
Proceedings of the Royal Society of Edinburgh, page 1 of 17

DOI:10.1017/prm.2023.102

Sharp convergence for sequences of Schrödinger
means and related generalizations

Wenjuan Li
School of Mathematics and Statistics, Northwestern Polytechnical
University, Xi’an 710129, China (liwj@nwpu.edu.cn)

Huiju Wang
School of Mathematics and Statistics, Henan University, Kaifeng
475000, China (huijuwang@mail.nwpu.edu.cn)

Dunyan Yan
School of Mathematics Sciences, University of Chinese Academy of
Sciences, Beijing 100049, China (ydunyan@ucas.ac.cn)

(Received 6 August 2023; accepted 30 August 2023)

For decreasing sequences {tn}∞n=1 converging to zero and initial data f ∈ Hs(RN ),
N � 2, we consider the almost everywhere convergence problem for sequences of
Schrödinger means eitnΔf , which was proposed by Sjölin, and was open until
recently. In this paper, we prove that if {tn}∞n=1 belongs to Lorentz space �r,∞(N),

then the a.e. convergence results hold for s > min{ r
N+1

N
r+1

, N
2(N+1)

}. Inspired by

the work of Lucà-Rogers, we construct a counterexample to show that our a.e.
convergence results are sharp (up to endpoints). Our results imply that when
0 < r < N

N+1
, there is a gain over the a.e. convergence result from Du-Guth-Li and

Du-Zhang, but not when r � N
N+1

, even though we are in the discrete case. Our

approach can also be applied to get the a.e. convergence results for the fractional
Schrödinger means and nonelliptic Schrödinger means.

Keywords: Schrödinger mean; almost everywhere convergence; maximal functions;
pointwise convergence

2020 Mathematics Subject Classification: 42B25; 42B20

1. Introduction

The solution of the Schrödinger equation

{
i∂tu(x, t) − Δu(x, t) = 0 x ∈ R

N , t ∈ R
+,

u(x, 0) = f(x)
(1.1)
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can be formally written as

eitΔf(x) :=
1

(2π)N

∫
RN

eix·ξ+it|ξ|2 f̂(ξ) dξ, (1.2)

where f̂(ξ) =
∫

RN e−ix·ξf(x) dx. eitΔf is referred to as the Schrödinger mean of f at
time t. The problem of almost everywhere convergence as t → 0 has been studied
extensively, under the assumption that f belongs to the Sobolev space Hs(RN ).
The a.e. convergence result holds for s � 1/4 when N = 1 by Carleson [3], and for
s > N

2(N+1) when N � 2 by Du-Guth-Li [8] and Du-Zhang [9]. These results are
sharp (except for the endpoints when N � 2) according to Dahlberg–Kenig [6] and
Bourgain [2]. It is worth mentioning that a different counterexample was raised by
Lucà-Rogers [12] for N � 2.

In this paper, we consider a related problem: to investigate the almost everywhere
convergence properties of eitnΔf , where tn belongs to some decreasing sequence
{tn}∞n=1 converging to zero. One may expect that less regularity on f is enough to
ensure a.e. convergence along some special sequences {tn}∞n=1, such as tn = 2−n, n ∈
N. However, this is not always true for general discrete sequence {tn}∞n=1. For
example, when N = 1 and tn = 1/n, n = 1, 2, · · · , Carleson [3] proved that the a.e.
convergence result holds for s > 1/4 but fails for s < 1

8 . Indeed, it actually fails for
s < 1/4 by the counterexample in Dahlberg–Kenig [6]; a detailed explanation can
be found in Section 3 of Lee–Rogers [11]. Recently, this kind of problem was further
considered by Dimou–Seeger [7] when N = 1, Sjölin [14] and Sjölin–Strömberg [15]
in general dimensions. In particular, under the assumption that {tn}∞n=1 ∈ �r,∞(N),
0 < r < ∞, i.e.,

sup
b>0

br�

{
n ∈ N : tn > b

}
< ∞, (1.3)

it has been shown in [7] that eitnΔf converges almost everywhere to f if s �
min{ r

2r+1 , 1
4}; moreover in [7], this condition is also shown to be necessary under

the additional assumption that tn − tn+1 is decreasing. By Theorem 1 in [14],
the a.e. convergence results hold if s > min{r, N

2(N+1)} for general dimension N .
Theorem 3 and Corollary 6 in [15] imply that s > min{ r

r+1 , N
2(N+)} suffices for a.e.

convergence. In this paper, we obtain essentially sharp results in all dimensions.

1.1. Outline of this paper

We first state the main results on a.e. convergence for sequences of Schrödinger
means, which are sharp (up to endpoints). Then, we obtain some generalizations to
the fractional Schrödinger means eitΔ

a
2 f (1 < a < ∞) and nonelliptic Schrödinger

means eitnLf , where

eitnΔ
a
2 f(x) :=

1
(2π)N

∫
RN

eix·ξ+itn|ξ|a f̂(ξ) dξ, (1.4)

and

eitnLf(x) :=
1

(2π)N

∫
RN

eix·ξ+itn(ξ2
1−ξ2

2±...±ξ2
N )f̂(ξ) dξ. (1.5)
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Sharp convergence for sequences of Schrödinger 3

Conventions: Throughout this article, we shall use the notation A � B, which
means if there is a sufficiently large constant G, which does not depend on the
relevant parameters arising in the context in which the quantities A and B appear,
such that A � GB. We write A ∼ B, and mean that A and B are comparable. By
A � B we mean that A � CB for some constant C independent of the parameters
related to A and B.

1.2. Almost everywhere convergence for sequences of Schrödinger
means

Theorem 1.1. Let N � 2 and r ∈ (0, ∞). For any decreasing sequence {tn}∞n=1 ∈
�r,∞(N) converging to zero and {tn}∞n=1 ⊂ (0, 1), we have

lim
n→∞ eitnΔf(x) = f(x) a.e. x ∈ R

N (1.6)

whenever f ∈ Hs(RN ) and s > s0 = min{ r
N+1

N r+1
, N

2(N+1)}.

By standard arguments, it is sufficient to show a corresponding maximal estimate
in R

N .

Theorem 1.2. Under the assumptions of theorem 1.1, we have∥∥∥∥sup
n∈N

|eitnΔf |
∥∥∥∥

L2(B(0,1))

� C‖f‖Hs(RN ), (1.7)

whenever f ∈ Hs(RN ) and s > s0 = min{ r
N+1

N r+1
, N

2(N+1)}, where the constant
C does not depend on f .

By translation invariance in the x-direction, B(0, 1) in theorem 1.2 can be
replaced by any ball of radius 1 in R

N , which implies theorem 1.1. The a.e. conver-
gence result is almost sharp by the Nikiss̆in–Stein maximal principle and the fact
that theorem 1.2 is sharp up to the endpoints.

Theorem 1.3. For each r ∈ (0, ∞), there exists a sequence {tn}∞n=1 which
belongs to �r,∞(N), for which the maximal estimate (1.7) fails if s < s0 =
min{ r

N+1
N r+1

, N
2(N+1)}.

Remark 1.4. One expects that the sparser the time sequences become, the lower
the regularity of almost everywhere convergence requires. Theorems 1.2 and 1.3
reveal a perhaps surprising phenomenon, namely if 0 < r < N

N+1 , there is a gain
over the almost everywhere convergence result from [2, 8, 9, 12] when time tends
continuously to zero, but not when r � N

N+1 . In fact this phenomenon already
appeared in the one-dimensional case [7].

Our counterexample is presented in § 3. The construction is inspired by the
work [12], which is an alternative proof for Bourgain’s counterexample that showed
the necessary condition for limt→0 eitΔf(x) = f(x), a.e. x ∈ R

N .
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Next, we briefly explain how to prove theorem 1.2. Notice that when r
N+1

N r+1
�

N
2(N+1) , theorem 1.2 follows from the celebrated results by [8] (N = 2), and [9]
(N � 3). Therefore, we only need to consider the case when r

N+1
N r+1

< N
2(N+1) , so

we always assume that 0 < r < N
N+1 in what follows.

By Littlewood–Paley decomposition and standard arguments, we just concentrate
on the case when suppf̂ ⊂ {ξ : |ξ| ∼ 2k}, k � 1. We consider the maximal functions

sup
n∈N:tn�2

− 2k
(N+1)r/N+1

|eitnΔf |

and

sup
n∈N:tn<2

− 2k
(N+1)r/N+1

|eitnΔf |.

We deal with the first term by the assumption that the decreasing sequence
{tn}∞n=1 ∈ �r,∞(N) and Plancherel’s theorem. For the second term, since k <

2k
N+1

N r+1
< 2k, the proof can be completed by the following theorem.

Theorem 1.5. Let j ∈ R with k < j < 2k. For any ε > 0, there exists a constant
Cε > 0 such that∥∥∥∥ sup

t∈(0,2−j)

|eitΔf |
∥∥∥∥

L2(B(0,1))

� Cε2
(2k−j) N

2(N+1)+εk‖f‖L2(RN ), (1.8)

for all f with supp f̂ ⊂ {ξ : |ξ| ∼ 2k}. The constant Cε does not depend on f , j
and k.

In the case N = 1, a similar result was proved in [7] by the TT ∗ argument and
stationary phase method. But their method seems not to work well in the higher
dimensional case. In order to prove theorem 1.5, we first observe that (1.8) holds
true if the spatial variable is restricted to a ball of radius 2k−j . Due to references
[8, 9], for any function g with supp ĝ ⊂ {ξ : |ξ| ∼ 22k−j}, there holds∥∥∥∥ sup

t∈(0,2−(2k−j))

|eitΔg|
∥∥∥∥

L2(B(0,1))

� Cε2
(2k−j) N

2(N+1)+εk‖g‖L2(RN ).

By scaling, we have∥∥∥∥ sup
t∈(0,2−j)

|eitΔg|
∥∥∥∥

L2(B(0,2k−j))

� Cε2
(2k−j) N

2(N+1)+εk‖g‖L2(RN ) (1.9)

whenever supp ĝ ⊂ {ξ : |ξ| ∼ 2k}. Then, we obtain the following lemma by transla-
tion invariance in the x-direction.
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Lemma 1.6. When k < j < 2k, for any ε > 0 and x0 ∈ R
N , there exists a constant

Cε > 0 such that∥∥∥∥ sup
t∈(0,2−j)

|eitΔf |
∥∥∥∥

L2(B(x0,2k−j))

� Cε2
(2k−j) N

2(N+1)+εk‖f‖L2(RN ), (1.10)

whenever supp f̂ ⊂ {ξ : |ξ| ∼ 2k}. The constant Cε does not depend on x0 and f .

Then we can obtain theorem 1.5 with the help of lemma 1.6, wave packets decom-
position and an orthogonality argument. See § 2 for details. Moreover, we give the
following remark on theorem 1.5.

Remark 1.7. We notice that theorem 1.5 is almost sharp when j = k and j = 2k.
Indeed, when j = 2k, Sobolev’s embedding implies∥∥∥∥ sup

t∈(0,2−2k)

|eitΔf |
∥∥∥∥

L2(B(0,1))

� C‖f‖L2(RN ). (1.11)

By taking f̂ as the characteristic function on the set {ξ : |ξ| ∼ 2k}, it can be observed
that the uniform estimate (1.11) is optimal. When j = k, it follows from [8, 9] that∥∥∥∥ sup

t∈(0,2−k)

|eitΔf |
∥∥∥∥

L2(B(0,1))

� C2
N

2(N+1) k+εk‖f‖L2(RN ). (1.12)

The above inequality (1.12) is sharp up to the endpoints according to the coun-
terexample in [2] or [12]. However, the presence of 2εk on the right-hand side of
inequality (1.8) leads us to lose the endpoint results in theorem 1.2.

1.3. Related generalizations

The method we adopted to prove theorem 1.2 can be generalized to the fractional
case and the nonelliptic case. Then, the corresponding a.e. convergence results fol-
low. We omit most of details of the proof because they are very similar with that
of theorem 1.2. Moreover, the sharpness of the result for the nonelliptic case will
be proved in § 4.

Firstly, for the fractional case, we have the following maximal estimate. When
a = 2, it coincides with theorem 1.2.

Theorem 1.8. Under the conditions of theorem 1.2, for 1 < a < ∞, we have∥∥∥∥sup
n∈N

|eitnΔ
a
2 f |

∥∥∥∥
L2(B(0,1))

� C‖f‖Hs(RN ), (1.13)

whenever f ∈ Hs(RN ) and s > s0 = min{a
2 · r

N+1
N r+1

, N
2(N+1)}, where the constant

C does not depend on f .

We now consider maximal estimates for the nonelliptic Schrödinger means, as
defined in (1.5). The following result is sharp up to the endpoints, as will be shown
in § 4 below.
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Theorem 1.9. Under the conditions of theorem 1.2, we have∥∥∥∥sup
n∈N

|eitnLf |
∥∥∥∥

L2(B(0,1))

� C‖f‖Hs(RN ), (1.14)

whenever f ∈ Hs(RN ) and s > s0 = min{ r
r+1 , 1

2}, where the constant C does not
depend on f .

The proof of theorem 1.9 depends heavily on the following theorem.

Theorem 1.10. If supp f̂ ⊂ {ξ : |ξ| ∼ λ}, λ � 1, then for any interval I with λ−2 �
|I| � λ−1, we have ∥∥∥∥sup

t∈I
|eitLf |

∥∥∥∥
L2(B(0,1))

� Cλ|I| 12 ‖f‖L2(RN ), (1.15)

where the constant C does not depend on f .

Theorem 1.10 follows directly from Sobolev’s embedding. Specially, theorem 1.10
is sharp when |I| = λ−1 according to the counterexample in Rogers–Vargas–Vega [13].
When |I| = λ−2, the sharpness can be proved by taking f̃ as the characteristic func-
tion over the annulus {ξ : |ξ| ∼ λ}. We point out that the sharpness of theorem 1.10
enables us to apply the similar decomposition as Proposition 2.3 in [7] to get a
stronger result than theorem 1.9 when r ∈ (0, 1).

Theorem 1.11. If {tn}∞n=1 ∈ �r(s),∞(N), r(s) = s
1−s . Then for any 0 < s < 1

2 , we
have ∥∥∥∥sup

n∈N

|eitnLf |
∥∥∥∥

L2(B(0,1))

� C‖f‖Hs(RN ), (1.16)

whenever f ∈ Hs(RN ), where the constant C does not depend on f .

Remark 1.12. In table 1, we synthesize our theorems and all results to our best
knowledge, and list all almost sharp requirements of regularity on a.e. convergence
for different Schrödinger-type operators. We also notice that some results in the
table 1 come from theorems 1.1, 1.8, 1.9 and 1.11 in this paper. For the remaining
results, readers can refer to the relevant results of the nonelliptic Schrödinger oper-
ators in [13]; the conclusions about the fractional Schrödinger operators when t
continuously tends to 0 can be found in [4] (a > 1) and [16] (0 < a < 1); other
results were introduced at the beginning of the introduction and will not be
repeated here.

Remark 1.13. Shortly after our paper was posted on arXiv.org in July 2022, Cho,
Ko, Koh and Lee posted a paper with partially overlapping results, which has now
been published in [5].
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Table 1. A summary of a.e. convergence for some Schrödinger operators.

Spatial
Operators type dimensions Continuous case t → 0 Discrete case tn → 0

Schrödinger N = 1 s � 1
4 s � min{ 1

4 , r
2r+1}

operator N � 2 s > N
2(N+1)

s > min{ N
2(N+1)

, r
N+1

N r+1
}

Nonelliptic N = 2 s � 1
2 s � min{ 1

2 , r
r+1}

Schrödinger N � 3 s > 1
2 s > min{ 1

2 , r
r+1}

Fractional N = 1 s � 1
4 s � min{ 1

4 , a
2

r
2r+1}

a > 1 N � 2 s > N
2(N+1)

s > min{ N
2(N+1)

, a
2

r
N+1

N r+1
}

Fractional N = 1 s > a
4 s > min{a

4 , a
2

r
2r+1}

0 < a < 1 N � 2 Sharp result is open Sharp result is open

2. Proof of theorems 1.2 and 1.5

Proof of theorem 1.2. Let s1 = r
N+1

N r+1
+ ε for some constant ε > 0. We decompose

f as f =
∑∞

k=0 fk, where suppf̂0 ⊂ B(0, 1), suppf̂k ⊂ {ξ : |ξ| ∼ 2k}, k � 1. Then,
we have ∥∥∥∥sup

n∈N

|eitnΔf |
∥∥∥∥

L2(B(0,1))

�
∞∑

k=0

∥∥∥∥sup
n∈N

|eitnΔfk|
∥∥∥∥

L2(B(0,1))

. (2.1)

For k � 1 and arbitrary x ∈ B(0, 1), |eitnΔfk(x)| � ‖fk‖L2(RN ), it is obvious that∥∥∥∥sup
n∈N

|eitnΔfk|
∥∥∥∥

L2(B(0,1))

� ‖f‖Hs1 (RN ). (2.2)

For each k � 1, we decompose {tn}∞n=1 as

A1
k :=

{
tn : tn � 2

− 2k
N+1

N
r+1

}
and

A2
k :=

{
tn : tn < 2

− 2k
N+1

N
r+1

}
.

Then, we have∥∥∥∥sup
n∈N

|eitnΔfk|
∥∥∥∥

L2(B(0,1))

�
∥∥∥∥ sup

n∈N:tn∈A1
k

|eitnΔfk|
∥∥∥∥

L2(B(0,1))

+
∥∥∥∥ sup

n∈N:tn∈A2
k

|eitnΔfk|
∥∥∥∥

L2(B(0,1))

:= I + II. (2.3)
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We first estimate I. Since {tn}∞n=1 ∈ �r,∞(N), we have

�A1
k � C2

2rk
N+1

N
r+1 , (2.4)

which implies that

I �
( ∑

n∈N:tn∈A1
k

∥∥∥∥eitnΔfk

∥∥∥∥2

L2(B(0,1))

)1/2

� 2
rk

N+1
N

r+1 ‖fk‖L2(RN ) � 2−εk‖f‖Hs1 (RN ).

(2.5)
For II, since

A2
k ⊂

(
0, 2

− 2k
N+1

N
r+1

)
.

By previous discussion, we have k < 2k
N+1

N r+1
< 2k. Then it follows from theorem 1.5

that,

II � 2
( r

N+1
N

r+1
+ ε

2 )k‖fk‖L2(RN ) � 2−
ε
2 k‖f‖Hs1 (RN ). (2.6)

Inequalities (2.3), (2.5), and (2.6) yield for k � 1,∥∥∥∥sup
n∈N

|eitnΔfk|
∥∥∥∥

L2(B(0,1))

� 2−
εk
2 ‖f‖Hs1 (RN ). (2.7)

Combining inequalities (2.1), (2.2), and (2.7), inequality (1.7) holds true for s1.
Because ε > 0, we have finished the proof of theorem 1.2. It remains to prove
theorem 1.5. �

Proof of theorem 1.5. We use a wave packets decomposition and an orthogonality
argument to prove theorem 1.5.

• Wave packets decomposition.
We first decompose eitΔf on B(0, 1) × (0, 2−j) in a standard way. For this goal,

we decompose the annulus {ξ : |ξ| ∼ 2k} into almost disjoint 2j−k-cubes θ with sides
parallel to the coordinate axes in R

N . Let 2k−j-cube ν be dual to θ and cover R
N

by almost disjoint cubes ν. Denote the centre of θ by c(θ) and the centre of ν by
c(ν). We notice that if ν 	= ν′, then |c(ν) − c(ν′)| � 2k−j .

Let ϕ be a Schwartz function defined on R
N whose fourier transform is non-

negative and supported in a small neighbourhood of the origin, and identically equal
to 1 in another smaller ball centred at the origin. Let ϕ̂θ(ξ) = 2−

(j−k)N
2 ϕ̂( ξ−c(θ)

2j−k )
and ϕ̂θ,ν(ξ) = e−ic(ν)·ξϕ̂θ(ξ). Then f can be decomposed by

f =
∑

ν

∑
θ

fθ,ν =
∑

ν

∑
θ

〈f, ϕθ,ν〉ϕθ,ν ,

and

‖f‖2
L2 ∼

∑
ν

∑
θ

|〈f, ϕθ,ν〉|2.
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When t ∈ (0, 2−j), integration by parts implies

|eitΔϕθ,ν(x)| � CM2
(j−k)N

2

(1 + 2j−k|x − c(ν) + 2tc(θ)|)M
.

Here, M can be sufficiently large. Therefore, eitΔϕθ,ν(x) is essentially supported in
a tube

Tθ,ν := {(x, t), |x − c(ν) + 2tc(θ)| � 2(j−k)(−1+δ), 0 � t � 2−j},
where δ = ε3. The direction of Tθ,ν is parallel to the vector (−2c(θ), 1), and the
angle between (−2c(θ), 1) and the x-plane is approximately 2−k.

• Orthogonality argument.
We decompose B(0, 1) by B(0, 1) = ∪ν′B(c(ν′), 2k−j) with |c(ν′)| � 1. Then∥∥∥∥ sup

t∈(0,2−j)

|eitΔf(x)|
∥∥∥∥2

L2(B(0,1))

�
∑
ν′

∥∥∥∥ sup
t∈(0,2−j)

|eitΔf(x)|
∥∥∥∥2

L2(B(c(ν′),2k−j))

. (2.8)

We will consider two cases: (i) j < k + εk
N and (ii) j � k + εk

N , respectively.
In case (i), let j = k + ε0k, 0 < ε0 < ε

N , by lemma 1.6,∥∥∥∥ sup
t∈(0,2−j)

|eitΔf(x)|
∥∥∥∥

L2(B(0,1))

�
(∑

ν′

∥∥∥∥ sup
t∈(0,2−j)

|eitΔf(x)|
∥∥∥∥2

L2(B(c(ν′),2k−j))

)1/2

� 2(2k−j) N
2(N+1)+εk‖f‖L2 . (2.9)

We use an orthogonality argument in the proof of case (ii). Fix c(ν′), we divide
f into two terms

f1 =
∑

θ

∑
ν:|c(ν)−c(ν′)|�2(j−k)(−1+10δ)

fθ,ν ,

and

f2 =
∑

θ

∑
ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

fθ,ν .

For f1, by lemma 1.6 and the L2-orthogonality, we have

∑
ν′

∥∥∥∥ sup
t∈(0,2−j)

|eitΔf1(x)|
∥∥∥∥2

L2(B(c(ν′),2k−j))

∼ Cε2(2k−j) N
N+1+εk

∑
ν′

∑
θ

∑
ν:|c(ν)−c(ν′)|�2(j−k)(−1+10δ)

‖fθ,ν‖2
L2

� Cε2(2k−j) N
N+1+2εk‖f‖2

L2 . (2.10)

We will complete the proof by showing that the contribution from |eitΔf2| is
negligible when (x, t) belongs to B(c(ν′), 2k−j) × (0, 2−j).
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Indeed, by the Cauchy–Schwarz inequality and the L2-orthogonality, there holds

|eitΔf2| � ‖f‖L2

(∑
θ

∑
ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

|eitΔϕθ,ν |2
)1/2

� ‖f‖L2CM2
(j−k)N

2

×
(∑

θ

∑
ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

1
(1 + 2j−k|x − c(ν) + 2tc(θ)|)2M

)1/2

.

For each θ, |x − c(ν) + 2tc(θ)| � |c(ν) − c(ν′)|/2, then we have∑
ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

1
(1 + 2j−k|x − c(ν) + 2tc(θ)|)2M

� 22M
∑
l∈N

+

l�210δεk/N

∑
ν:l2k−j�|c(ν)−c(ν′)|<(l+1)2k−j

1
(1 + 2j−k|c(ν) − c(ν′)|)2M

� 22M
∑
l∈N

+

l�210δεk/N

CN lN

(1 + l)2M

� CM,N2−Mε4k.

Notice that the number of θ’s is dominated by 2Nk. So by choosing M sufficiently
large, for each (x, t) ∈ B(c(ν′), 2k−j) × (0, 2−j), we have

|eitΔf2| � CN2−1000k‖f‖L2 .

Then, the proof is finished since∑
ν′

∥∥∥∥ sup
t∈(0,2−j)

|eitΔf2(x)|
∥∥∥∥2

L2(B(c(ν′),2k−j))

� C2
N2−2000k‖f‖2

L2 . �

3. A counterexample: theorem 1.3

We notice that the counterexample for r = N
N+1 can be also applied to the

case when r > N
N+1 , since �N/(N+1),∞(N) ⊂ �r,∞(N) and min{ r

N+1
N r+1

, N
2(N+1)} =

N
2(N+1) when r > N

N+1 . Therefore, next we always assume r ∈ (0, N
N+1 ].

Fix r ∈ (0, N
N+1 ], we first construct a sequence which belongs to �r,∞(N). Put

β = 2
N+1

N r+1
. Let R1 = 2 and for each positive integer n, R−β

n+1 � 1
2R

−β(r+1)
n . Denote

the intervals In = [R−β(r+1)
n , R−β

n ), n ∈ N
+. On each In, we get an equidistributed

subsequence tnj
, j = 1, 2, ..., jn such that

{tnj
, 1 � j � jn} =: R−β(r+1)

n Z ∩ In,

and tnj
− tnj+1 = R

−β(r+1)
n . We claim that the sequence tnj

, j = 1, 2, ..., jn, n =
1, 2, ... belongs to �r,∞(N).
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Indeed, according to Lemma 3.2 from [7], it suffices to show that

sup
b>0

br�

{
(n, j) : b < tnj

� 2b

}
� 1. (3.1)

Notice that we only need to consider 0 < b < 1 because tnj
∈ (0, 1) for each n and j.

Assume that (b, 2b] ∩ In 	= ∅ for some n, then we have b < R−β
n , 2b � R

−β(r+1)
n .

Therefore,

2b < 2R−β
n � R

−β(r+1)
n−1 , b � 1

2
R−β(r+1)

n � R−β
n+1.

This yields (b, 2b] ∩ In′ = ∅ for any n′ 	= n, hence

br�

{
(n, j) : b < tnj

� 2b

}
� br+1Rβ(r+1)

n < 1.

Then (3.1) follows by the arbitrariness of b.
Our counterexample comes from the following lemma.

Lemma 3.1. Let R � 1 and I = [R−β(r+1), R−β). Assume that the sequence {tj :
1 � j � j0} = R−β(r+1)

Z ∩ I and tj − tj+1 = R−β(r+1) for each 1 � j � j0 − 1.
Then there exists a function f with supp f̂ ⊂ B(0, 2R) such that∥∥∥∥ sup

1�j�j0

|ei
tj
2π Δf |

∥∥∥∥
L2(B(0,1))

� R
1−β

2 R
β
2 R(N−1)(1− (r+1)β

2 )−ε, (3.2)

and

‖f‖Hs(RN ) � RsR
β
4 R

N−1
2 (1− (r+1)β

2 ). (3.3)

Here, ε is any positive number.

We use lemma 3.1 to show the counterexample here and prove the lemma a
moment later. Assume that the maximal estimate∥∥∥∥sup

n
sup

j
|ei

tnj
2π Δf |

∥∥∥∥
L2(B(0,1))

� C‖f‖Hs(RN ) (3.4)

holds for some s > 0 and each f ∈ Hs(RN ), then for each n ∈ N
+, we have∥∥∥∥sup

j
|ei

tnj
2π Δf |

∥∥∥∥
L2(B(0,1))

� C‖f‖Hs(RN ) (3.5)

whenever f ∈ Hs(RN ). Lemma 3.1 and inequality (3.5) yield

R
2−β

4
n R

N−1
2 (1− (r+1)β

2 )−ε
n � CRs

n. (3.6)

Then, we have s � r
N+1

N r+1
, since Rn can be sufficiently large and ε is arbitrar-

ily small. Finally, we obtain a sequence
tnj

2π , j = 1, 2, ..., jn, n = 1, 2, ... ∈ �r,∞(N)
such that the maximal estimate (3.4) holds only if s � r

N+1
N r+1

.
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In the rest of this section, we prove lemma 3.1. Setting

Ω1 =
(
− 1

100
R

β
2 ,

1
100

R
β
2

)
,

Ω2 =
{

ξ̄ ∈ R
N−1 : ξ̄ ∈ 2πR

(r+1)β
2 Z

N−1 ∩ B(0, R1−ε)
}

+B

(
0,

1
1000

)
,

then we define f̂1(ξ1) = ĥ(ξ1 + πR), f̂2(ξ̄) = ĝ(ξ̄ + πRθ), where ĥ = χΩ1 , ĝ = χΩ2 ,
and some θ ∈ S

N−2 (when N = 2, θ ∈ (0, 1)) which will be determined later. Define
f by f̂ = f̂1f̂2, it is easy to check that f satisfies (3.3). We are left to prove that
inequality (3.2) holds for such f . Notice that

|ei
tj
2π Δf(x1, x̄)| = |ei

tj
2π Δf1(x1)||ei

tj
2π Δf2(x̄)|. (3.7)

We first consider |ei
tj
2π Δf1(x1)|. A change of variables implies

|ei
tj
2π Δf1(x1)| = |ei

tj
2π Δh(x1 − Rtj)|.

It is easy to check that |ei
tj
2π Δh(x1)| � |Ω1| for each j whenever |x1| � R− β

2 .
Note that for each x1 ∈ (0, R1−β), there exists at least one tj such that
|x1 − Rtj | � R1−β(r+1) � R− β

2 since {tj}j0
j=1 ⊂ [R−β(r+1), R−β) and tj − tj+1 =

R−β(r+1). Hence, we have

|ei
tj
2π Δf1(x1)| � |Ω1|, (3.8)

whenever x1 ∈ (0, 1
2R1−β) and Rtj ∈ (x1, x1 + R− β

2 ).

For |ei
tj
2π Δf2(x̄)|, we have

|ei
tj
2π Δf2(x̄)| = |ei

tj
2π Δg(x̄ − Rtjθ)|.

According to Barceló–Bennett–Carbery–Ruiz–Vilela [1], for each j and x̄ ∈ U0,

|ei
tj
2π Δg(x̄)| � |Ω2|, (3.9)

here

U0 =
{

x̄ ∈ R
N−1 : x̄ ∈ R− (r+1)β

2 Z
N−1 ∩ B(0, 2)

}
+B

(
0,

1
1000

R−1+ε

)
.

We sketch the main idea of the proof of inequality (3.9) for the reader’s conve-
nience. Indeed, for each ξ̄ ∈ Ω2, we write ξ̄ = 2πR

(r+1)β
2 l + η̄, l ∈ Z

N−1, 2π|l| �
R1− (r+1)β

2 −ε, η̄ ∈ B(0, 1
1000 ). Then for any x̄m = R− (r+1)β

2 m, m ∈ Z
N−1, |m| �
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2R
(r+1)β

2 , tj = R−(r+1)β(j0 + 1 − j), 1 � j � j0, we have

ei
tj
2π Δg(x̄m)

=
1

(2π)N

∑
l∈ZN−1:2π|l|�R1−(r+1)β/2−ε

e2πim·l+2πi(j0+1−j)|l|2

×
∫

B(0, 1
1000 )

eix̄m·η̄+2i
tj
2π 2πR

(r+1)β
2 l·η̄+i

tj
2π |η̄|2 dη̄

=
1

(2π)N

∑
l∈ZN−1:2π|l|�R1−(r+1)β/2−ε

∫
B(0, 1

1000 )

eix̄m·η̄+2i
tj
2π 2πR

(r+1)β
2 l·η̄+i

tj
2π |η̄|2 dη̄.

Noting that |x̄m| � 2, |tj | � R−β and |η̄| � 1
1000 imply∣∣∣∣x̄m · η̄ + 2

tj
2π

2πR
(r+1)β

2 l · η̄ +
tj
2π

|η̄|2
∣∣∣∣� 1

100
,

then, we have

|ei
tj
2π Δg(x̄m)| � 1

2(2π)N
|Ω2|.

Moreover, for each x̄ ∈ U0, there exits an x̄m such that |x̄ − x̄m| � 1
1000R−1+ε, by

the mean value theorem and the fact that |ξ̄| � 2R1−ε,

|ei
tj
2π Δg(x̄) − ei

tj
2π Δg(x̄m)| �

∫
RN−1

|x̄ − x̄m||ξ̄|ĝ(ξ̄) dξ̄ � 1
500

|Ω2|.

Finally, we arrive at inequality (3.9) by the triangle inequality.
Therefore, we have

|ei
tj
2π Δf2(x̄)| � |Ω2|, x̄ ∈ Uj = U0 + Rtjθ. (3.10)

Set Ux1 =
⋃

j:Rtj∈R1−(r+1)βZ∩(x1, x1+R−β/2) U0 + Rtjθ. Then inequalities (3.8) and
(3.10) imply that for each x1 ∈ (0, 1

2R1−β) and x̄ ∈ Ux1 , there holds

sup
j

|ei
tj
2π Δf(x1, x̄)| � |Ω1||Ω2|. (3.11)

Next, we need to select a θ ∈ S
N−2, such that |Ux1 | � 1 for each x1 ∈ (0, 1

2R1−β),
which follows if we can prove that there exists a θ ∈ S

N−2 such that B(0, 1/2) ⊂ Ux1

for all x1 ∈ (0, 1
2R1−β). So it remains to prove the claim that there exists a θ ∈ S

N−2

such that ⋃
j:Rtj∈R1−β(r+1)Z∩(x1,x1+R−β/2)

{
x̄ ∈ R

N−1 : x̄ ∈ R− (r+1)β
2 Z

N−1 ∩ B(0, 2)
}

+Rtjθ

is 1
1000R−1+ε dense in the ball B(0, 1/2). In order to apply Lemma 2.1 from

Lucà–Rogers [12] to get this claim, we first rescale by R
β(r+1)

2 , and replace
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R1+
β(r+1)

2 tj by sj , replace R
βr
2 by R′, recall that β = 2

N+1
N r+1

, then we are reduced
to show ⋃
j:sj∈(R′)1/N Z∩((R′)(r+1)/rx1,(R′)(r+1)/rx1+R′)

{
x̄ : x̄ ∈ Z

N−1 ∩ B(0, 2(R′)(r+1)/r)
}

+sjθ

is 1
1000 (R′)−

1
N +

( N+1
N

r+1)ε

r dense in the ball B(0, 1
2 (R′)(r+1)/r), which is equivalent

to prove that for any y ∈ B(0, 1
2 (R′)(r+1)/r), there exist

x̄y ∈ Z
N−1 ∩ B(0, 2(R′)(r+1)/r) and

sy ∈ (R′)1/N
Z ∩ ((R′)(r+1)/rx1, (R′)(r+1)/rx1 + R′),

such that

|y − x̄y − syθ| <
1

1000
(R′)−

1
N +

(N+1
N

r+1)ε

r , (3.12)

for a fixed θ ∈ S
N−2, which is independent of y and x1. This is implied by the fol-

lowing Lemma 3.2 from Lucà–Rogers [12], but we prefer to omit the proof of (3.12),
because a similar but more detailed proof can be found in Corollary 2.2 of [12].

Lemma 3.2 [12, Lemma 2.1]. Let d � 2, 0 < ε, δ < 1 and κ > 1
d+1 . Then, if δ < κ

and R > 1 is sufficiently large, there is θ ∈ S
d−1 for which, given any [y] ∈ T

d and
a ∈ R, there is a ty ∈ Rδ

Z ∩ (a, a + R) such that

|[y] − [tyθ]| � εR(κ−1)/d,

where ‘[·]’ means taking the quotient R
d/Z

d = T
d. Moreover, this remains true with

d = 1, for some θ ∈ (0, 1).

Finally, it follows from (3.7) and (3.11) that∫
B(0,1)

sup
j

|ei
tj
2π Δf(x1, x̄)|2 dx̄ dx1

�
∫ R1−β

2

0

∫
Ux1

sup
j

|ei
tj
2π Δf(x1, x̄)|2 dx̄ dx1 � R1−β |Ω1|2|Ω2|2,

which implies inequality (3.2).

4. A counterexample for theorem 1.9

For convenience, we first set N = 2. By changing of variables, the nonelliptic
Schrödinger operator can be written as

eit�f(x) :=
1

(2π)2

∫
R2

eix·ξ+itξ1ξ2 f̂(ξ) dξ. (4.1)
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For each r ∈ (0, 1], we will show that there exists {tn}∞n=1 ∈ �r,∞(N), such that the
maximal estimate ∥∥∥∥sup

n∈N

|eitn�f |
∥∥∥∥

L2(B(0,1))

� C‖f‖Hs (4.2)

holds for all f ∈ Hs(R2) only if s � r
r+1 .

Indeed, we may choose tn = 1/n
1
r +ε, it is clear that {tn}∞n=1 ∈ �r,∞(N) but

never belongs to �r−ε,∞(N) for any small ε > 0. Moreover, tn − tn+1 is decreas-
ing. According to Lemma 3.2 in [7], we can select {bj}∞j=1 and {Mj}∞j=1 satisfying
limj→∞ bj = 0, limj→∞ Mj = ∞, and

Mjb
1−r+ε
j � 1, (4.3)

such that

�

{
n : bj < tn � 2bj

}
� Mjb

−r+ε
j . (4.4)

By the similar argument as Proposition 3.3 in [7], when tn � bj , we have

tn − tn+1 � 2M−1
j br−ε+1

j . (4.5)

For fixed j, choose λj = 1
1000M

1
2
j b

− r−ε+1
2

j and f̂j(ξ1, ξ2) = 1
λj

χ[0,λj ]×[−λj−1,−λj ]

(ξ1, ξ2). Therefore,

‖fj‖
H

r−ε
r−ε+1

� λ
r−ε

r−ε+1− 1
2

j . (4.6)

Let Uj = (0,
λjbj

2 ) × (− 1
1000 , 1

1000 ). Notice that Uj ⊂ B(0, 1) due to inequality
(4.3). Next, we will show that for each x ∈ Uj ,

sup
n∈N

|eitn�fj | >
1

2(2π)2
. (4.7)

After changing variables, we have for each n ∈ N,

|eitn�fj(x)| =
1

(2π)2

∣∣∣∣∫ 0

−1

∫ 1

0

eiλj(x1−λjtn)η1+ix2η2+itnλjη1η2 dη1 dη2

∣∣∣∣. (4.8)

For each x ∈ Uj , there exists a unique n(x, j) such that

x1 ∈ (λjtn(x,j)+1, λjtn(x,j)].

It is obvious that tn(x,j)+1 � bj

2 , then tn(x,j) � bj due to inequality (4.4) and the
assumption that tn − tn+1 is decreasing. Then it follows from inequality (4.5) that

|λj(x1 − λjtn(x,j))η1| � 2λ2
jM

−1
j br−ε+1

j � 1
1000

.

Also, |x2η2| � 1
1000 , and by inequality (4.3), we have |λjtn(x,j)η1η2| � λjbj � 1

1000 .
Therefore, if we take n = n(x, j) in (4.8), then the phase function will be sufficiently
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small such that |eitn(x,j)�fj(x)| > 1
2(2π)2 for each x ∈ Uj , which implies inequality

(4.7). Then, it follows from inequalities (4.6) and (4.7) that

‖ supn∈N |eitn�fj |‖L2(B(0,1))

‖fj‖
H

r−ε
r−ε+1

� CM
1

2(r−ε+1)
j .

This implies that the maximal estimate (4.2) can not hold when s � r−ε
r−ε+1 , hence

when s < r
r+1 by the arbitrariness of ε.

Remark 4.1. The original idea we adopted to construct the above counterexample
comes from [13]. The same idea remains valid in general dimensions. For example,
in R

3, by changing variables, we can write

eitLf(x) :=
1

(2π)3

∫
R3

eix·ξ+it(ξ1ξ2±ξ2
3)f̂(ξ) dξ.

In order to prove the necessary condition, we only need to take

Uj = (0,
λjbj

2
) ×

(
− 1

1000
,

1
1000

)
×

(
− 1

1000
,

1
1000

)
and

f̂j(ξ1, ξ2, ξ3) =
1
λj

χ[0,λj ]×[−λj−1,−λj ]×(0,1)(ξ1, ξ2, ξ3).
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