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Abstract
In a canonical model of heterogeneous agents with precautionary saving motives, Aiyagari [(1995)
Journal of Political Economy 103(6), 1158–1175.] breaks the classical result of zero capital tax obtained
in representative-agent models. Aiyagari argues that with capital overaccumulation the optimal long-run
capital tax should be strictly positive in order to achieve aggregate allocative efficiency suggested by the
modified golden rule (MGR). In this paper, we find that, depending on the sources of capital overaccumu-
lation, capital taxation may not be the most efficient means to restore the MGR when government debt is
feasible. To demonstrate our point, we study optimal policy mix in achieving the socially optimal (MGR)
level of aggregate capital stock in an infinite horizon heterogeneous-agents incomplete-markets economy
where capital may be overaccumulated for two distinct reasons: (i) precautionary savings and (ii) produc-
tion externalities. By solving the Ramsey problem analytically along the entire transitional path, we reveal
that public debt and capital taxation play very distinct roles in dealing with the overaccumulation problem.
The Ramsey planner opts neither to use a capital tax to correct the overaccumulation problem if it is caused
solely by precautionary saving—regardless of the feasibility of public debt—nor to use debt (financed by
consumption tax) to correct the overaccumulation problem if it is caused solely by production externality
(such as pollution)—regardless of the feasibility of a capital tax. The key is that the MGR has two margins:
an intratemporal margin pertaining to the marginal product of capital (MPK) and an intertemporal mar-
gin pertaining to the time discount rate. To achieve the MGR, the Ramsey planner needs to equate not
only the private MPK with the social MPK but also the interest rate with the time discount rate—neither
of which is equalized in a competitive equilibrium. Yet public debt and a capital tax are each effective only
in calibrating one of the two margins, respectively, but not both.

Keywords: Optimal quantity of debt; capital taxation; Ramsey problem; heterogeneous agents; incomplete markets;
pollution; production externalities

1. Introduction
Whether capital should be taxed or not is a long-standing question in political economy and the
history of economic thought. The classical answer to the question is “No,” based on analysis with
representative-agent models (e.g., Chamley (1986)). However, Aiyagari (1995) shows that with
heterogeneous households under borrowing constraints the classical result of zero capital tax is
overturned. The intuition offered by Aiyagari is that borrowing constraints with idiosyncratic
risks entice households to engage in precautionary saving behaviors that would lead to overac-
cumulation of capital. Hence, taxing capital in the steady state is optimal to restore aggregate
allocative efficiency in light of the modified golden rule (MGR).

However, several papers have revisited these capital taxation issues in heterogenous-agents
framework. For example, Chien andWen (2021) show analytically that in the absence of any redis-
tribution effects the optimal capital tax should still be zero despite precautionary saving motives
that can lead to capital overaccumulation and the failure of the MGR. A similar result is also
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obtained by Bassetto and Cui (2020) based on a model with financial frictions on the firm side
where the optimal long-run capital tax could be zero despite underaccumulation of capital.1

This paper intents to reveal and highlight the roles that MGR plays in shaping optimal fiscal
policies when capital is overaccumulated for two distinct reasons: (i) precautionary savings and
(ii) production externalities. We would like to understand under what conditions the failure of the
MGR calls for nonzero capital taxation in the presence of heterogeneous agents and incomplete
markets (HAIM) and why. Specifically, the MGR can fail for many reasons; for example, precau-
tionary saving under financial frictions can result in the overaccumulation of capital (á la Aiyagari
(1994)); negative production externalities (such as environmental pollution) at the firm level can
also lead to overaccumulation of capital (or overinvestment and overproduction) at the aggregate
level (Cropper and Oates (1992)). In both cases, the MGR does not hold in a competitive equilib-
rium. It is not yet clear if capital tax is the most effective and efficient policy tool to correct the
overaccumulation problem regardless of the source of the market failures.

We introduce production externalities (e.g., pollution) into a version of the Aiyagari model
to demonstrate why the MGR alone is not a sufficient criterion for capital taxation when the
distribution of individual consumptionmatters for social welfare. Yet theMGR is the key criterion
that Aiyagari (1995) relies on to derive his seminal result. The choice of production externality is
by design since it is the simplest way to highlight the issue at stake without losing the analytical
tractability of our model. Clearly, both precautionary saving and negative production externalities
(such as pollution) can result in capital overaccumulation from a social viewpoint and thus the
failure of the MGR.

In addition, the nonzero capital taxation result of Aiyagari (1995), and its explanations are not
clearly understood in the existing literature. This is partly due to the model’s intractability, which
means that Aiyagari could not use the entire set of the Ramsey first-order conditions to check the
internal consistency of his analysis and had to instead rely on the assumption of the existence of
a Ramsey steady state with finite Lagrangian multipliers (without proof) in order to derive the
result. But such an assumption might not be innocuous because the constraint set of the Ramsey
problem could be nonconvex. In contrast, by solving the Ramsey problem analytically in an infi-
nite horizon general equilibrium HAIM model, we are able to utilize the full set of the Ramsey
first-order conditions to prove the existence of the Ramsey steady state and derive our results;
hence, we can show clearly that public debt and capital taxation have very different functions and
effectiveness in dealing with capital overaccumulation problems, depending on the root cause of
the overaccumulation. Debt is shown to be more effective in improving welfare under pecuniary
externalities (due to incomplete financial markets), while capital tax is more effective in improving
welfare under production externalities (due to pollution or incomplete goods markets). In other
words, the Ramsey planner will not use a capital tax to correct the overaccumulation problem if it
is caused solely by precautionary saving under borrowing constraints—regardless of the feasibil-
ity of public debt—nor use debt to correct the overaccumulation problem if it is caused solely by
pollution—regardless of the feasibility of capital taxation.

The intuition is that precautionary saving generates a pecuniary externality by depressing
(distorting) the interest rate, while pollution generates a production externality by depressing (dis-
torting) firms’ total factor productivity. These two types of externalities can each lead to capital
overaccumulation but are distinct in nature; hence, they call for very different fiscal policies or
policy mixes to address them. The key insight is that the MGR in HAIM economies involves two
distinct margins: the MPK (the first margin) and the time discount rate (the second margin). The
first margin pertains to capital’s intratemporal price, and the second margin pertains to capital’s
intertemporal price. To achieve the MGR, therefore, the Ramsey planner needs to equate not only
the private MPKwith the social MPK intratemporally but also the interest rate (net of the liquidity
premium of savings) with the time discount rate intertemporally. From a social viewpoint, neither
margin is equalized in a laissez-faire competitive equilibrium. Yet a capital tax is more effective
in dealing with the intratemporal (first) margin, while public debt is more effective in dealing
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with the intertemporal (second) margin (by eliminating the liquidity premium). When it comes
to the issue of how to best finance public debt, we show that in the absence of a lump-sum tax the
Ramsey planner opts to use a consumption tax instead of a capital tax. This result is reminiscent
of the classical result obtained by Chamley (1986) that taxing capital is not optimal when other
forms of distortionary taxes are available.

To focus attention on the core issues, we defer literature reviews to a latter section. So the
remainder of the paper is organized as follows. Section 2 presents the model and solves its com-
petitive equilibrium in closed forms. Section 3 uses the primal approach to analytically solve the
Ramsey problem and optimal fiscal policies. Section 4 studies the robustness of our results by
conducting two experiments: (i) ruling out government bonds—to show that with precautionary
saving but without production externalities the optimal capital tax is still zero even if the planner
cannot issue debt to crowd out capital; and (ii) ruling out a capital tax—to show that with pol-
lution but without precautionary saving the optimal quantity of debt is indeterminate even if the
planner cannot levy a capital tax to crowd out capital. Section 5 provides a brief literature review,
and Section 6 concludes the paper.

2. The model
2.1. The environment
Firms. A representative firm produces output according to the socially decreasing (or increasing)
returns to scale but privately constant-returns-to-scale Cobb–Douglas technology,

Yt = F(Zt ,Kt ,Nt)= ZtKα
t N

1−α
t , (1)

where Y , K, and L denote output, capital, and labor, respectively, and

Zt =Kϕ

t (2)

denotes production externalities (spillover effects) arising from the average capital stock Kt in
the economy, which is taken as given by the private sector, and where the elasticity parameter
ϕ � 0 implies that the externality (spillover effect) is negative, zero, or positive. Therefore, the
production technology exhibits social decreasing (increasing) returns to scale if ϕ < (>) 0.2

The representative firm rents capital and hires labor from households by paying a competitive
rental rate qt and real wage rate wt . Taking Zt as given, the firm’s optimal conditions for profit
maximization at time t are

wt = ∂F(Zt ,Kt ,Nt)
∂Nt

≡MPN,t , (3)

qt = ∂F(Zt ,Kt ,Nt)
∂Kt

≡MPK,t . (4)

On the other hand, the social MPK takes Zt =Kϕ
t endogenously and is defined as

q̃t ≡ ∂F
(
Kϕ
t ,Kt ,Nt

)
∂Kt

(5)

In addition, q̃t < qt if ϕ < 0.

Households. There is a unit measure (continuum) of ex ante identical but ex post hetero-
geneous households that face idiosyncratic preference shock θt . The shock is identically and
independently distributed (iid) over time and across households with mean θ and the cumula-
tive distribution F(θ), which has the support [θL, θH], where θH > θL > 0. Time is discrete and
indexed by t = 1, 2, . . . ∞.
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There are two subperiods within each period t. The idiosyncratic preference shock θt is realized
only in the second subperiod, and the labor supply decision must be made in the first subperiod
before observing θt . Consumption and saving decisions aremade in the second subperiod after the
realization of θt . Namely, the idiosyncratic preference shock is uninsurable by labor income even if
leisure enters the utility function linearly. Let θ t ≡ (θ1, . . . , θt) denote the history of idiosyncratic
shocks. All households are endowed with the same asset holdings a1 at the beginning of period 1.

Households are infinitely lived with a quasilinear utility function and face the borrowing
constraints: at+1

(
θ t
)≥ 0. A household’s lifetime expected utility is given by

V = E1
∞∑
t=1

βt[θt ln ct(θ t)− nt
(
θ t−1)] , (6)

where β ∈ (0, 1) is the discount factor and ct(θ t) and nt(θ t−1) denote consumption and the labor
supply, respectively, for a household with history θ t at time t. Note that the labor supply in period
t is only measurable with respect to θ t−1, reflecting the assumption that the labor supply decision
is made in the first subperiod before observing the preference shock θt .

Government. The government needs to finance an exogenous stream of purchases {Gt ≥ 0}∞t=1,
and it can issue bonds and levy time-varying consumption and capital taxes at flat rates τ ct and τ kt ,
respectively. The flow government budget constraint in period t is

τ ct Ct + τ kt qtKt + Bt+1 ≥Gt + rtBt , (7)
where Bt+1 is the level of government debt chosen in period t and rt is the gross risk-free rate.

There is no aggregate uncertainty in our economy, and hence government bonds and produc-
tive capital are perfect substitutes as stores of value for households. As a result, the after-tax gross
rate of return to capital must equal the gross risk-free rate:

rt = 1+
(
1− τ kt

)
qt − δ,

which constitutes a no-arbitrage condition for capital and bonds.

2.2. The household problem
Given the sequences of the interest rates {rt}∞t=1, consumption tax rates

{
τ ct
}∞
t=1, and wage rates

{wt}∞t=1, a household chooses a plan of consumption, labor, and asset holdings, {ct(θ t), nt(θ t−1),
at+1(θ t)}∞t=1, to solve

max
{ct(θ t),nt(θ t−1),at+1(θ t)}

E1
∞∑
t=1

βt{θt ln ct(θ t)− nt
(
θ t−1)}

subject to (
1+ τ ct

)
ct
(
θ t
)+ at+1

(
θ t
)≤wtnt

(
θ t−1)+ rtat

(
θ t−1) , (8)

at+1
(
θ t
)≥ 0, (9)

with a1 > 0 given and nt
(
θ t−1) ∈ [

0,N
]
.

Define a household’s gross income (cash on hand) as

xt(θ t−1)≡ rtat
(
θ t−1)+wtnt(θ t−1) (10)

and the aggregate (average) cash on hand as

Xt ≡
∫

xt(θ t−1)dF(θt)= rtAt +wtNt , (11)
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where At ≡
∫
at
(
θ t−1) dF(θ) and Nt ≡

∫
nt
(
θ t−1) dF(θ) denote aggregate asset holdings and

aggregate labor, respectively. The solution of the household problem can be characterized
analytically by a cutoff strategy in the following proposition:

Proposition 1. The optimal household decisions for cash on hand xt(θ t−1), consumption ct
(
θ t
)
,

savings at+1
(
θ t
)
, and the labor supply nt

(
θ t−1) are given, respectively, by the following policy rules:3

xt
(
θ t−1)= xt =

⎧⎨⎩wtL(θ∗
t )θ∗

t if θ∗
t < θH

Xt if θ∗
t = θH

, (12)

ct(θ t)=
⎧⎨⎩min

{
1, θt

θ∗
t

}
xt

(1+τ ct )
if θ∗

t < θH

θt
wt

(1+τ ct )
if θ∗

t = θH
, (13)

at+1(θ t)=
⎧⎨⎩max

{
1− θt

θ∗
t
, 0
}
xt if θ∗

t < θH

xt − θt
wt

(1+τ ct )
if θ∗

t = θH
, (14)

nt(θ t−1)= 1
wt

[
xt − rtat(θ t−1)

]
, (15)

where the cutoff θ∗
t is independent of individual history and is determined by the following Euler

equation:
1

rt+1
= β

wt
wt+1

L(θ∗
t ), (16)

where the function L
(
θ∗
t
)
captures the liquidity premium of savings and is given by

L(θ∗
t )≡

∫
θ≤θ∗

t

dF(θ)+
∫

θ>θ∗
t

θ

θ∗
t
dF(θ)≥ 1. (17)

Note the liquidity premium vanishes (L
(
θ∗
t
)= 1) when θ∗

t = θH. In addition, by summing up
equations (13) and (14), aggregate consumption Ct and aggregate saving At+1 are given, respectively,
by

Ct =
⎧⎨⎩D

(
θ∗
t
) xt

(1+τ ct )
if θ∗

t < θH

θ wt
(1+τ ct )

if θ∗
t = θH

(18)

and

At+1 =
⎧⎨⎩

[
1−D

(
θ∗
t
)]
xt if θ∗

t < θH

Xt − θ wt
(1+τ ct )

if θ∗
t = θH

, (19)

where the function D(θ∗
t ) denotes the aggregate marginal propensity to consume and is defined as

D(θ∗
t )≡

∫
θ≤θ∗

t

θ

θ∗
t
dF(θ)+

∫
θ>θ∗

t

dF(θ) ∈ (0, 1]. (20)

Proof. See Appendix A.1.
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Note that, as shown in the proof (Appendix A.1), the distribution of xt is degenerated and
hence all households choose the same xt if θ∗

t < θH . However, if θ∗
t = θH , then the distribution

of xt becomes indeterminate so long as each household holds enough cash on hand to ensure
nonbinding borrowing constraints across all states of θ . In this latter case, since the distribution
has no impact on the Ramsey allocation, we assume (without loss of generality) that in the case of
θ∗ = θH , xt is degenerated such that xt = Xt .

2.3. Competitive equilibrium
Our discussion involves two different notions of the steady state: a “competitive equilibrium
steady state” for a given set of government policies and a “Ramsey steady state” under optimal
policies.

Denote Ct ,Nt , and Kt+1 as the levels of aggregate consumption, aggregate labor, and the
aggregate capital stock, respectively. A competitive equilibrium allocation can be defined as
follows:

Definition 1. Given initial aggregate capital K1 and bonds B1, as well as a sequence of taxes, govern-
ment spending, and government debt, {τ ct , τ kt ,Gt , Bt+1}∞t=1, a competitive equilibrium is a sequence
of prices {wt , qt}∞t=1 and allocations {ct(θ t), nt(θ t−1), at+1(θ t),Kt+1,Nt}∞t=1 such that the following
hold:

1. The average capital stock equals the private capital stock in the production function: Kt =Kt.
2. The no-arbitrage condition holds for each period: rt = 1+ (1− τ kt )qt − δ for all t ≥ 1.
3. Given the sequence {wt , rt , τ ct }∞t=1, the sequence {ct(θ t), at+1(θ t), nt(θ t−1)}∞t=1 solves the

household problem.
4. Given the sequence {wt , qt}∞t=1, the sequence {Nt ,Kt}∞t=1 solves the firm’s problem.
5. The government budget constraint in equation (7) holds for each period.
6. All markets clear for all t ≥ 1:

Kt+1 =
∫

at+1(θt)dF(θt)− Bt+1, (21)

Nt =
∫

nt(θt−1)dF(θt−1), (22)

∫
ct(θt)dF(θt)+Gt +Kt+1 ≤ F(Kϕ

t ,Kt ,Nt)+ (1− δ)Kt . (23)

In the following proposition, we provide the condition that the steady-state capital stock in a
laissez-faire competitive equilibrium is higher than that implied by theMGR such that there exists
overaccumulation of capital even if the production externality parameter ϕ = 0.

Proposition 2. If the upper bound θH of the preference shock is sufficiently large relative to the
mean E(θ) ≡ θ such that the following condition holds:

αβθH

θH − θ
+ β(1− α)(1− δ)< 1, (24)

then in a laissez-faire competitive equilibrium the steady-state risk-free rate is lower than the time
discount rate, r < 1/β, with a positive liquidity premium L(θ∗) > 1 and overaccumulated capital
stock.
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Proof. See Appendix A.2.

Notice that when θH → ∞, as in the case of a Pareto distribution, the above condition is clearly
satisfied. The intuition of Proposition 2 is straightforward. Since labor income is determined (ex
ante) before the realization of the idiosyncratic preference shock θt , a household’s total income
may be insufficient ex post to provide full self-insurance for large enough preference shocks under
condition (24). In this case, precautionary saving leads to overaccumulation of capital at the aggre-
gate level, which reduces the equilibrium interest rate to a level below the time discount rate,
regardless of the production externality ϕ. This outcome may seem inefficient from a social point
of view, but it emerges because of the negative pecuniary externality household savings have on
the interest rate (due to diminishing MPK), as noted by Aiyagari (1994).

Note that when a negative production externality is allowed (ϕ < 0), the capital-
overaccumulation problem further intensifies. In other words, both the pecuniary externality
under precautionary saving and the production externality under ϕ < 0 lead to overaccumula-
tion of capital. One of our interests in this paper is to understand how optimal fiscal policies react
to the two types of externalities.

As explained by Chien and Wen (2021), in the absence of production externalities (ϕ = 0), a
competitive equilibrium can achieve the MGR if the idiosyncratic risk is sufficiently small (e.g.,
the upper bound θH is close enough to the mean θ) such that condition (24) is violated. In this
case, household savings can become sufficiently large to fully buffer preference shocks and, as a
result, household borrowing constraints will never bind. Clearly, with full self-insurance, it must
be true that the optimal cutoff is a corner solution at θ∗ = θH with a vanishing liquidity premium
(L(θ∗)= 1) and an interest rate that equals the time discount rate (r = 1/β). We will see in this
paper if the same results hold when ϕ 
= 0.

But a competitive equilibrium with full self-insurance is impossible in the Aiyagari model
(regardless of production externalities) because every household’s marginal utility of consumption
follows a supermartingale in his model when r = 1/β . This implies that household consumption
and savings (or asset demand) diverge to infinity in the long run, which cannot constitute an
equilibrium.4

In contrast, because the household utility function is quasilinear in this paper, the expected
shadow price of consumption goods is thus the same across agents and given by

∫
λtF (θ) = 1

wt
,

which kills the supermartingale property of the household marginal utility of consumption. As a
result, household savings (or asset demand) are bounded away from infinity even at the point of
r = 1/β . This property not only renders our model analytically tractable but also sheds great light
on the issues of optimal quantity of public debt and optimal taxation.

More specifically, equations (12) and (14) show that when r = 1/β household asset demand is
always bounded above by (θH − θt)wt for any shock θt ∈ [θL, θH]. This endogenous upper bound
on asset demand is finite as long as the support [θL, θH] of θt is bounded (a counter example is a
Pareto distribution where θH = ∞). This special property renders our model analytically tractable
with closed-form solutions (provided that θt is iid)—despite incomplete markets and aggregate
production externalities—and it implies that the Ramsey planner has the potential to use govern-
ment debt to achieve the MGR in this economy when the competitive equilibrium is not socially
optimal.

2.4. Conditions to support a competitive equilibrium
Given that government policies are inside the aggregate state space of the full set of competitive
equilibria and they affect the endogenous distributions (including the average) of all household
variables, the Ramsey problem is to pick a competitive equilibrium (through policies) that attains
the maximum of the expected household lifetime utility V defined in (6). Since V depends on
the endogenous distributions

(
characterized by the sequence of the cutoff

{
θ∗
t
}∞
t=1

)
, the Ramsey
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planner needs also to pick a particular time path (sequence) of distributions to achieve the
maximum.

Proposition 3. Given initial capital K1, initial government bonds B1, and the initial risk-free rate
r1, the sequences of aggregate allocations {Ct ,Nt ,Kt+1, Bt+1}∞t=1 and distribution statistics {θ∗

t }∞t=1
can be supported as a competitive equilibrium if and only if the following are true:

1. The resource constraint (23) holds with Kt =Kt.
2. The wage rate condition holds with

MPN,t =
⎧⎨⎩

Kt+1+Bt+1
θ∗
t L(θ∗

t )[1−D(θ∗
t )] if θ∗

t < θH

MPN,t if θ∗
t = θH

. (25)

3. The implementability conditions hold:

Nt ≤
⎧⎨⎩L(θ∗

t )θ∗
t − 1

β
θ∗
t−1

(
1−D(θ∗

t−1)
)
if θ∗

t < θH

θ̄ + Kt+1+Bt+1
MPN,t

− 1
β

Kt+Bt
MPN,t−1

if θ∗
t = θH

for t ≥ 2 (26)

N1 ≤
⎧⎨⎩L(θ∗

1 )θ
∗
1 − r1C−1

1 D(θ∗
1 )L(θ

∗
1 )θ

∗
1 (K1 + B1) if θ∗

1 < θH

θ̄ + K2+B2
MPN,1

− r1(K1+B1)
MPN,1

if θ∗
1 = θH

for t = 1. (27)

Proof. See Appendix A.3.

This proposition demonstrates that the Ramsey planner can construct a competitive equilib-
rium by simply choosing the sequences of aggregate allocations {Ct ,Nt ,Kt+1, Bt+1}∞t=1 and the
distribution statistics {θ∗

t }∞t=1 to maximize welfare subject to the aggregate resource constraint, the
asset market-clearing condition, and the implementability condition, as shown explicitly below.

3. Ramsey allocations
3.1. The Ramsey problem
The Ramsey planner treats Kt =Kt as endogenous. So the aggregate production function for the
Ramsey planner becomes Yt = F(Kϕ

t ,Kt ,Nt)=Kα+ϕ
t N1−α

t , and the social MPK is given by q̃t =
(α + ϕ)

Yt
Kt
. Armed with Proposition 3, we are ready to write down the Ramsey planner’s problem

and derive the first-order Ramsey conditions analytically. Appendix A.4 shows that the lifetime
utility function, V , can be rewritten as a function of θ∗

t and aggregate variables:

V =
∞∑
t=1

βt{W(θ∗
t )+ θ ln Ct −Nt

}
, (28)

whereW(θ∗
t ) is defined as

W(θ∗
t )≡ θ ln

1
D
(
θ∗
t
) +

∫
θ≤θ∗

t

θ ln
(

θ

θ∗
t

)
dF. (29)

Thus, the Ramsey problem can be represented as maximizing the welfare function (28) by
choosing the sequence of {θ∗

t ,Nt , Ct ,Kt+1, Bt+1}∞t=1 subject to the resource constraint (23), the
wage-rate condition (25), and the implementability conditions (26) and (27). Therefore, the
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Lagrangian of the Ramsey problem is given by

L = max
{θ∗

t ,Nt ,Ct ,Kt+1,Bt+1}

∞∑
t=1

βt{W(θ∗
t )+ θ ln Ct −Nt

}
(30)

+
∞∑
t=1

βtμt
{
F(Kϕ

t ,Kt ,Nt)+ (1− δ)Kt −Gt − Ct −Kt+1
}

+β1λ1

⎧⎨⎩
(
L(θ∗

1 )θ
∗
1 −N1 − D(θ∗

1 )L(θ
∗
1 )θ

∗
1

C1
r1(K1 + B1)

)
× 1θ∗

1 <θH

+
(
θ̄ −N1 − r1(K1+B1)

MPN,1
+ K2+B2

MPN,1

)
× 1θ∗

1 =θH

⎫⎬⎭
+

∞∑
t=2

βtλt

⎧⎨⎩
(
L(θ∗

t )θ∗
t −Nt − 1

β
θ∗
t−1

[
1−D(θ∗

t−1)
])× 1θ∗

t <θH

+
(
θ̄ −Nt − 1

β
Kt+Bt
MPN,t−1

+ Kt+1+Bt+1
MPN,t

)
× 1θ∗

t =θH

⎫⎬⎭
+

∞∑
t=1

βtφt

{(
MPN,t − Kt+1 + Bt+1

θ∗
t L

(
θ∗
t
) [
1−D

(
θ∗
t
)])× 1θ∗

t <θH

}
,

where {μt , λt , φt} denote the multipliers for the resource constraints, the implementability condi-
tions, and wage condition, respectively. In addition, the index function 1 takes the value of 1 or 0
conditional on the state of the cutoff θ∗

t . To conserve space, the first-order Ramsey conditions as
well as several useful lemmas for the upcoming proofs are relegated to the Appendix A.5.

3.2. Characterization of optimal steady-state capital taxation

Definition 2. A Ramsey steady state is a Ramsey allocation where the parameter restriction θH <
θL
1−β

< ∞ (to ensure positive labor n> 0 for all individuals in all states) is satisfied and aggregate
variables

{
Kt ,Nt , Ct , θ∗

t
}
converge to finite positive values.

The condition θH < θL
1−β

(or equivalently β > θH−θL
θH

) is required to ensure that all household
labor decisions are positive—a necessary condition for Proposition 1. The intuition is that if the
variance (support) of θ is too large (spread out), some agents may end up with too much savings
in the last period and thus opt not to work this period. Our model becomes intractable if the
constraint Nt ≥ 0 binds occasionally, so Nt = 0 must be ruled out.

Proposition 4. There exists a unique Ramsey steady state with the following properties:

1. The optimal quantity of debt is such that the cutoff θ∗ = θH, the liquidity premium L(θ∗) = 1,
and no households are borrowing constrained: a> 0.

2. The social MPK equals the after-tax private MPK: q̃= (
1− τ ∗

k
)
q.

3. The optimal capital tax τ ∗
k is determined by the following equation:(

1− τ ∗
k
)= α + ϕ

α
. (31)

Proof. See Appendix A.6.

Equation (31) implies the following:
(i) If the quantity-spillover effect is zero (ϕ = 0), then the optimal capital tax τ ∗

k = 0. This result
replicates that in Chien and Wen (2021) despite the fact that social returns to scale and private
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returns to scale do not equal. (ii) If the quantity-spillover effect is negative (ϕ < 0), then the steady-
state optimal capital tax τ ∗

k > 0. (iii) If the quantity-spillover effect is positive (ϕ > 0), then the
steady-state optimal capital tax τ ∗

k < 0.
Therefore, in the absence of any government debt-limit constraints, the Ramsey planner

achieves the MGR without the need to tax/subsidize capital in the steady state unless produc-
tion externalities are present—because capital taxation in the absence of quantity-spillover effects
would decrease the steady-state household saving rate and thus permanently hampering house-
holds’ self-insurance positions. Instead, the Ramsey planner opts to provide enough incentives
for households to save through bond holdings by picking a sufficiently high interest rate (= 1/β)
on government bonds, such that all households are fully self-insured in the long run, with zero
probability of encountering a binding liquidity constraint.

Furthermore, even if capital taxation/subsidization is justifiable in the case of ϕ 
= 0, it is meant
only to correct the production externalities and not to be a source of revenues to pay for interest
on government bonds—which instead is financed by a distortionary consumption tax. In other
words, if the overaccumulation of capital is caused by the pecuniary externality from precau-
tionary saving of households, then there is no reason for the Ramsey planner to levy a capital
tax because overaccumulation is the consequence of incomplete insurance markets and not of
incomplete goods markets (if ϕ = 0).

Therefore, it is the role of government debt in improving self-insurance, not its role in crowding
out capital or mitigating the distortionary effects of a capital tax, that determines the optimal
quantity of public debt in this model.

In the next section, we will also show that even when the government cannot issue debt
(Bt+1 = 0 for all t ≥ 1), the optimal capital tax rate is still given by equation (31)—in which case
the full self-insurance allocation is no longer feasible and θ∗ < θH and L(θ∗) > 1 in the Ramsey
steady state. Therefore, optimal capital taxation is independent of the households’ self-insurance
positions and the optimal level of public debt depends only on the distortions from the financial
markets (from the price-spillover effect).

To see how the debt supply and capital taxation can operate independently, we study in the
next section two extreme cases: (i) the government cannot issue debt and (ii) the government can-
not tax capital. In the case with no government bonds, we show that the optimal capital tax policy
remains the same as in equation (31); namely, it is feasible but not optimal to levy a capital tax
to correct the overaccumulation problem when the pecuniary externality is the only cause of the
problem and government debt is not available to mitigate the problem. In the case with no cap-
ital tax, we show that government debt is an ineffective tool to address capital overaccumulation
caused by production externalities.

4. Robustness analyses
In what follows, we will consider two special cases: Case A where the only available policy tool is a
capital tax and a lump-sum transfer that redistributes the government revenue back to households
and Case B where the only available policy tool is public debt and a lump-sum tax to finance
the public debt. For simplicity and without the loss of generality, we assume in each case that
government spending G is zero.

4.1. Case A: A capital tax only
This special case is particularly illuminating on the role of the MGR in determining the optimal
quantity of debt in a HAIM economy. It would appear that if it is optimal to tax capital to restore
theMGR in the presence of pecuniary externalities even when government bonds and other forms
of distortionary taxes are available, then it would be even more desirable to tax capital to restore
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the MGR when a consumption tax is not available and the government cannot issue any debt—
since a capital tax is now the only tool available to restore the MGR. But we will show that this
intuition is false and that if there is any reason to tax capital at all, it must be because of the
production externality under pollution (ϕ < 0), not because of the pecuniary externality under
precautionary savings.

This analysis also suggests that our quasilinear preference structure is not essential for the pre-
vious result in equation (31). If it is not optimal to tax capital in the absence of debt, it should
remain optimal not to tax capital after government bonds are reintroduced to the model if public
debt can be financed by other forms of distortionary taxes (such as a labor tax or a consumption
tax). Consequently, the optimal quantity of debt cannot be influenced by the trade-off between
the provision of household self-insurance and the crowding out of capital under a capital tax. This
result reinforces the findings in the zero-capital-taxation literature based on representative-agent
models (see, e.g., Chamley (1986), Chari, et al. (1996), Chari and Kehoe (1999), and Chari, et al.
(1999)).

To show our results under Case A, since the primal approach becomes more involved when
fewer government tools are available, we will take the following (dual) approach: The Ramsey
planner directly chooses the infinite sequence of capital taxes

{
τ kt

}∞
t=2

that maximize the welfareV

based on the competitive-equilibrium allocation
{
Ct ,Kt+1,Nt , θ∗

t
}∞
t=1, in which each competitive-

equilibrium quantity at time t is a function of the sequence
{
τ kt+j

}∞
j=1

.
Specifically, for simplicity and without loss of generality, let δ = 1 and Gt = 0. Assume that any

government revenues from capital taxes are lump-sum transferred back to households:

Tt = τ kt qtKt ,
so the household budget constraint becomes

ct + at+1 ≤
(
1− τ kt

)
qtat +wtnt + Tt ≡ xt ,

where the market rental rate qt (private MPK) and wage rate wt are the same as before and given
in equilibrium, respectively, by

qt = α
F
(
Kϕ
t ,Kt ,Nt

)
Kt

, (32)

wt = (1− α)
F
(
Kϕ
t ,Kt ,Nt

)
Nt

. (33)

Moreover, the private constant-returns-to-scale production function and the aggregate house-
hold resource constraint imply the aggregate goods market-clearing condition

xt = Ct +Kt+1 = Yt .
Then, the competitive equilibrium is characterized by equations (32) and (33) together with

the following aggregate decision rules:

1= β
(
1− τ kt+1

)
qt+1L(θ∗

t )
wt
wt+1

, (34)

Ct =D
(
θ∗
t
)
Yt , (35)

Kt+1 =[
1−D

(
θ∗
t
)]
Yt , (36)
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Yt =wtθ
∗
t L(θ

∗
t ), (37)

Yt = F
(
Kϕ
t ,Kt ,Nt

)=Kα+ϕ
t N1−α

t . (38)

Given capital-tax policies, this system of seven equations uniquely solves for the paths of seven
aggregate variables, {Ct ,Kt+1,Nt , Yt ,wt , qt , θ∗

t }, as functions of
{
τ kt

}∞
t=1

.5

To establish these functions in closed forms, notice that equations (37) and (33) imply the
equilibrium labor supply

Nt = (1− α) θ∗
t L(θ

∗
t ). (39)

Substituting the real wage and interest rate in equation (34) using their competitive-
equilibrium definitions and rearranging, we have

θ∗
t
[
1−D(θ∗

t )
]= βα

(
1− τ kt+1

)
θ∗
t+1L(θ

∗
t+1). (40)

By the definitions of L(θ∗) and D(θ∗), these two functions are related by the identity
θ∗
t
[
1−D

(
θ∗
t
)]= θ∗

t L
(
θ∗
t
)− θ̄ . (41)

Hence, equation (40) can be rewritten in the present-value form:

θ∗
t L(θ

∗
t ) = θ̄ + βα

(
1− τ kt+1

)
θ∗
t+1L

(
θ∗
t+1

)
(42)

= θ̄ +
∞∑
j=0

⎡⎣ j∏
h=0

[
βα

(
1− τ kt+1+h

)]⎤⎦ θ̄ ,

which is a convergent sequence with the stochastic discounting factor: 0< βα
(
1− τ kt+j

)
< 1.

Equation (42) implies that the cutoff θ∗
t in any period t depends only on the future tax rate{

τ kt+1, τ
k
t+2, . . . , τ

k
t+∞

}
, but not on the past history (including the current period) of the tax rate,{

τ k1 , τ
k
2 , . . . , τ

k
t

}
, or any other endogenous state variable in the economy.

Therefore, the solution for the equilibrium cutoff in period t can be expressed implicitly as

θ∗
t = θ

(
τ kt+1, τ

k
t+2, . . . , τ

k
t+∞

)
. (43)

Since θ∗
t L

(
θ∗
t
)
is increasing in θ∗

t , an immediate implication of equation (42 ) is that
∂θ∗

t
∂τ kt+1+h

< 0 for h≥ 0. (44)

Namely, higher future tax rates reduce the current cutoff. Since ∂[1−F(θ∗)]
∂θ∗ < 0, the probabil-

ity of a biding borrowing constraint (1− F(θ∗)) also increases with higher future tax rates. This
suggests that capital income tax destroys households’ self-insurance positions by tightening their
borrowing constraints.

Once the equilibrium cutoff is solved as a function of future tax rates, equations (35)-(38) pin
down the other endogenous variables completely and uniquely as functions of

{
τ kt+j

}
j≥1

. The
welfare function is then given by

V
({

τ kt

}∞
t=1

)
=

∞∑
t=1

βt
{
W

(
θ∗
t

(
{τ kj }∞j=t+1

))
+ θ̄ log Yt({τ kj }∞j=t+1)−Nt({τ kj }∞j=t+1)

}
,
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whereW is redefined as

W
(
θ∗
t

(
{τ kj }∞j=t+1

))
≡

∫
θ≤θ∗

t

(
{τ kj }∞j=t+1

) θ ln

⎛⎝ θ

θ∗
t

(
{τ kj }∞j=t+1

)
⎞⎠ dF.

Proposition 5. Taking the first-period τ k1 as given, the optimal steady-state capital tax rate is
given by

τ ∗
k = −ϕ

α
.

In the absence of production externalities (ϕ = 0) and starting from any arbitrary initial date
t = 1, it is optimal to set τ kt = 0 for all t > 1 regardless of the variance of idiosyncratic risk θ or the
severeness of dynamic inefficiency due to precautionary savings (measured by the liquidity premium
L(θ∗) > 1).

Proof. See Appendix A.7.

This proposition states that in the Ramsey steady state, despite overaccumulation of capital,
the optimal capital tax is zero if there is no production externality (ϕ = 0), and the optimal capital
tax is positive if and only if there is a production externality (ϕ < 0). In addition, in the absence of
production externalities and given any initial tax rate τ k1 , it is optimal to immediately set future tax
rates to zero: τ kt = 0 for all τ ≥ 2. These results are robust to the distribution F(θ) of idiosyncratic
shocks or the tightness of household borrowing constraints.

Therefore, despite overaccumulation of capital under precautionary saving, the Ramsey plan-
ner will not use a capital tax to restore the MGR or reduce the capital stock unless capital is
overaccumulated for an entirely different reason, such as pollution. The fundamental rationale
is that when the MGR fails to hold along the intertemporal margin (L(θ∗) > 1), the effective tool
to restore the MGR is issuing government bonds instead of taxing capital. Since issuing govern-
ment bonds is not feasible, the Ramsey planner opts to leave the intertemporal margin as it is and
only use a capital tax to take care of the intratemporal margin if ϕ 
= 0.

4.2. Case B: Government debt only
The purpose of studying Case B is to show whether the Ramsey planner is able and willing to
use the quantity of debt to correct capital overaccumulation when a full self-insurance position is
already reached such that θ∗

t = θH and no households are borrowing constrained (L
(
θ∗
t
)= 1). In

this case, the MGR fails only along the intratemporal margin where the social MPK does not equal
the private MPK. Hence, Case B considers the situation where (i) θ∗

t = θH for all period t, (ii) the
Ramsey planner is equipped with only government bonds and a lump-sum tax as policy tools, and
(iii) there is no government spending, Gt = 0. The condition θ∗

t = θH can be justified by assuming
a sufficiently large initial debt level B1 so that the economy is under full self-insurance initially.

This special case is very informative on the role of government debt in addressing the failure
of the MGR due to a negative production externality. If it is optimal in general to use debt to
crowd out capital to restore the MGR in the presence of a production externality (financed by a
distortionary consumption tax), then it would be even more desirable to do so in Case B. This is
so because (i) the public debt’s interest payment can now be financed by a nondistortionary lump-
sum tax and (ii) government bonds are now the only possible tool to restore the MGR. We will
show, surprisingly, that it is optimal for the Ramsey planner to do nothing in Case B, leaving the
quantity of debt simply determined by its initial level B1. The fundamental reason is that public
debt is not the right tool to restore the MGR whenMGR fails only along the intratemporal margin
with ϕ 
= 0.
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Notice that to study the Ramsey plan in Case B, several corresponding changes need to bemade
in the definition of a competitive equilibrium and in the construction of the Ramsey problem. The
details of these changes are provided in Appendix A.8, which also proves the following proposition
that describes the conditions needed to support the competitive equilibrium of Case B.

Proposition 6. Given initial capital K1, initial government bonds B1, and the initial risk-free rate
r1, the sequence of Ramsey allocations {Ct ,Nt ,Kt+1, Bt+1}∞t=1 can be supported as a competitive
equilibrium if and only if the following are true:

1. The aggregate resource constraint (23) holds with Kt =Kt: Ct +Kt+1 = F
(
Kϕ
t ,Kt ,Nt

)+
(1− δ)Kt.

2. The competitive-equilibrium consumption function holds: Ct = θ(1− α)Kα+ϕ
t N−α

t .
3. The no-arbitrage condition 1

β

MPN,t−1
MPN,t

= 1− δ + qt holds, where qt = αKα+ϕ−1
t N1−α

t is the
private MPK.

Proof. See Appendix A.8.

There are two important messages implied by the above proposition. First, notice that the
optimal bond supply Bt+1 does not enter the three constraints (1)-(3) listed in Proposition 6.
This suggests that the Ramsey planner’s use of government bonds is irrelevant for the Ramsey
outcome—because it cannot influence the competitive equilibrium. Moreover, the three con-
straints in (1)-(3) of Proposition 6 exactly pin down the three unknowns, {Ct ,Nt ,Kt+1}∞t=1 ,
which implies that the Ramsey planner’s allocation is identical to the allocation of the competitive
equilibrium (except the levels of Bt+1 and Tt).

The above discussions and Proposition 6 imply the following corollary:

Corollary 1. The competitive equilibrium with policy Bt+1 = B1 and Tt = (rt − 1)B1 for all t ≥ 1 is
a Ramsey equilibrium.

The fundamental reason is that the quantity of government bonds is not an effective tool to
address the capital-overaccumulation problem caused by production externalities (ϕ 
= 0). To
crowd out capital, the supply of debt has to alter the equilibrium interest rate—the intertemporal
price of capital. However, once the economy is in full self-insurance, θ∗

t = θH , there is no liquidity
premium and hence any additional supply of government bonds can no longer raise the market
interest rate (determined by the time discount rate 1/β) and thus cannot crowd out capital. This
makes the quantity of government bonds ineffective in addressing the failure of the MGR along
the intratemporal margin due to production externalities.

In short, despite overaccumulation of capital caused by the negative production externality
(ϕ < 0), the Ramsey planner is powerless to restore the MGR by reducing the aggregate capital
stock, unless the government is equipped with the right tool (such as a capital tax).

5. A brief literature review
Our work follows and extends the traditional literature of optimal taxation based on
representative-agent models. That literature has shown that if the government’s only option is
to tax factor income to finance government expenditures, then it should tax labor income instead
of capital income; see e.g., Chamley (1986), Chari et al. (1996), Chari and Kehoe (1999), and Chari
et al. (1999).6

The literature on optimal fiscal policies in the HAIM framework is still developing and under-
researched. Here we review the most-relevant papers in this area. The work of Aiyagari (1995)
is the first attempt at investigating optimal Ramsey taxation in HAIM economies. Under the
assumption of the existence of an interior Ramsey state steady, Aiyagari (1995) shows that the
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Ramsey planner opts to restore the MGR by taxing capital in the steady state even though a labor
tax as well as government bonds are also available. The key intuition of taxing capital is to correct
the production inefficiency caused by households’ precautionary saving motives.

Chien andWen (2021) show that the above intuition for justifying positive capital income taxa-
tion is counterintuitive and not necessarily correct in general. More specifically, they demonstrate
that since government bonds can be used to eliminate the borrowing constraints, optimal capital
tax should be zero in the absence of any wealth-redistribution effects of a capital tax. Hence, Chien
and Wen (2021) argue in that paper that Aiyagari’s explanations for a positive capital tax based
on the MGR is not a robust feature of all HAIM models with capital overaccumulation caused
by precautionary savings. So even if the Ramsey steady state does exist, a positive capital tax may
have more to do with wealth redistribution than with capital overaccumulation caused by pre-
cautionary savings judged by the MGR. This paper further illuminates this issue by introducing
another source of capital overaccumulation (such as a production externality) and showing that
only if the failure of the MGR comes from the intratemporal margin instead of the intertemporal
margin does optimal capital tax become nonzero.

Our paper is also closely related to a recent study by Bassetto and Cui (2020), who analyze
optimal fiscal policies in an environment where the capital stock tends to be underaccumulated
due to frictions in firms’ financing constraints. They derive a result very similar to ours: In the
absence of other types of market failures other than borrowing constraints, the optimal capital
tax/subsidy rate could be zero in the steady state despite the failure of the MGR due to capital
underaccumulation. Such a result is consistent with our findings despite the striking difference
that the capital stock in our model tends to be overaccumulated due to households’ precautionary
(excessive) savings.

In contrast, Angeletos, et al. (2020) find in a HAIMmodel that the long-run optimal debt level
may not necessarily be one to completely alleviate the borrowing constraints for all households
even if this is feasible. Their result thus appears to be not fully consistent with ours and that
obtained by Bassetto and Cui (2020). The explanation for such a difference could be due to the
completeness of tax system. Both our paper and the work of Bassetto and Cui (2020) consider
a complete tax system at the macroeconomic level. In contrast, the tax system of Angeletos et al.
(2020) is not complete since there is a nontaxable consumption good. As a result, the optimal level
of government debt could be different in their model as it plays an additional role in altering the
price of the untaxed good, which creates a constraint on the optimal level of government debt.
What we show in this paper is that under a complete tax system the optimal level of government
debt should reach the satiation point to relax all borrowing constraints and, as a result, the MGR
is fully restored and there is no need to tax capital.

Aiyagari and McGrattan (1998) study the optimal quantity of public debt by considering the
trade-off in benefits and costs of varying the quantity of debt. On the benefit side, they argue
that government debt enhances the liquidity of households by providing an additional means of
smoothing consumption (in addition to capital) and by effectively relaxing their borrowing con-
straints. On the cost side, they argue that (i) the implied taxes to finance public debt have adverse
incentive and wealth-distribution effects and (ii) government debt crowds out capital via higher
interest rates and thus lowers per capita consumption in the steady state. However, Aiyagari and
McGrattan (1998) obtain their results through numerical methods under two critical assumptions:
(i) the Ramsey planner considers only steady-state welfare and (ii) the tax rates on labor and cap-
ital income are levied proportionally to each other. Our study complements theirs by relaxing
both assumptions since the first assumption excludes the welfare during transition and the second
assumption rules out the possibility of financing debt only through labor-income taxation.

Our paper is also connected to the role of government debt in the tax smoothing literature,
such as Barro (1979) and Lucas and Stokey (1983). In our model, the Ramsey planner intends to
keep increasing the supply of public debt in the transition period to the Ramsey steady state so that
the borrowing constraints of all households are slack in the long run. This transitional dynamic
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implies a deviation from tax smoothing, which is a classical result found in the representative-
agent framework.

By introducing uninsurable human-capital risks, Gottardi et al. (2015) revisit optimal Ramsey
taxation in a HAIM model. As in our model, tractability in their model enables them to provide
transparent analysis on Ramsey taxation and facilitates intuitive interpretations for their results.
When government spending and the bond supply are both set to zero, they find that the Ramsey
planner should tax human capital and subsidize physical capital, despite the overaccumulation
of physical capital. The purpose or the benefit of taxing human capital is to reduce uninsur-
able risk from human-capital returns; and the rationale for subsidizing physical capital despite
overaccumulation is to satisfy the household demand for a buffer stock, similar to our finding.

6. Conclusion
In a canonical model of heterogeneous agents with precautionary saving motives, Aiyagari (1995)
breaks the classical result of zero capital tax obtained in representative-agent models. Aiyagari
argues that with capital overaccumulation the optimal long-run capital tax should be strictly pos-
itive in order to achieve aggregate allocative efficiency suggested by the MGR. We show in this
paper that the Aiyagari’s argument is not robust with respect to HAIM models with precau-
tionary saving and capital overaccumulation. In particular, we argue that the sources of capital
overaccumulation matter for optimal tax policy and that in general capital taxation may not
be the most efficient means to restore the MGR when government debt is feasible. To demon-
strate our point, this paper studies which policy or policy mix is more effective in achieving the
socially optimal (MGR) level of aggregate capital stock in an infinite-horizon heterogeneous-
agents incomplete-markets economy where capital may be overaccumulated for two distinct
reasons: (i) precautionary savings and (ii) production externalities.

By solving the Ramsey problem analytically along the entire transitional path, we reveal that
public debt and capital taxation play very distinct roles in dealing with the overaccumulation
problem. The Ramsey planner opts neither to use a capital tax to correct the overaccumulation
problem if it is caused solely by precautionary saving—regardless of the feasibility of public debt—
nor to use debt (financed by consumption tax) to correct the overaccumulation problem if it is
caused solely by production externality (such as pollution)—regardless of the feasibility of a capital
tax.

The key insight behind our findings is that the MGR has two margins: an intratemporal mar-
gin pertaining to the wedge between social MPK and private MPK, and an intertemporal margin
pertaining to the wedge between the market interest rate and the time discount rate. To achieve
the MGR, the Ramsey planner needs to equate not only the private MPK with the social MPK but
also the interest rate with the time discount rate—neither of which is equalized in a competitive
equilibrium. Yet government debt is effective and desirable only in addressing the intertemporal
wedge, while a capital tax is effective and desirable only in addressing the intratemporal wedge.

Notes
1 As shown by Bassetto and Cui (2020), there is another possible Ramsey steady state featuring a positive capital tax if the
consumption intertemporal elasticity of substitution is very high.
2 This paper mainly focuses on the case ϕ < 0.
3 The cutoff policy rules hold if the individual labor decision is an interior one; namely, nt ∈ (0,N). We discuss the conditions
that ensure the interior solution of n in the proof of this proposition (Appendix A.1).
4 See Ljungqvist and Sargent (2012, Chapter 17) for details.
5 The uniqueness of the equilibrium can be confirmed by the eigenvalue method that shows the steady state is saddle-path
stable.
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6 In addition, Lucas (1990) shows that even in a two-sector endogenous growth model with both fiscal and human capital it
is still optimal to tax labor/human capital income and not capital income. However, Chen and Lu (2013) obtain exactly the
opposite result of Lucas (1990) by using a slightly different two-sector growth model.
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A. APPENDIX
A.1. PROOF OF PROPOSITION 1
A.1.1. Household optimal conditions
Denoting

{
βtλt(θ t), βtμt(θ t)

}
as the Lagrangian multipliers for constraints (8) and (9), respec-

tively, the first-order conditions for
{
ct
(
θ t
)
, nt

(
θ t−1) , at+1

(
θ t
)}

are given, respectively, by

θt(
1+ τ ct

)
ct
(
θ t
) = λt

(
θ t
)

(45)

1=wt

∫
λt
(
θ t
)
dF(θt) (46)

λt
(
θ t
)= βrt+1

∫
λt+1

(
θ t+1) dF(θ) + μt(θ t), (47)

where equation (46) reflects the fact that the labor supply nt(θ t−1) must be chosen before the
idiosyncratic taste shocks (and hence before the value of λt(θ t)) are realized. By the law of iterated
expectations and the iid assumption of idiosyncratic shocks, equation (47) can be written (using
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equation (46)) as

λt(θ t)= β
rt+1
wt+1

+ μt(θ t), (48)

where 1
w is the marginal utility of consumption in terms of labor income.

We characterize the competitive equilibrium in two cases. One is with full self-insurance and
the other is not.

A.1.2. No full self-insurance case
We adopt a guess-and-verify strategy to derive the decision rules. The decision rules for an
household’s consumption and savings are characterized by a cutoff strategy, taking as given the
aggregate states (such as the interest rate and real wage) given that there always exists a positive
measure of households with a binding borrowing constraint (no full self-insurance). Anticipating
that the optimal cutoff θ∗

t is independent of an household’s history of shocks, consider two
possible cases:

Case A. θt ≤ θ∗
t . In this case the urge to consume is low. It is hence optimal to save so as to

prevent possible liquidity constraints in the future. So at+1(θ t)≥ 0, μt(θ t)= 0, and the shadow
value is

λt(θ t)= β
rt+1
wt+1

≡ �t ,

where�t depends only on aggregate states. In this case, λt is independent of the history of idiosyn-
cratic shocks. Equation (45) implies that consumption is given by ct(θ t)= θt

(1+τ ct )
�−1

t . Defining
xt(θ t−1)≡ rtat(θ t−1)+wtnt(θ t−1) as the gross income of a household, the budget identity (8)
then implies at+1(θ t)= xt(θ t−1)− θt�

−1
t . The requirement at+1(θ t)≥ 0 then implies

θt ≤ �txt ≡ θ∗
t , (49)

which defines the cutoff θ∗
t .

We conjecture that the cutoff is independent of the idiosyncratic state, making the optimal
gross income xt also independent of the idiosyncratic state. The intuition is that xt is determined
before the realization of θt and all households face the same distribution of idiosyncratic shocks.
Since the utility function is quasi-linear, a household is able to adjust labor income to meet any
target level of liquidity on hand. As a result, the distribution of xt is degenerate. This property
simplifies the model tremendously.

Case B. θt > θ∗
t . In this case the urge to consume is high. It is then optimal not to save, so

at+1(θ t)= 0 and μt(θ t)> 0. By the resource constraint (8), we have ct(θ t)= xt
(1+τ ct )

, which by

equation (49) implies ct(θ t)= θ∗
t

(1+τ ct )
�−1

t . Equation (45) then implies that the shadow value is

given by λt(θ t)= θt
θ∗
t
�t . Since θt > θ∗, equation (48) impliesμt(θ t)= �t

[
θt
θ∗
t

− 1
]
> 0. Notice that

the shadow value of goods (the marginal utility of income), λt(θ t), is higher under Case B than
under Case A because of binding borrowing constraints.

By Cases A and B, the decision rules of household consumption and saving can then be sum-
marized by equations (13) and (14), respectively. Finally, the decision rule of the household labor
supply, equation (15), is decided residually to satisfy the household budget constraint.

The above analyses imply that the expected shadow value of income,
∫

λt(θ)dF(θ), and hence
the optimal cutoff value θ∗, is determined by equation (46) by plugging in the expressions
for λt

(
θ t
)
into Cases A and B, which immediately gives equation (16). Specifically, combining
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Case A and Case B, we have

λt(θ t) = β
rt+1
wt+1

for θ ≤ θ∗
t

λt(θ t) = θt
θ∗
t
β
rt+1
wt+1

for θt ≥ θ∗
t .

The aggregate Euler equation is therefore given by

1
wt

=
∫

λt(θ)dF(θ)= β
rt+1
wt+1

[∫
θ≤θ∗

t

dF(θ)+
∫

θ>θ∗
t

θ

θ∗ dF(θ)
]

= β
rt+1
wt+1

L(θ∗
t ),

which is equation (16). This equation reveals that the optimal cutoff depends only on aggregate
states and is independent of the household’s history.

Using equation (49) together with the aggregate Euler equation and the definition of �t , we
can solve for xt :

xt = θ∗
t

(
β
rt+1
wt+1

)−1
= θ∗

t L(θ
∗
t )wt ,

which is the first line in equation (12).

A.1.3. Full self-insurance case
Next, we consider the full self-insurance case where all household borrowing constraints are non-
binding. This is possible in our model if the initial aggregate bond supply is high enough. As we
show below, the individual saving choices and their distribution become indeterminate so long
as each household’s cash on hand is sufficiently large (because of a large aggregate bond supply).
In this case, we impose an additional assumption that all households still choose the same xt .
Under this assumption, xt = Xt = rtAt +wtNt . Moreover, the first order conditions ( 46) and (47)
imply

λt(θ t)= β
rt+1
wt+1

= 1
wt

,

which suggests that
1

rt+1
= β

wt
wt+1

.

The FOC (45) together with λt(θ t)=w−1
t give the second line in equation (13). The second

line in equation (14) immediately follows since xt = Xt .

A.1.4. Condition to ensure interior labor
Finally, to ensure that the above proof and hence the associated cutoff policy rules are consistent
with the assumption of interior choices of labor, namely, nt ∈ (0,N), we need to consider the
following two cases.

First, to ensure that nt(θ t−1)> 0, consider the worst case where nt(θ t−1) takes its minimum
possible value. Given xt = rtat(θ t−1)+wtnt(θ t−1), nt(θ t−1) is at its minimum possible value
if μt = 0 and at(θ t−1) takes its maximum possible value of at

(
θ t−1)=

[
1−

(
θL

θ∗
t−1

)]
xt−1. So

nt(θ t−1)> 0 if

xt − rt

[
1−

(
θL

θ∗
t−1

)]
xt−1 > 0, (50)
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which is independent of the shock θt . This condition in the steady state becomes 1−
r
[
1−

(
θL
θ∗
)]

> 0, or equivalently (by using equation (16)),

βL
(
θ∗)> 1−

(
θL
θ∗

)
. (51)

Given that L(θ∗) is a monotonic decreasing function in θ∗ with a lower bound of 1, the nec-
essary condition to satisfy (51) in the steady state is β > 1−

(
θL
θ∗
)
, which is clearly true since

the optimal cutoff θ∗ > θL. This condition is further ensured by the requirement β > 1− θL
θH
.

Therefore, as long as the condition β > 1− θL
θH

is met, the condition (50) is assumed to hold
throughout the paper.

Second, to ensure that nt <N, consider agents who encounter the borrowing constraint last
period such that at(θ t−1)= 0. Their labor supply reaches the maximum value at nt(θ t−1)= xt

wt
=

θ∗
t L(θ∗

t )< θH . Given a finite steady-state value of θ∗, the value of N can be chosen such that

N > θH > θ∗L(θ∗). (52)

A.2. PROOF OF PROPOSITION 2
In the laissez-faire economy, the capital tax, the labor tax, government spending, and government
bond, are all equal to zero. In this laissez-faire competitive equilibrium, the capital-to-labor ratio
Kt
Nt

satisfies two conditions. The first condition is derived from the resource constraint (23), which
can be expressed as

F(Kϕ

t ,Kt ,Nt)+ (1− δ)Kt = Ct +Kt+1 = xt ,
where the last equality utilizes the definition of xt . Dividing both sides of the equation by Kt
gives

Kϕ

t

(
Kt
Nt

)α−1
+ (1− δ)= 1

1−D(θ∗
t )

, (53)

where xt/Kt is substituted out by 1
1−D(θ∗

t )
.

The second condition is derived by combining equation (16) and the no-arbitrage condition,
rt = qt + 1− δ, which gives

1= β

(
αKϕ

t

(
Kt
Nt

)α−1
+ 1− δ

)
L(θ∗

t ), (54)

where the MPK qt is replaced by αKϕ

t

(
Kt
Nt

)α−1
. Since the capital-to-labor ratio must be the same

in both equations, conditions (53) and ( 54) imply the following equation in the steady state:
αβ

(1−D(θ∗))
+ β(1− α)(1− δ)= 1

L(θ∗)
, (55)

which solves for the steady-state value of θ∗. It can be shown easily that both L(θ∗) and D(θ∗)
are monotonically decreasing in θ∗, thus the right-hand side (RHS) of equation (55) increases
monotonically in θ∗ and the left-hand side (LHS) of equation (55) decreases monotonically in θ∗.
Hence, if a steady-state cutoff exists, it must be unique.

It remains to be shown if the RHS and the LHS cross each other at an interior value of
θ∗ ∈ [θL, θH]. The RHS of equation (55) reaches its minimum value of 1 when θ∗ = θH and its
maximum value of θ̄/θL > 1 when θ∗ = θL. The LHS of equation (55) takes the maximum value
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of infinity when θ∗ = θL and the minimum value of αβθH
θH−θ

+ β(1− α)(1− δ) when θ∗ = θH . Thus,
an interior solution exists if and only if

αβθH

θH − θ
+ β(1− α)(1− δ)< 1.

Clearly, θ∗ = θL cannot constitute a solution for any positive value when θL > 0. On the other
hand, θ∗ = θH may constitute a solution if the above condition is violated. For example, if θH is
small and close enough to the θ , then the above condition does not hold since its LHS approaches
infinity when θH → θ . Therefore, an interior solution for θ∗ exists if the upper bound of the
idiosyncratic shock is large enough. Otherwise, we have the corner solution θ∗ = θH . Finally, if
θ∗ is an interior solution, then L(θ∗)> 1 and r < 1/β by equation (16).

A.3. PROOF OF PROPOSITION 3
A.3.1. The “Only If” part
Assume that we have the allocation {θ∗

t , Ct ,Nt ,Kt+1, Bt+1}∞t=1 and the initial risk-free rate r1.
We then can directly construct the prices, taxes, and individual allocations in the competitive
equilibrium in the following steps:

1. Kt is set to be Kt .
2. wt and qt are set by (3) and (4), which are wt =MPN,t and qt =MPK,t , respectively.
3. Depending on the value of θ∗

t , we consider two cases below.

(a) Consider the case in which θ∗
t < θH . At+1 is set by the asset market clearing condi-

tion,At+1 =Kt+1 + Bt+1. xt is chosen as xt = At+1
1−D(θ∗

t )
= Kt+1+Bt+1

1−D(θ∗
t )

according to the first

line of equation (19). By the first line of (12), the wt = xt
θ∗
t L(θ∗

t )
= At+1

θ∗
t L(θ∗

t )[1−D(θ∗
t )] =

Kt+1+Bt+1
θ∗
t L(θ∗

t )[1−D(θ∗
t )] , which together with wt =MPN,t imply the first line of condition (25).

τc is set by the first line of equation (18):

1+ τc,t = D
(
θ∗
t
)
xt

Ct
= D

(
θ∗
t
)

Ct

Kt+1 + Bt+1[
1−D

(
θ∗
t
)] .

Hence, rt is implied by equation (16)

1
rt

= β
wt−1
wt

L(θ∗
t−1)= β

At
At+1

θ∗
t

θ∗
t−1

[
1−D

(
θ∗
t
)][

1−D
(
θ∗
t−1

)]L(θ∗
t
)

(56)

(b) Suppose θ∗
t = θH . Use the asset-market-clearing condition to set At+1 =Kt+1 + Bt+1.

By aggregating the second line of equation (18), 1+ τ ct is determined by

1+ τ ct = θwt
Ct

= θ̄MPN,t
Ct

,

and hence Xt is chosen according its definition:
Xt =At+1 + (

1+ τ ct
)
Ct =Kt+1 + Bt+1 +wt θ̄ .

The interest rate is set as

rt = 1
β

wt−1
wt

.

Given r1 and the expression {rt+1}∞t=1, the capital tax {τ kt+1}∞t=0 is chosen to satisfy the no-
arbitrage condition: rt = 1− δ + (1− τ kt )MPK,t for all t ≥ 1. ct(θt) and at+1(θt), are pinned
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down by the second lines in equations (13) and (14), respectively. Finally, set nt(θt−1) to
satisfy equation (15), which is implied by the individual household budget constraint.

4. There are two cases.

(a) First consider the case θ∗
t < θH . The implementability conditions are

L(θ∗
1 )θ

∗
1 ≥N1 + r1C−1

1 D(θ∗
1 )L(θ

∗
1 )θ

∗
1 (K1 + B1)

and

L(θ∗
t )θ

∗
t ≥Nt + 1

β
θ∗
t−1

[
1−D

(
θ∗
t−1

)]
for t = 1 and t ≥ 2, respectively. Multiplying both sides of the above equations by

Ct
D(θ∗

t )L(θ∗
t )θ∗

t
leads to

C1
D(θ∗

1 )
≥ C1

D(θ∗
1 )L(θ

∗
1 )θ

∗
1
N1 + r1(K1 + B1),

Ct
D(θ∗

t )
≥ Ct

D(θ∗
t )L(θ∗

t )θ∗
t
Nt +

θ∗
t−1

D(θ∗
t )L(θ∗

t )θ∗
t

1
β

[
1−D(θ∗

t−1)
]
Ct .

Inserting the relationships constructed in steps 3 for xt , Ct , At+1, τ ct ,wt , and rt into the
above equation gives(

1+ τ ct
)
Ct +At+1 ≥wtNt + rtAt for all t ≥ 1,

which together with the aggregate resource constraint and the identity Yt = qtKt +wtNt
give the government budget constraint.

(b) Next consider the case θ∗
t = θH . Plugging the relationships constructed in steps 2 and 3

for wt , xt , Ct , At+1, 1+ τ ct ,wt and rt into the implementability conditions gives(
1+ τ ct

)
Ct +At+1 ≥wtNt + rtAt for all t ≥ 1,

which together with the aggregate resource constraint and the identity Yt = qtKt +wtNt
gives the government budget constraint.

A.3.2. The “If” part
Note that the aggregate resource constraint is trivially implied by a competitive equilibrium, since
it is part of the definition. The implementability condition is constructed as follows. First, rewrite
the government budget constraint as

Gt ≤ τ kk qtKt + τ ct Ct + Bt+1 − rtBt .
Combining this equation with the resource constraint (23), the no-arbitrage condition, and the

identity Yt = qtKt +wtNt implies(
1+ τ ct

)
Ct +At+1 ≥wtNt + rtAt . (57)

We then consider two cases below.

The θ∗
t < θH case. For t ≥ 2, the aggregate consumption function, saving function, and

equations (12) and (16) suggest that
{
wt , rt , 1− τ ct

}
can be expressed, respectively, as

wt = At+1[
1−D(θ∗

t )
]
L(θ∗

t )θ∗
t
,

rt =
At+1

[
1−D(θ∗

t−1)
]
θ∗
t−1

βAt
[
1−D(θ∗

t )
]
θ∗
t L(θ∗

t )
,
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and

1+ τ ct =
[
1−D

(
θ∗
t
)

D
(
θ∗
t
) Ct

At+1

]−1

.

Substituting the above equations into (57) and rearranging terms, we get the first line of
implementability condition (26):

L(θ∗
t )θ

∗
t ≥Nt + 1

β
θ∗
t−1

[
1−D

(
θ∗
t−1

)]
.

For the first period, B1, K1, and τk,1 are given, which implies that r1 = 1+ (1− τ k1 )MPK,1 − δ

is also given. Therefore, the first-period implementability condition could be rewritten as

L(θ∗
1 )θ

∗
1 ≥N1 + r1C−1

1 D(θ∗
1 )L(θ

∗
1 )θ

∗
1 (K1 + B1).

The θ∗
t = θH case. The aggregate consumption function, aggregate saving function, and

equations (12) and (16) suggest that
{
rt , 1− τ ct

}
can be expressed, respectively, as

rt = MPN,t
βMPN,t−1

and

1+ τ ct =
[

Ct

MPN,t θ̄

]−1
.

Substituting the above equations into (57) and rearranging terms, we get the second line of
implementability condition (26):

θ̄ ≥Nt + 1
β

Kt + Bt
MPN,t−1

− Kt+1 + Bt+1
MPN,t

.

For the first period, r1 is given. Therefore, the first-period implementability condition could be
rewritten as

θ̄ ≥N1 + r1(K1 + B1)
MPN,1

− K2 + B2
MPN,1

.

A.4. THE RAMSEY OBJECTIVE FUNCTION
By equation (13) and the third step of Appendix A.3, the individual objective function can be
rewritten as

ct(θt)=
⎧⎨⎩min

{
1, θt

θ∗
t

}
Ct

D(θ∗
t )

if θ∗
t < θH

θt
θ̄
Ct if θ∗

t = θH
.

Conditional on the value of θ∗
t < θH , the consumption part of the objective function at period

t becomes∫
θ>θ∗

t

θ log ct(θ)dF(θ) =
∫

θ>θ∗
t

θ ln
Ct

D(θ∗
t )

dF(θ)+
∫

θ≤θ∗
t

θ( ln
θ

θ∗
t

+ ln
Ct

D(θ∗
t )

)dF(θ) (58)

= W(θ∗
t )+ θ ln Ct ,
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whereW(θ∗
t ) is defined as

W(θ∗
t )≡ −θ lnD(θ∗

t )+
∫

θ≤θ∗
t

θ ln
(

θ

θ∗
t

)
dF(θ).

We then consider the case in which θ∗
t = θH :∫

θt ln ct(θ t)dF(θ)=
∫

θ ln θdF(θ)− θ̄ ln θ̄ + θ ln Ct ,

which is equal to equation (58) when θ∗
t = θH . As a result, the Ramsey objective function is written

as equation (28).

A.5. RAMSEY OPTIMAL CONDITIONS
The Ramsey planner treats K =K as endogenous. So the first-order Ramsey conditions for{
Bt+1, θ∗

t ,Nt , Ct ,Kt+1
}∞
t=2 are given, respectively, by

− λt
MPN,t

1θ∗
t =θH + λt+1

MPN,t
1θ∗

t+1=θH − φt

θ∗
t L

(
θ∗
t
) [
1−D

(
θ∗
t
)]1θ∗

t <θH = 0, (59)

λt+1J
(
θ∗
t
)
1θ∗

t+1<θH = λtH
(
θ∗
t
)
1θ∗

t <θH + ∂W
(
θ∗
t
)

∂θ∗
t

− φt
∂
[
θ∗
t L

(
θ∗
t
) [
1−D

(
θ∗
t
)]]−1

∂θ∗
t

1θ∗
t <θH , (60)

1+ λt = μt
∂F(Kϕ

t ,Kt ,Nt)
∂Nt

+ (λt1θ∗
t =θH − λt+11θ∗

t+1=θH )
∂MP−1

N,t
∂Nt

(61)

+φtMPNN,t1θ∗
t <θH ,

θ̄

Ct
= μt , (62)

μt = βμt+1

[
∂F(Kϕ

t+1,Kt+1,Nt+1)
∂Kt+1

+ 1− δ

]
(63)

+(λt1θ∗
t =θH − λt+11θ∗

t+1=θH )
1

MPN,t

+
(
λt+11θ∗

t+1=θH − λt+21θ∗
t+2=θH

) (
β(Kt+2 + Bt+2)

∂MP−1
N,t+1

∂Kt+1

)

+βφt+1
∂MPN,t+1

∂Kt+1
1θ∗

t+1<θH − φt

θ∗
t L

(
θ∗
t
) [
1−D

(
θ∗
t
)]1θ∗

t <θH ,

where M
(
θ∗
t
)≡ ∂[L(θ∗

t )θ∗
t ]

∂θ∗
t

, J
(
θ∗
t
)≡ ∂[θ∗

t (1−D(θ∗
t ))]

∂θ∗
t

, and these functions satisfy M
(
θ∗
t
)= J

(
θ∗
t
)=

F(θ∗
t )> 0 for θ∗

t ∈ (θL, θH] (as shown in Lemma 1).
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We then consider the following cases:

1. Suppose θ∗
t < θH and θ∗

t+1 < θH . In this case, φt = 0 and we get (by using lemma (1))

λt+1 = λt + 1
F(θ∗

t )
∂W

(
θ∗
t
)

∂θ∗
t

. (64)

This suggests that the λt is a monotonic increasing sequence if θ∗
t < θH .

2. Suppose θ∗
t = θH and θ∗

t+1 < θH . FOCs (59) and (60) imply λt+1 = 0 and λt = 0, which
suggests that the government budget constraint does not bind at period t and t + 1. This
case is impossible assuming θ∗

1 < θH and λ1 > 0.
3. Suppose θ∗

t = θH and θ∗
t+1 = θH . The first-order condition with respect to Bt+1 suggests

λt = λt+1 and φt = 0. Given the discussion of previous cases, we know that λt is monotonic
increasing until θ∗

t = θH . Once θ∗
t reaches θH , θ∗

t stays at θH and λt becomes constant.
4. Suppose θ∗

t < θH and θ∗
t+1 = θH . This case describe the last transition period before reach-

ing the Ramsey steady state. The λt+1, λt , and θt have to satisfy the relationship implied by
the FOCs (59) and (60):

θ∗
t L

(
θ∗
t
) [
1−D

(
θ∗
t
)]

MPN,t

∂
[
θ∗
t L

(
θ∗
t
) [
1−D

(
θ∗
t
)]]−1

∂θ∗
t

λt+1 = λtF(θ∗
t )+ ∂W

(
θ∗
t
)

∂θ∗
t

.

Moreover, K1 and B1 as well as r1 are taken as given, since the initial capital tax is assumed to
be given. Assuming θ∗

1 < θH , the first-order Ramsey conditions with respect to N1, C1, and θ∗
1 are

given, respectively, by

1+ λ1 + λ1
D(θ∗

1 )L(θ
∗
1 )θ

∗
1

C1

∂r1
∂N1

(K1 + B1)= μ1
∂F(Kϕ

1 ,K1,N1)
∂N1

, (65)

μ1 = θ̄

C1
+ λ1

D(θ∗
1 )L(θ

∗
1 )θ

∗
1

C2
1

r1(K1 + B1), (66)

∂W(θ∗
1 )

∂θ∗
1

+ λ1H(θ∗
1 )− λ2J(θ∗

1 )= λ1
∂
[
D(θ∗

1 )L(θ
∗
1 )θ

∗
1
]

∂θ∗
1

r1(K1 + B1)
C1

. (67)

A.5.1. Several Lemmas
The following three lemmas are useful to characterize the optimal Ramsey allocation:

Lemma 1. M
(
θ∗
t
)= J

(
θ∗
t
)= F(θ∗

t ).

Proof.

M
(
θ∗
t
) ≡

(
L(θ∗

t )+
∂L(θ∗

t )
∂θ∗

t
θ∗
t

)
=

∫
θ≤θ∗

t

dF(θ)+
∫

θ>θ∗
t

θ

θ∗
t
dF(θ)−

∫
θ>θ∗

t

θ

θ∗
t
dF(θ)

=
∫

θ≤θ∗
t

dF(θ)= F(θ∗
t ).

J
(
θ∗
t
) ≡

(
1−D(θ∗

t )− θ∗
t
∂D

(
θ∗
t
)

∂θ∗
t

)
= 1−

[∫
θ≤θ∗

t

θ

θ∗
t
dF(θ)+

∫
θ>θ∗

t

dF(θ)
]

+
∫

θ≤θ∗
t

θ

θ∗
t
dF(θ)

= 1−
∫

θ>θ∗
t

dF(θ)= F(θ∗
t )
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Lemma 2. ∂W(θ∗
t )

∂θ∗
t

> 0 for all θ∗
t ∈ (θL, θH), and

∂W(θ∗
t )

∂θ∗
t

= 0 if θ∗
t = θL or θ∗

t = θH .

Proof.We first show that ∂W(θ∗
t )

∂θ∗
t

= 0 if θ∗
t = θL or θH :

∂W(θ∗
t )

∂θ∗
t

= −∂D
(
θ∗
t
)

∂θ∗
t

θ

D
(
θ∗
t
) −

∫
θ≤θ∗

t

θ

θ∗
t
dF(θ)=

[
θ

D
(
θ∗
t
)
θ∗
t

− 1

] ∫
θ≤θ∗

t

θ

θ∗
t
dF(θ)

=

⎧⎪⎪⎨⎪⎪⎩
[
1− θ

θ
θH

θH

]
θ
θH

= 0 if θ∗
t = θH[

1− θ
θL

]
0= 0 if θ∗

t = θL

.

Next, we show that ∂W(θ∗
t )

∂θ∗
t

> 0 for any θ∗
t ∈ (θL, θH). Note that

D
(
θ∗
t
)
θ∗
t =

∫
θ≤θ∗

t

θdF(θ)+ θ∗
t

∫
θ>θ∗

t

dF(θ)= θ −
∫

θ>θ∗
t

(θ − θ∗
t )dF(θ)< θ

→ θ

D
(
θ∗
t
)
θ∗
t

> 1.

Hence,

∂W(θ∗
t )

∂θ∗
t

=
[

θ

D
(
θ∗
t
)
θ∗
t

− 1

] ∫
θ≤θ∗

t

θ

θ∗
t
dF(θ)> 0

Lemma 3. ∂D(θ∗
t )

∂θ∗
t

< 0 for all θ∗
t ∈ (θL, θH).

Proof. The definition of D is given by

D
(
θ∗
t
)=

∫
θ≤θ∗

t

θ

θ∗
t
dF(θ)+

∫
θ>θ∗

t

dF(θ)< 1

and hence the derivative is
∂D

(
θ∗
t
)

∂θ∗
t

= −1−
∫

θ≤θ∗
t

θ

θ∗2
t

dF(θ)+ 1= −
∫

θ≤θ∗
t

θ

θ∗2
t

dF(θ)< 0.

A.6. PROOF OF PROPOSITION 4
A.6.1. Existence of the Ramsey steady state
In what follows, we first sketch the proof that a Ramsey steady state featuring θ∗ = θH exists. We
proceed by the following steps, which show that the conjecture θ∗ = θH satisfies all of the Ramsey
FOCs and the FOC-implied steady-state values of the aggregate allocation {C,N,K, B} and that
the Lagrangian multipliers {λ,μ} are unique, mutually consistent, strictly positive, and finitely
valued:

1. The FOC with respect to Bt+1 in equation (59) implies that λt is constant at λ and φt = 0.
2. The FOC with respect to θ∗

t in equation (60) is satisfied at θ∗
t = θH .

3. The FOC with respect to K in equation (63) is reduced to

1= β

(
α + ϕ

α
MPK + 1− δ

)
,
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which implies MPK ≡ αKϕ
(K
N
)α−1 = α

α+ϕ
1−β(1−δ)

β
∈ (0,∞) (i.e., the capital stock is

unique, strictly positive, and bounded, given thatN ∈ (
0,N

)
). Given the assumption of the

production function, it must be true that the following ratios are unique, strictly positive,
and finite: {K/N, Y/K,MPN , Y/N} ∈ (0,∞). More specifically, the Y/N and Y/K ratios
can be expressed, respectively, as

Y
N

=Kϕ

(
K
N

)α

=
(
1− β(1− δ)

β(α + ϕ)

)(
K
N

)
=K

ϕ
1−α

(
β(α + ϕ)

1− β(1− δ)

) α
1−α

(68)

and

Y
K

=Kϕ

(
K
N

)α−1
= 1− β(1− δ)

β(α + ϕ)
. (69)

4. The resource constraint,

F(K,N)=K(α+ϕ)N1−α = C + δK +G,

together with a finite level of government spending G implies the unique ratio C/K ∈
(0,∞) is

C
Y

=
(
1− δ

K
Y

− G
Y

)
=

(
1− (α + ϕ) βδ

1− β (1− δ)
− G

Y

)
, (70)

where the last equality uses (69).
5. We know that under our parameter restrictions the level of labor is interior, N ∈ (

0,N
)
;

hence, it must be true that the aggregate allocation is also unique and interior: {C,K, Y} ∈
(0,∞).

6. Next, we show that {μ, λ} ∈ (0,∞) and that these steady-state values are unique. Given
θ∗ = θH in the steady state, first order conditions (61) and (62) become 1+ λ = μ ×MPN
and μ × C = θ̄ , respectively. These two equations imply {μ, λ} are unique and ∈ (0,∞).

7. The Ramsey steady-state version of equation (63) reads as

1= β

[
∂F(Kϕ ,K,N)

∂K
+ 1− δ

]
,

which is the MGR with the social MPK.
8. The optimal capital tax is chosen such that the Euler equation in the competitive equilib-

rium (16) is consistent with the one chosen by the Ramsey planner in (63). Hence, τk,t+1 is
pinned down by

1− τ kt+1 =
(

ϕ + α

α

)⎛⎝ wt+1
wt

1
L(θ∗

t )
− β(1− δ)

μt
μt+1

− β(1− δ)

⎞⎠ ,

which is the steady-state equation (31) since L(θH) = 1.

This finishes the proof for the existence of the Ramsey steady state. To show uniqueness, we
then show that there is no Ramsey steady state for θ∗ ∈ [θL, θH).

A.6.2. Uniqueness of the Ramsey steady state
Suppose there exists another Ramsey steady state with θ∗ ∈ (θL, θH). From equation (59), we see
that θ∗

t < θH and θ∗
t+1 < θH imply φt = 0, which together with FOCs (62) and (61) imply that

both λt and μt have to be finite and positive in the Ramsey steady state. Moreover, the first-order
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condition with respect to θ∗
t is then reduced to

λt+1 = λt + 1
F(θ∗

t )
∂W

(
θ∗
t
)

∂θ∗
t

,

which leads to a contradiction since the above equation suggests an ever increasing λt .
Finally, we show that the case of θ∗

t = θL cannot constitute a Ramsey equilibrium, although
the necessary FOC with respect to θ∗

t is satisfied. The reason is that the first term of the Ramsey
objective function (28), W(θ∗

t ), is monotonically increasing in θ∗
t ∈ (θL, θH). Hence, for a global

maximum, a cutoff θ∗
t at its lower corner cannot be a Ramsey equilibrium.

To ensure that n ∈ (
0,N

)
(see Proposition 1), note that we have assumed θH < θL

1−β
, which

ensures that the minimum individual labor input remains positive, as shown in Appendix A.1.
Moreover, by equation (52), the maximum value of n is less than N if N > θH in this case.

In addition, we can show that the maximum individual asset demand remains finite in the
steady state even if the risk-free rate is equal to the time discount rate, r = 1/β . Since θH < θL

1−β
,

we have

xt = Ct
D(θH)

= Ct

θ
θH < ∞.

Given the finite value of xt , the individual asset holding at+1 is determined by the size of the
idiosyncratic shock θt , and the agents with the largest asset holdings are those who receive the
smallest shock θt = θL; i.e.,

at+1(θL)=
[
1− θL

θH

]
xt ,

which is strictly positive and finite.

A.7. PROOF OF PROPOSITION 5
Define H(θ∗) ≡ [1−D(θ∗)]. The production function and equation (36) imply that the log-
arithms of the capital stock and output can each be expressed as a moving-average process:

logKt+1 = logH
(
θ∗
t
)+ (α + ϕ) logKt + (1− α) logNt

= (α + ϕ)t K1 +
t−1∑
j=0

(α + ϕ)j logH
(
θ∗
t−j

)
+ (1− α)

t−1∑
j=0

(α + ϕ)j logNt−j.

log Yt = (α + ϕ) logKt + (1− α) logNt

= (α + ϕ)t K1 +
t−1∑
j=1

(α + ϕ)j logH
(
θ∗
t−j

)
+ (1− α)

t−1∑
j=0

(α + ϕ)j logNt−j.

Hence, the welfare function can be written as

V
({τt}∞t=1

)=
∞∑
t=1

βt−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
θt≤θ∗

t
θt(i) log θt(i)

θ∗
t
dF(θ) −Nt+

θ̄

⎡⎣ (α + ϕ)t K1 +∑t−1
j=1 (α + ϕ)j logH

(
θ∗
t−j

)
+(1− α)

∑t−1
j=0 (α + ϕ)j logNt−j

⎤⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Since all period-t variables in the objective function depend on the tax rate through the cutoff θ∗
t ,

and since the cutoff θ∗
t depends only on future taxes, the derivative of V with respect to τt (for
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t ≥ 2) can be decomposed as the product of two terms:
∂V

∂τt+1
= ∂V

∂θ∗
t

∂θ∗
t

∂τt+1
. (71)

Since equation (42) implies
∂θ∗

t
∂τt+1

< 0, (72)

it remains to determine the magnitude and sign of ∂V
∂θ∗

t
. Notice that equations (32)-(38) imply

that all time-t aggregate quantities depend only on the current cutoff θ∗
t . Taking the derivative of

V
({τt}∞t=0

)
with respect to θ∗

t gives

∂V
∂θ∗

t
=

⎧⎨⎩− ∫
θ≤θ∗

t
θ(i)
θ∗
t
dF− ∂Nt

∂θ∗
t

+ βθ̄(α + ϕ)
[
1+ β(α + ϕ) + β2(α + ϕ)2 + . . .

] 1
Ht

∂Ht
∂θ∗

t

+θ̄ (1− α)
[
1+ β(α + ϕ) + β2(α + ϕ)2 + . . .

] 1
Nt

∂Nt
∂θ∗

t

⎫⎬⎭ .

By the definition of the functions D(θ∗) and L(θ∗), we have ∂Ht
∂θ∗

t
= − ∂Dt

∂θ∗
t

= ∫
θ≤θ∗

t
θ(i)
θ∗2
t
dF and

∂Nt
∂θ∗

t
= (1− α)

∂[θ∗
t L(θ∗

t )]
∂θ∗

t
= (1− α) F(θ∗), so

∂V
∂θ∗

t
= −

∫
θ≤θ∗

t

θ(i)
θ∗
t
dF−(1− α) F

(
θ∗)

+ βθ̄(α + ϕ)

1− β(α + ϕ)

1
H
(
θ∗
t
) ∫

θ≤θ∗
t

θ(i)
θ∗2
t

dF+ θ̄ (1− α)

1− β(α + ϕ)

F
(
θ∗
t
)

θ∗
t L

(
θ∗
t
) .

Multiplying both sides by L
(
θ∗
t
)
gives

L
(
θ∗
t
) ∂V

∂θ∗
t

=
⎧⎨⎩ −L

(
θ∗
t
) ∫

θ≤θ∗
t

θ(i)
θ∗
t
dF−(1− α) L

(
θ∗
t
)
F(θ∗)

+ βθ̄(α+ϕ)
1−β(α+ϕ)

L(θ∗
t )

θ∗
t H(θ∗

t )

∫
θ≤θ∗

t
θ(i)
θ∗
t
dF+ θ̄ (1−α)

1−β(α+ϕ)

F(θ∗
t )

θ∗
t

⎫⎬⎭
=

⎧⎨⎩
[
β(α + ϕ) θ̄

θ∗
t

− (1− β(α + ϕ))H
(
θ∗
t
)] L(θ∗

t )
(1−β(α+ϕ))H(θ∗

t )

[∫
θ≤θ∗

t
θ(i)
θ∗
t
dF

]
+

[
θ̄
θ∗
t

− (1− β(α + ϕ)) L
(
θ∗
t
)]

(1−α)
(1−β(α+ϕ))

F
(
θ∗
t
)

⎫⎬⎭
=

⎧⎨⎩
[
β(α + ϕ) L

(
θ∗
t
)−H

(
θ∗
t
)] L(θ∗

t )
(1−β(α+ϕ))H(θ∗

t )

[∫
θ≤θ∗

t
θ(i)
θ∗
t
dF

]
+ [

β(α + ϕ) L
(
θ∗
t
)−H

(
θ∗
t
)]

(1−α)
(1−β(α+ϕ))

F
(
θ∗
t
)

⎫⎬⎭ ,

where the last equality is based on the identity in equation (41), θ̄
θ∗
t

= L
(
θ∗
t
)−H

(
θ∗
t
)
.

Clearly, ∂V
∂θ∗

t
= 0 if and only if

β(α + ϕ) L
(
θ∗
t
)−H

(
θ∗
t
)= 0. (73)

Notice that equation (40) can be rewritten as

H(θ∗
t )= βαL

(
θ∗
t
)
(1− τt+1)

θ∗
t+1L(θ

∗
t+1)

θ∗L
(
θ∗
t
) .

So
∂V
∂θ∗

t
= 0 if and only if

α + ϕ

α
=

(
1− τ kt+1

) θ∗
t+1L(θ

∗
t+1)

θ∗
t L

(
θ∗
t
) , (74)
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which in the Ramsey steady state implies

1− τ ∗
k = α + ϕ

α
.

Note θ∗L(θ∗) = ∫
θ≤θ∗ θ∗dF+ ∫

θ>θ∗ θ(i) dF is an increasing function of θ∗
t , thus

∂[θ∗L(θ∗)]
∂τ

< 0. Also, θ∗
t is constant if τ kt is constant. Therefore, we have the following possible

cases to consider:
First, for any constant tax rate τ̄ , it is easy to see that

α + ϕ

α
� (1− τ̄ )

θ∗L(θ∗)
θ∗L(θ∗)

if and only if τ̄ � 0;

hence, setting τ̄ = −ϕ
α
for all t maximizes V̄

({τ̄ }∞t=0
)
given that τt = τ̄ .

Now suppose ϕ = 0 and the optimal tax rate is time varying and contains an increas-
ing sequence in the time interval [t, T] with

{
τ kt < τ kt+1 < τ kt+2 < . . . < τ kT

}
. This implies that

we have a monotonically decreasing sequence for
{
θ∗
t Lt

}
up to T > t. So 1>

θ∗
t+1L(θ

∗
t+1)

θ∗L(θ∗
t )

>(
1− τ kt+1

)
θ∗
t+1L(θ

∗
t+1)

θ∗
t L(θ∗

t )
and ∂V

∂θ∗
t

> 0. By equations (71) and (72), we have ∂V
∂τt+1

< 0, implying
that increasing the tax rate is reducing welfare, thus not optimal. Hence, without production
externality, any dynamic tax path with an increasing tax rate in any time interval is not optimal.

Now suppose ϕ = 0 and that the optimal tax rate is a monotonically decreasing sequence{
τ kt > τ kt+1 > τ kt+2 > . . .

}
for all t > 1 and that this sequence converges to a positive constant

τ̄ > 0. This implies that in the limit we have θ∗
t+1L(θ

∗
t+1)

θ∗L(θ∗
t )

→ 1 and
(
1− τ kt+1

)
θ∗
t+1L(θ

∗
t+1)

θ∗L(θ∗
t )

→ (1− τ̄ ) <

1 in the long run. By equations (71) and (72), we have ∂V
∂τ̄

< 0, suggesting τ̄ should be zero in the
long run—a contradiction.

Therefore, without production externalities, any optimal path of the tax rate must either be
monotonically converging to zero or constant at zero starting from t > 1. Now suppose τ kt mono-
tonically converges to 0. Since along a declining tax path, the term θ∗

t L
(
θ∗
t
)
is monotonically

increasing, we must have θ∗
t+1L

(
θ∗
t+1

)
θ∗L(θ∗

t )
> 1 at any point of time t ∈ (1,∞). By equation (74), sup-

pose 1<
(
1− τ kt+1

)
θ∗
t+1L(θ

∗
t+1)

θ∗
t L(θ∗

t )
along the declining tax path in period t ∈ (1,∞), then we must

have ∂V
∂θ∗

t
< 0 and ∂V

∂τt+1
> 0, which suggests that a higher (rather than lower) tax rate tomorrow in

period t + 1 would maximize welfare. This contradicts the requirement that
{
τ kt

}∞
t=2

be a mono-

tonically decreasing sequence. Hence, we must have 1>
(
1− τ kt+1

)
θ∗
t+1R(θ

∗
t+1)

θ∗
t R(θ∗

t )
along the declining

tax path. On this path, since ∂V
∂θ∗

t
> 0 and ∂V

∂τt+1
< 0 for all t, a decreasing sequence of the tax rate is

optimal. This also implies that the welfare function V
({

τ kt

}∞
t=0

)
converges monotonically in the

limit to the upper bound V({0}).
Therefore, without production externalities, the welfare along a declining tax path must be

strictly lower than the welfare along the constant (zero) tax path: V
({

τ kt

}∞
t=0

)
<V(0). Hence,

without production externalities, setting τ kt immediately to zero for t > 1 is optimal.

A.8. PROOF OF PROPOSITION 6
The definition of competitive equilibrium and the equilibrium property of Case B remain
largely unchanged compared to the benchmark model (Proposition 1), except the following
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modifications: First, we consider only the case where θ∗
t = θH . Second, xt is redefined as

xt(θ t−1)≡ rtat(θ t−1)+wtnt(θ t−1)− Tt .
Third, the government budget constraint and household budget constraint are changed to

Bt+1 + Tt ≥Gt + rtBt
and

ct(θ t)+ at+1(θ t)≤ rtat(θ t−1)+wtnt(θ t−1)− Tt ,
respectively. Finally, the no-arbitrage condition becomes

rt = 1− δ +MPK,t .

A.8.1. The “Only If” part
Assume that we have the allocation {Ct ,Nt ,Kt+1, Bt+1}∞t=1 and the initial risk-free rate r1. We then
can directly construct the prices, taxes, and individual allocations in the competitive equilibrium
in the following steps:

1. Kt is set to equal Kt .
2. wt and qt are given by (3) and (4).
3. The asset-market-clearing condition is used to set At+1 =Kt+1 + Bt+1.
4. The interest rate is given by

rt = 1
β

wt−1
wt

.

5. Tt is chosen such that the government budget constraint holds.
6. Xt is chosen according to the second line of equation (19 ):

Xt =At+1 + Ct .
7. ct(θt) and at+1(θt) are pinned down by the second lines in equations (13) and (14), respec-

tively. Finally, nt(θt−1) is set to satisfy equation (15), which is implied by the individual
household budget constraint.

Therefore, the allocation has to satisfy the following three conditions in order to construct a
competitive equilibrium:

1. The no-arbitrage condition rt = 1− δ +MPK,t holds for all t ≥ 1.
2. The aggregate resource constraint Ct +Kt+1 = F

(
Kϕ
t ,Kt ,Nt

)+ (1− δ)Kt holds.
3. By the second line of equation (18), Ct has to satisfy Ct = θwt = θMPN,t .

A.8.2. The “If” part
Note that the aggregate resource constraint and no-arbitrage condition are trivially implied by a
competitive equilibrium since it is part of the definition. The condition that Ct = θMPN,t holds in
competitive equilibrium according to the Case B version of Proposition 1.
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