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For decreasing sequences {t,}52 ; converging to zero and initial data f € H*® (RY),
N > 2, we consider the almost everywhere convergence problem for sequences of
Schrédinger means e**n2 f, which was proposed by Sjolin, and was open until
recently. In this paper, we prove that if {t,}% ; belongs to Lorentz space £°°(N),

: T N
then the a.e. convergence results hold for s > mm{m7 SNTTD)

the work of Luca-Rogers, we construct a counterexample to show that our a.e.
convergence results are sharp (up to endpoints). Our results imply that when
0<r< NL-H’ there is a gain over the a.e. convergence result from Du-Guth-Li and

}. Inspired by

Du-Zhang, but not when r > NLH’ even though we are in the discrete case. Our

approach can also be applied to get the a.e. convergence results for the fractional
Schrodinger means and nonelliptic Schrodinger means.

Keywords: Schrodinger mean; almost everywhere convergence; maximal functions;
pointwise convergence
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1. Introduction

The solution of the Schrodinger equation

i0yu(z,t) — Au(z,t) =0 2 € RNt € RT, (L.1)
u(z,0) = f(x) '
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can be formally written as

o8 f(a) = <2§>N / e HHIEE f(€) d, (1:2)

where f(£) = Jan €7 f(z) da. €2 f is referred to as the Schrédinger mean of f at
time ¢t. The problem of almost everywhere convergence as t — 0 has been studied
extensively, under the assumption that f belongs to the Sobolev space H*(RY).
The a.e. convergence result holds for s > 1/4 when N =1 by Carleson [3], and for
5> % when N > 2 by Du-Guth-Li [8] and Du-Zhang [9]. These results are
sharp (except for the endpoints when N > 2) according to Dahlberg—Kenig [6] and
Bourgain [2]. It is worth mentioning that a different counterexample was raised by
Luca-Rogers [12] for N > 2.

In this paper, we consider a related problem: to investigate the almost everywhere
convergence properties of e*»®f. where t, belongs to some decreasing sequence
{tn}52, converging to zero. One may expect that less regularity on f is enough to
ensure a.e. convergence along some special sequences {t,,}>° ;,suchast, =27", n €
N. However, this is not always true for general discrete sequence {¢,}52,. For
example, when N =1 and ¢, = 1/n,n =1, 2, ---, Carleson [3] proved that the a.e.
convergence result holds for s > 1/4 but fails for s < %. Indeed, it actually fails for
s < 1/4 by the counterexample in Dahlberg—Kenig [6]; a detailed explanation can
be found in Section 3 of Lee-Rogers [11]. Recently, this kind of problem was further
considered by Dimou-Seeger [7] when N = 1, Sjolin [14] and Sj6lin-Strémberg [15]
in general dimensions. In particular, under the assumption that {t,}52, € £»*°(N),
0<r<oo,ie.,

sup brﬁ{n eN:t, > b}< 00, (1.3)
b>0

it has been shown in [7] that e"»2f converges almost everywhere to f if s >
min{ 5", 1}; moreover in [7], this condition is also shown to be necessary under
the additional assumption that ¢, —t,11 is decreasing. By Theorem 1 in [14],

the a.e. convergence results hold if s > min{r, } for general dimension N.

N
2(N+1)
Theorem 3 and Corollary 6 in [15] imply that s > min{ 5, Q(TNJF)} suffices for a.e.
convergence. In this paper, we obtain essentially sharp results in all dimensions.

1.1. Outline of this paper
We first state the main results on a.e. convergence for sequences of Schrodinger
means, which are sharp (up to endpoints). Then, we obtain some generalizations to

the fractional Schrédinger means e f (1 < a < co) and nonelliptic Schrédinger
means e’ f where

)= g [ RO a (14)
and
itn L ._ 1 iw-Edit, (E2—€24...+62)
(@) 1= g [ e g . (15)
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Conventions: Throughout this article, we shall use the notation A > B, which
means if there is a sufficiently large constant GG, which does not depend on the
relevant parameters arising in the context in which the quantities A and B appear,
such that A > GB. We write A ~ B, and mean that A and B are comparable. By
A < B we mean that A < CB for some constant C' independent of the parameters
related to A and B.

1.2. Almost everywhere convergence for sequences of Schrodinger
means

THEOREM 1.1. Let N > 2 and r € (0, 00). For any decreasing sequence {t,}>2, €
">°(N) converging to zero and {t,}22, C (0, 1), we have

lim 2 f(z) = f(z) a.e. z € RN (1.6)

n—oo
N ., N
whenever f € H?(RY) ands>sofm1n{%, m}

By standard arguments, it is sufficient to show a corresponding maximal estimate
in RV,

THEOREM 1.2. Under the assumptions of theorem 1.1, we have

< Ol fll sy, (1.7)
L2(B(0,1))

sup |e'n 2 f|
neN

whenever f € H*(RYN) and s> sg = min{%, WI\L)}, where the constant

C' does not depend on f.

By translation invariance in the z-direction, B(0, 1) in theorem 1.2 can be
replaced by any ball of radius 1 in R"V, which implies theorem 1.1. The a.e. conver-
gence result is almost sharp by the Nikissin—Stein maximal principle and the fact
that theorem 1.2 is sharp up to the endpoints.

THEOREM 1.3. For each r € (0, 00), there exists a sequence {t,}>>, which
belongs to €m°°(N), for which the mazimal estimate (1.7) fails if s < sg=
N

m{-—nr - __ N
mln{ N§1r+1’ 2(N+1)}'

REMARK 1.4. One expects that the sparser the time sequences become, the lower
the regularity of almost everywhere convergence requires. Theorems 1.2 and 1.3
reveal a perhaps surprising phenomenon, namely if 0 < r < NL_H, there is a gain
over the almost everywhere convergence result from [2, 8, 9, 12] when time tends
continuously to zero, but not when r > NLH In fact this phenomenon already
appeared in the one-dimensional case [7].

Our counterexample is presented in § 3. The construction is inspired by the

work [12], which is an alternative proof for Bourgain’s counterexample that showed
the necessary condition for lim; o2 f(z) = f(x), a.e. v € RV,
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Next, we briefly explain how to prove theorem 1.2. Notice that when —+—— >

ﬁr—&—l

N

2(N7]\{0—1)7 theorem 1.2 follows from the celebrated results by [8] (N = 2), and [9]

(N > 3). Therefore, we only need to consider the case when = < 2(1\1[\’“), SO
N T

we always assume that 0 < r < NL_H in what follows.

By Littlewood-Paley decomposition and standard arguments, we just concentrate
on the case when suppf C {¢: €] ~ 2%}, k> 1. We consider the maximal functions

sup ‘eitnAf|
neN:t, 32~ (NFDI7NFI

and

sup et B f|.

_ 2k
neN:it, <2 (N+1)r/N+1

We deal with the first term by the assumption that the decreasing sequence
{tn}52, € £7°>°(N) and Plancherel’s theorem. For the second term, since k <
NT+217]€T+1 < 2k, the proof can be completed by the following theorem.

THEOREM 1.5. Let j € R with k < j < 2k. For any € > 0, there exists a constant
C. > 0 such that

sup [e"*2 f]

< Cez@k—ﬂwﬂn+6’f||f||L2(RN), (1.8)
te(0,2-7)

L2(B(0,1))

for all f with supp f C {€:|¢| ~ 2%}, The constant C. does not depend on f, j
and k.

In the case N =1, a similar result was proved in [7] by the TT* argument and
stationary phase method. But their method seems not to work well in the higher
dimensional case. In order to prove theorem 1.5, we first observe that (1.8) holds
true if the spatial variable is restricted to a ball of radius 2¥77. Due to references
8, 9], for any function g with supp § C {¢: |¢| ~ 22¥77} there holds

sup  [e"y] < C2PF T H g Loy,
te(0,2—(2k—4)) L2(B(0,1))
By scaling, we have
sup [e"2g| < C 2P DT+ gl o gy (1.9)
te(0,2-7)

L2(B(0,2k—Jd))

whenever supp § C {¢ : |¢| ~ 2¥}. Then, we obtain the following lemma by transla-
tion invariance in the z-direction.
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LEMMA 1.6. When k < j < 2k, for any € > 0 and xog € RN, there exists a constant
C¢ > 0 such that

N

< C2H=D3mFT+R £l Lo ), (1.10)

L2(B(zq,2F=7))

sup [eAf]
te(0,29)

whenever supp f C {&: & ~ 2%}, The constant C, does not depend on xo and f.

Then we can obtain theorem 1.5 with the help of lemma 1.6, wave packets decom-
position and an orthogonality argument. See § 2 for details. Moreover, we give the
following remark on theorem 1.5.

REMARK 1.7. We notice that theorem 1.5 is almost sharp when j = k and j = 2k.
Indeed, when j = 2k, Sobolev’s embedding implies

sup |eitAf|

< Ol fllp2@w)- (1.11)
te(0,2—2k)

L2(B(0,1))

By taking f as the characteristic function on the set {€ : €] ~ 2¥}, it can be observed
that the uniform estimate (1.11) is optimal. When j = £, it follows from [8, 9] that

< C27RT R £l 2 ey (1.12)
L2(B(0,1))

sup  [e"A |
te(0,27F)

The above inequality (1.12) is sharp up to the endpoints according to the coun-
terexample in [2] or [12]. However, the presence of 2°* on the right-hand side of
inequality (1.8) leads us to lose the endpoint results in theorem 1.2.

1.3. Related generalizations

The method we adopted to prove theorem 1.2 can be generalized to the fractional
case and the nonelliptic case. Then, the corresponding a.e. convergence results fol-
low. We omit most of details of the proof because they are very similar with that
of theorem 1.2. Moreover, the sharpness of the result for the nonelliptic case will
be proved in § 4.

Firstly, for the fractional case, we have the following maximal estimate. When
a = 2, it coincides with theorem 1.2.

THEOREM 1.8. Under the conditions of theorem 1.2, for 1 < a < oo, we have

sup eitn 3 ]

< Cllfllas @ny, (1.13)
neN

L2(B(0,1))

whenever f € H*(RY) and s > sy = min{% - where the constant

_r L}
NIT, 410 2(N+1)
C' does not depend on f.

We now consider maximal estimates for the nonelliptic Schrédinger means, as
defined in (1.5). The following result is sharp up to the endpoints, as will be shown
in § 4 below.
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THEOREM 1.9. Under the conditions of theorem 1.2, we have

suple’!
neN

< Cll Sl vy (1.14)
L2(B(0,1))

whenever f € H*(RY) and s > sg = min{ iy, 1}, where the constant C does not
depend on f.

The proof of theorem 1.9 depends heavily on the following theorem.

THEOREM 1.10. If supp f C {€:1€] ~ A}, A = 1, then for any interval I with \=2 <
[I] < A71, we have

sup """ f|

1
< C)\|I‘2||f||L2(RN)» (1.15)
tel

L2(B(0,1))

where the constant C' does not depend on f.

Theorem 1.10 follows directly from Sobolev’s embedding. Specially, theorem 1.10
is sharp when |I| = A~! according to the counterexample in Rogers—Vargas—Vega [13].
When |I| = A~2, the sharpness can be proved by taking f as the characteristic func-
tion over the annulus {¢ : |{| ~ A\}. We point out that the sharpness of theorem 1.10
enables us to apply the similar decomposition as Proposition 2.3 in [7] to get a
stronger result than theorem 1.9 when r € (0, 1).

THEOREM L.11. If {t,}52, € £7)°(N), r(s) = 1. Then for any 0 < s < L, we
have

sup ei* L f

< CNfllas @ny, (1.16)
neN

L2(B(0,1))

whenever f € H*(RN), where the constant C does not depend on f.

REMARK 1.12. In table 1, we synthesize our theorems and all results to our best
knowledge, and list all almost sharp requirements of regularity on a.e. convergence
for different Schrodinger-type operators. We also notice that some results in the
table 1 come from theorems 1.1, 1.8, 1.9 and 1.11 in this paper. For the remaining
results, readers can refer to the relevant results of the nonelliptic Schrodinger oper-
ators in [13]; the conclusions about the fractional Schrodinger operators when ¢
continuously tends to 0 can be found in [4] (¢ > 1) and [16] (0 < a < 1); other
results were introduced at the beginning of the introduction and will not be
repeated here.

REMARK 1.13. Shortly after our paper was posted on arXiv.org in July 2022, Cho,

Ko, Koh and Lee posted a paper with partially overlapping results, which has now
been published in [5].
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Table 1. A summary of a.e. convergence for some Schrédinger operators.

Spatial

Operators type  dimensions  Continuous case t — 0 Discrete case t, — 0
Schrodinger N =1 e % s> min{%, ST}

N . N r

> N o r

operator N>2 5> 5INFD) s>m1n{2(N+1), Nﬁlr—&-l}
Nonelliptic N=2 s = % s > min{%, Tt
Schrodinger N>3 5> % 5> mm{%, =)
Fractional N =1 s = % s = mm{%, STt

N : N a T
a>1 N>2 5>m S>m1n{2(N+1),7NZ¢1T+1}
Fractional N=1 s> 9 s >min{%, 55777}
0<a<l1 N >2 Sharp result is open Sharp result is open
2. Proof of theorems 1.2 and 1.5
Proof of theorem 1.2. Let s; = ﬁm + € for some constant € > 0. We decompose

~

fas f =332y fr, where suppfo C B(0, 1), suppfe C {&: [{] ~ 2"}, k > 1. Then,
we have

oo

<
k

=0

sup [e’n 2 f|
neN

(2.1)

sup |eit"Afk|
N

L2(B(0,1)) ne L2(B(0,1))

For k < 1 and arbitrary z € B(0, 1), [¢"2 fi(z)| < || fxll n2 ), it is obvious that

sup [/t 2 £,

Sl sr vy (2.2)
neN

L2(B(0,1))

For each k > 1, we decompose {t,,}°2, as
s by
Ab=&w%>2£#}

and

_ 2k
A2 = {tn:tn<2 forl"*l}.
Then, we have

sup [e" 2 fi |

neN L2(B(0,1))
< sup |€itnAfk‘ + sup |6it"’Afk|
neN:t, €A} L2(B(0,1)) llneN:it,cA?2 L2(B(0,1))
=1+1I (2.3)
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We first estimate I. Since {t,}°2, € £"°°(N), we have

27k
fAR < C2°% L (2.4)
which implies that
2 1/2 i
i N+17‘ 1 —€
Is ( Z et"Afk L2(B(0 1))> S2vr ”kaL?(JRN) S2 k||f||H81(RN)~

neN:t, €A}
(2.5)
For 11, since

_ 2k
A2 (0,2 NJIT“).

By previous discussion, we have k& < #’i_ﬂ < 2k. Then it follows from theorem 1.5
~

that,
(mE—+5)k .
TS24 fell ey < 2728 £l e o). (2.6)
Inequalities (2.3), (2.5), and (2.6) yield for & > 1,
; _ek
sup e’ f| S 272 || fll e mey- (2.7)
nel L2(B(0,1))

Combining inequalities (2.1), (2.2), and (2.7), inequality (1.7) holds true for s;.
Because € > 0, we have finished the proof of theorem 1.2. It remains to prove
theorem 1.5. ]

Proof of theorem 1.5. We use a wave packets decomposition and an orthogonality
argument to prove theorem 1.5.

e Wave packets decomposition.

We first decompose e f on B(0, 1) x (0, 277) in a standard way. For this goal,
we decompose the annulus {¢ : |¢| ~ 2¥} into almost disjoint 2/ ~*-cubes @ with sides
parallel to the coordinate axes in RYN. Let 2¥=7-cube v be dual to 6 and cover R
by almost disjoint cubes v. Denote the centre of by ¢(f) and the centre of v by
c(v). We notice that if v # v/, then |e(v) — c(v')] = 2F77.

Let ¢ be a Schwartz function defined on RY whose fourier transform is non-
negative and supported in a small neighbourhood of the origin, and identically equal
to 1 in another smaller ball centred at the origin. Let gg(§) = Z_WL,Z(E;%(S))
and @g,(€) = e~ €55(¢). Then f can be decomposed by

F=Y0 fow =YD (fr000) 000,
v 0 v 0

and

F1Z2 ~ DD o).
v 0

https://doi.org/10.1017/prm.2023.102 Published online by Cambridge University Press
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When t € (0, 277), integration by parts implies
Cur2 G=BIN
(1+27-Fz — c(v) + 2tc(0) )M~

€200, (2)] <

Here, M can be sufficiently large. Therefore, e”Agog’V(x) is essentially supported in
a tube

Ty = {(z,1), |z — c(v) + 2te(0)] < 207 0 <t < 277,

where 6 = €3. The direction of Ty, is parallel to the vector (—2¢(f), 1), and the
angle between (—2¢(f), 1) and the x-plane is approximately 27*.

e Orthogonality argument.
We decompose B(0, 1) by B(0, 1) = U, B(c(v'), 2877) with |c(v')| < 1. Then

2 2
sup [e"2 f(z))| < sup [e"*2 f(z))] (2.8)
t€(0,279) L2(B(o,1) 7 llte0,279) L2(B(c(v'),259))
We will consider two cases: (i) j<k+ <% and (i) j>k+ <%, respectively.

In case (i), let j =k + eok, 0 < ¢ < 7, by lemma 1.6,

sup [e"2 f(x)]
te(0,277)

sup [e"2 f(z)]
te(0,277)

2 >1/2
L2(B(c(v'),2k77))

< < g
L2(B(0,1)) o
N

< 2RI e TR £l . (2.9)

We use an orthogonality argument in the proof of case (ii). Fix ¢(v/), we divide

f into two terms
fi=3" >, fos

0 vile(v)—c(v')|<20—k)(~1+105)

and

f2:Z Z f@,l/-

0 vile(v)—c(v)][>20—F)(=1+105)
For f1, by lemma 1.6 and the L2—0rthogonality, we have

2

sup |eitAf1 ()]
te€(0,27)

L2(B(c(v),2877))

v’

N CEZ(zkfj)NLH%kZZ Z | fo. 72

Vo0 wie(v)—c(v!)|<20 R (~1+105)

5 062(2k*j)%ﬂ+26k“f”%2. (2.10)

We will complete the proof by showing that the contribution from |e™*2 fy| is
negligible when (z, ) belongs to B(c(v'), 2877) x (0, 277).
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Indeed, by the Cauchy—Schwarz inequality and the L?-orthogonality, there holds

1/2
6 ol < 1l (Z T | “A%P)

0 vile(v)—c(v')|>2—k)(=1+106)

1 1/2
. <Z > (1+2F|z — e(v) + 2tc(9)|)2M> '

0 vifc(v)—c(v')|>20 —F)(-1+108)

For each 0, |x — c(v) + 2tc(0)] > |c(v) — ¢(v')]/2, then we have

1
2 (1+ 21 Fz — c(v) + 2tc()])2M

vile(v)—c(v')|>20 —k)(~1+105)

, 1
<My 2 L+ 2 H[c(v) — )™

leNt  wi2k—i|e(v)—e(v))| < (14+1)2k—

1>2103¢k/N
<MY _COnl™
= (1+41)2M
leNT
[>2103¢k/N

< CM,N2_M64k~
Notice that the number of #’s is dominated by 2/V%. So by choosing M sufficiently
large, for each (z, t) € B(c(v), 2877) x (0, 277), we have
€2 fal < On27 %I £ 2.

Then, the proof is finished since

2

< CR2 2% | £ 0
L2(B(c(v'),2F77))

sup [ fo(x)]
te(0,2-9)

3. A counterexample: theorem 1.3

We notice that the counterexample for r = NLH can be also applied to the

case when r > N7+1’ since ¢N/(N+1).00(N) € ¢°°(N) and mm{m, 2(N+1)}

when r > Therefore, next we always assume r € (0

N+1 ) N+1]'
we first construct a sequence which belongs to ¢"°°(N). Put

2(N+1)
Fix r € (0, N+1]

8= W Let R; = 2 and for each positive integer n, RnJr1 < %RE'B(TH). Denote

the 1ntervals I, =[Rn A (TH), R #), n € N*. On each I,,, we get an equidistributed
subsequence t,,,, j = 1, 2, ..., j, such that

{tn-; 1<5< ]n} = R_ﬁ(r+l)Z NIy,

and tn7 tn, . = Rn A+ YWe claim that the sequence ty,,, j =1, 2, ..., jp, n =
1, 2, ... belongs to £">°(N).
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Indeed, according to Lemma 3.2 from [7], it suffices to show that
supb’”ﬂ{(n,j) tb <ty < 26}5 1. (3.1)
b>0

Notice that we only need to consider 0 < b < 1 because t,,, € (0, 1) for each n and j.

Assume that (b, 2b] N I, # () for some n, then we have b < R %, 2b > Ry,
Therefore,

2 < 2R;? < RPTY . b %R;B(T“) >R

This yields (b, 2b] N I,y = () for any n’ # n, hence
b’“ﬁ{(n,j) b <t < 2b}< prH RO <1,

Then (3.1) follows by the arbitrariness of b.
Our counterexample comes from the following lemma.

LEMMA 3.1. Let R>> 1 and I = [R7PUTY R=F). Assume that the sequence {t; :
1<j <ot =RPUVZAT and t; —tj41 = RPUTY for each 1< j < jo— 1.
Then there ezists a function f with supp f C B(0, 2R) such that

> RS RE RIN-DO- )~
L2(B(0,1))

Lt
sup |e'zm A f|
1<5<j0

(3.2)

and

No1q_ (7‘+21)[ﬂ).

B
[ fllzrs vy S RPRTR ™2 (3.3)

Here, € is any positive number.

We use lemma 3.1 to show the counterexample here and prove the lemma a
moment later. Assume that the maximal estimate

sup sup etz A f| < Ol @y (3.4)
noj

L2(B(0,1))

holds for some s > 0 and each f € H*(R"), then for each n € N, we have

< Ol f e (3.5)
L2(B(0,1))

tLA
sup e 2= = f]
J

whenever f € H*(RY). Lemma 3.1 and inequality (3.5) yield

2-8 1\771(1_(7'+1)13)_6
R,* R,? 2 < CR;. (3.6)
Then, we have s > xH— et since R, can be sufficiently large and e is arbitrar-
N

ily small. Finally, we obtain a sequence t;—;, i=12 ., jn,n=12 ..€">*(N)
such that the maximal estimate (3.4) holds only if s > w7
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In the rest of this section, we prove lemma 3.1. Setting

1 s 1 _5
g Lps 1 s
! (100R2’100R2>’

(r+1)B

_ _ 1
0y = {g eRV 1. ¢ec2rR =2 ZN In B(O,Rl—E)}JrB (0 ) ,

1000

then we define f1(&1) = h(&1 +7R), f2(§) = §(§ + wRP), where h = xo,, § = X,
and some § € SV=2 (when N = 2, § € (0, 1)) which will be determined later. Define
f by f = fifs, it is casy to check that f satisfies (3.3). We are left to prove that
inequality (3.2) holds for such f. Notice that

ity _ zf—] ii _
€72 f(a1,2)| = €52 fu(a1) [’ 2 f2(2)) (3.7)
We first consider |ei%A fi(x1)|. A change of variables implies
|22 fu(w)| = |e' 7 A h(ay - Riy))|-

It is easy to check that |ei%Ah(z1)| 2 || for each j whenever |z;| < R™%.

Note that for each z; € (0, R'™7), there exists at least one t; such that

‘.’El — Rtj| < Rliﬁ(TJrl) < .Rig since {tj};ozl C [Riﬁ(r+1), Ri’a) and tj —tj+1 =
R~P+1)_ Hence, we have

e 2 fu@)] 2 I, (38)

whenever 21 € (0, }R1°9) and Rty € (a1, 21 + B9,

t
For |e'372 f, ()|, we have

According to Barcel6-Bennett—Carbery-Ruiz—Vilela [1], for each j and Z € Uy,

e’z 2g(2)] 2 19|, (3.9)
here

r 1

Up={ze€R¥":zec -2 ZV 1N B(0,2) b+B (0, —— R+ ).
1000

We sketch the main idea of the proof of inequality (3.9) for the reader’s conve-
nience. Indeed, for each & € Qy, we write & = or R +0, 1€ ZN7L 27|l <
RPW*E, 71 € B(0, 1555)- Then for any Zp, = R’wm, m e ZN7 Im| <
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(1) _ . . .
oR"F” j:R (T+1)ﬁ(j0+1—])71<] < jo, we have
TN
e'ar g(fm)
1 Z 2mim-l+2mi(jo+1—7) |1
= ~ €
()
1€ZN =127 ||| <RI-(r+1)B/2—¢
9i i on g . 2
x/ eiTm +2igr2m ik 7] dn
B(0, 1555)
. (r+1)8
1 (T 21527 R 2 i ok |7]2
_ e 27 dn
(27T)N 1
leZN—-1. 1-(r41)8/2—c Y B(O, )
€7z 27|l KRI-(r+1)B/2—e¢ 1000

Noting that |Z,,| < 2, |t;| < R77 and |7]] < 1555 imply

*ki,
100

+1)l3

T - 77—|—22J 27rR -7

then, we have
2] 1
By(z > ——s].

Moreover, for each z € Uy, there exits an Z,, such that |z — Z,,| < 1000R I+e by
the mean value theorem and the fact that |£| < 2R~

LY
)|
3
e}
—
B
\
ms
N
51
>
b=
8l
2
VAN

[ 1= 2l € < 5l

Finally, we arrive at inequality (3.9) by the triangle inequality.
Therefore, we have

€2 fo(7) 2 Q] 7 € Uy = Up+ Riyo. (3.10)

Set Uy, = Uj:RtjeRl—(rﬁ»l)BZm(mhIIJ’,R 8/2) Up + Rt;0. Then inequalities (3.8) and
(3.10) imply that for each 1 € (0, 2R'~7) and z € U,,, there holds

sup e/ 72 f (21, 2)| 2 Q]| (3.11)
J

Next, we need to select a § € S¥~2, such that |Uy,| > 1 for each 1 € (0, 1R'7),
which follows if we can prove that there exists a @ € SV ~2 such that B(0, 1/2) C U,,

for all z1 € (0, $R'~"). So it remains to prove the claim that there exists a § € SV ~2
such that

U {x eRV"1:z e R-F2ZN 10 B0, 2)}+Rtj9
j:Rt;€ERIV-BU+DZN(zy, 21 +R-F/2)

is o5 2717 dense in the ball B(0, 1/2). In order to apply Lemma 2.1 from
B(r+1)

Luca-Rogers [12] to get this claim, we first rescale by R

, and replace
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RIS t; by s;, replace R% by R/, recall that 8 = ﬁm, then we are reduced
N

to show

U {x e ZV 1N B(0, 2(R’)(7"+1>/T)}+sj9
Jis €(RNYNZA((R) D/ 7y (R 4D/ Ty + R)

NELt1)e

1,
is o5 (R') ™™+ "7 dense in the ball B(0, 3(R')("+1)/"), which is equivalent
to prove that for any y € B(0, %(R/)(”H)/T), there exist

T, € ZN 1N B(0,2(R) /T and

5, € (R/)l/NZ N ((R/)(T+1)/Tl‘1, (R/)(r—o—l)/rxl + R/),

such that

NiLo)

L(R/)—%%, (3.12)

1000

for a fixed § € SN ~2, which is independent of y and x;. This is implied by the fol-
lowing Lemma 3.2 from Luca—Rogers [12], but we prefer to omit the proof of (3.12),
because a similar but more detailed proof can be found in Corollary 2.2 of [12].

|y_jy _Sy9| <

LEMMA 3.2 [12, Lemma 2.1]. Letd >2,0<¢,d <1 and k > ﬁ, Then, if 6 < K
and R > 1 is sufficiently large, there is 6 € S¥=1 for which, given any [y] € T? and

a € R, there is at, € R°ZN (a, a + R) such that
Ily] — [t,0]] < eR™D/4,

where {-]” means taking the quotient R? /74 = T<. Moreover, this remains true with

d =1, for some 6 € (0, 1).

Finally, it follows from (3.7) and (3.11) that

b
/ sup |e'27 2 f(z1, 2)|? dZ day
B(0,1) J
R1-8

2 Lt
- / / sup|ei 72 f(z1,7)[2 d7 day 2 R 1042|002,
0 Usy

which implies inequality (3.2).

4. A counterexample for theorem 1.9

For convenience, we first set N = 2. By changing of variables, the nonelliptic
Schrodinger operator can be written as

ot 1 ir-E+it€1€a F
(@) 1= g [ e (e de (1)
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For each r € (0, 1], we will show that there exists {¢,}52; € ¢"°°(N), such that the

maximal estimate

< Cllf e (4.2)
L2(B(0,1))

sup |efn
neN

holds for all f € H*(R?) only if s > T+1

Indeed, we may choose t, = 1/n+t¢, it is clear that {t,}5°, € £7°(N) but
never belongs to £7~<°°(N) for any small € > 0. Moreover, t,, — t,+1 is decreas-
ing. According to Lemma 3.2 in [7], we can select {b;}3%; and {M;}52, satisfying
lim; .o b; =0, limj_.oo M; = o0, and

M;bi " <1, (4.3)
such that
ﬁ{n by <ty < 2@}2 M;by e (4.4)
By the similar argument as Proposition 3.3 in [7], when ¢,, < b;, we have
tn — tna1 < 2M; DT (4.5)
r—etl
For fixed j, choose \; = 10100M2b 2 and fj(ﬁl, &) = )\i AIXI=A —1, =]
(&1, &2). Therefore,
r—e 1
. T—etl 2
15l e < AT R, (4.6)
Let U; = (0, )‘J'ij) X (— 1055+ 1095)- Notice that U; C B(0, 1) due to inequality
(4.3). Next, we will show that for each € Uj,
sup |etH f] > % (4.7)
neN (27T)
After changing variables, we have for each n € N,
1
ity [ _ i)\j x 7)\]‘tn “+ix Jritn)\]‘
|€ fj(x)| = 7(271_)2 e ( 1 )771 272 7112 d771 an . (4.8)

For each = € Uj, there exists a unique n(z, j) such that
21 € Njtn(a.j)+1 Ajtn(a.p))-

It is obvious that ¢, j)+1 < %, then ¢,(, ;) < b; due to inequality (4.4) and the
assumption that ¢,, — t,,11 is decreasing. Then it follows from inequality (4.5) that

1

2 —1lyr—e+1
|)\j($1 _)\jtn(z,j)) | 2>\ b ! < m

Also, |zans| < 1000, and by inequality (4.3), we have |\;t,, jymnz| < Ajb; < 1000
Therefore, if we take n = n(z, j) in (4.8), then the phase function will be sufficiently
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small such that |e/nenH f;(2)] > m for each = € U;, which implies inequality
(4.7). Then, it follows from inequalities (4.6) and (4.7) that

| sup,,en le™ 2 filll L2 (B0,1))

1
> CM]?(T_S“).

[T
This implies that the maximal estimate (4.2) can not hold when s < ;=55 hence

when s < 17 by the arbitrariness of e.

REMARK 4.1. The original idea we adopted to construct the above counterexample
comes from [13]. The same idea remains valid in general dimensions. For example,
in R?, by changing variables, we can write

1

)= G /R i SHIEEED f6) dg.

In order to prove the necessary condition, we only need to take

oAb 11 11
Uy =0, )X( 1000’1000>X< 1000’1000)

and

. 1

[i(€1,62,&3) = YX[O,/\]-]X[—)\j—l,—)\j]x(o,l)(51752353)'
J
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