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SUMMARY

Worldwide, early detection systems have been used in public health to aid the timely detection of

increases in disease reporting that may be indicative of an outbreak. To date, their application to

animal surveillance has been limited and statistical methods to analyse human health data have

not been viewed as being applicable for animal health surveillance data. This issue was

investigated by developing an early detection system for Salmonella disease in British livestock.

We conclude that an early detection system, as for public health surveillance, can be an effective

tool for enhanced surveillance. In order to implement this system in the future and extend it for

other data types, we provide recommendations for improving the current data collection process.

These recommendations will ensure that quality surveillance data are collected and used

effectively to monitor disease in livestock populations.

INTRODUCTION

In the last few years, the United Kingdom has

experienced economic difficulties within the livestock

industry as a result of the emergence of novel diseases

such as bovine spongiform encepatholopy (BSE) [1]

and the increase, over time, in bacterial pathogens,

such as Salmonella Typhimurium [2] and verocyto-

toxigenic Escherichia coli O157 [2]. In order to protect

animal and public health and the economic viability

of the industry, it is important that changes in

the incidence of zoonotic pathogens within livestock

are detected as early as possible. In doing so, control

measures can be implemented in a timely fashion

to prevent further spread of disease in the popu-

lation.

Traditionally, in the United Kingdom, monitoring

of veterinary diseases has been undertaken as part of a

government health programme, which advocates the

routine surveillance of animal pathogens [3]. Integral

to this has been the analysis of data to determine

seasonal trends, the frequency of outbreaks, and

patterns in disease reporting over time (see [4], for

example). However, as this analysis is carried out

retrospectively, intervention measures often cannot

be implemented until some time after an increase in

reporting has been observed. This problem can be

addressed through the development of early detection

systems, which if implemented, enable prospective

analysis of the data.

Early detection systems use data from on-going

surveillance to identify potential outbreaks of disease

soon after they have occurred in the field, by com-

paring the most recently recorded number of disease

cases (the ‘current count’) with a threshold value

derived from historical data. If the current count is

* Author for correspondence : Mrs R. Kosmider, Centre for
Epidemiology and Risk Analysis, Veterinary Laboratories Agency,
Woodham Lane, Addlestone, Surrey KT15 3NB, UK.
(Email : r.kosmider@vla.defra.gsi.gov.uk)

Epidemiol. Infect. (2006), 134, 952–960. f 2006 Cambridge University Press

doi:10.1017/S0950268806005887 Printed in the United Kingdom

https://doi.org/10.1017/S0950268806005887 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268806005887


above the threshold value a warning is implemented

indicating that the count is statistically aberrant and

indicative of an outbreak situation, i.e. an increase

in reports above expected. In this instance, an epide-

miological investigation may be undertaken to deter-

mine whether there is evidence in the field to support

the case for an outbreak. The warning process is

typically undertaken using a statistical algorithm

that automatically fits the historical data to an

empirical model and provides an expected current

count and threshold value. Early detection systems,

therefore, can be used alongside traditional statistical

analysis as an additional tool to provide enhanced

surveillance.

To date, early detection systems have been pre-

dominantly used in the public health arena and their

use within the animal health arena has been limited.

In this paper we address the benefit of using an

early detection system as a tool for enhanced animal

surveillance by investigating the development of an

early detection system for Salmonella isolated from

domestic livestock species within Great Britain.

We consider the available data, address inherent data

issues, and for an appropriate subset, develop a

detection system. Testing of the system leads to

conclusions on feasibility and recommendations for

improving the data collection process.

METHODS

Selection of surveillance data

In Great Britain, Salmonella infection in livestock is a

reportable zoonoses under the Zoonoses Order 1989

and hence all laboratory isolations are reported to

the Senior Veterinary Investigation Officer at one

of the Veterinary Laboratories Agency’s (VLA)

Regional Laboratories or, in Scotland, to a Divisional

Veterinary Manager. Through this reporting of

Salmonella infection, data are available, centrally, on

the isolation of numerous Salmonella serotypes in a

number of animal species. Salmonella surveillance

data from 1993 to December 2002 are considered in

this study to ensure consistency in data quality as

the reporting system was unchanged during this

time period. Only isolations of S. Typhimurium from

livestock displaying clinical illnesses and S. Dublin

from clinically ill cattle were considered within

the early detection system as this provided a clearly

defined subset of data for analysis and reflected the

nature of the surveillance system (most reports

in species other than poultry arise from diagnostic

investigation of clinical illness).

Assessment of the data

An initial crucial stage of developing an early detec-

tion system is an assessment of the data to determine

if the disease burden can be estimated at a specific

point in time. This estimation is critical because it

forms the basis of the derivation of the expected and

threshold values and hence affects the detection

of outbreaks; a system with a threshold value set too

low will raise false alarms whereas a system with a

threshold value set too high will not detect outbreaks.

Due to inherent attributes of the surveillance data (i.e.

presence of past outbreaks, inaccurate representation

of geographical areas, seasonality, under-reporting,

reporting delays), there are difficulties in estimating

this true disease situation. Some of these issues have

been addressed previously particularly in relation

to human surveillance data (see [5], for example). For

Salmonella animal surveillance additional issues arise

which affect the estimation of the baseline incidence of

disease.

In animal surveillance the epidemiological unit is

often the herd or flock. In these circumstances,

the presence of an infected individual in the group

may strongly influence the probability of another

individual within the group becoming infected. This

phenomenon, known as the ‘herd effect ’, means that

animals in a herd/flock are dependent, that is each

case of infection is influenced by another case, whilst

individual herds (depending on the degree of mixing)

are considered independent. This is important

when considering two very different approaches used

for describing the disease burden: isolations and

incidents. An isolation is a single report of a pathogen

within an individual animal or groups of animals

(epidemiological unit) whereas an incident comprises

the first isolation and all subsequent isolations of

the same serotype and phage type from the epide-

miological unit of animals within a standard time

period, usually 30 days; allowance is made for local

epidemiological knowledge [4]. Modelling the number

of incidents over time is, therefore, an estimation

of the number of livestock units that are infected

whereas the number of isolations represents the

number of individual reports of infection [6].

Within the Salmonella database, isolations are clearly

identified whereas incidents are calculated using an

algorithm applied to the database.
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Animals are sampled for numerous reasons as dic-

tated by various animal health policies. Salmonella,

specifically, may be isolated from samples taken for:

diagnosis of clinical illness, routine surveillance,

monitoring requirements under the Poultry Breeding

Flocks and Hatcheries Order (PBFHO) 1993, investi-

gation under the Zoonoses Order 1989 and unspecified

reasons. All of these reasons impact on what the data

informs us about the burden of Salmonella infection

in the domestic livestock population. For instance,

without the availability of denominator data (i.e. the

number of livestock units and tests taken) samples for

surveillance reasons may result in a biased measure-

ment of Salmonella infection in the population. This,

however, is not the case for samples taken under the

PBFHO 1993 as the Order dictates a specific sampling

scheme of which and when samples should be

taken. Assuming that the population does not alter

significantly, positive samples can be considered to

be representative of the population. Given this, the

number of positive samples (i.e. the numerator data) is

representative of the true Salmonella burden in the

population over time. Samples collected for unknown

reasons unfortunately do not provide any information

about the disease burden and cannot be analysed

within an early detection system, thus emphasizing

the importance of the collection of accurate epidemio-

logical data with the reports to enable interpretation of

the data. For these reasons, not all the data within the

Salmonella dataset can be combined within one early

detection system. Rather, the data needs to be par-

titioned by reason for sampling and analysed separ-

ately, using appropriate statistical methods.

An influential factor in the collation of animal sur-

veillance data over time is the changing circumstances

affecting the livestock industry. For example, epi-

demics of major contagious pathogens, as occurred in

2001 with the foot-and-mouth disease (FMD) out-

break, impact on the normal surveillance of animal

disease. In addition, the varying economic viability

of livestock enterprise often means it is too costly

to request a veterinary surgeon to take a sample.

Therefore, the submission rate of samples for the

clinical signs of Salmonella disease varies over time, a

factor that is driven primarily by costs. This is in

contrast to human surveillance where the isolation of

disease is reliant on the patient going to their general

practitioner and submitting a sample, a factor driven

by awareness.

A further unique facet of animal health data is that

it incorporates all the species that are affected by the

pathogen of interest. For Salmonella data, this means

a wide range of livestock species are represented

within the data. Hence, there is potentially a greater

amount of surveillance data for animal health than

public health and, further, a greater variation in

the frequency in which different serotypes for each

affected livestock species are reported. The statistical

method chosen, therefore, should be robust enough to

cope with these differences.

Given the above considerations, it is apparent

there are numerous data issues that infringe on the

ability to develop an early detection system for

all Salmonella animal health surveillance data. We,

therefore, selected a subset of the data for the system:

isolations of S. Typhimurium from livestock sampled

for clinical illness and of S. Dublin detected from

cattle sampled for clinical illness. These subsets

spanning 1993 to December 2002 were selected

because it was considered comparable to human

surveillance data and, therefore, statistical methods

applied to human health were explored for their

applicability to this data subset.

Early detection system

Several statistical methods have been applied pre-

viously for the early detection of outbreaks or clusters

of disease: time-series analysis [7, 8], regression

analysis [9], scan statistics [10] and cumulative sums

[11]. Time series is an intuitive approach to adopt

given the fact that surveillance data naturally conforms

to a series of data points over time. However, when

applied to a dataset with numerous serotypes, each

with a specific pattern as in the case of the Salmonella

dataset, a separate time-series model is required for

each serotype. Another commonly applied approach is

regression analysis, a statistical method for fitting a

model to observed data to make predictions and

place error bounds on these predictions [12]. A primary

advantage of this technique is that trends and season-

ality observed in the dataset can be easily incorporated

as has been demonstrated within a log-linear regression

model developed for the Communicable Disease

Surveillance Centre (CDSC) public health surveillance

data [5]. In particular, this robust model captures

the common attributes of both animal and human

surveillance data and, thus, was selected for the out-

break detection system for Salmonella.

The regression model, in its application to human

surveillance data, has been previously described [5,

13]. In this paper, the model is described for the subset
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of the Salmonella animal health data. To accomplish

this several assumptions are made. First, samples

submitted for clinical illness are regarded as arriving

at a constant rate for each comparable time period in

the year. Under this assumption, the denominator

data can be considered to remain constant and the

observed counts representative of the Salmonella

infection burden in the livestock population. Second,

counts are assumed to follow a Poisson distribution.

It is further assumed that each sample (i.e. isolation)

is independent and as such the system aims to detect

aberrations in reports of infection rather than in the

number of livestock units infected. This assumption is

made on the basis that as a result of the number of

animal movements during the period under study

there are not well-defined distinct closed livestock

populations but rather a mixed livestock population.

It is acknowledged that violation of these assumptions

will affect the validity of the regression model.

However, upon the identification of an aberration it

can be determined, after examining the data, whether

the reports are from the same holding or multiple

holdings thereby indicating either a local or disperse

Salmonella infection.

Before applying the regression, the marked seasonal

trends in Salmonella reporting [4], which can affect

the derivation of the expected counts, were addressed.

First, as the daily counts of Salmonella reports were

considered too low to analyse efficiently, these counts

were aggregated into months. Therefore, for each

calendar month in the historical dataset, the number of

counts, or isolations, of Salmonella was tallied, using

the date the sample was entered onto the database as a

reference. This date was chosen as the point of refer-

ence rather than the date the sample was taken as it is

always known. Next, the historical data were auto-

matically segmented into small windows of time,

centred on the current observed month. More specifi-

cally, a segment of data incorporated the current

month and one month of data either side of the current

month. This process was repeated for each year

included in the database resulting in three data points

per year. The resulting subset of data is referred to as

the baseline dataset.

Using the baseline dataset a regression analysis is

applied. The model assumes that the current count, yi,

follows a Poisson distribution with mean, mi, and

variance, wmi, where w is a dispersion parameter [5].

The dispersion parameter is incorporated to account

for the fact the surveillance data may not adequately

fit the Poisson distributional assumption of equal

mean and variance due to over- or under-dispersion

present in the data. Allowance is also made for a

linear trend in the frequency of Salmonella reports

over time, an assumption that is later tested and vali-

dated. To incorporate this linear component within

the nonlinear Poisson regression model, a logarithmic

link function is used [14]. Hence, the initial log-linear

regression model is described by [5]

log(mi)=b0+b1ti, (1)

where mi is the mean number of cases at time i, b0 is the

regression constant, b1 is the coefficient for the linear

time trend and ti is the time measured in months.

The parameters, b0 and b1 are estimated using quasi-

likelihood methods rather than maximum-likelihood

methods, as is commonly used for estimating par-

ameters within generalized linear models (GLM) due

to the presence of the dispersion parameter.

After fitting the regression model, the expected

count for each time ti can be estimated by solving

equation (1) for mi. This expected count is, however,

influenced by the presence of past outbreaks, i.e.

historic increases in reporting, affecting the sensitivity

of the system for detecting future outbreaks. To address

this, the standardized Anscombe residuals are calcu-

lated and any value with a large residual is weighted

such that points with a large residual are given a lower

weight than those points with a small residual. This

weighting procedure for each point in the baseline data

set is defined by Farrington et al. [5].

wi=
Sx2
i c

c

�
Si<1
otherwise

, (2)

where c is a constant such that the sum of the weights

are equal to the number of baseline data points (n)

and Si
x2 are the standardized Anscombe residuals.

The value of c is estimated empirically each time the

model is initiated. Given that Si=1
n wi=n and using

equation (2) yields,

n=
Xnxx

i=1

c+
Xx
i=1

Sx2
i c=(nxx)c+c

Xx
i=1

Sx2
i , (3)

where x is the number of times Si<1. Solving equa-

tion (3) for c gives

c=
n

(nxx)+
Px

i=1 S
x2
i

, (4)

The wi’s are calculated using equation (2) and are

multiplied by each value in the baseline dataset to

provide a more indicative observed value in the

absence of an outbreak. The log-linear regression
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model is refitted using this adjusted baseline dataset

and a more realistic expected count is derived in the

absence of past outbreaks.

After seasonality and the presence of past out-

breaks have been accounted for within the regression

model, the assumption of linearity is tested using a

5% significance level and a t test. If the linear trend is

not significant, the model is re-estimated to exclude

the trend. In summary, therefore, the model is esti-

mated twice to adjust for past outbreaks and in the

absence of any linear time trend. Using this revised

model, the expected count is estimated.

A confidence limit for the expected count is calcu-

lated. The upper and lower confidence limits define the

interval which contains the expected count with 95%

probability [13]. Based on this, a value above the upper

confidence limit can be considered to be statistically

aberrant. Therefore, the upper confidence limit is

defined as the threshold value. These limits are derived

using a 2/3 power law transformation to accommo-

date the fact that the Poisson distribution is often

highly skewed [5]. The derived threshold value, U, can

then be compared to the current observed count.

In order to provide an indication of the degree

to which the current observed count deviates from

the threshold value, either above or below [5]

an exceedance score is derived using the following

equation

X=
y0xm̂m0

Uxm̂m0
,

where y0 is the observed current count, m̂m0 is the

expected count for the current time period, andU is the

threshold value. An exceedance score >1 indicates

that the current count exceeds the threshold value and

may require further epidemiological investigation. The

main benefit of deriving the exceedance score is it

enables the different species and serotypes to be ranked

and compared with ease, a factor that is important in

communicating the results to the relevant stakeholders.

Testing the early detection system

The early detection system described was implemented

using R, a freely available language environment

for statistical programming and graphics (see www.

r-project.org for details). To test the system, historical

data spanning January 1993 to December 2002 were

used. The data for 2001 were removed due to the FMD

outbreak which affected the collection of samples

for animal surveillance. Assuming August 2002 is the

current month, the current counts, expected counts,

threshold value and exceedance scores were derived

using the full dataset and output from the system.

In addition, outputs for the expected count and

threshold counts were derived for each month of the

historical dataset spanning from January 1996 to

December 2002 for S. Typhimurium DT104 and

S. Dublin in cattle. A minimum of 3 years’ data is

considered in order to have at least 10 data points in

the baseline for which to fit the regression model.

Using this time series, the efficiency of the system over

time can be determined rather than exploring a single

time point as per above. Further, it can be assessed if

the algorithm can be applied, successfully, to more

than one Salmonella spp. serotype.

RESULTS

The patterns of S. Typhimurium disease reporting

from January 1993 (month 0) to December 2002

(month 108) vary among animal species (Fig. 1). For

example, it can be seen that for cattle and to some

extent for pigs, that the number of isolations of

S. Typhimurium has decreased over time with a peak

of cases occurring in the mid-1990 s. Indeed, the

maximum numbers of reports are for cattle (DT104)

in 1996 (month 37). In contrast, for ducks, pheasants,

and partridges a more constant pattern emerges with,

on average, <5 isolations per month which may be

an artefact of population size and sampling. For

all species considered the most recent counts in the

dataset are relatively low. The maximum current

count is for pigs, of which 14 reports were recorded

in August 2002.

A different pattern in the number of isolations, over

time, is illustrated for S. Dublin isolated from clini-

cally ill cattle during the period January 1993 to

December 2002 (Fig. 2). Here a seasonal pattern with

a recent marked incline in the number of reports is

observed; 197 isolations were reported in October

2002. Prior to this in August 2002, there were 52

reports of S. Dublin from clinically ill cattle.

Counts predicted by the system for S. Typhi-

murium, assuming August 2002 is the current

month, are shown in the Table. For the majority of

species, particularly turkeys, cattle (non-DT104) and

ducks, the expected count is in agreement with the

trends observed in Figure 1. A similar observation is

made for S. Dublin in cattle, for which the expected

count (50.0) is in close agreement with the observed

count (52). In contrast, however, for DT104 in cattle,
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the expected count is substantially greater than is

observed based on the trends in Figure 1 which is

attributable to the presence of the large epidemic in the

1990s. Thus, it is apparent that the system does not

sufficiently adjust for this large-scale epidemic within

the historical data. All of the exceedance scores are

below 1, except for pigs, and thus a potential out-

break(s) was only detected in one species in this month.

Assessment of the current count compared to the

expected count and the threshold value for the period

January 1996 (month 50) to December 2002 (month

108) is depicted in Figure 3 for both S. Typhimurium

DT104 and S. Dublin in cattle. It is apparent that the

large epidemic of DT104 in the 1990s is influencing

the ability of the algorithm to produce reasonable

estimates for the expected count. In contrast, for

S. Dublin, it can be seen that the observed and

expected trends are closely aligned, indicating that the

algorithm is able to produce more accurate predic-

tions of potential outbreaks for this serotype. Indeed,
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Fig. 1. Number of S. Typhimurium isolations from January 1993 (month 0) to December 2002 (month 108) minus data for

2001, in each reported species.
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for the later months (months 106 and 107), in

particular, the current count is greater than the

threshold value suggesting that potential outbreaks

have occurred during this period.

Recommendations

It is apparent that, given specific assumptions, an

early detection system can be applied to a specific

subset of the Salmonella surveillance data. However,

in order to make full use of all the available data, it is

important that measures in the data collection process

are taken to achieve this important goal. These

measures include incorporating qualitative information

regarding the sampling plan for samples submitted for

surveillance activities, encourage samples for clinical

illness to be submitted routinely in order to gauge as

accurately as possible the disease burden in the popu-

lation, reduce the number of samples submitted for

unknown reasons, collect denominator data (e.g. the

number of animals and livestock units tested), and

collate within a central database denominator data

from private and public laboratories. This list is not

exhaustive but highlights the complexities involved

with gathering and using surveillance data within an

early detection system.
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Fig. 2. Number of S. Dublin isolations from January 1993

(month 0) to December 2002 (month 108) minus 2001, in
clinically ill cattle.

Table. Output from the early detection system for

Salmonella Typhimurium in various livestock species

(current month=August 2002)

Species
Current
count

Expected
count

Threshold
value

Exceedance
score

Cattle

(DT104 only)

5 18.2 31.3 x1.0

Cattle
(non-DT104)

4 3.4 9.6 x0.09

Pigs 14 5.7 13.4 1.0

Sheep 0 1.3 5.6 x0.3
Horses 0 2.7 8.3 x0.5
Chicken 0 1.5 6.0 x0.3

Turkeys 2 2.4 0.1 x0.06
Ducks 0 0.8 1.6 x1.0
Pheasant 0 1.9 6.9 x0.4

Partridge 0 3.4 9.7 x0.6
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Fig. 3. Illustration of the observed, estimated expected
counts and threshold values for (a) S. Typhimurium DT104
and (b) S. Dublin isolated from clinically ill cattle during the

period January 1996 (month 50) to December 2002 (month
108) minus 2001.
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DISCUSSION

Recently, Defra has launched its UK veterinary

surveillance strategy the aim of which is to enhance

current veterinary surveillance within an improved

and comprehensive network of surveillance partners

[15]. Part of achieving this goal is developing and

applying surveillance methods used in other fields as

well as enhancing approaches that are currently used.

In the case of Salmonella surveillance retrospective

data analysis methods are currently applied to the sur-

veillance data to observe trends and seasonal patterns.

This analysis is published annually, providing epide-

miologists, veterinarians, policy officials and other

interested parties with valuable insight into the

Salmonella infection burden in the population [4].

However, to fulfil the primary aims of the enhanced

veterinary surveillance strategy, it is imperative that

detection of increases in reports is undertaken soon

after they occur in the field. To achieve this, early

detection systems can be used.

The work presented here suggests that it is possible

to apply an early detection system to animal health

data and provide policy-makers and interested parties

with informative results regarding the possible pres-

ence of outbreaks, particularly where reports have

been relatively stable in recent years. However, for

S. Typhimurium, specifically, due to the large-scale

historic epidemic observed for this serotype, further

work is required to ensure that predictions produced

from such a system are more sensitive to the current

stable reporting. The system developed here for

detecting Salmonella outbreaks is based on a subset

of the full database; various issues associated with the

data meant that all data could not be included within

one system. A full system may be more beneficial to

users and, thus, it is important that the data issues are

addressed by improving the data collection process

and by exploring further statistical methods. For

instance, denominator data would be particularly

useful, as would the recording of the sampling

schemes and maintaining of records. A reduction in

the time delay from acquisition of samples to the

recording of the results into the central database

would also be beneficial. Several of these issues are

currently being addressed by one of the main strategic

goals of the UK veterinary surveillance strategy which

requires better value from surveillance information

and activities.

The results outlined for cattle (DT104 only)

demonstrate the impact that the presence of a large

epidemic has on the sensitivity of the system. It is,

therefore, of vital importance that the early detection

system is continually revised and monitored for its

ability to correctly identify outbreaks. To address the

epidemic of S. Typhimurium DT104 in cattle in the

1990s, it is recommended to use the recent ‘stable ’

years of historic data and to acquire more data before

implementing a system that will be able to detect any

sudden or minor increases in disease reporting. Work

has been undertaken to examine the effect on the

sensitivity of estimating the expected count by using

only data from January 1997 to December 2002. It has

been observed that this does provide more accurate

predictions but further testing of the system, in the

future, when more data becomes available needs to be

undertaken to determine the correct balance between

the number of years to be included in order to provide

an accurate expected count whilst maintaining a

sensitive system.

CONCLUSION

Based on the observations made here, we conclude

that the use of automated early detection systems for

animal health is a feasible aim of any surveillance

strategy. We plan to communicate the data issues

and extend the system to development of a working

system in which all stakeholders will have confidence.
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