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Abstract

Hormonal mechanisms associated with cell elongation play a vital role in the development
and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline
for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from
A. thaliana. This bioinformatics pipeline performs automatic identification of developmental
zones in root tissue images. This also includes apoplastic pH measurements, which is useful
for modeling hormone signaling and cell physiological responses. We show that this nf-core
standard-based pipeline successfully automates tissue zone segmentation and is both high-
throughput and highly reproducible. In short, a deep-learning module deploys deterministi-
cally trained convolutional neural network models and augments the segmentation predictions
with measures of prediction uncertainty and model interpretability, while aiming to facilitate
result interpretation and verification by experienced plant biologists. We observed a high
statistical similarity between the manually generated results and the output of the nf-root.

1. Introduction

One of the key mechanisms influencing the growth and morphogenesis of plants is cell
elongation – a fast and irreversible increase in cellular size and volume. The kinetics and
degree of cell elongation are regulated by several plant hormones as well as environmental
signals and initially include cell modification through apoplastic pH change and alteration in
turgor pressure. One of the key plant hormones influencing this process is brassinosteroids
(BR). The role of BR, and more specifically that of brassinolide (BL) is an attractive target
in a wide range of research fields, including pathogen defense, body patterning, response
to abiotic stresses, and plant growth and development (Li et al., 2021; Witthöft & Harter,
2011; Yu et al., 2018; Caesar, Chen et al., 2011). BR are mainly perceived by the leucine-
rich repeat (LRR) receptor-like kinase BRASSINOSTEROID-INSENSITIVE-1 (BRI1) (Z.
Y. Wang et al., 2001). The binding of BL leads to the dissociation of BRI1-inhibitors
BIK1, BKI1, and BIR3, enabling interaction and transphosphorylation with the co-receptor
BAK1 followed by the activation of the major plasma membrane-localized proton pumping
Arabidopsis H+-ATPases (AHAs) AHA1 and AHA2 (Caesar, Elgass, et al., 2011). This leads
to the acidification of the apoplast and hyperpolarization of the plasma membrane, enabling
cell wall loosening and eventually cell elongation (Caesar, Elgass, et al., 2011; Rayle &
Cleland, 1970a; Zurek et al., 1994). Previous and recent experimental investigation of the
BRI1 receptor complex in the plasma membrane (Caesar, Elgass, et al., 2011) led to a
mathematical model of the fast-response pathway by assessing the apoplastic pH of Arabidopsis
thaliana (A. thaliana) (Großeholz et al., 2022) using fluorescence microscopy (FM) and the
ratiomeric fluorescent indicator 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS)
(Barbez et al., 2017; Großeholz et al., 2022). However, despite the successful establishment
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of a mathematical model relying on HPTS imaging, additional
spectro-microscopic, plant-derived data are required to further
expand and refine the model to capture additionally relevant
parameters and processes, such as anisotropic growth in different
root tissues and differential composition of BR-signaling complexes
(Großeholz, 2019; Großeholz et al., 2020, 2022). Thus, to validate
and further improve the fast-response pathway model, it is prudent
to continuously generate new microscopic image datasets using
the HPTS fluorescent indicator and, in the future, other pH-
sensitive fluorophores, and analyze different tissue zones based
on their morphology. In the case of the root tip, we choose the late
elongation zone (LEZ), the early elongation zone (EEZ), and the
meristematic zone (MZ) as suitable tissues. The annotated image
data can then be subjected to image processing and statistical
analysis of the derived values as required for the assessment.
However, manual annotation of regions of interest (ROI) that
correspond to tissue zones is an arduous and time-consuming task,
which introduces a major bottleneck for the robust downstream
quantitative analysis needed for predictive modeling.

Automatic segmentation of the above-mentioned morphologi-
cal regions in microscopy images of root tissue can be formulated
as a semantic segmentation problem, where class labels must be
predicted for each pixel in the image. Significant advances in
computer vision, through supervised machine learning, have made
dense multi-class segmentation of biomedical images a tractable
problem, especially since the introduction of deep convolutional
models with encoder-decoder architectures, such as the U-Net
model (Ronneberger et al., 2015) and its variants, e.g. U-Net++
(Zhou et al., 2018) and U-Netˆ2 (Qin et al., 2020). This approach
allows biologists to automate microscopy image segmentation, by
training predictive models using labeled datasets derived from
manually annotated ROIs. Similar deep-learning models have
been successfully applied to microscopy and medical image seg-
mentation and in some cases providing human-level performance
(Chlebus et al., 2018; Greenwald et al., 2022; Moebel et al.,
2021). However, while deep convolutional neural networks achieve
remarkable segmentation results, several reliability issues have been
identified, in particular when applied to scientific data analysis
(Belthangady & Royer, 2019). A significant shortcoming is non-
reproducibility, both of deep-learning methods and the analysis
pipelines that employ them, given that analysis reproducibility is
a cornerstone of the scientific method (Collberg & Proebsting,
2016; Gundersen & Kjensmo, 2018; Haibe-Kains et al., 2020;
Heil et al., 2021; Hutson, 2018). Another salient problem is the
lack of a statistically sound measure to quantify the uncertainty of a
model’s prediction, as such a measure should be provided alongside
segmentation predictions to permit appropriate interpretation of
analysis results by experienced biologists and microscopists. This
is particularly important since these methods are susceptible to
biased and pathological predictions, especially when training data
is limited (Amodei et al., 2016; Chen et al., 2018). Specifically,
we refer to epistemic uncertainty, which relates to the limited
amount of information a training dataset may provide about
unseen and perhaps distal datapoints (Bernardo & Smith, 2009).
While uncertainty quantification is already perceived as an essential
property in machine learning methods (Kendall & Gal, 2017;
Neal, 2012), it is still not often considered in biological data
analysis. In this context, Gaussian processes (Grande et al., 2014;
Rasmussen & Williams, 2005) are attractive probabilistic models,
since they naturally model prediction uncertainty and have been
shown to provide useful uncertainty quantification in experimental
biology (Hie et al., 2020). Additionally, poor interpretability of

model output, that is, lack of information on why a segmentation
prediction was produced for a particular input image, makes
qualitative evaluation by experimental scientists a challenging task.
Concretely, without a visual representation for which input features
influence a prediction, it is problematic for biologists to assess
whether the model detects the desired spatial features (e.g., features
corresponding to the tissue morphologies) to perform predictions,
or exploits artifacts in the dataset. Interpretability of deep
convolutional models is a non-trivial task given the complexity of
their prediction mechanisms and as a consequence, these models
are often called “black boxes” (Alain & Bengio, 2016; Shwartz-Ziv
& Tishby, 2017). However, recently developed methods, such as
Guided Backpropagation (Springenberg et al., 2014) and Gradient-
weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al.,
2017 can provide visual explanations of classification choices to
enhance the transparency of deep convolutional models. Therefore,
reproducibility, prediction uncertainty, and model interpretability
are three characteristics that deep-learning algorithms require to
be deployed within trustworthy and reliable tools for scientific
data analysis. Hence, in order to apply deep convolutional models
for image segmentation, the above-mentioned challenges need
to be addressed to establish best-practice analysis methods for
microscopy data.

Here we present a robust, best-practice pipeline to aid in the
validation of the BR fast-response pathway model, which addresses
the previously mentioned challenges. Importantly, we propose
the use of the U-Netˆ2 model within the pipeline to alleviate the
manual segmentation bottleneck, while implementing the means
to calculate prediction uncertainty and interpret segmentation
predictions. We built a highly reproducible image analysis pipeline
using Nextflow (Di Tommaso et al., 2017) and nf-core tools (Ewels
et al., 2020). This pipeline contains a module for the automatic
segmentation of microscopy images, using a deterministically
trained U-Netˆ2 model (i.e., bit-exact reproducible). To train
this model, we created and made publicly available a supervised
learning dataset for pH determination via FM, which we refer
to as PHDFM. This dataset was created by acquiring confocal
microscopy images of A. thaliana root tissue samples using the
pH-sensitive HPTS indicator. Subsequently, these images were
manually annotated with ROIs of relevant tissue zones and later
used to generate multi-class, semantic segmentation masks. We
then leveraged the mlf-core framework (Heumos et al., 2023) to
deterministically train a PyTorch-based U-Netˆ2 model using
the PHDFM dataset and built a Nextflow-compatible module
for best-practice semantic segmentation with our deterministic
model at its core. According to best practices, we used a well-
established Bayesian approximation of the deep Gaussian processes
(Gal & Ghahramani, 2016 to measure epistemic uncertainty
from the U-Netˆ2 model and included this functionality in the
segmentation module. Similarly, the module uses the Guided
Grad-CAM algorithm (Selvaraju et al., 2017 to provide visual
explanations for the segmentations predicted by the U-Netˆ2
model, aiming to provide means to interpret model results
with biological knowledge. The segmentation module was then
deployed within a Nextflow analysis pipeline, nf-root, which
adopts nf-core reproducibility standards and implements the
complete processing pipeline needed for high-throughput analysis.
Finally, we applied this pipeline to analyze exemplary data and
compared the results with those of an independent analysis,
which was performed manually by experienced plant biologists.
The comparison demonstrated a high similarity between the
manually generated results and the output of the nf-root. Our results
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suggest that this approach achieves near human-level segmentation
performance, and results in a significant reduction in the time
required to analyze this data from days to hours. Importantly,
this method could be extended beyond the evaluation of this
particular mathematical pathway model. The pipeline could be
further developed to support associated research on root tissue
that requires tissue-type-specific segmentations and statistics.

2. Results

2.1. The root tissue PHDFM dataset

For dataset creation, 601 FM images of A. thaliana root tissue were
acquired with a confocal microscope (see Materials and Methods
for details). The collected 2D images contain four channels, two
for fluorescence signals and two for brightfield channels. From
the four channels, the relative fluorescence ratio of the two
fluorescent signals (attributed to protonated and deprotonated
HPTS) can be easily obtained via previously reported image
processing methods in Fiji (Barbez et al., 2017; Schindelin et al.,
2012). Subsequently, regions of root tissue in all images were
manually segmented into three different classes based on their
morphology, namely the MZ, the LEZ, and the EEZ. Tissue zones
were marked using labeled ROIs. Generally speaking, the zones
were identified by noting that the MZ consists of cells with a
Length/Width ratio < 1 while the Length/Width ratio of cells in
the EEZ is between 1 and 2. The LEZ in turn consists of cells with a
Length/Width ratio > 2. Consecutively two additional classes were
added to label background and foreground (i.e. root tissue) pixels.
The resulting ROI annotations were curated to generate multi-
class pixel masks for semantic segmentation. For each image, a
segmentation mask was generated to attribute each of the 512 x
512 pixels of the image to one of the following classes: background,
root, MZ, EEZ, or LEZ. The resulting images with their corre-
sponding segmentation masks were exported in OME-TIFF format
(Goldberg et al., 2005; Linkert et al., 2010). This dataset was created
using an OMERO server (Allan et al., 2012; Kuhn Cuellar et al.,
2022) which acted as a scientific collaboration hub. The server
allowed plant biologists to upload confocal microscopy images and
annotate ROIs from their laboratory, while providing bioinformatic
scientists with remote access to the data. This approach facilitated
the collaboration needed to curate a dataset suitable to train a deep-
learning model. Figure 1 provides a quantitative description of the
PHDFM dataset, including the pixel label distribution for all classes
(Supplementary Table S4). Example images of the PHDFM dataset
are shown in Figure 1e.

2.2. Deterministic deep-learning for root tissue segmentation

We developed a package to segment different tissue types in
confocal microscopy images of root tissue samples. This semantic
segmentation package was built using mlf-core (Heumos et al.,
2023), a framework that allows the implementation of fully deter-
ministic, supervised machine learning applications using PyTorch.
Our package implements state-of-the-art deep convolutional
neural network models, specifically the U-Net, U-Net++, and
U-Netˆ2 models (Qin et al., 2020; Ronneberger et al., 2015; Zhou
et al., 2018), to segment brightfield images (bf-405nm) into regions
of five classes: background, root tissue, EEZ, LEZ, and MZ. The
U-Netˆ2 model outperformed the other two models with an
average referred to as intersection over union (IoU) of 0.75, at the
cost of a significantly larger number of trainable parameters (see

Supplementary Table S5). This package also provides functionality
to automate hyperparameter optimization.

The training process (as depicted in Supplementary Figure S1)
operates within a containerized software environment, using
Docker containers and Conda environments to ensure a consistent
and reproducible environment. The initial step of this process loads
the PHDFM dataset, which is composed of 601 images and their
corresponding segmentation masks, and splits it into three different
subsets, a training set (80%) a validation set (10%), and a test set
(10%). To increase the generalizability, operations for image data
augmentation and perturbation were applied (a rotation of up to
10○, shifting of up to 26 pixels, and scaling of up to 51 pixels).
The above-mentioned operations were applied simultaneously
in the data loading process with a probability of 50% each. For
model training, a focal loss (Lin et al., 2020) was used as a loss
function, and the Jaccard index, also IoU, was chosen as a metric
to measure performance since these are well-established practices
in the evaluation of semantic segmentation algorithms (Liu et al.,
2021; Taha & Hanbury, 2015). Hyperparameter optimization uses
a Bayesian and hyperband optimization strategy. For the hyperpa-
rameter optimization, the IoU of the EEZ, LEZ, and MZ classes was
used to compare different models, as those are the classes of most
importance for downstream data analysis (see Best-practice Pipeline
for Automated Ratiomeric Analysis section). After hyperparameter
optimization, our implementation of the U-Netˆ2 model (see
Materials and Methods) obtained an average IoU of 0.75 in the
validation dataset, and an average IoU of 0.75 in the test dataset.

To evaluate deterministic training (i.e. bit-exact reproducible),
we repeated 10 times (n=10) the full training run (74 epochs),
with our previously determined hyperparameters. As shown in
Figure 2.b, we observed zero variance in the resulting model
parameters (i.e. all trainable parameters, namely weights and
biases) for the deterministic setup. Additionally, we measured IoU
performance metrics for all training runs, including individual
metrics for each segmentation class, and consistently observed
no deviation using the deterministic setup (Figure 2.c). These
evaluation results validate the reproducibility of our training
workflow (Heumos et al., 2023). Visual inspection of individual
image segmentations by an experienced plant biologist confirmed
that model predictions provided qualitatively high segmentation
results; sample segmentation predictions compared to the corre-
sponding ground truths are shown in Figure 2.a (Supplementary
Figure S3 shows examples of poor segmentation performance).
Finally, a deterministically trained model is deployed for prediction
as an additional Python module, which can then be used within
a Nextflow pipeline (see Best-practice Pipeline for Automated
Ratiomeric Analysis). Importantly, this module implements model
interpretability functions to generate visual explanations of input
feature importance using the Guided Grad-CAM algorithm
(Selvaraju et al., 2017 and permits the calculation of prediction
uncertainty maps using the Monte Carlo Dropout procedure (Gal
& Ghahramani, 2016.

2.3. Prediction uncertainty in tissue segmentation

Segmentation predictions from the deep convolutional U-Netˆ2
model should be augmented with a measure of model uncer-
tainty, aiming to provide plant biologists with useful information to
inspect and interpret model predictions before conducting down-
stream statistics based on these results, allowing verification of the
analysis results, e.g. for assessment of datapoint predictions that
generate statistical outliers. Even though the deep convolutional
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Figure 1. Ratiomeric pH analysis and the PHDFM dataset. (a) Diagram of the ratiomeric pH analysis for FM images from root tissue samples labeled with the HPTS marker. The

input images typically have four channels (two brightfield and two fluorescence channels) to accommodate HPTS data. Manual annotation of ROIs is a time-consuming step, it

creates the main bottleneck for large-scale data processing and precludes full automation of the complete analysis pipeline. (b) Diagram depicting the procedure used to create

the dataset. An OMERO server was used as a remote collaboration hub between plant biologists and bioinformaticians to create a semantic segmentation dataset. (c) Frequency

of annotated pixels per segmentation class in the dataset. (d) Distribution of the number of images containing pixel labels of each segmentation class. (e) Representative

brightfield channel (bf-405nm) of FM images (top row) and corresponding labels of the PHDFM dataset (bottom row). Segmentation masks are depicted with color-coded tissue

classes, showing five classes: background (blue), root tissue (yellow), LEZ (brown), EEZ (green), and MZ (purple). Scale bars = 53.14 μm.
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Figure 2. Qualitative and quantitative performance results of the U-Netˆ2 model, with an assessment of deterministic training. (a) Model predictions and ground truth show a

high similarity, missing predictions are sometimes obtained when there are multiple labels in the ground truth. (b) Letter-value plot (Hofmann et al., 2017) of standard deviation

values (STD) of U-Netˆ2 model parameters (weights and biases) across training runs (10 training runs per setup, n=10), the standard deviation of all 44.04 million trainable

parameters was calculated for the Random (without random seed or deterministic settings) and Deterministic training setups (specified all random seeds and forced

deterministic algorithms) (Heumos et al., 2023). (c) Boxplot of IoU performance on the test dataset (mean IoU of all images per class), after the training reproducibility test (n=10),

this metric shows a large variance for all classes besides the background while using a non-deterministic setup and zero variance in all classes while using the deterministic

setup, demonstrating full deterministic output of the training process. Scale bars = 53.14 μm.
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Figure 3. Representative samples of U-Netˆ2 segmentation predictions and their corresponding uncertainty maps. Predictions for images from a small unlabeled dataset. The

uncertainty values are the pixel-wise, standard deviation values (STD) of the softmax output from the U-Netˆ2 model, as calculated using Monte Carlo Dropout. Uncertainty maps

were calculated using Monte Carlo Dropout, with T=10 stochastic forward passes through the trained U-Netˆ2 model, and dropout applied before each convolutional layer in the

model (dropout rate = 0.5). Pixels displayed in bright yellow relate to high uncertainty while pixels in dark blue represent low uncertainty. Scale bars = 53.14 μm.

U-Netˆ2 model provides high predictive performance, it is inca-
pable of providing a measure of uncertainty on its dense, pixel-wise
classification predictions. To ameliorate this issue, we employed a
Bayesian approximation to cast our semantic segmentation model
as a deep Gaussian process using the Monte Carlo Dropout pro-
cedure to measure prediction uncertainty (Damianou & Lawrence,
2013; Gal & Ghahramani, 2016; Kendall et al., 2015). This is a desir-
able approach since Bayesian probability theory provides a sound
mathematical framework to represent uncertainty, and this method
has been successfully applied to similar convolutional models for
medical image segmentation (Wickstrøm et al., 2020).

In short, we applied dropout before each convolutional layer
in the U-Netˆ2 model and used the Monte Carlo Dropout to
sample sets of weight parameters from the trained model, aiming to
approximate the predictive distribution. We set the dropout prob-
ability to 0.5 and the number of samples to 10 (T = 10). The output
of Monte Carlo Dropout for an input image is an uncertainty map,
where each pixel-wise uncertainty value is the standard deviation of
the softmax outputs of the model, from T stochastic forward passes
through the network. We calculated uncertainty maps for a reduced
set of images (Figure 3). We observed regions of high uncertainty
for image patches corresponding to all classes and often observed
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Figure 4. Representative samples of U-Netˆ2 segmentation predictions with their corresponding interpretability maps. Predictions for images from a small unlabeled dataset.

Interpretability maps were calculated using Guided Grad-CAM, targeting the most relevant segmentation classes (Background, Root tissue, EEZ, LEZ, and MZ) for each image.

Pixels in bright orange are highly important for the prediction of the target class (high importance score), and pixels in dark gray are associated with low feature importance for

prediction. Scale bars = 53.14 μm.

high contrast of uncertainty values along the borders of regions of
a different tissue type (i.e. “Root tissue”, EEZ, LEZ, and MZ classes).
Interestingly, within specialized tissue regions (i.e. EEZ, LEZ, and
MZ classes), pixels along class borders exhibit lower uncertainty
than those in inner zones, where predictions display noticeably
higher uncertainty values (Figure 3).

2.4. Interpretability of the convolutional model for tissue
segmentation

Interpretability, a sought-after property in deep convolutional
models that are used for microscopy image analysis, refers to the
ability to identify what input features drive the model to make
a specific prediction. In this context, it is important to assess
whether predictions are being made using information that agrees
with plant biology knowledge, and thus build trust in the analysis.
Considering that the convolutional U-Netˆ2 model on its own lacks
the means to interpret its multi-class segmentation predictions, we
apply the Guided Grad-CAM method (Selvaraju et al., 2017 to
generate feature importance visualizations, which we refer to as
interpretability maps. The output of Guided Grad-CAM fuses the
results of the Guided Backpropagation (Springenberg et al., 2014)
and Grad-CAM (Selvaraju et al., 2017 algorithms to provide highly
class-discriminative, high-resolution visualization of spatial feature
importance, in the input pixel-space. On one hand, the Guided
Backpropagation algorithm (Springenberg et al., 2014) interprets
the gradients of the neural network model with respect to the
input image and provides clear and high-resolution visualizations

(i.e. fine-grained highlighting) of important spatial features in
the input image (i.e. which pixels need to change the least to
affect the prediction the most). On the other hand, Grad-CAM
(Selvaraju et al., 2017 is a method to generate visual explanations for
predictions from convolutional models, while it performs coarse-
grained localization of prediction important regions within the
input image, it is highly class-discriminative, localizing regions
in input pixel-space that are only relevant to a specified target
class.

We used Guided Grad-CAM to visualize interpretability maps
from the U-Netˆ2 model for a small test set of images: Figure 4
shows representative examples. We targeted the most frequently
predicted classes for each image to generate interpretability maps,
where pixels in bright orange are considered highly important for
the prediction of the target class, while pixels displayed in dark gray
are associated with little importance for prediction (i.e. low feature
importance). We observed that the model considered the border
regions between the background and root tissue classes to differen-
tiate and classify these large portions of the images. Importantly,
the model correctly detects cell morphology within specialized
tissue regions (i.e. EEZ, LEZ, and MZ classes), focusing heavily
on spatial features derived from the structure and arrangement
of cellular borders. The U-Netˆ2 model appropriately highlights
cell borders for the EEZ and LEZ classes, since longitudinal cell
lengths in these tissues are significantly larger than in MZ regions.
Additionally, important features for the MZ tissue are likely to come
from the structure of cellular borders of regions with a high density
of significantly smaller cells.
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Figure 5. Quantitative evaluation of the nf-root pipeline. (a) Schematic of the nf-root workflow for the processing of A. thaliana image data. Inputs and outputs are denoted by

dashed arrows, and surrounding rounded rectangles show docker containers for the respective task (N = 80). (b, c) Comparison of ratiomeric measurements between manual and

automated analysis. Results from manual ROI annotation and data analysis by an independent plant biologist are shown in yellow (human), while automatic segmentation and

analysis with our U-Netˆ2 model and the nf-root pipeline are shown in blue. Panel (b) shows ratio value statistics in the MZ, while (c) shows the corresponding values for EEZ, the

most relevant zones for fast-response pathway analysis.

2.5. Best-practice pipeline for automated ratiomeric analysis

We integrated the Uˆ2 best predictive model into nf-root, a
Nextflow-based pipeline for the end-to-end analysis of FM images
of root tissue, stained with a ratiometric, pH-sensitive dye. This
pipeline includes the analysis proposed by (Barbez et al., 2017)
and automates tissue zone segmentation for downstream statistical
analysis. The pipeline was built using Nextflow (DSL2) and
nf-core tools, following the reproducibility standards of the nf-
core community. The pipeline consists of 4 modules, as shown in
Figure 5a.

The input of the pipeline is a metadata table (tabular file), and
a set of images of 512x512 pixels in size, consisting of the four
channels each: (1) fluorescence signal obtained by excitation at
405 nm, (2) brightfield image for excitation at 405 nm, (3) fluo-
rescence signal obtained by excitation at 458 nm, (4) brightfield

image for excitation at 458 nm. The initial step of this pipeline is
the Fiji (Schindelin et al.,2012) macro described in (Barbez et al.,
2017) used to determine the ratio between the protonated state
(absorption at 405 nm) and the unprotonated state (absorption at
458 nm) of HPTS, which makes it possible to assess the pH within
the root tissue apoplast. The first brightfield channel is used as input
for semantic segmentation using a Python package that deploys
our previously trained U-Netˆ2 model (see Deterministic Deep-
Learning for Root Tissue Segmentation). The model predictions and
the pixel-wise ratio between protonated and unprotonated HPTS
are then added as layers (i.e. as channels) to the original image,
and the resulting multi-layer images are exported as OME-TIFF
files. The OME-TIFF format was chosen to enhance data share-
ability and interoperability (Goldberg et al., 2005; Linkert et al.,
2010), as it allows easy inspection of resulting images with Fiji and
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Bio-Formats (Linkert et al., 2010), and facilitates the registration of
this resulting imaging data into OMERO servers and robust data
management (Allan et al., 2012). Subsequently, the average ratio
value of a specific zone in one image is calculated as avg (X ○Y) =
ratio, where X is the matrix containing ratios and Y is the one-hot
encoded label matrix of the specific zone. The provided metadata is
used to conduct a Welch’s t-test to compare different treatments,
e.g. treatment with BL or water (control), of the plant root, and
compared different mutant ecotypes with the Columbia-0 (Col-0)
(Meinke & Scholl, 2003) wildtype of A. thaliana.

Finally, the pipeline generates a report (HTML-based doc-
ument) presenting the above-mentioned analysis results, using
a format tailored to the requirements of plant biologists. This
report includes image segmentations and ratiometric images for
each input image, allowing for visual inspection of results (see
Supplementary Figure S2). Additionally, input feature importance
(using Guided Grad-CAM (Selvaraju et al., 2017)) and prediction
uncertainty (via Monte Carlo Dropout (Gal & Ghahramani, 2016))
are plotted for each segmentation prediction, with the aim of
augmenting the information provided to the user, thereby allowing
for better interpretation of the segmentation results.

We decided to compare the results of our pipeline against
another, independent manual annotation and analysis, but this
time include a never-before-seen plant variant (see Materials and
Methods), with the aim of assessing if the pipeline results are
indeed consistent with the gold standard procedure required to
conduct this analysis. Biological samples of the A. thaliana mutant
bri1-301 were selected for comparison with Col-0 wildtype for
microscopy data acquisition, since they are a prime example to
assess the performance of the pipeline, given that this mutant has a
defect in its BL pathway causing an inhibited root growth at room
temperature, as it encodes the mutated kinase domain of the BRI1
protein (Xu et al., 2008).

Figure 5b and c depict a comparison between the ratio value
distributions obtained using the nf-root pipeline against the corre-
sponding distributions calculated using manual ROI determination
by trained biologists. This comparison focuses on the LEZ and MZ
classes since the abundance of Bri1-transcripts in the A. thaliana
root is highest in the meristem and EEZ, while the transcript
amount is comparatively low in the LEZ (Ma et al., 2020). These
analyses show highly consistent results for corresponding experi-
mental conditions. Importantly, significant BL-induced changes in
the ratio values (and therefore in apoplastic pH) are only observed
in the wildtype (Col-0), not in the bri1-301 mutant. Furthermore,
Welch’s t-test statistics obtained using our pipeline are highly
similar to those calculated using the equivalent procedure that
employs manual ROI annotation. Additionally, the obtained ratios
are similarly distributed with comparable means, medians, and
quartiles for each tissue zone, treatment, and plant line. This
indicates that the results produced by our pipeline can be used
for this experimental setup and will greatly expand the amount of
available data needed for testing the fast-response model.

3. Discussion

Here we report nf-root, a bioinformatic best-practice pipeline
for apoplastic pH analysis of confocal microscopy images from
tissues of the plant root tip. The goal of this approach was to gain
extensive quantitative data sets for the refinement and extension of
the mathematical model of the PM-located, BL/BRI1-dependent
fast-response pathway regulating early processes that lead to

differential cell growth in the different zones of the root tip
(Großeholz, 2019; Großeholz et al., 2022). This analysis pipeline
was built using Nextflow, and nf-core tools (Ewels et al., 2020),
making it easy to use, portable, and highly reproducible. Setting
up the input for the pipeline is straightforward as it only
requires a path to the image files and formatting of the metadata
table (see Supplementary Table S6). Nextflow pipelines allow
significant flexibility as they can be easily modified or extended by
exchanging or adding processing modules. Moreover, this pipeline
addresses the bottleneck of manual ROI annotation, by using
a deep convolutional U-Netˆ2 model for automatic multi-class
segmentation (five classes), providing high predictive performance
and easy deployment via a containerized module. The implemented
deep-learning module employs best practices for supervised
machine learning to address major shortcomings of deep-learning
methods in biological data analysis. In particular, we reach a
high reproducibility standard by incorporating deterministic
model training using the mlf-core framework (Heumos et al.,
2023) and providing measures of uncertainty and interpretability
for these segmentation predictions. Moreover, we compared the
results of the nf-root pipeline against an independent data analysis
procedure, which employs manual ROI annotation and data
analysis, and observed that both methods yielded highly consistent
and statistically similar results. Thus, providing qualitative and
quantitative evidence that our approach achieves human-level
performance.

Training of the U-Net models required the creation of the
PHDFM dataset. The generation of datasets for semantic seg-
mentation is a challenging task, as generating labeled datasets
of significant size and label quality that allow training of deep
convolutional models, requires plant biologists and microscopists
to prepare biological samples, acquire microscopy data, and label
ROIs at the large scale. Additionally, it requires bioinformatics
scientists to process and curate this data (e.g. multi-channel
images and ROI data) to generate a semantic segmentation dataset
that can be directly used to train a deep convolutional model.
Implementing microscopy data repositories with FAIR-oriented
data management (Wilkinson et al., 2016) practices, for example
by leveraging the OME data model (Linkert et al., 2010) and
OMERO server (Allan et al., 2012), can facilitate the systematic
augmentation of the PHDFM dataset with even more labeled data,
that is, newly acquired confocal microscopy images with multi-
class ROI annotations. These data repositories can then be used in
strategies to improve the predictive performance of deep-learning
models, by iteratively re-training and fine-tuning predictive models
using constantly improving datasets, such as “human-in-the-loop”
approaches that apply active learning methods (Greenwald et al.,
2022; Pachitariu & Stringer, 2022). Similarly, sophisticated transfer
learning (Jin et al., 2020; Shyam & Selvam, 2022; von Chamier
et al., 2021; Wang et al., 2019) applications could be implemented
in this setting, e.g. repurposing a U-Net model trained on the
PHDFM dataset to aid in related tasks in root tissue biology,
such as the segmentation of different tissue types and structures.
This multidisciplinary, collaborative work centered around a data
hub, an OMERO server, allows plant biologists to upload confocal
microscopy data to the server, access those images and metadata
via the web, and annotate ROIs using a web-based viewer or a
Fiji plug-in. The OMERO server also allows bioinformaticians
to access this microscopy data remotely, via direct download or
programmatically, using Python and Java APIs, thus facilitating
the curation of the dataset. We believe that similar approaches
that facilitate collaboration between in silico and experimental
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biology disciplines, will allow synergistic effects to accelerate the
development of supervised machine learning methods and tools.

Here we advocate for the implementation of reliable deep-
learning methods for semantic segmentation of microscopy data
in life sciences. Specifically, such algorithms should augment
neural network predictions with measures of uncertainty and
interpretability to facilitate interpretation by experimental biolo-
gists. Here we observe that our U-Netˆ2 exhibits higher prediction
uncertainty in transition regions between different tissue zones,
while still successfully detecting EEZs, which are themselves
transition zones in root tissue, and therefore can be challenging
to identify even by trained plant biologists, as opposed to MEZ and
LEZ regions. Moreover, interpretability maps indicate that regions
located at tissue-type borders or transition areas contain important
features that allow our model to detect MZs, EEZs, and LEZs.
Thus, highlighting the importance of cell morphology gradients,
i.e. the change in cell length/width ratios, which agrees with our
biological understanding of tissue zone transitions. Interestingly,
while these transition zones are of critical importance for tissue
classification as shown by interpretability maps, these zones also
exhibit lower prediction uncertainty, as indicated by uncertainty
maps. While this result may be unexpected, it aligns with the
heightened markedness of change in length/width ratio, which is
particularly important for tissue classification. Moreover, a higher
prediction certainty along the borders is especially convenient for
the experimenter, since the border determination is usually more
challenging compared to the classification of cells located in the
center of MZ, EEZ or LEZ. Based on these observations, we believe
further quantitative analysis of uncertainty and interpretability
maps, perhaps using uncertainty thresholds, could aid in the
identification of outlier input images or abnormal segmentation
predictions.

The nf-root pipeline exemplifies the potential of machine
learning methods to accelerate data analysis in life science,
allowing high-throughput evaluation of experimental data. We
followed open source and data guidelines (including training
dataset, full hyperparameter documentation, and trained model),
high reproducibility standards (e.g. deterministic training using
mlf-core, nf-core compatible containerization), and incorporated
prediction uncertainty and interpretability methods to allow for
quality control, interpretation of segmentation predictions, and
provide a measure of transparency for the deep convolutional
neural network model. Importantly, our approach makes it possible
to reproduce every part of the analysis workflow, including training
and evaluation of the convolutional neural network models.

The power of our pipeline approach is reflected by the great
similarity of the experimental data, evaluated by an experienced
and well-trained researcher in a time-consuming process, and the
nf-root-generated data, obtained in a much shorter time. For
instance, nf-root is similarly able to determine the small difference
between the LEZ and MZ in terms of the resting pH and the
quantitatively differential acidification response of the two root
tissues after BL application (represented as ratiometric value in
Fig. 5b, c), as it was predicted by mathematical modeling
(Großeholz et al., 2022). Moreover, the data also demonstrate that
the apoplastic acidification after BL application requires kinase-
active BRI1 in the LEZ and MZ as the kinase-inactive version of
the receptor (BRI1-301) is not able to mediate an adequate cell
physiological response, again supporting the prediction by our
mathematical model (Großeholz et al., 2022).

Summa summarum, we introduce a development approach to
build machine learning pipelines which adhere to best practices of

scientific data analysis, including the principles of reproducibility,
trustworthiness, and reliability. We believe that such practices are
essential for the development of novel machine learning method-
ologies to analyze high-throughput data in life science, especially
in combination with further biology-theoretical applications such
as the mathematical modeling of cell physiological reactions pre-
sented here.

4. Materials and methods

4.1. Root tissue sample preparation

For pH-dependent FM using HPTS, A. thaliana plants were pre-
grown on vertically placed 1/2-MS agar plates for 5 days. Two plant
lines were used: the ecotype Col-0 (Meinke & Scholl, 2003), which
served as the wildtype reference, and the A. thaliana BR mutant
bri1-301 (Col-0 background) (Lv et al., 2018; Zhang et al., 2018).
Five seedlings were transferred to small Petri dishes containing
6 mL 1/2 MS medium with 60 μl 0.1M HPTS (end concentration
1 mM) and either 6 μL of dimethylsulfoxid (DMSO) as mock treat-
ment or 6 μL 10 μM BL (end concentration 10nM). After 1 hour
of incubation, the seedlings (embedded in medium) were carefully
taken out of the Petri dish and carefully placed into microscopy
imaging chambers upside down to allow imaging of the seedlings
in close vicinity of the imaging chamber bottom (μ-Slide 2 Well
Glass Bottom chambers, provided by ibidi GmbH from Gräfelfing,
Germany). Air bubbles trapped between the sample and the surface
as well as traces of the 1/2-MS medium were avoided as much as
possible.

4.2. Microscopy data acquisition

Images of HPTS-stained root tissue were acquired with a Zeiss
LSM880 confocal microscope. The acquired microscopy images
have a size of 512 x 512 pixels. HPTS has two forms, a protonated
and a deprotonated state. While both forms are fluorescent, they
absorb at different wavelengths, 458 nm for the deprotonated and
405 nm for the protonated state. Thus, when acquiring root tissue
images, samples were subsequently excited at these two wave-
lengths, and the corresponding fluorescence intensity was mea-
sured.

The confocal microscopy setup was the following: excitation
lasers for 405 nm at 0.2 % of the maximum power, and for 458 nm
at 100 % of the maximum power. The gain was set at 1200 AU. The
detection range was set to 495 nm to 535 nm. Filters MBS458/514
and MBS-405 were used. The objective was water immersion with
a magnification ratio of 40:1. Images of size 512×512 pixels were
acquired. The target pixel size was set to 0.415133 μm.

The resulting fluorescence images contain four channels,
divided into two brightfield channels and two fluorescence
signal channels, according to the two wavelengths, which were
consecutively acquired (458 nm and 405 nm). The channels are
arranged in the following order: (1) fluorescence signal obtained
by excitation at 405 nm, (2) brightfield channel for excitation at
405 nm, (3) fluorescence signal obtained by excitation at 458 nm.
(4) brightfield channel for excitation at 458 nm.

4.3. Annotation of ROI

The image dataset was registered into an OMERO server (Allan
et al., 2012). The Fiji application (Schindelin et al., 2012), with
the OMERO and Bio-Formats (Linkert et al., 2010) plug-ins,
was used to manually annotate ROIs and import them into an
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OMERO server instance. Class-labeled ROIs were annotated by
visual inspection of the brightfield channel for excitation at 405 nm
(bf-405nm), as this channel was preferred by plant biologists for
this task.

4.4. Dataset processing

The image data and annotated ROIs were fetched from the OMERO
server and processed to generate semantic segmentation masks for
all images. These masks define the pixel-wise class assignment. The
segmentation masks classify pixels into one of the following 5 labels
with the corresponding numeric identifiers: background (0), root
tissue (1), EEZ (2), LEZ (3), and MZ (4).

4.5. Ratiomeric image processing

The ratiomeric values calculated by the Fiji macro (Barbez et al.,
2017; Schindelin et al., 2012) depict the relative fluorescence of
the HPTS dye, sequentially excited at two different wavelengths,
458 nm for the deprotonated form, and 405 nm for the proto-
nated form. The relative abundance of protonated and deproto-
nated HPTS is then reflected by the pixel-wise, 458/405 intensity
ratio.

4.6. Implementation of root tissue segmentation

The Optuna framework (Akiba et al., 2019) was used for hyperpa-
rameter optimization. Optimal hyperparameters are used as default
values in the training module. The documentation of the hyper-
parameter can be found in the mlf-core-based training module
(https://github.com/qbic-pipelines/root-tissue-segmentation-core/
blob/master/docs/usage.rst), which reflects the default settings
(https://github.com/qbic-pipelines/root-tissue-segmentation-core/
blob/master/MLproject), software and hardware information are
also available in the module (https://github.com/qbic-pipelines/
root-tissue-segmentation-core). We used version 1.0.1 of the
segmentation training module.

All semantic segmentation models were implemented in a
PyTorch-based mlf-core (Heumos et al., 2023; Paszke et al., 2019)
project, using the brightfield channel for sample excitation at
405 nm (bf-405nm) as the input image, and segmentation masks
with 5 classes (background, root tissue, EEZ, LEZ, MZ). The
U-Netˆ2 model architecture was implemented as previously
described (Qin et al., 2020). Aside from changes in input channels
(one brightfield channel) and the number of pixel classes (5 classes),
the model structure was preserved, including kernel sizes for
convolution, number, and structure of layers, operations, and
residual U-blocks. The trained U-Netˆ2 model can be found here:
https://zenodo.org/record/6937290

During the training process, operations for image data aug-
mentation and perturbation were applied. Specifically, a rotation
of up to 10○, shifting of up to 26 pixels, and scaling of up to 51
pixels. We selected these transformation parameters based on the
technical specifications of the microscopy instruments, the exper-
imental variation we observed during sample preparation, and the
data acquisition parameters. More specifically, we estimated these
transformation parameters based on qualitative, visual assessment
of the brightfield images, and the acquisition parameters specific
to the dataset at hand (e.g., image size, target spatial resolution,
physical pixel size, etc.). In short, informed selection follows the
empirical investigation of parameters.

We calculate the Jaccard index, also referred to as IoU, to eval-
uate the predictive performance of the trained models. For each

class c in an image, the IoU metric can be expressed using logical
operators as in (Wickstrøm et al., 2020):

IoU(c) = ∑i (̂yi == c∧yi == c)
∑i (̂yi == c∨yi == c)

Where the segmentation masks ŷ and y denote the model pre-
diction and ground truth, respectively, for each pixel-wise predic-
tion i in an image input.

4.7. Implementation of uncertainty and interpretability
functionality

To calculate the uncertainty of segmentation prediction we used
the Monte Carlo Dropout procedure. Using dropout as a Bayesian
approximation to deep Gaussian processes (Gal & Ghahramani,
2016), the predictive distribution of our segmentation model can
be approximated using Monte Carlo integration, as expressed by
(Wickstrøm et al., 2020):

p(y∗ ∣ x∗,D) ≈
1
T∑

T
t=1softmax( fW∗

t
(x∗))

Where the dataset D is composed of a set of pairs, from input
images and their corresponding label masks, and x∗ and y∗ are
a new pair of input images and label masks. Here W∗

t refers to
the stochastically sampled weights of the model for sample t, and
fW (x∗) is the output of the model (i.e. a forward pass). To create the
uncertainty maps, we enable dropout, and calculate the standard
deviation of the softmax outputs of the U-Netˆ2 model, after T
forward passes.

In the context of prediction uncertainty via the Monte
Carlo Dropout procedure, the prior distributions for the model
parameters (i.e. weights of the neural network) are not explicitly
defined, as in conventional Bayesian approaches. The Monte Carlo
Dropout method interprets dropout as a practical approximation
to Bayesian inference, with dropout rates influencing the variance
of the prior distribution over the weights. Monte Carlo Dropout
implicitly regularizes models by acting as an unspecific prior,
favoring simplicity to prevent overfitting. The form of the implicit
prior depends on how dropout is implemented, and used within
the neural network architecture. By enabling dropout during
inference, running inference multiple times, and aggregating the
outcomes, this method approximates the posterior distribution of
the weights, offering an efficient method to estimate prediction
uncertainty in deep learning, without detailing priors for all model
parameters.

The functionality to apply Guided Grad-CAM to the U-Netˆ2
segmentation model was implemented using the Captum library
(Kokhlikyan et al., 2020). We compute attribution by summing the
output logits of each channel, corresponding to a total score for
each segmentation class, and attributing with respect to this score
for a particular class. We sum only the scores corresponding to pix-
els that are predicted to be of the target class (i.e. when the argmax
output equals the target class) and attribute with respect to this sum.
We define a wrapper function, as described in the captum docu-
mentation (https://captum.ai/tutorials/Segmentation_Interpret).

The implementation of Monte Carlo Dropout and Guided Grad-
CAM can be found in the prediction module (https://github.com/
qbic-pipelines/rts-prediction-package).

4.8. Implementation of the analysis pipeline

The analysis pipeline was implemented in Nextflow (Di Tommaso
et al., 2017), using DSL2 (https://www.nextflow.io/docs/latest/
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dsl2.html). The mlf-core segmentation prediction module (https://
github.com/qbic-pipelines/rts-prediction-package), the nf-root
pipeline created using nf-core tools v 2.2.dev0 (https://github.com/
qbic-pipelines/root-tissue-analysis), and the test dataset for
the pipeline (https://zenodo.org/record/5949352/) are publicly
available online. We used version 1.0.7 (Mark-1.0.7) of the
segmentation prediction module and version 1.0.1 of the nf-root
pipeline. This pipeline takes as input FM image files in .czi (Zeiss
CZI) (https://docs.openmicroscopy.org/bio-formats/6.11.1/
formats/zeiss-czi.html) or in .ome.tif (OME-TIFF) (Linkert et al.,
2010) file format. The pipeline outputs all imaging data (e.g.
segmentation masks, uncertainty, and interpretability maps) in
OME-TIFF format.

4.9. Comparing nf-root with manual annotation and analysis

The dataset of raw confocal microscopy images used for perfor-
mance comparison between the nf-root pipeline and an analysis
performed by an experienced biological experimenter was gener-
ated as follows. Images were acquired as described in sections “Root
tissue sample preparation” and “Microscopy data acquisition”.
Generation of ratiometric images using the Fiji-macro published
by (Barbez et al., 2017), annotation of ROIs in Fiji and statistical
evaluation by Welch’s t-test, and inspection of key statistical param-
eters were performed independently by the biological experimenter
(without involvement of any nf-root process). Importantly, this
analysis was performed manually, and independently from the
analysis based on the nf-root pipeline.
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