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Abstract

A recent result of Rogozin on the relative stability of a distribution function is extended, by giving
equivalences for relative stability in terms of truncated moments of the distribution and in terms
of the real and imaginary parts of the characteristic function. As an application, the known
results on centering distributions in the domain of attraction of a stable law are extended to the
case of stochastically compact distributions.

1980 Mathematics subject classication (Amer. Math. Soc): 60 F 05, 60 E 10, 60 G 50.

1. Introduction and results

Let X,Xh i > l , be independent random variables with distribution F not
degenerate at 0, and let Sn = X1+X2+--+Xn. We say that F is relatively stable

p p
if there are constants Bn>0, Bn-+ + co, for which either SJBn-*l, or SJBn-> — \

(we abbreviate this to SJBn-+±\). Rogozin (1976) and Mailer (1978) showed
that, in the case when P(| X\ >x)>0 for x>0, F is relatively stable if and only if
xP(\ X\>x)/v(x)-+0 as x-> + oo, where v(x) = JixudF(u) for x>0. Rogozin also
showed that then Bn may be taken to be nondecreasing, is regularly varying with
index 1, and satisfies Bn~nv(Bn). These results extend earlier ones of Khintchine
(1936) who restricted himself to the case of positive Xt with a continuous
distribution.

In this paper, we supplement Rogozin's theorem by finding two further
equivalences for relative stability, one involving the distribution F through v(x)
and the truncated second moment, V(x) = \x_xu

2dF(u), and the second involving
the real and imaginary parts of the characteristic function F, which we define as

= ^a,e
UxdF(x). We go on to show that these equivalences have counter-
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parts for the convergence of a subsequence of SJBn to ± 1, and indicate how those
results are related to some problems in the theory of stochastically compact
distributions.

THEOREM 1. The following are equivalent:
(1.1) F is relatively stable;
(1.2) V(x)/xv(x)^0 asx-^ + ao;
(1.3) [1 — Re<p(t)]/Im<p(t)->0 as f->0, and \\rnq>(t)\ is regularly varying with
index 1 as t-+0.
7/"(1.1) holds, lm(p(t)~tv(\ t\-*) as r-»0.

According to Feller (1965-66) (with his restriction of the symmetry of F
removed), Fis stochastically compact if there are sequences An, Bn, Bn>0, Bn-+ + oo,
for which, given any sequence of integers n"~> + oo, there is a subsequence
n'-* + co for which (Sn-/Bn.)—An. converges in distribution to a nondegenerate
random variable. Feller gives necessary and sufficient conditions for this as:
V(xX)/V(x) ^ CX" for some p < 2 and C>0, if x>l and X>z; equivalently,
limsup^^ + oox2PQX\>x)/V(x)< + oo. For our purpose it is useful to note that
these conditions are equivalent to limsup;c_ + 00 V(xX)/V(x) ^ cX2~x for some a>0
and c > 1, when X ̂  1. This may be proved either by a minor modification of the
method of Letac (1970) or by an argument similar to the criterion on page 110 of
Feller (1969). When F is in a domain of attraction (that is, when the whole
sequence (SJBn)—An converges to a nondegenerate random variable), V is
regularly varying with index in [0,2); thus lim^^ + ̂ j V(xX)/V(x) =X2~" for some
a > 0 when X>0. The condition limsupx_ + 00 V(xX)/V(x) < cX2~" is a natural
generalization of this, also embodying the idea of an 'index of variation'.

We now show that relatively stable and stochastically compact distributions
are connected in a couple of interesting ways. We first state the following sub-
sequential version of Theorem 1:

THEOREM 2. / /
p p

(1.4) there are sequences nt, miy Bt, Ct, for which either SnJBt~*\, Sm,/Cj-> —1,
or both, then
(1.5) liminf^ + 00 V(x)lx\ v(x) | = 0 , and
(1.6) hminf^ o [ l -Re(p(0] / | Im^(0 l = 0 .
Conversely, if in addition F is stochastically compact, then (1.6) implies (1.5) and
(1.5) implies (1.4).

In Mailer (1978) it was shown that (1.4) implies

lim inf xP(| X \ > x)/\ v(x) | = 0,
x-* + oo
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while the reverse implication is true if in addition it is assumed that F is not in
the domain of partial attraction of the normal distribution.

Theorem 2 is related to a result of Kesten (1972) who showed that, if n~i Sn

has a finite almost sure limit point, then it has as almost sure limit points the
whole real line, provided limsup,->0|Im<p(OI/[l-Re(p(0]<+oo. The latter
condition is just the opposite of (1.6).

It was proved by Mailer (1974) that (1.6) does not hold when the tail function
P{\ X\ >x) is regularly varying with index in (—1,0). It is not hard to show that
this condition is sufficient for Fto be stochastically compact, and in fact the results
of the paper just quoted hold, and can be extended, when only the stochastic
compactness of F is assumed.

We now establish a connection between Theorem 2 and the problem of
centering Sn for stochastically compact F. For such distributions, if An and Bn are
the centering and norming constants, we say that "An may be chosen as 0" if
lim supn_ + „ | An | < + oo; because, in this case, any sequence n" contains a sub-
sequence ri for which (Sn./Bn,)—An- converges, and An.-*A, where A is a finite
constant. Thus, Sn^Bn. also converges to a nondegenerate random variable and
so no centering is necessary. We prove

THEOREM 3. Suppose F is stochastically compact. The centering constants may be
chosen as zero if and only if (I A) does not hold.

Using Theorem 3, we can generalize the known results on centering distributions
in the domain of attraction of a stable law with index # 1 as follows (we omit the
proof of these results): say that FeSC(a) if limsupx^ + OC) V(xX)/V(x) < ck1-* for
A ^ 1 for some c > 1 and <x>0. Then if FeSC(a) and <x> 1, An may be chosen as
nB^EX (E\X\ being finite in this case). If FeSC(tx) and a is necessarily less
than 1, in the sense that liminfx^ + 00 V(xlo)/V/(x)>Ao for some AO>1, then An

may be chosen as zero. Following Matuszewska (1962), p. 324 define

s, = l im (logA)"1 log [liminf^ + 00 K(xA)/K(x)],

a, = lim (logA)"x log [lim sup,.* + „ V(xl)/V(x)-],

called by Goldie (1977) the lower and upper indices of variation of V. With these,
the stochastic compactness of F can be simply expressed as <rv<2, while by the
result mentioned above, we can say that if av<\ or if \<sv < ov<2 then F is
stochastically compact and the centering constants may be chosen as nB~l EX
or 0, respectively.

Rogozin's (1976) first example is of a relatively stable F for which E\ X\ < + oo
and EX = 0. It is easy to check that his F is also in the domain of attraction of a
stable law with index 1, yet by Theorem 3, the centering constants cannot be
taken as zero.
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For a normegative X, relative stability is equivalent to the slow variation of v;
this is a consequence of Theorem 2 of Rogozin (1971), who gives a comprehensive
discussion of the nonnegative case with regard to the fluctuations of Sn. In general,
relative stability is not implied by the slow variation of v or the regular variation
with index 1 of Imq> alone; a counter-example consisting of an 'almost symmetric'
distribution is not difiicult to construct.

We mention finally that two sufficient conditions for relative stability which
can be deduced from Theorem 2 of Klass and Teicher (1977) can easily be derived
as special cases of either Theorem 1 or of Rogozin's condition for relative
stability.

2. Proofs

PROOF OF THEOREM 1. From Gnedenko and Kolmogorov (1968), p. 24,
P

SJBn-* ± 1 if and only if for every A>0

(2.1) n

(2.2) nv(kBa)/Bn-*l (or to -1) , and

(2.3) nBn-

When (2.2) holds, it is clear that (2.3) is equivalent to

(2.4) nB^
so SJBn-> ± 1 implies V(Bn)/Bn v(Bn)->0. Also a simple consequence of SJBn-y ± 1
is that Bn+lIBn-*\, and now a standard argument shows that V(x)/xv(x)->0.
Thus (1.1) implies (1.2).

Again if SJBn^l, <p"(t/Bn)^e" for every real /, so (p\tlBn) =exp(it+5n{t))
where dn(t)-*O as «-» + co. Thus, introducing the notation x(O = Re<p(O»
\j/(t) — Im <p(t), we have

«[1 -xit/BJ-iHt/BM = « P -exp(it+Sn(t))/n-]

= «[1 - exp (/*/»)] +n exp (it/n) [1 - exp (c5,,(0/«)]

->-it,

which means that w[l —%(t/Bny]->0 and nt]/(t/Bn)-*t as n-* + oo for each real /.
Now x and if/ are continuous functions, and since [\—x(tjBJ]l\li{tlB^-*O as

«-»+ co for each t =£ 0, and Bn+1/Bn^l,we conclude from Theorem 1 of Kingman
(1964) that [1 -x(tWW0-*0 as ?->0+, and hence as t-+0. Since Fis not degenerate
at 0, *(0<l in a neighbourhood (0,<5) [Lukacs (1970), p. 19]; so \\l/(t)\>0 in
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(0,<5), and since iA is continuous, \jj is either positive or negative in (0, <5) (and
hence, since it is an odd function, is correspondingly negative or positive in
(-<5,0)). Clearly, for the case under consideration i/f>0 in (0,3), and since
\l/(t/Bn)/il/(l/Bn)-4t as w-» + oo we can apply Theorem B of Seneta (1971) to
conclude that ty is regularly varying with index 1 as ?-»0+. Thus | \ji | is regularly
varying with index 1 as t->0. Also for t # 0,

|iACO —*v(| f f"1)! = J sin<xrfF(x)-H xdF(x)
I J — 00 J — \tI ~ 1

r\t\-<

J - i d " 1

J -|t|-»
x2dF(x)+o\tvQt\-l)\

= t2V(\t\-1)+o\tv(\tr1)\=o\tv(.\t\-1)\

using the result of Rogozin (1976) and what we proved earlier. Thus we have
t K 0 ~ M l f | ~ 1 ) a s t->0.

Suppose now that (1.2) holds, and suppose first that F is a continuous function;
later, we reduce the general case to this. Under this assumption,

(u)+F(-u)-]du

is continuous in x>0 . Given 8>0 we can choose xo(e) so large that x > x0 implies
s~l x'1 V(x) < | v(x)\, and since V(x)>0 for x>0 (F not being degenerate at 0)
this means | v(x) | > 0 for x ^ x0, and since v is continuous this means either

* P
v(x)>0 or v(x)<0 for x > xo. We suppose v(x)>0; this leads to SJBn-+ + l, and
the other case may be proved similarly. Thus for x ^ x0 we have

e>
xv(x)

[Xu2

J 0

xv(x)

-F(-u)] | /xv(x)

-du

which means JSv(u)du/xv(x)_>l. So by Seneta (1976), p. 54, for example, we
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have that v(x) is a slowly varying function. An integration by parts shows that

r oo r oo

P(|X|>x) = - dP(\X\>u)=\ u~2dV(u)
J X J X

= -x~2 V{x)+2 u~3 V(u)du
J x

so that, if x > x0,

v(x)

• j ; u d u
i v(x)

as x-* + oo by a well-known property of slow variation. Thus xP{\ X\>x)/v(x)->0
as x-> + oo, and by the results quoted in the Introduction, this means Fis relatively
stable if.P(|X\>x)>0forx>O.IfPQX\>x0) = 0 for some xo(or even if Zjhave
finite variance) note that if EXt=0, xv(x) =xj^>xudF(u) < \\u\>xii

2 dF(u)-*0
as x-> + co; so (1.2) cannot hold in this case, F not being degenerate at 0. But if

P
EXt i= 0 in this case, then by the weak law of large numbers SJn\ EX\-*± 1; so
F is relatively stable.

Now we remove the assumption of the continuity ofF. Let F be any distribution
for which V(x)[xv(x)->0, equivalently, x\ v(x)\(V(x)-> + oo. Let f/j be uniform
r.v.'s on [ — 1,1], independent of each other and of the Xt. Since the distribution
of Ut is continuous, so is that of Xt+ Uh and we can apply the result just proved
if we can show that V*(x)/xv*(x)-*0, where V* and v* are the truncated second
and first moments of Xt+Ut. We have, after some elementary manipulation,

V — X

-Us

J -lJ -x-l

{Xu+Ut<y) =

dF(y-u)du

y2dF(y)du+2

y2dF(y)du+2

I'.,"

y2d\ F(y-u)dP{Ui<u)
J - l

1 * " ydF(y)du
v —X — U

+ f1 « 2 f* " dF(y)d«
J -1 J -x-u

rx+i
u\\ \y\dF(y)du

J -x-l

+ f1 u2du

2V(x+i)+0(V(x+i))+i = [2+0(1)] F(x+1),
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fX+I \y\dF(y)^\ \y\dF(y)+\ y2 dF(y)
I I I

J -x-l J -1 J l«|y|^x+l

< \y\dF(y)+V(x+i)

on noting that, since F(+oo)>0 (F not being degenerate at 0), any constant is
O(V(x+l)). Now consider

2x|v*(x)-v(x+l)| = x ydF(y-u)du-2v(x+l)

fl fx-u fx+1
ydF(y)du-2\

J - l J -x-u J -x-l
ydF(y)

dF(y)du
— x — u

y dF(y) du

+x| I u[F(x-u)-F(-x-u)]dw

T

The integral in the last expression has modulus

;|[ ^-.)*|+|j; uF( — x — u)du

u2dF(x-u)

u2dF(-x-u)

so that for large enough x there is a constant c>0 for which

2X|V*(X)-V(JC+1)|

< c(x- l 2 2 - F ( - x - 1 ) ] .
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But we have

+FJ X+1y2

so that, for x large enough,

2x|v*(x)-v(x+l)|

Then since x\v(x+l)|/F(x+l)-> + oo, we must have x| v*(x)|/F(x+l)
equivalents, since V*(x) = 0(V(x+l)), V*(x)/xv*(x)-+0. Thus if

we have by the first part of the proof that (Sn+Tn)/Bn-5- ± 1 where Bn-* + oo and
Bn satisfies Bn~nv*(Bn), while v*(x) is ultimately positive (say) and is slowly
varying as x-> + oo. A well-known property of such functions is that v*(x) ^ x~'
for x large enough for any £>0. So Bn ^ nB~* if n is large enough, and thus

P P

21/n-^ + oo. But rn/«* converges to normality and so TJBn-*0 and SJBn-*±l.
Thus (1.2) implies (1.1).

Suppose (1.3) holds; then, as in an earlier part of the proof, & is of constant
sign (say i^>0) in a neighbourhood (0,<5). Defining

B~l =inf{0<*«5: i/r(0>n"1}

we have by continuity that ni/'(l/5n) = 1, and that Bn is a positive nondecreasing
sequence converging to +oo. Since i// is regularly varying with index 1 as t-*0+,
mj/(t/Bn)-+t for t>0 (and hence for t<0) and n[l-x(t/Bn)]^>0. It is now easy to

p

see that cpXt/B^-te" as n-» + oo for each t; so SJBn-+\.

PROOF OF THEOREM 2. If SJBt^* ± 1 then (2.2) and (2.4) hold with n replaced
by nt and Bn replaced by B,, and so V(Bi)/Biv(Bi)-^0 and (1.5) holds. Also, just
as in Theorem 1 we have n,-[l-*(!//?*)]->0 and «,^(l/£j)-> +1 and so
[1 - z O / O T M W - » 0 and (1.6) holds.

To show that (1.5) implies (1.4), let xf-> + oo be such that V{x^lxt\ v ^ H O ;
since F is not degenerate at 0, this means I v(xf) | > 0 for i large enough, so by
taking a further subsequence if necessary, we can assume that either v(x;)>0 or
v(x,')<0 for two possibly different sequences x(,x-. Assume that v(x,)>0, since
the other case can be dealt with similarly, and let nt denote the integer nearest to
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x,/v(Xj); since v(x)/x-*0, this means Wj-> + oo. Also then, n,X; 2 F(x,)-»0, and if
we assume in addition that F is stochastically compact, we have

lim sup x2 P(\ X | > x)/ V{x) < + oo;

so ntP(\ X\>xt)-*0. Thus if A> 1, from

\ 2 IdPQX\>u)\nfxr2 V{xtX) =

and the monotonicity of Fwe have that n,x,- 2F(xfA)->0 for every A>0, and in
turn this means, if 0 < A < 1

- 2= niXr2 lV(xd- V(xtXf] =

Finally if A >0

\ntxrl v(xj A) - w, xfJ v(x() | = nf xfJ

J XiS

max(l, A)n,P(| X | >min(xf, Ax,))

So, since HjXf1 v(x,)-+l, njX,"1 v(x;A)^l. We have shown that (2.1), (2.2) and
P

(2.4) hold with «f in place of « and xt in place of Bn, so S,,./x;-> + 1.
Finally, let (1.6) hold, together with the stochastic compactness of F. We have

for r>0

L" *(Q = I " (1 - cos tt) dF(x) ̂  P (1 -
J -oo J - r - i •D- cos tx)dF(x)^$t

so (1.6) means that for every e>0, for some sequence tt-*Q+,

tf V(tf 1)<e\ 4/(t j) | = £ I I sin t,- x dF{x)

rir1

\e (fjX-sinf,x)dF(x) +ef,|v(r1)|+e[l-FOr1)
J —ft"1

; etf x2 dF(x)+eti | v(tf ^ | +ectf V(tfJ).

< e
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Here we used the stochastic compactness to deduce that, for some c>0,

for / large enough. It follows that

and thus that (1.5) holds. This completes the proof of Theorem 2.

PROOF OF THEOREM 3. Suppose there are no nhB'{, for which SJB'^ + i.
Suppose there is an n{ for which Ant-* + oo; by taking a subsequence we can make
(SJBJ-A^X, where I is a proper r.v. But then SJBni\Ani\^±l, a
contradiction.

Conversely suppose there are sequences nt,B't for which SnJB\^*\, and that An

may be chosen as zero. By taking a subsequence we can make SnJBnt-*X, where
Xis a proper nondegenerate r.v., and BntIB[-*a where — oo ^ a < + oo. Thus.

P(X < x) = lim P(Snt < xBn) = lim P(SJB't < xBJB',)

= P ( K a x ) = 0 o r 1,

which is impossible. Similarly there can be no nh B\ for which SJB'f^* — 1.
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