rt on P by: (x, y) e Rt

iff the distance from x to y in the tree R(x) is <2i. (Transitivity follows from the
last sentence of the preceding paragraph.) Then each Rt has finite equivalence
classes and R = U M I R*> a s needed.

Thus we may assume that M' is null, i.e., that a.e. R{x) has more than one end.
This result and its proof are similar to the result on foliations by manifolds of

negative curvature in Zimmer [12].
A pendant vertex is a vertex that belongs to only one edge. A tree with only one

end must have pendant vertices. Further, there is only one tree with two ends which
has no pendant vertices: the tree with exactly two edges belonging to each vertex.
We call this tree the integer tree and obtain an analogue of [2]:

COROLLARY. Let (M, R) be an amenable equivalence space with R-invariant measure.
Let Sbea treeing of (M, R). Assume, for a.e. xe M, that the tree R(x) has no pendant
vertices. Then, for a.e. xe M, R{x) is the integer tree.

Second, we show that if the trees are sufficiently uncomplicated, then the
equivalence relation is amenable.
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Trees and amenable equivalence relations 3

THEOREM 5.2. Suppose S is a treeing of the equivalence space (M, R). For a.e. x e M,
assume either that R(x) has finitely many ends or that R(x) has polynomial growth.
Then (M, R) is amenable.

A. Kechris has pointed out to me that 'polynomial growth' may be replaced by
'subexponential growth' with no significant change in the proof.
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1. Basic definitions
All measures are assumed o--additive and cr-finite. All Borel spaces are assumed to
be standard. We define Z+ to be the positive integers, Z+ to be the nonnegative
integers and R to be the real numbers. If S is any set, then we denote the number
of elements in S by \S\.

If R is an equivalence relation on a set X and x e X, then we denote the
R-equivalence class of x by R(x). The R-saturation of a subset W s X is the union
of all R -equivalence classes that intersect W. If K c X and R is an equivalence
relation on X then we denote Rn(KxK) by R\K.

Let B be a Borel space and let R be an equivalence relation on B whose graph
is a Borel subset of B x B and whose equivalence classes are countable. An
automorphism of (B, R) is an automorphism f:B-*B of the Borel space B such
that (x, y)e R=$(f(x), f(y))e R. We denote the group of all automorphisms of
(B, R) by Aut(B, R). A measure /x on B is said to be R-quasi-invariant if the
R -saturation of any /Lt-null set is again /A-null. A measure fj, on B is said to be
R-invariant if every automorphism of (B, R) leaves fi invariant.

Let M denote the measure space (B,fj,). Assuming that R has countable
equivalence classes and that /x is quasi-invariant, then we say that (M, R) is an
equivalence space. If {M, R) is an equivalence space, and G is a group, then a
measurable map a : R -* G is called a cocycle if, for a.e. x e M, for all y, z e R(x),
we have a(x, y)a(y, z) = a(x, z).

If X is a locally compact, countably based topological space, then we denote the
sup-norm Banach space of continuous real-valued vanishing-at-oo functions on X
by C0(X). If K c X is compact, then we let M(K) be the space all Borel probability
measures on K, viewed as a weak-* compact, convex subset of the unit ball in C0(X)*.

We now define amenability of an equivalence space as in [10, Definition 3.1,
p. 27]: Let £ be a separable Banach space and let a : R -» Iso (E) be a measurable
cocycle, where Iso (£) denotes the topological space of all isometric automorphisms
of £ with the strong operator topology. (We will denote the actions of Iso (E) on
E and on E* on the right.) Let a*: R-> Iso (£*) denote the adjoint cocycle,
a*{x, y):= (a(x,y)*)~l. A mapping x>-*Ax which associates to each xe M a weak-*
compact, convex subset Ax of the unit ball of E* is said to be Borel if {(x, a)e M x
E*\aeAx} is a Borel subset of MxE*. It is said to be a*-invariant if, for a.e.
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xeM, for all yaR(x), Axa*(x,y) = Ay. We will commonly denote x*-*Ax by

Definition 1.1. Let (M, R) be an equivalence space. Let a: R -»Iso (£) be a measur-
able cocycle, and let (Ax)xeM be an a*-invariant Borel field of weak-* compact,
convex subsets of the unit ball of E*. Then the ordered pair (a, (Ax)xeM) is called
an affine space over (M, R).

A measurable mapping/: M-> E* is said to be a section of (Ax)xeM if f(x)eAx,
for a.e. xe M. A section / is said to be a*-invariant (or, simply invariant) if, for
a.e. xe M, for all ye R(x), we have/(x)a*(x, y)=f(y).

Definition 1.2. We say that an equivalence space is amenable if any affine space
over it has an invariant section.

For more information on amenability and its properties, see [13, § 4.3, especially
pp. 82-84].

All trees are assumed to have countable vertex sets and edge sets. (For the basic
terminology concerning trees, we cite [8].) Let °U denote the tree with infinitely
many vertices, and infinitely many edges belonging to each vertex. We call this the
universal tree. A tree is said to be locally finite if every vertex belongs to only finitely
many edges. If T is a tree, then we denote the vertex set and (undirected) edge set
of T by V(T) and E(T), respectively. If, in addition ve V(T), then we denote the
set of edges in T belonging to v by ET(v). If ve V(T), then we call |£r(u)| the
valence of v.

A directed edge of T is an ordered pair consisting of two adjacent vertices. The
set of directed edges of T is denoted DE(T). If (v, w)eDE{T), then we define
s(v, w):= v, r{v, w):= w and (v, w)' -=(w, v). If r e V(T), then we define

DET(v):={eeDE(T)\s(e) = v}.

Let T be a tree with distance function d: V( T) x V( T) -* Z°+. If v e V( T), neZ°+,
then we let BT(v, n) = {we V(T)\d(v, w)<n}. We define the ends of T as in [8,
Exercise 1), pp. 20-21]. We denote the topological space of ends of T by dT. We
define (non-standard) the trunk vertices of T to be the collection of vertices of T
which lie on a geodesic connecting two ends. The trunk of T is the subtree of T
whose vertex set consists of the trunk vertices of T.

We will also need

Definition 1.3. Let T be a tree. We say that T has polynomial growth if for some
(equivalently, any) ve V(T), the function n>->\BT(v, n)\: Z+-»Z+ is bounded above
by some polynomial in n.

Next, we head toward the definition of a 'treed equivalence space', which is the
basic object of study in this work. As a first approximation, we define a 'graphed
equivalence space':

Definition 1.4. Let (M, R) be an equivalence space. A graphing of (M, R) is a
symmetric relation S <=• R on B such that S is a Borel subset of M x M. We then
say that (M, R, S) is a graphed equivalence space.

(Generally, S is neither reflexive nor transitive; it is not an equivalence relation.)
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We will abuse notation and use R(x) to refer also to the graph with vertex set
R(x) and directed edge set Sn[R(x)x R(x)].

The following definition makes rigorous what is meant by 'measurably putting a
tree structure on each equivalence class' of an equivalence relation.

Definition 1.5. Let (M, R, S) be a graphed equivalence space. If for a.e. xe M, the
graph R(x) is a locally finite tree (i.e., it is connected with no circuits, cf [8, Definition
6, p. 17]), then we say that S is a treeing of (M, R) or that (M, R, S) is a treed
equivalence space.

If xe M, then we define the S-valence of x to be the valence of x as a vertex in
the tree R(x).

We now give some examples of treed equivalence spaces.

Example 1.6.1 (Free group action). Let F be a free group with finite free generating
set K. Let M be an essentially free right F-space. Then the orbits of F on M give
an equivalence relation which is treeable: Define S:= {(x,y)eMxM\yex-K or
xey K}. Each equivalence class is then tree-isomorphic to the homogeneous tree
with 2\K\ edges belonging to each vertex.

Example 1.6.2 (Treed bundle construction). Let T be a tree, G a group acting by
automorphisms on T. (Let this action be on the left.) Let M be an essentially free
G-space (with G acting on the right). Define a G-action on M x V(T) by g • (x, t) =
(x- g~\ g- t). And let M':=G\(Mx V(T)). Then, for a.e. xeM, the map {x}x
V(T)^M' is injective and thus we can transfer the tree-structure from T to the
image of this map. Define an equivalence relation R whose equivalence classes are
the images of the various maps {x} x V( T) -> M', with x ranging through M. We
then have a treed equivalence space.

Example 1.6.3 (SL(2,Qp)-action). Let Qp denote the p-adic rational numbers, Zp

the p-adic integers, G:= SL(2,QP), T'= SL(2,ZP). Then G acts naturally on a
homogeneous tree [8, § II.l.l, pp. 69-74], call it T, with T equal to the stabilizer of
some vertex. Let M be an essentially free left G-space. Then M':-T\M is an
equivalence space, where the equivalence classes are a.e. the images of G-orbits
under the natural map M -» M'. So a.e. equivalence class can be identified with
r\G, which we can identify with T. This gives a treed equivalence space. (Note:
This construction can be seen as a special case of the treed bundle construction
above.)

Given a tree T, we say that two vertices of T have the same vertex type if they are
conjugate under Aut (T). We now wish to construct a treed equivalence space with
a tree that has infinitely many vertex types. This example indicates that the trees
which can occur in treed equivalence relations can be more complicated than the
ones indicated in the previous examples. It also shows that a tree with one end can
occur in every equivalence class of a treed equivalence space, cf. Theorems 5.1 and
5.2.

Example 1.6.4. Let Z+ denote the measure space consisting of the positive integers
with counting measure. Let A be a two point measure space containing the two
points 0 and 1, both the measure \. Let B := Z+ x A x A x • • •, where we are taking
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a countable product with the product measure. Given a point («, a,, a2,...) e M,
we will call n the Oth coordinate, a, the first coordinate, a2 the second, etc.

For k = 1,2,..., let Bfc denote the set of all points in B whose Oth coordinate is
k and whose first through feth coordinates are all 0. We now define a relation S on
the measure space M'•= B,u B1+2u B1+2+3u • • • . If xe B1+...+1 and ye B1+...+(I+1),
then we say that x is i-adjacent to y if all coordinates of x and y agree except
perhaps coordinates 0 through 0+- • +( i+l) . We let S be the union of all sets
{(*> y), (y, *)}, where x is i-adjacent to y, for some i. Define R. s M x M to be the
totality of all (x,y) such that, for some z , , . . . , zne M, we have (x, z,),
(z1,z2)) . . . ,(zn_,,zn), (z , , j )eS. Let xo:= (1, 0,0,...). Let T be the tree whose
vertex set is R(x0) and whose directed edge set is Sn[K(xo)x /?(x0)]. Say that a
vertex in T is a fc-vertex if the value of its Oth coordinate is 1 + • • • + k. Then T has
the property that the valence a fc-vertex is 1 if k = 1 and 2k +1 if k > 1. Since vertices
of different valence are not conjugate under Aut (T), it follows that T has infinitely
many vertex types. The tree T is isomorphic to any R(x), xe M.

Now let (M, R, S) be a treed equivalence space and let M, c B be a Borel subset.
Let /?! := R \ M,. We now define a subset S,c RY on (M,, /?,) by letting S, be the
totality of all (x, y) e /?, such that the geodesic (in the tree R(x)) from x to y does
not pass through any vertices inside M,, except for x and y. We call S, the restriction
of S to M, and denote 5, by S|M,.

Let (Af, R, S) be a treed equivalence space. Let Mo be the set consisting of those
xe M such that x is a trunk vertex of the tree R(x). Then Mo is a measurable subset
of M and we call (Mo, R\M0,S\MO) the frunfe o/ (M, K, S).

We conclude this section by remarking that the definition of a graphed equivalence
space has a natural generalization:

Definition 1.7. Let (M, R) be an equivalence space. For each n = 1,2,..., let

K" := {(xo, • • •, xn) |(x0, x,), (x,, x 2 ) , . . . , (xn_,, xn) e R}.

Let S1 c u 1 , . . . , S" s /?" be Borel subsets. Assume that each S, is invariant under
permutation of coordinates. We say that (M, R, S1,..., S") is a simplical complex
space if, for every i = 2,.., n, for a.e. x0€ M, for all x , , . . . , x, e R(x0), we have

2. Existence of simplifications
Recall that % denotes the universal tree (see § 1). By abuse of notation, we will
also use V(1l) to denote the measure space of counting measure on the set V(°U).
Recall from § 1 that if T is a locally finite tree and i>e V(T), then ET(v) denotes
the set of edges belonging to v and DET(v) denotes the set of directed edges which
start at v.

Definition 2.1. Let (M, R, S) be a treed equivalence relation and l e t D g M x V(%)
be measurable. Let $ : D - > M b e a measurable map. Assume, for every xe M, that
Dx--{

<VeV{aU)\(x,Y)e D} is the set of vertices of some locally finite subtree of
<%. By abuse of notation, we will denote this subtree by Dx as well. Assume further,
for a.e. xe M, that the map 4>x:= Ti-»<I>(x) V) is a tree isomorphism from Dx to
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R(x). Then we say that (D, *) is a simplification of (M,R,S). If there exists
Yoe V(°U) such that 4>(x, T0) = x, for a.e. xeM, then we say that (£>,$) is level
atY0.

Note that in the following definition the action of Aut (M, R) on M is denoted
as a rig/i/ action.

Definition 2.2. Let (£>,<£) be a simplification of a treed equivalence space (M, R, S).
Let Toe V("%). Let a :R-* Aut (<%) be a cocycle. Then we say that a is compatible
with (D, <*>) if, for a.e. xeM, for all y e R(x), for all Te Dx, we have Ta(x, y) e Dv

THEOREM 2.3. Let (M, R, S) be a treed equivalence space and let Yoe V(^l). Then
there exists
(1) a simplification (D, O) of (M, R, S) which is level at Yo and
(2) a cocycle a : R -* Aut (H) which is compatible with (D, <5).

We preface the proof with a few definitions and remarks.

Definition 2.4. Let T be a tree. An edge-labeling of T is defined to be a map
c: DE(T) -» Z+ such that for every veV(T), the restriction c| DET(v) is one-to-one.
If <# is an edge-labeling of K and, for every YeV(°U), we have that
C€\DE^(V):DE^(V)^Z+ is bijective, then we say that <£ is perfect.

It is not hard to show that any tree admits an edge-labeling and that % admits
a perfect edge-labeling.

Now let D, E be locally finite subtrees of °U. Assume that D and E are isomorphic
and that a : D -> E is an isomorphism between them. We claim that a can be extended
to an automorphism of °U,.

To prove this, choose a perfect edge-labeling <# of % and choose a vertex u e V(D).
Let X := DEcu(v), Y-= DED(v). Now a is defined on Y and we extend it to X as
follows. The edge-labeling ^ defines a well-ordering on X and on a(X). (More
generally, any embedding of a set X into a well-ordered set like Z+ gives a
well-ordering on X.) Map the first edge in X\Y to the first edge in a(X)\a(Y),
the second to the second, the third to the third, etc. Now extend a to the vertices
adjacent to v by setting a(r(x))'= r(a(x)), for all xeX. Then extend a to the
directed edges ending at v by setting a(x'):= (a(x))\ for all xeX. (Recall from
§ 1 that r(v, w):= w and (v, w)':=(w, v), for any directed edge (v, w).) We now
repeat this process for each of the vertices adjacent to v and continue inductively.

Definition 2.5. Let D, E be locally finite subtrees of "U and let a denote an isomorph-
ism between them. Let ^ be a perfect edge-labeling of °U and let ve V(D). The
process described above defines an extension of a to an automorphism of °U. We
call this the standard extension of a with respect to % and v.

Next we claim that any locally finite tree can be embedded as a subtree of °IL
Let T denote a locally finite tree, let c be an edge-labeling of T and let % be a
perfect edge-labeling of °U. Let os V(T), Ye V(°U). We define an embedding <f> as
follows. Define <f>(v) = Y. As before, the edge-labelings define a well-ordering on
DET(v) and DEq/(Y). Let <$> map the first edge to the first edge, the second to the
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second, etc. As above, define <f>(r(e))-= r(<f>(e)) and <f>(e')'-= {<j>(e))', for all ee
DET(v). For each vertex w adjacent to v, we repeat the process on the edges starting
at w except for the edge (w,v). Continuing inductively, we obtain an embedding.

Definition 2.6. Let T be a locally finite tree, c an edge-labeling of I, f a perfect
edge-labeling of °ll. Let v e V(T), Ve V(%). Then the process described above gives
an embedding of T in % which we call the standard embedding of T with respect
to v, V, c and <€.

In the following proof, we let Aut (M, R) act on M on the right.

Proof of Theorem 2.3. Let c€:DE{aU)^Z+ be a perfect edge-labeling of °U. Choose
a vertex Toe V(%). Let GcAut(M,R) be a countable subgroup such that the
equivalence classes of R are exactly the orbits of G. (See [4, Theorem 1, p. 291].)
Let gi,g2,--- be a listing of the elements of G. Define N:S->Z+ by N(x,y):=
min {i\xgi = y}. Then, for a.e. xeM, the function Nx:= N\Sn[R(x)x R{x)] is an
edge-labeling of the tree R(x). Let ex: R(x) -* <% be the standard embedding of R(x)
with respect to x, Vo, Nx and <€. Let Dx:= ex(R(x)). Let <J>X: Dx^R(x) be the
inverse of ex.

Let D := {(x, V) e M x V(<%) | T e Dx} and let $ : D ->• M be defined by $(*, v) :=
$x(u). For (x, j ) e R, let a(x, j ) be the standard extension of <J>~'°<J>X : Dx-*Dy

with respect to 1 and T.
It is now straightfoward to check that (D, <t>) and a : R-^AutC3^,) satisfy the

required properties. •

3. Analysis of a single tree
Many of the arguments for Theorems 5.1 and 5.2 can be stated and proved as results
about a single tree, rather than about a treed equivalence space. In this section, we
separate out these parts of the proof.

Let T denote a locally finite tree. Let d denote the distance function on T. Recall
that V(T), E(T), DE(T) and dT denote the vertices, edges, directed edges and
ends of T, respectively. Recall also from § 1 that s(v, w) := v, r(v, w) '•= w, (v, w)' '•=
(w, v), for all (v, w)eDE(T).

A simple flow on T is a map / : V(T)-» V(T) such that d(v,f(v)) = \, for all
ve V(T). An edge function on T is a bounded function k:DE(T)->R such that
k(e') = -k(e), for all eeDE(T). We say that k is decisive if, for all ve V(T), there
exists ee DET(v) such that fc(e)>0.

If k is a decisive edge function on T and / is a simple flow on T, then we say
that /decides by k if, for all tie V(T), we have k(v, f(v)) = max k(DET(v)).

An edge function k is said to be increasing if, for any geodesic segment t, u, v
(i.e., t adjacent to u, u adjacent to v and <# v), we have k(t, u)<k(u, v).

If / is a simple flow on T and k is an edge function on T, then we define
sf(k):V(T)^R by s/(fc)(i;):= fc(u,/(«)). Further, we define rf{k):V(T)->R by
r/(fc)(t>):=0 if v*f( V(T)) and rr(ik)(/(«)):= *(»,/(»)), for all t>e V(7). We call
5y(/c) and r/(fc) the source and range ofk with respect to f respectively.

LEMMA 3.1. Say k is an increasing, decisive edge function and f is a simple flow which
decides by k. Then rf(k){v)< sf(k)(v), for all veV(T) and rf{k){v)<sf{k)(v), for
allveV{T)\f{V(T)).
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Proof. Case 1. vef(V(T)). Define u by f(u) = v and set H>:=/(U). Because k is
decisive and/decides by k, we see that k{u, v)>0 and that k( v, w) > 0. So k( v, u) < 0,
which shows that u^ w. So then u, v, w are consecutive vertices of a geodesic
segment. Since k is increasing, k(u, v)<k(v, w). But rf(k)(v) = k(u, v) and
sf(k)(v) = k(v, w), so we are done.

Case 2. v£f(V(T)). Let w:=f(v). Since k is decisive a n d / decides by k, we see
that k(v, w)>0. But rf(k)(v) = 0 and sf(k)(v) = k{v, w). So we are done. •

Let ixeM{dT) be a Borel probability measure on dT, the compact topological
space of ends of T. For eeDE(T), let d«,r denote the set of ends of T whose
geodesic to s{e) passes through r(e). We can then define an edge function k on T
by k(e):= fi(de-T)-fi(deT). Further:

LEMMA 3.2. Suppose every vertex of Thas valence >3. Let /x e M(dT). Then k{e) :=
fj.(de'T)- fi(deT) defines an increasing, decisive edge function on T. Further, if f is a
simple flow which decides by k, then there exists v e V( T), such that rf(k)(v) < sf(k)(v).

Proof. First, we prove that k is increasing. Let u, v, w be consecutive vertices of a
geodesic segment. Let d := (u, u), e'= (v, w) be the directed edges in the segment.
Then deT^ddT and dd'Tcde'T. So k(d)sk(e).

Next, we show that k is decisive. Let ve V(T). Let e , , . . . , es be the (distinct)
elements of DET(v). We must show that fc(e,) > 0, for some i. Note that dT = ̂ T u
• • -udeT. We know that s>3 , so, for some i, fjL{de.T)<\. But dT = de.Tvjde'T, so

Las/, we prove the statement about the simple flow / Assume for a contradiction
that rf{k){v)>sf{k){v), for all ve V(T). Then, by the first part of Lemma 3.1,
rf{k)(v) = sf(k)(v), for all veV( T). So, by the second part of Lemma 3.1,/(V( T)) =
V(T). •

Choose ueV(T) and set t> :=/(«), w:=/(u). Let X:= DEr(u)\{(u, u), (u, w)}.
We c/ai'm that ^(dfT) = 0, for all eeX. Since

and

it follows that £,,£X n(deT) = 0. 77ii5 establishes the claim.
Since u has valence ^ 3 , X 5*0, so choose ee X. Let w':= r(e). Now w'e V(T) =

/(V(T)) and wV w=/(u), so there exists a vertex t/e V(T) adjacent to w' such
that c V c and such that/(i/) = w'. Let e':= (u', w')- Then de-T^deT, so the claim
made above shows that fi{de'T)=0. But then k(v',f(v')) = k(v',w') = k(e') =
fi(de'T)-n(deT)<0, so fc is not decisive, a contradiction. •

If a , ,a 2 , . . . is a sequence in some topological space, then we will adopt the
notation that an -» a as n -* oo (edz) means that there exists a subset ZgZ+of (upper)
density zero such that an -> a as M -» oo, n £ Z. (The acronym 'edz' stands for 'except
density zero'.)

LEMMA 3.3. Let / :Z+-»Z+ be an increasing function bounded above by some poly-
nomial. Then f(n + !)//(«)-»1 as n->oo (edz).
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10 S. Adams

Proof. We give here only a heuristic proof: If (for a contradiction) e > 0 and
f(n + l)/f(n)> 1 + e for, say, 1% of all integers, then 1% of the entries in
/ ( l ) , / ( 2 ) , . . . are bounded below by some exponential function. This is a contradic-
tion, since / is bounded above by a polynomial. D

Let A denote symmetric difference of sets: AAB := (-4\B) u (B\A).

COROLLARY 3.4. If T is a tree of polynomial growth, and v, we V(T), then:

\B(v,n)\

C1
\B(W,n)\ " °

as n^ oo(edz).

Proof. Let d denote the distance from v to w in T. Since edz-limits distribute over
(finite) multiplication, it follows from Lemma 3.3 that \B(w, n + d)/B(w, «)|-* 1 as
n->oo(edz) and that \B(w, n-d)/B(w, n)\-> 1 as n-»oo(edz). Now use the facts that
B(v, n)cB(w, n + d) and that B(v, n)LB{w, « ) c B(w, n + d)\B(w, n-d). D

4. Cocycle invariance
Recall that °U is the universal tree, defined in § 1. By abuse of notation, we use
V(^l) to denote the measure space of counting measure on the set V(^l).

Let (D,(£>) be a simplifiction of the treed equivalence space (M, R, S) which is
level at some vertex Toe V{°U). Let a : R -> Aut (°U) be a cocycle compatible with
(D, 4>). Recall, for x e M , that Dx :={Te V{°U) \(x, T) e D}. We also use Dx to refer
to the subtree of °lt with vertex set Dx. Recall that <PX(V) := 4>(x, V), for x e M and
7 e V(%). As usual, we let Aut (°U) act on the right of V(°U).

For x e M, let/x: Dx -> Dx be a simple flow. We say that {fx)x^M is an a-invariant
family of flows if
(1) (x, v)^>fx{v):D-» V(°ll) is measurable and
(2) fx(v)a(x, y) =fy(va(x, y)), for a.e. xeM, for all ye R(x), for all ue V(<%).

For xeM, let kx:DE(DX)-*R be an edge function. Define

DE(D) := {(x, u, w) e M x V(%) x V(%) 11>, w e Dx and v is adjacent to w},

with the inherited measure space structure from M x V(<%)x V(%). We say that
( y i E M is an a-invariant family of edge functions if
(1) (x, v, w)*-*kx(v, w):DE(D)^R is measurable and
(2) (kx(v, w))a(x,y) = ky(va(x,y), wa(x,y)), for a.e. xeM, for all yeR(x), for

all (v,w)eDE(<U).
If r, s: M -» R are two Borel functions, then we say that s is an R-translate of r

if there exists a partition {M,, M2,. . .} of M and a sequence g,, g2,... of automorph-
isms of (M, R) such that
(1) {Mxgl, M2g2,...} is a pairwise disjoint collection of measurable subsets of M,
(2) r(x) = s(xgi), for a.e. x e M,, for all i = 1, 2 , . . . and
(3) s(x) = 0, for a.e. x e M\(U,Migl).

LEMMA 4.1. Let (fx)XEM be an a-invariant family of flows and let (kx)xeM be an
a-invariant family of edge functions. Define s(x) := sfy(kx)(V0) and r(x) := rfx(kx)(Y0)
to be the source and range of kx with respect to fx (see § 3). Then r is an R-translate
of s.

Proof. Define F: M-> M by F(x) := <i>x(fx(ro)). It is clear that F(x) e R(x), for a.e.
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xeM. Using [4, Theorem 1, p. 291], we may choose a countable subgroup G s
Aut (M, R) such that the equivalence classes of R are the orbits of G. Let g,, g2 , . . .
be a listing of the elements of G. Let

| 1 and F(x) = xg,}.

(As usual, G acts on M on the right.) It is now straightforward to verify conditions
(1), (2), (3) above. •

5. Proofs of the main theorems
THEOREM 5.1. Let (M, R) be an amenable equivalence space with finite R-invariant
measure. Let S be a treeing of (M, R). Then, for a.e. xe M, the tree R(x) has one
or two ends.

Proof. Assume for a contradiction that there exists a non-neglible subset JV c M such
that for all xeTV, the tree R(x) has more than two ends. Let M' be the set of
elements in N which have S-valence >3. Since any tree with three or more ends
must have a vertex of valence s 3 , we see that every R-equivalence class in TV meets
M'. Thus, by quasi-invariance of /M, we have fj,(M')>0.

Let R':= R | M' and let S':=S\M' be the restriction of S to M', as defined toward
the end of § 1. It is not hard to see that the S'-valence of any element of M' is 5:3.
It is also easy to see that (M', R') is amenable. (It is possible to prove this last fact
without appealing to anything substantial. However the result of [2] makes the
result obvious: If T is an endomorphism of a measure space M and P c M has
positive measure, then there exists an endomorphism of P whose orbits are a.e. the
intersections with P of the orbits of T.) Thus we may replace (M, R) by (M', R')
and assume that the S-valence of a.e. element of M is >3.

Recall that °lt denotes the universal tree (§ 1). Choose any °Voe V(°lt). By Theorem
2.3, there exists (1) a simplification (D, <J>) of (M, R, S) which is level at Yo and
(2) a cocycle a : R -* Aut (°U) which is compatible with (D, <J>). Note that there is a
natural action of Aut (°U) on C0(d%), hence on C0(S°U)*. We will denote this action
as a right action.

As usual, let Dx := {Ye V(W)\ (x, Y) e £>}, for x e M. We abuse notation and let
Dx also refer to the subtree of °U, with vertex set Dx. We identify each dDx with a
compact subset of 3%. Note that (M(dDx))xeM is an a*-invariant field of weak-*
compact, convex subsets of the unit ball of Co(^)*. By Definition 1.2, we find an
a*-invariant section x>~+nxe M(dDx). By Lemma 3.2, kx(e):= fj.x{de'T)-nx(deT)
defines an increasing, decisive edge functon on Dx, for a.e. x e M. It is easily verified
that (kx)xeM is an a-invariant family of edge functions.

Next, we wish to define an a-invariant family of flows. Given x e M, we need to
define a flow fx:V(Dx)-> V(DX). Given ve V(DX), let e , , . . . , es be the (distinct)
elements of DEDx{v), ordered so that kx(ex) > • • • > kx(es). Choose r so that

M«?i) = - • - = kx(er)>kx(er+l).

Using [4, Theorem 1, p. 291], choose a countable subgroup G c Aut (M, R) such
that the orbits of G are the equivalence classes of R. As ususal, we denote the action
of G on M on the right. Let gi, g2, • • • be a listing of the elements of G. For
i = 1 , . . . , r, let «j:=min {n\<t>x(v)gn =4>v(e,)}. Now reorder e , , . . . , er so that n, <
• ••<«,. Define/,(«)= r(e,).
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It is straightforward to verify that (fx)xeM defines an a-invariant family of flows
and, for all xe M, thatyi decides by kx. As in Lemma 4.1, we define

s(x):=sfx(kx)(r0), r(x):=rfK(kx)(V0).

By Lemma 4.1, r is an R-translate of s. Thus \ rdfi=j s dp. (Note that r and s are
bounded and nonnegative and that /JL is finite and /?-invariant.)

By Lemma 3.1, for a.e. xe M and all Te V{%1), we have

Specializing to V= Vo, we get r(x)< s(x), for a.e. xe M. Further, the last statement
of Lemma 3.2 shows that for a.e. xe M, there exist Vx e Dx such that

Then, for a.e. xe M, r(®x(Tx))<s(&x(Yx)). Since (jc,$x(rx))e R, this shows that
the .R-saturation of P:={xe M\r(x)<s(x)} is a conull subset of M. By quasi-
invariance of //,, n(P) > 0. Thus J rd/u. < J s d/x. But we showed above that J rd/j. =
J s d/i, contradiction. •

We remark that /J-invariance is a necessary hypothesis in Theorem 5.1: Let F
denote a subgroup of finite index in 5L2(Z) which is isomorphic to a (finitely
generated) free group. Let G := 5L2(R) and let P denote the subgroup of upper
triangular matrices in G. Then the action of F on G/P is amenable, by amenability
of the group P (see [13, Corollary 4.3.7, p. 80]). It is also essentially free, hence
treeable, by Example 1.6.1. But in this case a.e. tree is isomorphic to the homogeneous
tree with s 4 edges belonging to each vertex. This tree has uncountably many ends.

THEOREM 5.2. Suppose S is a treeing of the equivalence space (M, R). For a.e. xe M,
assume either that R(x) has finitely many ends or that R(x) has polynomial growth.
Then (M, R) is amenable.

Proof. By replacing the measure on M by a different measure fi in the same measure
class, we may assume that fi(M)<<x>.

By passing to ergodic components, we may assume that R is ergodic (i.e., that
every R-invariant measurable set is null or conull). We remark that, since amenability
is an invariant of stable orbit equivalence, it suffices to show, for some Borel set
P<=:M of positive measure, that (P, R\P) is amenable.

Let M' be the set of x e M such that the tree R(x) has only one end. By ergodicity,
M' is null or conull. We first handle the case where M' is conull.

We preface with a few remarks about an arbitrary tree with one end. So let T be
any (locally finite) tree with exactly one end. Note that any directed edge is either
directed toward the end or away from it. If eu ..., e2n are the directed edges of
some even length geodesic between two vertices, then we will say that the geodesic
is balanced if eu ..., en are directed toward the end, while en+u... ,e2n are directed
away. Two vertices will be called equivalent if the geodesic connecting one to the
other is balanced. (Thus equivalent implies separated by an even distance.) The
equivalence classes of this equivalence relation are called horocycles. There is a
linear ordering on horocycles: if //, and H2 are horocycles, then we will write
H, < H2 if there exists a geodesic connecting a vertex of Hx to a vertex of H2 which
is always directed away from the end of T. It is easy to show from the local nniteness
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and one-endedness of T that there exists a unique maximal horocycle H(T) under
this ordering. Note that since H(T) is a horocycle, then any two vertices in H(T)
are separated by an even distance. Note also that half that distance is exactly the
number of horocycles (other than H(T) itself) met by the geodesic between them.

Returning to the theorem at hand, let P denote the union of the sets H{R(x))
as x ranges over M'. Because P n R(x) # 0 , for a.e. xe M, quasi-invariance implies
that P is of positive measure. As remarked above, we need only verify that (OP, R | P)
is amenable. Further, by [10, Theorem 3.6, p. 29], we need only show that R\P is
hyperfinite, i.e., is a countable union of equivalence relations each of which has
finite equivalence classes. We define the equivalence relation /?, on P by: (x, y) e /?,
iff the distance from x to y in the tree R(x) is =s2i. (Transitivity follows from the
last sentence of the preceding paragraph.) Then each /?, has finite equivalence
classes and R = U^=i ^. . as needed.

Thus we may assume that M' is null, i.e., that a.e. R(x) has more than one end.
Clearly the trunk of a tree with polynomial growth is again a tree with polynomial

growth. Almost as easy is the fact that the trunk of a tree with finitely many ends
is a tree with polynomial growth (and with finitely many ends as well, although we
do not need this). Thus we may replace (M, R, S) by its trunk (see the end of § 1)
and assume that a.e. R(x) has polynomial growth.

We now verify the definition of amenability in Definition 1.2. So let £ be a
separable Banach space and let a:R-*lso(E) be a (measurable) cocycle, where
Iso (E) is given the strong operator topology. (We will denote the actions of Iso (£)
on E and £* as right actions.) Let a* denote the adjoint cocycle to a. Let {Ax)xsM

be an an a*-invariant measurable field of weak-* compact, convex subsets of the
unit ball of E*. Let si denote the subset of L°°(M, E*) consisting of maps / : Af-» E*
such that/(x) € Ax, for a.e. xe M. We now need to construct an a*-invariant section
fes4.

By the selection theorem [1, Theorem 3.4.3, p. 77], si * 0, so choose foe si. For
xe M and n = 0 ,1 ,2 , . . . . let B(x, n) denote the ball of radius n around the vertex
x of the tree R(x). Let /„ e si be defined by

/•(*) = In , 1 v. I f{z)a*(z,x).
\B(xn)\

Recall the notational convention '(edz)' introduced in Lemma 3.3. We claim that
fn(x)a*(x, y) —fn(y)-*0 in the norm topology of E* as n ->oo(edz), for a.e. xe M,
for all yeR(x). Define

— y f(z)a*(z 1
n)\zcB(x,n) \B(y, n)\ zeBiy,n

Note that fn(x)a*(x,y)-fn(y) = En + Fn. By Corollary 3.4,

\B{x,n)\
\ v -*1 asn^oo(edz),

\B(x,n)AB(y,n)\
'- j — : -. L-»o a s « ^ o o ( e d z ) .

\B(y,n)\
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Since ||/n(z)|| < 1 and since a*(z, y) is an isometry of E*, the former limit implies
||£n||-»0 as n-»oo(edz), while the latter gives

as M-»oo(edz). This establishes the claim.
As usual, let Aut (M, R) act on M on the right. Define a right action of Aut (M, R)

on si by (a- g)(x):= a(jcg"')a*(xg~1, x). From the claim above, it follows that if
g G Aut (M, R), then/, • g - / „ -» 0pointwise a.e. as n -+ oo(edz). Since \\fn • g - / „ | |L~s
2/i(M), for all n, the dominated convergence theorem implies tha t / , • g-/„->() as
n -»oo(edz) in the weak-* topology of L°°(M, £*) s= L^Af, £)*.

Let g], g 2 , . . . be a listing of the elements of G. Let «i , n j , . . . be a co-density-zero
increasing sequence of integers (meaning that Z+\{n[, n'2,...} is of density zero in
Z+) such that /„•. • gi—fn-k-*0 weak-* as fc->oo. Now take a co-density-zero sub-
sequence n", n'2,... of n[, n'2,... such that/nj • g2~/nj"*0 weak-*. Continue in this
way, then take the diagonal, i.e., let nx:= n\, n2'-= ri2', •. • • Now replace fx, f 2 , . . .
by /„,, / , 2 , . . . and assume that /„ • g - / „ -> 0 weak-* as n -» 00, for all geG. (Note
the lack of an 'edz'-qualifier in this last limit.)

Since M £ L°°(M, £*) is weak-* compact, pass to a subsequence again and assume
that / „ - » / in the weak-* topology, for some / e i . Then f-g=f a.e., for all
g e Aut (M, R). This is equivalent to a*-invariance of / •
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