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Abstract

This paper proves two results on the field of rationality Q(π) for an automorphic
representation π, which is the subfield of C fixed under the subgroup of Aut(C)
stabilizing the isomorphism class of the finite part of π. For general linear groups and
classical groups, our first main result is the finiteness of the set of discrete automorphic
representations π such that π is unramified away from a fixed finite set of places, π∞
has a fixed infinitesimal character, and [Q(π) : Q] is bounded. The second main result
is that for classical groups, [Q(π) : Q] grows to infinity in a family of automorphic
representations in level aspect whose infinite components are discrete series in a fixed
L-packet under mild conditions.

1. Introduction

1.1 Modular form case
Let Sk(N) be the space of cuspforms of weight k > 2 and level Γ0(N) with N > 1. Suppose that
f ∈ Sk(N) is an eigenform under the Hecke operator {Tp} with eigenvalue ap(f) ∈ C for each
prime p -N . It is well-known that {ap(f)}p-N are algebraic integers and that they generate a finite
extension of Q (in C), to be denoted Q(f). The field Q(f) encodes deep arithmetic information
about f and is of our main concern here. To wit the significance of Q(f), the Eichler–Shimura
construction associates to a weight 2 form f a GL2-type abelian variety of dimension [Q(f) : Q]
as a quotient of the Jacobian of the modular curve X0(N). Moreover the two-dimensional l-adic
Galois representations associated to f are realized with coefficients in the completions of Q(f)
at finite places.

We are interested in two aspects of Q(f). The first question is on the growth of Q(f) in a
family of modular forms f with increasing level. Let Fk(N) be the set of normalized cuspidal
eigenforms of weight k > 2. These are eigenforms for all Tp (p - N) and define

Fk(N)6A := {f ∈ Fk(N) : [Q(f) : Q] 6 A}, A ∈ Z>1.

Serre has proved the following theorem, which serves as a prototype for one of our main results.

Theorem 1.1 [Ser97, Theorem 5]. Fix k > 2 and a prime p. Then

lim
N→∞,
(N,p)=1

|Fk(N)6A|/|Fk(N)| = 0.
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Let us briefly recall Serre’s argument. The key point is to show that

|{ap(f) : f ∈ Fk(N)6A}| <∞. (1.1)

This follows from the fact that ap(f) is an algebraic integer which is the sum of a Weil
p-number of weight k − 1 and its complex conjugate. The condition [Q(f) : Q] 6 A implies
that [Q(ap(f)) : Q] 6 A, so such a Weil number is a root of a monic polynomial in Z[x] whose
degree and coefficients are bounded only in terms of p, k, and A. Clearly there are only finitely
many such polynomials, hence (1.1). Finally, Theorem 1.1 is deduced from (1.1) by using a trace
formula argument.

Serre then asked in [Ser97, § 6.1] whether the same type of result would be true without
requiring some auxiliary prime p to be coprime to the level. (For instance, is the above result
valid if the limit is taken along the sequence N = 2, (2 · 3)2, (2 · 3 · 5)3, . . . ?) In our paper we
generalize Theorem 1.1 to higher rank classical groups and partially settles Serre’s question in
the generalized setting for a sequence of levels N → ∞ such that there exists a prime whose
order in N grows to infinity. Moreover, we improve on the rate of decay of the quotient as in
Theorem 1.1 by a logarithmic order.

Another aspect of Q(f) is in relation to a finiteness result. Let us begin with recalling a deep
theorem of Faltings, who also proved a stronger version in which ‘up to isogeny’ is replaced with
‘up to isomorphism’ (the Shafarevich conjecture).

Theorem 1.2 [Fal86, Theorem 5]. Fix n ∈ Z>1 and a finite set of primes S. Then there are only
finitely many abelian varieties of dimension n having good reduction outside S up to isogeny.

The Shimura–Taniyama conjecture, as confirmed by Wiles and Breuil–Conrad–Diamond–
Taylor, translates the case n = 1 of the above theorem into a finiteness result about modular
forms: namely there are only finitely many newforms f such that [Q(f) : Q] = 1 which are
contained in F2(N) for some level N whose prime divisors are all contained in S. With this
motivation an automorphic analogue of the above finiteness theorem will be pursued in this
paper.

To formulate and make progress toward the problems raised in this subsection we are going
to introduce some definitions, concepts, and conjectures before stating the main results.

1.2 C-algebraic automorphic representations
Algebraicity of automorphic forms and representations has been studied by Shimura,
Waldspurger, Harder, Harris, and many other mathematicians. Regarding automorphic
representations of GLn the definition of algebraicity was first formulated by Clozel [Clo90]
and recently extended to arbitrary connected reductive groups by Buzzard and Gee [BG11].
In fact, one main point of their paper is to distinguish between the two possible definitions of
algebraicity, namely C-algebraicity and L-algebraicity, the former generalizing Clozel’s notion.
In this article our attention is restricted to C-algebraic representations mainly because these are
expected to be exactly those having number fields as their fields of rationality. (There is also
W-algebraicity recently suggested by Patrikis [Pat12], but again C-algebraicity is believed to be
the exact condition to ensure the finiteness of the field of rationality over Q.)

To be precise let G be a connected reductive group over Q. To avoid vacuous statements
we assume throughout the paper that the rank of the groups under consideration is at least
one. Let π = ⊗vπv = π∞ ⊗ π∞ be an automorphic representation of G(A). Here π∞ and π∞
denote the finite and infinite components. We say that π is C-algebraic if, loosely speaking,
the infinitesimal character of π∞ is integral after a shift by the half sum of all positive roots
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(for some thus for all choices of positivity on the set of roots). When σ is a field automorphism
of C, let (π∞)σ denote the G(A∞)-representation on the underlying vector space of π∞ twisted
by a σ-linear automorphism. For any π define its field of rationality as the field of the definition
of its isomorphism class, i.e.

Q(π) := {z ∈ C : σ(z) = z, ∀σ ∈ Aut(C) s.t. (π∞)σ ' π∞}. (1.2)

The following was conjectured by Clozel (for G = GLn) and Buzzard and Gee.

Conjecture 1.3. The automorphic representation π is C-algebraic if and only if Q(π) is finite
over Q.

It is worth noting that in the special but subtle case of Maass cusp forms for GL2 over
Q, Sarnak [Sar02] classified the forms with integer coefficients, showing in particular that they
are C-algebraic (i.e. Laplace eigenvalue being 1

4), and made a remark on the transcendence
of Q(π).

According to the conjecture, C-algebraic representations are the most suitable for studying
questions on the growth of fields of rationality. To obtain unconditional results, we show thatQ(π)
is a number field for cohomological representations π, which form a large subset inside the set
of C-algebraic representations, by adapting an argument of Clozel using arithmetic cohomology
spaces. See § 2.2 below. Note that if G is semisimple then any π such that π∞ is a discrete series
is always cohomological.

1.3 Conjectures
Let us highlight two interesting conjectures that we were led to formulate during our investigation
of fields of rationality for automorphic representations. Some partial results and remarks are
found in the next subsection as well as in the main body of our paper.

The first conjecture, a small refinement of the well-known Fontaine–Mazur conjecture, is
not directly concerned with field of rationality but rather with integrality of local parameters
(e.g. Satake parameters or Frobenius eigenvalues of a Galois representation). The question arises
naturally as a weak form of integrality is needed to answer a generalization of Theorem 1.1.

Conjecture 1.4. Let F be a number field and ρ : Gal(F/F ) → GLn(Ql) a continuous
irreducible representation unramified outside finitely many places. The following are equivalent:

(i) ρ is de Rham at every place v|l with nonnegative Hodge–Tate weights (adopting the
convention that the cyclotomic character has Hodge–Tate weight −1);

(ii) the Weil–Deligne representation associated with ρ at every finite place v - l is integral and
pure of weight w ∈ Z which is independent of v;

(iii) ρ appears as a subquotient of H i
ét(X ×F F ,Ql) for some proper smooth scheme X over F

and some i ∈ Z>0.

The motivation for the conjecture comes from our effort to obtain Theorem 1.7 below
(which generalizes Theorem 1.1), where we need a version of the statement that ap(f) is an
algebraic integer. We derive a partial result toward Conjecture 1.4 (Proposition 4.1) for the Galois
representations arising from (conjugate) self-dual automorphic representations by exploiting the
fact that they appear in the cohomology of Shimura varieties. This serves as a crucial ingredient
in the proof of Theorem 1.7.

The second conjecture is on the finiteness of automorphic representations with bounded field
of rationality. It is an automorphic analogue of (the isogeny version of) the Shafarevich conjecture
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and its analogue for Galois representations formulated by Fontaine and Mazur [FM95, I.§ 3].
Theorem 1.6 below partially confirms the conjecture.

Conjecture 1.5. Fix A ∈ Z>1, S a finite set of places of F containing all infinite places, and an
infinitesimal character χ∞ for G(F⊗QR). Then there are only finitely many discrete automorphic
representations π of G(AF ) with infinitesimal character χ∞ such that πS is unramified and
[Q(π) : Q] 6 A.

1.4 Main results
Let us make it clear at the outset that our results concerning quasi-split classical (i.e. symplectic,
orthogonal,1 or unitary) groups rely on Arthur’s endoscopic classification [Art13] and its analogue
for unitary groups due to Mok [Mok12]. (However, our finiteness theorem for general linear
groups, cf. Theorem 1.6 below, is unconditional.) The classification is based on some unproven
assertions on the stabilization of the twisted trace formula for GLn and a little more, which are
hoped to be proved in the near future. So we are making the same hypotheses as Arthur does
in his work. (Also see [BMM11, 1.18] and the footnote around Hypothesis 4.8 for a discussion of
the hypotheses.) We only deal with quasi-split groups mainly because the analogous theorems
for inner forms are not complete (see the last chapter of [Art13] for a sketch), but our argument
should apply equally well to the inner forms. With this in mind we have written the argument
in such a way that our main theorems remain true for non-quasi-split classical groups with
little change in the proof once the necessary classification becomes available. As a matter of
fact, Theorem 1.7 in case (i) is almost an unconditional theorem for (not necessarily quasi-split)
unitary groups thanks to the base change results for cohomological representations in [Lab11].
(Unlike Arthur’s work, the latter are not conditional on the full stabilization of the twisted trace
formula or any other hypotheses.)

Our first main result is a finiteness theorem for automorphic representations with bounded
field of rationality. It is worth emphasizing that we allow arbitrary infinitesimal characters (e.g.
those corresponding to C-algebraic Maass forms in the case of GL2 over Q) even including
transcendental ones (in which case the set of π is expected to be empty by Conjecture 1.3).

Theorem 1.6 (Theorems 5.18 and 5.19). Conjecture 1.5 is true for general linear groups and
quasi-split classical groups.

Our second main result is on the growth of the field of rationality in a family of automorphic
representations. We work with a quasi-split classical group G over Q for simplicity (in the main
body G is over any totally field) and introduce a family in level aspect with prescribed local
conditions as in [ST12]. Let nx ∈ Z>1, ξ be an irreducible algebraic representation of G over C
whose highest weight is regular, S0 be a finite set of finite primes (which could be empty so that

no local condition may be imposed), and f̂S0 be a well-behaved function on the unitary dual of
G(QS0). The family in question is a sequence

Fx = F(nx, f̂S0 , ξ), x ∈ Z>1 such that nx →∞ as x →∞,

where each Fx consists of discrete automorphic representations π of G which, loosely speaking,
has level nx, weight ξ, and prescribed local conditions at S0 by f̂S0 . Then each Fx is a finite
set whose cardinality |Fx| tends to infinity as x → ∞. Actually in our formulation Fx is a
multi-set in that each π is weighted by the dimension of the fixed vectors of π∞ under the
principal congruence subgroup of level nx. (See § 6.1 for the precise definition of Fx and |Fx|.)

1 As we will never deal with the usual (disconnected) orthogonal groups, special orthogonal groups will be called
orthogonal groups in favor of simpler terminology. We will be precise where we have to be.
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For A ∈ Z>1 define
F6Ax := {π ∈ Fx : [Q(π) : Q] 6 A}.

Note that we have [Q(π) : Q] < ∞ for every π ∈ Fx since π is cohomological in that π∞ ⊗ ξ
has non-vanishing Lie algebra cohomology. We prove a theorem roughly saying that the field of
rationality grows generically in the family {Fx}x>1 in the case (i) or (ii) below. Note that case
(ii) includes the level sequence 2, (2 · 3)2, (2 · 3 · 5)3, (2 · 3 · 5 · 7)4, . . . for instance. Unfortunately
neither case (i) nor case (ii) includes the sequence 2, 2 · 3, 2 · 3 · 5, . . . .

Theorem 1.7 (Theorems 6.1 and 6.6). Let G 6= {1} be a quasi-split classical group, or a non-
quasi-split unitary group. Suppose there exists a prime p 6∈ S0, at which G is unramified, such
that either:

(i) (nx, p) = 1 for all but finitely many x; or

(ii) ordp(nx) →∞ as x →∞.

Then for every A ∈ Z>1, limx→∞ (|F6Ax |/|Fx|) = 0. Moreover, let Sunr be the number of primes
p satisfying case (i) (which could be infinite) and such that G is unramified at p. Put Runr :=∑

p∈Sunr
rankGQp . Then

|F6Ax | = O(|Fx|/(log |Fx|)R) for all R 6 Runr.

Especially pleasing features of the theorem are that some arbitrarily high ramification can
be treated as seen in case (ii) and that the upper bound has a logarithmic power-saving. The
case (ii) seems to be new already in the case of modular forms while the logarithmic saving
generalizes [Roy00, GJS99]. It would be nice to prove (or disprove) the theorem without cases (i)
and (ii). We can do it under some restrictive hypotheses (which are too special to be discussed
here) but do not know of any general type of result.

It is natural to ask whether |F6Ax | = O(|Fx|δ) for some δ < 1 for a level aspect family
Fx (whose level nx → ∞) for an arbitrary reductive group G, cf. Question 6.5 below. This is
already challenging for G = GL(2) (see [Ser97, p. 89]). The above theorem does not achieve this.
However, we do provide a nearly optimal answer under a hypothesis on {nx}x>1 (Corollary 6.8).
Let G be a group as in Theorem 1.6 and suppose that {nx}x>1 is supported on a finite set S
of finite primes in the sense that for all but finitely many x, every prime divisor of nx is in S.
Then |F6Ax | = O(1). This is actually an easy corollary of Theorem 1.6. Again no condition on
infinitesimal characters at ∞ is needed (so it applies to C-algebraic Maass forms when G = GL2

for instance).
In the following we sketch the proof of Theorems 1.6 and 1.7. Both theorems take local

finiteness results as key inputs. The former theorem in the case of GLn uses the following result.

Proposition 1.8. Fix A > 1 and a prime p and an integer n > 2. There exists a constant C =
C(A, p, n) such that every irreducible smooth representation of GLn(Qp) with [Q(πp) : Q] 6 A
has conductor 6 C. (Here Q(πp) is the field of rationality for πp defined as in (1.2).)

For the proof of the proposition we pass to the Galois side via the local Langlands
correspondence and examine the representation of the inertia group. Note that a suitable
normalization of the local Langlands correspondence preserves the field of rationality. Since the
inertia representation must have finite image, it is possible to conclude with some elementary
representation theory and ramification theory for local fields. Once the proposition is in place,
Theorem 1.6 is an easy consequence of Harish-Chandra’s finiteness theorem for automorphic
forms.
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Theorem 1.7 requires a more arithmetic kind of local finiteness theorem. When G is a quasi-
split classical group, we show the following far-reaching generalization of the finiteness of Weil
numbers (§ 1.1) to the case for higher rank groups allowing arbitrary ramification at p.

Proposition 1.9 (Corollary 5.7). Fix A > 1, a prime p, and an irreducible algebraic
representation ξ of G. Then the set of irreducible tempered representations πp of G(Qp)
with [Q(πp) : Q] 6 A which may be realized as the p-components of discrete ξ-cohomological
automorphic representations π of G(A) is finite.

A crucial input in the proof is the properties of the Galois representations associated with
π concerning weight and integrality, which we justify along the way. The integrality here is the
same kind as in Conjecture 1.4(ii). In fact, this consideration led us to formulate the conjecture.
To associate Galois representations, the work of Arthur and Mok is applied to transfer π to a
suitable general linear group, and the field Q(π) has to be kept track of during the transfer.
To this end we check the nontrivial fact that the transfer from G to the general linear group is
rational in the sense that it commutes with the Aut(C)-action on the coefficients. It would be of
independent interest that a similar argument would show that many other endoscopic transfers
are rational (sometimes with respect to the Aut(C/F )-action for a number field F ).

Both cases (i) and (ii) of Theorem 1.7 are deduced from Proposition 1.9 via the theorem
(proved earlier by us in [Shi12] and [ST12]) that πp are equidistributed with respect to the
Plancherel measure for G(Qp). The equidistribution reduces the proof to showing that the set
in Proposition 1.9 has negligible Plancherel measure in the subset of the unitary dual of G(Qp)
consisting of representations whose levels are at most (the p-part of) nx. Part (i) results from the
fact that the Plancherel measure is atomless when restricted to the unramified unitary dual. The
saving by (log |Fx|)R in the denominator comes from the quantitative Plancherel equidistribution
theorem [ST12] and a uniform approximation of characteristic functions in the unramified unitary
dual by Hecke functions of bounded degree. For part (ii) observe that the condition there implies
that the mass of the set in Proposition 1.9, which may not be zero since some points may
correspond to discrete series, becomes negligible relative to the mass of the level 6 nx part of
the unitary dual as ord(nx) →∞.

1.5 Organization
Section 2 introduces basic notions such as C-algebraic, C-arithmetic, and cohomological
automorphic representations as well as the field of rationality for local and global representations,
and then builds background materials. The key result is that cohomological representations
are C-algebraic and strongly C-arithmetic, indicating that a good playground to study field
of rationality is the world of cohomological representations. We included many supplementary
results which do not play roles in proving main theorems but are interesting in their own right.
Section 3 is mainly local and Galois-theoretic. We prove the fundamental proposition that a
Weil–Deligne representation with bounded field of rationality has bounded ramification and
transfer the result to the automorphic side via the local Langlands correspondence for GLn.
Section 4 is global in nature and draws deep facts from both Galois and automorphic sides.
It is shown that the Galois representations associated with (conjugate) self-dual automorphic
representations of GLn are pure and integral. The remainder of § 4 is concerned with the twisted
endoscopic transfer and classification theorems for quasi-split classical groups relative to GLn.
This is where Arthur’s work is invoked. Section 5 proves key local finiteness results to be used in
the proof for main theorems. The basic strategy is to prove something for GLn and transfer the
result to classical groups or vice versa. To play this game the rationality of endoscopic transfer
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as proved in § 5.2 is essential. The culmination of § 5 is the finiteness theorems in § 5.5. In the last
§ 6 we prove several results on the field of rationality for families of automorphic representations
in level aspect and conclude with remarks on counting elliptic curves and some outlook.

1.6 Notation and convention
We use the following notation and convention:
• k denotes an algebraic closure of k for any field k;
• Resk′/k denotes the Weil restriction of scalars from a finite extension field k′ to k;
• Ind and n-ind denote the unnormalized and normalized inductions from parabolic

subgroups, respectively;
• F is a number field, ΓF := Gal(F/F ), and WF is the Weil group;
• qv denotes the cardinality of the residue field and Frobv is the geometric Frobenius element

at v if v is a finite place of F ;
• S∞ is the set of all infinite places of F ;
• AF is the ring of adèles over F ; ASF is the restricted product of Fv for all v /∈ S; A∞F := AS∞F ;
• G is a connected reductive group over F ;
• Ĝ is the dual group, LG is the L-group;
• G(Fv)

∧ is the unitary dual of G(Fv);
• Irr(G(Fv)) denotes the set of isomorphism classes of irreducible smooth representations of

G(Fv); write Irrtemp(G(Fv)) (respectively Irrur(G(Fv))) for the subset consisting of tempered
(respectively unramified, for a choice2 of a hyperspecial subgroup of G(Fv) if it exists)
representations;

• ρ ∈ X∗(T ) ⊗Z Q is the half sum of all positive roots when a choice is made of a maximal
torus T and a Borel subgroup B such that T ⊂ B (ρ is also viewed as the half sum of all
positive coroots on the dual side, cf. § 2.1 below);

• H(H, k) denotes the k-algebra of locally constant compactly supported functions on H
where H is a locally compact totally disconnected group and k is a field, and HU (H, k) the
sub-k-algebra of bi-U -invariant functions where U is an open compact subgroup of H (for
instance H = G(A∞F ) or H = G(Fv) in the notation above);

• given G as above, hyperspecial subgroups Uhs
v are fixed at finite places v outside the set

Sram of finitely many v such that G is ramified over Fv; we identify H(G(A∞F ), k) with the
restricted tensor product ⊗′v-∞H(G(Fv), k) with respect to HUhs

v
(G(Fv), k) and decompose

an irreducible admissible representation π of G(A∞F ) as π = ⊗′v-∞πv; we speak of unramified

representations at finite places v /∈ Sram with respect to Uhs;
• ϕv : WFv × SL2(C) →

LG (v finite) and ϕv : WFv →
LG (v infinite) are notation for local

L-parameters; the associated local L-packets are denoted LP (ϕv) (in the cases where the
local Langlands correspondence is established);

• fix a field embedding Q → C and Ql → C for each prime l once and for all;
• all twisted characters (and intertwining operators for θ defining them) are normalized as in

Arthur’s book.

2. Field of rationality

The reader may want to compare the contents of our §§ 2.1 and 2.2 with §§ 3.1 and 7
of [BG11].

2 Such a choice will always be implicit whenever we mention unramified representations in this article.
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2.1 C-algebraicity and coefficient fields
Let π = ⊗′vπv be an automorphic representation of G(AF ). Let S be a finite set of places
of F containing S∞. We recall the definition of C-algebraicity from [BG11, Definition 3.1.2]
(generalizing the notion of algebraicity in [Clo90]). For each infinite place v of F , denote by
ϕπv : WFv →

LG the associated parameter via the local Langlands correspondence [Lan88].

Definition 2.1. For v|∞, πv is C-algebraic if there exists a maximal torus T̂ of Ĝ satisfying
ϕπv(WC) ⊂ T̂ ×WC with the property that ϕπv |WC : WC → T̂ (via any R-embedding σ : Fv ↪→ C,

after projecting down to T̂ ) belongs to ρ+X∗(T̂ ), where ρ is the half sum of all positive coroots
in T̂ with respect to a Borel subgroup B̂ containing T̂ . (The latter property is independent of
the choice of σ, T̂ , and B̂. See [BG11, 2.3].) We say that πv is regular if ϕπv |WC is not invariant

under any nontrivial element of the Weyl group for T̂ in Ĝ. If πv is C-algebraic (respectively
regular) for every infinite place v then π is said to be C-algebraic (respectively regular).

We remark that when G = GLn, our notion of π being algebraic (respectively regular)
coincides with that in [Clo90]. For the next definition we introduce a twist of a complex
representation. For τ ∈ Aut(C) and a complex representation (Π, V ) of a group Γ, denote by Πτ

the representation of Γ on V ⊗C,τ−1 C via Π⊗ 1.

Definition 2.2. The field of rationality Q(πS) is the fixed field of C under the group {τ ∈
Aut(C) : (πS)τ ' πS}. If S = S∞, simply write Q(π) for Q(πS∞). For a finite place v of F , Q(πv)
is defined to be the fixed field under the group {τ ∈ Aut(C) : πτv ' πv}.

An easy observation is that Q(π) is the composite field of Q(πv) for all finite v (as a subfield
of C).

Remark 2.3. Here is another possible notion of rationality, which will not be used in this paper.
We say that π is defined over a subfield E of C if there exists a smooth E[G(A∞F )]-module π∞E
such that π∞E ⊗E C ' π∞. Similarly πv is said to be defined over E for a finite place v if there
exists a smooth E[G(Fv)]-module πv,E such that πv,E⊗EC ' πv. If π (respectively πv) is defined
over E, then clearly Q(π) (respectively Q(πv)) contains E. A natural question is whether π
(respectively πv) can be defined over Q(π) (respectively Q(πv)) itself. If πv is unramified, it is
not hard to see that πv is defined over E (independently of the choice of a hyperspecial subgroup
of G(Fv)) if and only if E ⊃ Q(πv), cf. [BG11, Lemma 2.2.3, Corollary 2.2.4]. The authors do
not know whether the analogue holds for general generic πv or π∞. In the case of G = GLn, this
has been shown in [Clo90] using the theory of new vectors.

Remark 2.4. Let v be a finite place of F where πv is unramified. It is in general false that
the Satake parameters of πv are defined over Q(πv) (let alone Q(π)) in the sense of [BG11,
Definition 2.2.2] due to an issue with the square root of qv.

Definition 2.5. For a finite v, we say πv is C-arithmetic ifQ(πv) is finite overQ. An automorphic
representation π is C-arithmetic if Q(πS) is finite over Q for some finite set S containing S∞. It
is strongly C-arithmetic if Q(π) is finite over Q.

Remark 2.6. Our C-arithmeticity is equivalent to that of [BG11]. It is reasonable to believe
that π is C-arithmetic if and only if it is strongly C-arithmetic, but the only if part does not
seem easy to prove directly. At least when G is a torus it can be verified that C-arithmeticity is
equivalent to strong C-arithmeticity. Indeed the only if part is true if G is a split torus by strong
approximation. If G is a general torus the proof is reduced to the split case via a finite extension
F ′/F splitting G by employing the fact (see the proof of [BG11, Theorem 4.1.9]) that G(F ) and
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the image of G(A∞F ′) under the norm map together generate an open and closed subgroup of
G(A∞F ) of finite index.

Remark 2.7. Even if πv is C-arithmetic at every finite v, it may happen that π is not C-arithmetic.
For instance, when G = GL1 over Q and π = | · |1/2, we have Q(πp) = Q(p1/2) for each prime p
so πp is C-arithmetic. However, Q(πS) is an infinite algebraic extension of Q. Note that | · |1/2 is
not C-algebraic.

In general, there is no reason to expect that Q(π) is finite or algebraic over Q. In this optic
the significance of C-algebraicity stems from Conjecture 2.8 below. An expectedly equivalent
conjecture was formulated in [BG11, Conjecture 3.1.6], where they put C-arithmetic in place of
strongly C-arithmetic. When G is a torus, the two versions of the conjecture are indeed equivalent
(Remark 2.6), so our conjecture is known to be true by [BG11, Theorem 4.1.9] based on work of
Weil and Waldschmidt.

Conjecture 2.8. The automorphic representation π is C-algebraic if and only if it is strongly
C-arithmetic.

We remark that there are other reasons why C-algebraic automorphic representations stand
out. One reason is that C-algebraicity is a natural necessary condition in the cuspidal case
(and not too far from being a sufficient condition) to contribute to cohomology, cf. Lemma 2.14
below. Another reason is that l-adic Galois representations are expected to be associated with
C-algebraic representations, cf. [BG11, Conjecture 5.3.4]. (In a simpler way Galois representations
should also be attached to L-algebraic representations, which differ from C-algebraic ones by
‘twisting’. See [BG11, Conjectures 3.2.1 and 3.2.2].)

C-algebraicity and C-arithmeticity are preserved under unnormalized parabolic induction.
(Compare with [BG11, Lemma 7.1.1] and the paragraph above it.)

Lemma 2.9. Let M be a Levi subgroup of an F -rational parabolic subgroup P of G. Let ΠM be
an automorphic representation of M(AF ). Suppose that Π is an irreducible subquotient of the
unnormalized induction IndGP (ΠM ). Then ΠM is C-algebraic if and only if Π is C-algebraic. If
ΠM is C-arithmetic (respectively strongly C-arithmetic), then so is Π.

Remark 2.10. The lemma is in fact purely local and the same argument proves the analogue for
M(F ⊗Q R)-representations. For normalized induction, one can prove similar statements with
L- in place of C-.

Proof. We may assume F = Q by reducing the general case via restriction of scalars. Let T be a
maximal torus of M over C and B a Borel subgroup of G over C containing T . Put BM := M∩B.
Then ρ, ρM ∈ X∗(T ) ⊗Z Q are defined. Let χΠM,∞ (respectively χΠ∞) denote the character of

X∗(T̂ ) = X∗(T ) associated to ϕΠM,∞ (respectively ϕΠ∞) as in Definition 2.1 well-defined up
to W (M,T )-conjugacy (respectively W (G,T )-conjugacy). Let λΠM,∞ (respectively λΠ∞) denote
the infinitesimal character of ΠM,∞ (respectively Π∞).

The condition of the lemma tells us that λΠ∞ and λΠM,∞ + (ρ− ρM ) are in the same W (G,
T )-orbit in X∗(T )⊗Z C. On the other hand, λΠM,∞ and χΠM,∞ are in the same W (M,T )-orbit
and similarly λΠ∞ and χΠ∞ are in the same W (G,T )-orbit [Vog93, Proposition 7.4]. Therefore,
if ΠM is C-algebraic then so is Π.

We check that Π is strongly C-arithmetic if ΠM is strongly C-arithmetic. Let S be the finite
set of places (including S∞) outside which ΠM is unramified. The assumption tells us that Πv is
a subquotient of IndGP (ΠM,v) at every finite place v. Hence, Πσ

v is a subquotient of IndGP (Πσ
M,v) at
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every v for every σ ∈ Aut(C). (The latter implication fails if normalized induction was used and

if σ does not fix q
1/2
v .) For v /∈ S and σ ∈ Aut(C/Q(ΠM )) we see that Πv and Πσ

v are isomorphic
as both of them are the unique unramified subquotient of IndGP (ΠM,v). For finite v ∈ S, Πv is
C-arithmetic since σ ∈ Aut(C/Q(ΠM )) permutes the finitely many irreducible subquotients of
IndGP (Πσ

M,v). Therefore, Q(Π) is contained in the finite field extension of Q(ΠM ) generated by
Q(Πv) for v ∈ S, hence Π is strongly C-arithmetic.

The above proof also shows that if ΠM is C-arithmetic, then Π is C-arithmetic. 2

2.2 Rationality for cohomological representations
Temporarily letG be a connected reductive group overQ. Let π be an automorphic representation
of G(A). Let K∞ be a subgroup of G(R) whose image in Gad(R) is a maximal compact subgroup.
Let K0

∞ be the neutral component of K∞ with respect to the real topology. Let Q be a parabolic
subgroup of G(C) with Levi component K∞,C. Put g := LieG(C) and q := LieQ(C).

Definition 2.11. We say that π is cohomological (respectively ∂-cohomological) if H i(g,K0
∞,

π∞ ⊗ ξ) 6= 0 (respectively H i(q,K0
∞, π∞ ⊗ ξ) 6= 0) for some i > 0 and some irreducible algebraic

representation ξ of G(C) (respectively K∞,C). In this case π is said to be ξ-cohomological
(respectively ξ-∂-cohomological).

Lemma 2.12. If G = GLn, then every cuspidal regular C-algebraic automorphic representation
π of G(AF ) is cohomological.

Proof. Follows from [Clo90, Lemma 3.14]. 2

Remark 2.13. If π∞ is an arbitrary regular C-algebraic representation of GLn(R), GLn(C), or
a product thereof, then there is no reason for π∞ to have non-vanishing cohomology as in
Definition 2.11. What makes the above lemma work is the condition that π∞ is (essentially)
tempered, which is implied by the cuspidality of π, cf. [Clo90, Lemma 4.9].

From now on, let F be a number field and G a connected reductive group over F . By applying
the above definition to ResF/QG we define K∞, Q, g, q, and make sense of (∂-)cohomological
representations. In light of the above remark, a sensible generalization of Lemma 2.12 would
be the following assertion: for any connected reductive group G over F , every cuspidal regular
C-algebraic automorphic representation of G(AF ) is cohomological if its infinite component is
tempered. We believe that the assertion is true but were not able to verify it. In the converse
direction we have the following result.

Lemma 2.14. Any cohomological automorphic representation π of G(AF ) is C-algebraic.

Proof. We may assume F = Q. Let T be a maximal torus over C and B a Borel subgroup of G
over C containing T . Let λξ∨ ∈ X∗(T ) be the highest weight vector for ξ∨ with respect to (B, T )

where ξ is as above. Let χπ∞ ∈X∗(T̂ )⊗ZC = X∗(T )⊗ZC be the character determined by ϕπ∞ |WC

as in Definition 2.1. Then χπ∞ is well-defined up to W (G,T )-conjugacy. If π is ξ-cohomological,
then the infinitesimal character of π∞ is the same as that of ξ∨, namely λξ∨+ρ. Hence, χπ∞ and
λξ∨+ρ are in the sameW (G,T )-orbit [Vog93, Proposition 7.4]. We conclude that χπ∞−ρ ∈X∗(T )
independently of the choices so far and that π∞ is C-algebraic. 2

Roughly speaking, cohomological (cuspidal) automorphic representations are important in
that they are realized in the Betti cohomology (or étale cohomology via comparison theorem)
of locally symmetric quotients associated with G. This plays a fundamental role in Clozel’s
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work for G = GLn, cf. Remark 2.16 below. In work of Blasius, Harris and Ramakrishnan
(cf. Proposition 2.19 below) they prove C-arithmeticity by realizing cuspidal automorphic
representations in the coherent cohomology of Shimura varieties, which is possible for
∂-cohomological representations.

We would like to show C-arithmeticity for a large class of cohomological representations by
realizing them in the Betti cohomology of locally symmetric quotients with coefficient sheaves
defined over number fields. This must be well-known to experts, the idea being similar to [Wal85]
and [Clo90], but we provide some details as there does not seem to be a handy reference for the
general case.

For any sufficiently small open compact subgroup U ⊂ G(A∞F ), consider the manifold

SU (G) := G(F )\G(AF )/UK0
∞

with finitely many connected components. Let ξ be an irreducible algebraic representation of
ResF/QG over C and denote by Lξ the associated local system of C-vector spaces on SU (G). (By
abuse of notation we omit the reference to U in Lξ.) Such a ξ admits a model ξE over a number
field E (so that ξE ⊗E C ' ξ) and one can use the highest weight theory to show that Lξ also
admits a model Lξ,E , a local system of E-vector spaces. For i > 0 define

H i(S(G),Lξ) := lim
−→

U

H i(SU (G),Lξ) (2.1)

and similarly H i(S(G),Lξ,E). The usual Hecke action equips H i(S(G),Lξ) (respectively
H i(S(G),Lξ,E)) with the structure of admissible C[G(A∞)]-module (respectively E[G(A∞)]-
module), where admissibility corresponds to the fact that H i(SU (G),Lξ) = H i(S(G),Lξ)U is
finite dimensional.

Much work has been done to decompose H i(S(G),Lξ) by means of automorphic
representations. When SU (G) are compact, Matsushima’s formula does the job. Results in
the general case are due to Franke, Harder, Li, Schwermer, and others. This enables us to show
C-arithmeticity for cuspidal representations.

Proposition 2.15. Let π be a cuspidal ξ-cohomological automorphic representation of G(AF ).
Then:

(i) π∞ is a G(A∞F )-module direct summand of H i(S(G),Lξ) for some i > 0;

(ii) π is strongly C-arithmetic.

Remark 2.16. Clozel has shown this for general linear groups [Clo90, Theorem 3.13 and
Lemmas 3.14 and 3.15]. We are adapting his ideas to the case of arbitrary reductive groups.
(See also the last paragraph of [BG11, § 7] for the case of trivial coefficients.)

Remark 2.17. When G = GLn we know moreover that Q(π) is a totally real or CM field,
cf. [Pat12, Corollary 6.2.3]. The argument requires to know the subtle point that twists of π∞

by Aut(C) are finite parts of automorphic representations of G(AF ). As this is not known in
general, it seems difficult to check whether Q(π) is a totally real or CM field for an arbitrary
reductive group. However, see Proposition 2.19(ii) below.

Proof. Part (i) follows from the description of the cuspidal part of H i(S(G),Lξ) via Lie algebra
cohomology (see [Sch10, (13.6)] and [FS98]). Note that the cuspidal part is a direct summand,
cf. [Sch10, p. 242]. Part (ii) can be shown by arguing as in the proof of [Clo90, Proposition 3.16].
The argument is sketched here for the convenience of the reader.
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Let U=
∏
v-∞ Uv⊂G(A∞F ) be a sufficiently small open compact subgroup such that (π∞)U 6= 0.

Then (π∞)U is a direct summand of H i(SU (G),Lξ) and moreover irreducible as a HU (G(A∞F ),

C)-module. (This follows from the irreducibility criterion of [Fla79, p. 179].) Since the field of

definition is the same for π∞ as a G(A∞F )-module and for (π∞)U as a HU (G(A∞F ),C)-module, it

is enough to show that the isomorphism class of (π∞)U is fixed under a finite index subgroup of

Aut(C).

We start by finding a model of (π∞)U on a Q-vector space. Burnside’s theorem implies that

irreducible HU (G(A∞F ),C)-module subquotients of H i(SU (G),Lξ) and those of the HU (G(A∞F ),

Q)-module H i(SU (G),Lξ,E ⊗E Q) correspond bijectively.3 In particular, there is an irreducible

HU (G(A∞F ),Q)-module subquotient W of H i(SU (G),Lξ,E ⊗E Q) such that W ⊗Q C ' (π∞)U .

Since σ ∈ Gal(Q/E) induces a σ-linear self-automorphism of H i(SU (G),Lξ,E ⊗E Q) as a

HU (G(A∞F ),Q)-module, the induced action permutes the irreducible subquotients of H i(SU (G),

Lξ,E ⊗E Q) (the point being that HU (G(A∞F ),Q) has a natural Q-structure). We see from the

finite-dimensionality of the latter space that the isomorphism class of W is fixed by a finite index

subgroup of Gal(Q/E) as desired. 2

Corollary 2.18. Let M be a Levi subgroup of an F -rational parabolic subgroup of G. Any

automorphic representation of G(AF ) appearing as a subquotient of an unnormalized parabolic

induction of a cuspidal cohomological automorphic representation of M(AF ) is C-algebraic and

strongly C-arithmetic.

Proof. Immediate from Lemmas 2.9 and 2.14 and Proposition 2.15. 2

In the rest of this subsection we briefly recall some results of Blasius, Harris, and

Ramakrishnan for the sake of completeness, even though their results will not be used in this

paper. Under a restrictive hypothesis (cf. [BHR94, § 0.1]), namely that ResF/QG is of hermitian

symmetric type so that G(F ⊗Q R)/K∞ admits a G(F ⊗Q R)-invariant complex structure, the

three authors have shown the following result.

Proposition 2.19. Keep the hypothesis in the above paragraph. Let π be any automorphic

representation ofG(AF ) such that π∞ is a nondegenerate limit of discrete series or a discrete series

representation of G(F ⊗Q R) whose restriction to the maximal R-split torus of (ResF/QG)(R) is

algebraic. Then:

(i) any such π is ∂-cohomological, C-algebraic; and

(ii) if π is moreover cuspidal then Q(π) is either a totally real or a CM field (in particular π is

strongly C-arithmetic).

Remark 2.20. One can extend part (ii) beyond the cuspidal case by applying Lemma 2.9 as it

was done in Corollary 2.18.

Proof. This is Theorems 3.2.1 and 4.4.1 of [BHR94] except for the C-algebraicity of π, which

is easy to deduce from the description of the infinitesimal character of π∞ in [BHR94,

Theorem 3.2.1] by an argument as in the proof of Lemma 2.14. Note that a subfield of a CM

field is either totally real or CM. 2

3 Consider the Jordan–Hölder quotients M1, . . . ,Mk of Hi(SU (G),Lξ,E ⊗E Q). By Burnside’s theorem, the
Q-algebra morphism from HU (G(A∞F ),Q) to EndQ(Mj) is onto. So the Jordan–Hölder quotients remain irreducible
after ⊗QC.
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2.3 Satake parameters under functoriality
Let H and G be connected reductive groups over a number field F . We form their L-groups
using the full Galois group over F rather than a finite Galois group or the Weil group. (Later
we use the Weil group in the case of even orthogonal groups. In that case the material of this
subsection can still be adapted. See § 4.2.) Let η : LH →

LG be an L-morphism. Let (B̂H , T̂H)
(respectively (B̂, T̂ )) be a pair of a Borel subgroup of Ĥ (respectively Ĝ) and a maximal torus
contained in it. We may choose (B̂, T̂ ) such that η(T̂H) ⊂ T̂ (and η(B̂H) ⊂ B̂ but the latter is

unnecessary for us). These data determine ρH ∈ 1
2X∗(T̂H) and ρ ∈ 1

2X∗(T̂ ) as the half sums of

all positive coroots in T̂H and T̂ , respectively. Moreover, η induces η∗ : X∗(T̂H) → X∗(T̂ ).

Definition 2.21. An L-morphism η : LH →
LG is said to be C-preserving if ρ−η∗(ρH) at each

v|∞ belongs to X∗(T̂ ) (rather than just 1
2X∗(T̂ )).

In view of Definition 2.1, a C-preserving L-morphism carries L-packets of C-algebraic
representations to L-packets of C-algebraic representations at infinite places. The C-preserving
property does not depend on the choice of maximal tori and Borel subgroups. Indeed one can
go between different maximal tori in Ĥ (respectively Ĝ) by conjugation. Moreover, if T̂H is
fixed, another choice of B̂H changes ρH by a Weyl group element wH for Ĥ, but clearly
wHρH−ρH ∈X∗(T̂H) so ρ−η∗(ρH) is shifted by an element of X∗(T̂ ) (rather than just 1

2X∗(T̂ )).

A similar argument shows the independence of the choice of B̂ as well.
The aim of this subsection is to show that for a C-preserving L-morphism, the transfer of

unramified representations is compatible with twisting by field automorphisms of C. We begin
with some preparation. Let S be a finite set of places of F containing S∞ such that H, G and η
are unramified whenever v /∈ S. From now on assume v /∈ S. Let Av be a maximal Fv-split torus
of G, and Tv be the centralizer of Av in G over Fv. Let Bv be a Borel subgroup of G containing
Tv. Define ρv ∈ 1

2X∗(Av) to be the half sum of all Fv-rational Bv-positive roots relative to Av.

Write q
1/2
v for the positive square root of qv. Denote by sgnσ,ρv : Tv(Fv) → {±1} a character

defined via the following composite map

Tv(Fv) → Tv(Fv)/Tv(Ov) ' X∗(Av) → {±1}

where λ ∈X∗(Av) is sent to λ($v) ∈ Tv(Fv)/Tv(Ov) under the isomorphism in the middle and to

(σ(q
1/2
v )/q

1/2
v )〈λ,2ρv〉 ∈ {±1} under the last map. (In particular, sgnσ,ρv(λ) = 1 if either q

1/2
v ∈ Q

or 〈λ, ρv〉 ∈ Z.) Likewise AH,v, TH,v, BH,v, ρH,v and sgnσ,ρH,v are defined for H. Write δ
1/2
Bv

:

Tv(Fv) → R×>0 for the modulus character, which factors through the character λ 7→ (q
1/2
v )〈λ,2ρv〉

from X∗(Av) to R×>0.

Lemma 2.22. Suppose v /∈ S and let χv : Tv(Fv) → C× be a continuous character. If πv ∈
Irrur(G(Fv)) is a subquotient of n-ind

G(Fv)
Bv(Fv)(χv), then for every σ ∈ Aut(C), πσv is a subquotient

of n-ind
G(Fv)
Bv(Fv)(χ

σ
v ⊗ sgnσ,ρv). The exact analogue holds true for H.

Proof. Recall that the unnormalized parabolic induction commutes with σ-twisting, cf.
Lemma 2.9. So πσv is an unramified subquotient of the following representation (all inductions
below are from Bv(Fv) to G(Fv)):

n-ind(χv)
σ = Ind(χv ⊗ δ1/2

Bv
)σ = Ind(χσv ⊗ (δ

1/2
Bv

)σ) = n-ind(χσv ⊗ (δ
1/2
Bv

)σ/δ
1/2
Bv

)).

By definition (δ
1/2
Bv

)σ/δ
1/2
Bv

= sgnσ,ρv . Since a principal series representation has a unique
unramified subquotient, the first part of the lemma follows. The argument for H is the same. 2
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We have that η is unramified at v /∈ S, so it comes from a map on Frv-cosets ĤoFrv → ĜoFrv,
again denoted by η. The Satake isomorphism provides a canonical bijection between the set of
Ĝ-conjugacy classes in ĜoFrv (respectively (Ĥ-conjugacy classes in Ĥ oFrv) with Irrur(G(Fv))
(respectively Irrur(H(Fv))). Write

η∗ : Irrur(H(Fv)) → Irrur(G(Fv))

for the map induced by η.

Lemma 2.23. Let v /∈ S and suppose that η : LH →
LG is an L-morphism with finite kernel.

(So η is unramified.) Then there exists N ∈ Z>0 such that every fiber of η∗ has cardinality at
most N .

Remark 2.24. The N in the lemma can be chosen independently of v. For this observe that the
order of the Weyl group in G is clearly bounded independently of v and that the size of the kernel
of ηT,∗ is also uniformly bounded since there are only finitely many Frv-actions on T̂H,v and T̂v
as v varies (up to Weyl group actions).

Proof. Obviously the proof is reduced to the case where η is injective, which will be assumed
throughout. Let LBH,v be a Borel subgroup of LH relative to the base field Fv (see [Bor79, § 3]

for this and other related notions in the proof). Then B̂H,v := LBH,v ∩ Ĥ is a Borel subgroup of

Ĥ. Since η(B̂H,v) is a closed solvable subgroup of Ĝ, it is contained in some Borel subgroup B̂v
of Ĝ. Then the normalizer LBv of B̂v in LG is a Borel subgroup of LG. Let iH : LBH,v ↪→

LH

and i : LBv ↪→
LG denote the inclusions. Write T̂H,v and T̂v for the maximal tori in B̂H,v and

B̂v. The normalizer LTH,v of T̂H,v in LBH,v is a Levi subgroup of LBH,v, and similarly we have a
Levi subgroup LTv of LBv. We can identify LTH,v and LTv with the L-groups for minimal Levi
subgroups TH,v and Tv of H and G over Fv, respectively. Clearly we have η(LBH,v) ⊂ LBv and
so η(LTH,v) ⊂ LTv. Denote the induced map LTH,v →

LT by ηT . Note that i, iH and ηT are
unramified. We have a commutative diagram as below on the left, which induces the following
commutative diagram on the unramified spectra.

LTH,v
ηT //

iH
��

LTv

i
��

LH
η // LG

Irrur(TH,v(Fv))
ηT,∗ //

iH,∗
��

Irrur(Tv(Fv))

i∗
��

Irrur(H(Fv))
η∗ // Irrur(G(Fv))

(2.2)

We know [Bor79, § 10.4] how to describe i∗ and iH,∗ using parabolic induction: i∗(χv) is the unique
unramified subquotient of n-ind(χv) and the analogue is true for iH,∗. According to the well-
known classification of unramified representations, we know first that i∗ and iH,∗ are surjective
and second that the fiber of i∗ (respectively iH,∗) has cardinality at most the order of the Weyl
group for Tv in G (respectively for TH,v in H). This order can be bounded uniformly in v. On the
other hand ηT,∗ has finite fibers. Indeed [Bor79, § 9.4] identifies ηT,∗ with a group homomorphism

T̂H,v/(Frv − 1)T̂H,v → T̂v/(Frv − 1)T̂v

(Frv denoting the geometric Frobenius action), and the above map has finite kernel [Bor79,
§ 6.3, (2)]. All in all, the fibers of η∗ are finite. 2

Lemma 2.25. Suppose that η : LH →
LG is C-preserving. Let v /∈ S. For each πH,v ∈

Irrur(H(Fv)):

(i) (η∗πH,v)
σ = η∗(π

σ
H,v);
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(ii) Q(η∗πH,v) ⊂ Q(πH,v);

(iii) if η has finite kernel and N is as in Lemma 2.23, then [Q(πH,v) : Q(η∗πH,v)] 6 N !.

Proof. Let us prove part (i). Adopt the setting in the proof of the last lemma. The first
observation is that when H = TH and G = T are tori, part (i) follows from the fact that η∗
is naturally defined over Q since an algebraic map LTH →

LT corresponds to a Frv-equivariant
map X∗(T̂H) = X∗(TH) → X∗(T̂ ) = X∗(T ). Now consider the general case. For simplicity of
notation only in this proof, we use n-ind to mean the unique unramified subquotient of the
normalized induction. Now by surjectivity of iH,∗ write πH,v = iH,∗(χH,v) = n-indHBH,v(χH,v) for

a smooth character χH,v : TH,v(Fv) → C×. Put χv := ηT,∗(χH,v). From the case of tori we know
that

ηT,∗(χ
σ
H,v) = χσv .

Using Lemma 2.22 and the commutativity of (2.2) we compute

(η∗πH,v)
σ = (η∗iH,∗χH,v)

σ = (i∗χv)
σ = n-ind(χv)

σ = n-ind(χσv ⊗ sgnσ,ρv). (2.3)

Similarly, noting in addition that ηT,∗ is a homomorphism,

η∗(π
σ
H,v) = η∗(iH,∗(χH,v)

σ) = η∗(iH,∗(χ
σ
H,v ⊗ sgnσ,ρH,v)

= n-ind(ηT,∗(χ
σ
H,v ⊗ sgnσ,ρH,v)) = n-ind(ηT,∗(χ

σ
H,v)⊗ ηT,∗(sgnσ,ρH,v))

= n-ind(χσv ⊗ sgnσ,η∗(ρH,v)). (2.4)

Since η is C-preserving, sgnσ,ρv = sgnσ,η∗(ρH,v) and thus the proof of part (i) is complete.
Part (ii) is clear from part (i). To verify part (iii), put πv := η∗πH,v. By part (i), πσv ∈

η−1
∗ (πv) for every σ ∈ Aut(C/Q(πv)). This yields a homomorphism from Aut(C/Q(πv)) to the

permutation group on η−1
∗ (πv). Since |η−1

∗ (πv)| 6 N , the kernel has finite index at most N !. This
proves part (iii). 2

Corollary 2.26. Keep the assumptions of Lemma 2.25.
(i) Let v /∈ S. If πH,v ∈ Irrur(H(Fv)) is C-arithmetic, then η∗πH,v is C-arithmetic. The

converse is true if there is a constant κ such that every fiber of η∗ : Irrur(H(Fv)) → Irrur(G(Fv))
has cardinality at most κ.

(ii) Let πH and π be automorphic representations of H(AF ) and G(AF ) such that πv =
η∗(πH,v) for all v /∈ S. If πH is C-arithmetic, then so is π.

Proof. This is immediate from parts (ii) and (iii) of Lemma 2.25. 2

Remark 2.27. Compare our results with [BG11, Lemmas 6.2 and 6.3], where it is shown that
any L-morphism η : LH →

LG carries L-algebraic (respectively L-arithmetic) representations to
L-algebraic (respectively L-arithmetic) representations. (It is worth noting that they use Galois
groups to form the L-groups; it can fail to be true if Weil groups are used.) One could try to
derive our results in § 4.2 directly from their results by twisting but this is not automatic for
two reasons: some groups lack twisting elements (in the sense of [BG11, § 5.2]) and some others
admit no L-algebraic representations at all.

3. Purity and rationality of local components

The contents of this section are purely local and the following notation will be used:
• K is a finite extension of Qp with residue field Fq, OK is its integer ring, and FrobK is the

geometric Frobenius element in Gal(Kur/K);
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• WK and IK are the Weil and inertia groups of K;

• Ω is an algebraically closed field of characteristic zero with the same cardinality as C (usually

Ω is taken to be C or Ql for a prime l);

• FrobK ∈WK/IK is the geometric Frobenius element;

• v : WK → Z is defined as WK �WK/IK ' Z where the last isomorphism carries FrobK to

1;

• | · |WK
: WK → Q× is a character given by τ 7→ q−v(τ);

• sc(π) denotes the supercuspidal support of π ∈ Irr(G(K)).

3.1 Pure Weil–Deligne representations

Our basic definitions are based on those of [TY07, p. 471]. Their definition is slightly more

general in that the weight is allowed to be a real number. For our purpose it suffices to consider

only integral weights.

A Weil–Deligne representation (or WD representation for simplicity) of WK (over Ω) is a

triple (V, ρ,N) where V is a finite-dimensional Ω-vector space, ρ : WK → GL(V ) is a group

homomorphism such that ρ(IK) is finite, and N ∈ EndΩ(V ) is a nilpotent operator such that

ρ(τ)Nρ(τ)−1 = |τ |WK
N . It is said to be unramified if ρ(IK) is the identity and N = 0, Frobenius

semisimple (or ‘F-ss’ for short) if ρ is semisimple, and irreducible if ρ is irreducible and N = 0.

Let (V, ρ,N)F-ss := (V, ρss, N) denote the Frobenius semisimplification of (V, ρ,N), where ρss is

defined as follows: fix a lift φ ∈ WK of FrobK and let ρ(φ) = su be the Jordan decomposition

with semisimple part s. Then ρss(φnτ) := snρ(τ) for all n ∈ Z and for all τ ∈ IK , which defines

ρss independently of the choice.

Let n ∈ Z>1. For a continuous l-adic representation r : Gal(K/K) → GLn(Ql), there is a

standard way (depending on whether l 6= p or l = p) to associate a Weil Deligne representation

WD(r) of WK as explained on [TY07, pp. 467–470]. (One can view WD as a functor on

appropriate categories.)

We recall the key definitions about purity. Let w ∈ Z. A q-Weil number (respectively integer)

of weight w is an algebraic number α (respectively an algebraic integer α) such that |ι(α)| = qw/2

for any field embedding ι : Q ↪→ C. A WD representation (V, ρ,N) of WK is strictly pure of

weight w if every eigenvalue of the image under ρ of some (hence every) lift of FrobK is a q-Weil

number of weight w. We say that (V, ρ,N) is mixed if there exists an increasing filtration of

sub-WD representations {FiliV }i∈Z on V such that FiliV = 0 if i� 0, FiliV = V if i� 0 and

griV := FiliV/Fili+1V is strictly pure of weight i for every i ∈ Z. A mixed (V, ρ,N) admits a

unique filtration such that N(FiliV ) ⊂ Fili−2V . Let us say (V, ρ,N) is pure of weight w if it is

mixed and if N i : grw+iV → grw−iV is an isomorphism for every i with respect to the unique

filtration just mentioned. More generally let w be a finite multi-set such that the elements of

w are distinct integers w1, . . . , wr with multiplicities m1, . . . ,mr. Then (V, ρ,N) is said to be

pure of weight w if V =
⊕r

i=1(Vi, ρi, Ni) with each (Vi, ρi, Ni) being pure of weight wi and of

dimension mi. (If so, we have in particular |w| = m1 + · · · + mr = dimV .) Finally a mixed

(V, ρ,N) is integral if for some (hence, every) lift φ ∈WK of FrobK , every eigenvalue of φ on V

is an algebraic integer (so that every eigenvalue of φ on griV is a q-Weil integer of weight i).

The above definitions are motivated by Deligne’s weight-monodromy conjecture in its integral

form (cf. [Del71] and [Sai03, Conjectures 0.3 and 0.5]). The conjecture is equivalent to the one

without Frobenius semisimple/semisimplification in the statement.

Conjecture 3.1 (cf. [Sai03, Conjecture 0.3, 0.5]). Let l be any prime (which could be equal

to p). Let (V, ρ,N) be an F-ss WD representation on a Ql-vector space. If (V, ρ,N) is a
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subquotient of WD(H i
ét(X ×K K,Ql))F-ss for some proper smooth scheme X over K, then

it is pure of weight i and integral.

It is worth noting that when X has a proper smooth integral model over OK and l 6= p,
the conjecture is known by Deligne’s work on the Weil conjectures. In that case the WD
representation below is unramified and strictly pure of weight i. In the non-smooth (bad
reduction) case the conjecture is known when dimX 6 2 by Rapoport and Zink and in some
special cases, for instance for certain Shimura varieties. A recent breakthrough by Scholze [Sch12]
provides a proof for any complete intersection in a projective smooth toric variety. The converse
of Conjecture 3.1, which is not as deep as the original conjecture, also seems true. (A proof was
announced by Teruyoshi Yoshida but has not appeared in print at the time of writing.)

Motivated by Conjecture 3.1 (as well as its converse) and the Fontaine–Mazur conjecture
([FM95, Conjecture 1]; also see [Tay04, Conjecture 1.3]), we speculate on the following global
conjecture, which in particular slightly refines the conjecture by Fontaine and Mazur in a sign
aspect. More precisely, their conjecture says that parts (i) and (iii) below are equivalent if
nonnegativity is dropped in part (i) and a Tate twist of cohomology is allowed in part (iii). The
conjecture can be stated for all primes l simultaneously in the language of compatible systems,
cf. [Tay04].

Conjecture 3.2. Let F be a number field and ρ : Gal(F/F ) → GLn(Ql) a continuous
semisimple representation unramified outside finitely many places. The following are equivalent:

(i) ρ is de Rham at every place v|l with nonnegative Hodge–Tate weights;4

(ii) the WD representation associated with ρ at every finite place v is integral and pure of
weight w, which is independent of v, has entries in Z and satisfies |w| = n;

(iii) ρ appears as a subquotient of
⊕

i>0H
i
ét(X ×F F ,Ql) for some proper smooth scheme X

over F .

When ρ is furthermore irreducible, we may replace the condition in part (ii) with ‘integral
and pure of weight w for some w ∈ Z’, and the condition in part(iii) with ‘. . . a subquotient of
H i

ét(X ×F F ,Ql) for some i > 0 . . .’. (For a given ρ the corresponding w and i are expected to
be equal, cf. Conjecture 3.1.)

In Proposition 4.1 below we derive a partial result toward Conjecture 3.2 from the well-known
results concerning the construction of Galois representations from automorphic representations.
That result will be a key to the finiteness result of § 5.3, where the role of integrality will become
clear. This was our original motivation. However, Conjecture 3.2 is interesting in its own right
and we plan to discuss it in more detail on some other occasion.

Remark 3.3. Part (ii) may be equivalent to part (ii)′ below, allowing us to exclude finitely
many v:

(ii)′ the WD representation associated with ρ at almost every finite v is pure and integral.

Conjecture 2.8 suggests that it would also be equivalent to:

(ii)′′ the WD representation associated with ρ at (almost) every finite v is integral and has its
field of rationality contained in some number field E independent of v.

Remark 3.4. We are reduced to a more standard conjecture if we get rid of ‘with nonnegative
Hodge–Tate weights’ in part (i), ‘integral’ in part (ii), and allow a Tate twist in part (iii).

4 In our convention the cyclotomic character has Hodge–Tate weight −1 (rather than 1).
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In this form we already mentioned that the equivalence of parts (i) and (iii) is exactly the
Fontaine–Mazur conjecture.

Remark 3.5. The implication (iii)⇒(i) is known by results of p-adic Hodge theory (the solution
of the Cpst conjecture and comparison of filtrations in complex and p-adic Hodge theories) and
the fact that the Hodge filtration on H i

ét(X×F C,Ql) has jumps only in nonnegative indices with
respect to any field embedding F ↪→ C. According to Conjecture 3.1, part (iii) should imply part
(ii). Finally we remark that (i)⇔(ii) may be viewed as the arithmetic analogue of Conjecture 2.8.

Remark 3.6. When ρ is associated with a (classical) cuspidal holomorphic eigenform
f =

∑
n>1 anq

n of weight k ∈ Z>1 with a1 = 1 so that an are algebraic integers for all n > 1,
then (under a suitable normalization) ρ satisfies parts (i), (ii), and (iii) with Hodge–Tate weights
0 and k − 1. Now assume that an ∈ Z for all n. The equivalence (i)⇔(ii)′, applied to the twist
of ρ by the cyclotomic character, amounts to the assertion that f is ordinary, i.e. ap is a p-unit
for infinitely many primes p.

It is useful to know a preservation property under base field extensions.

Lemma 3.7. Let ρ̃ = (V, ρ,N) be a WD representation of WK , and L/K be a finite extension.
Then ρ̃|WL

is pure (respectively integral) if and only if ρ̃ is pure (respectively integral).

Proof. Straightforward. (The preservation of purity is [TY07, Lemma 1.4.2].) 2

Given (V, ρ,N) as above and s ∈ Z>1, one constructs a new Weil–Deligne representation

Sps(V ) := (V s, ρ| · |s−1
WK
⊕ · · · ⊕ ρ| · |WK

⊕ ρ,N)

such that N : ρ| · |iWK

∼
→ ρ| · |i−1

WK
for i = 1, . . . , s−1 and N = 0 on ρ. Note that Sps(V ) is uniquely

determined up to isomorphism. If (V, ρ,N) is pure of weight w, then Sps(V ) is pure of weight
w + s− 1.

Lemma 3.8. Let n > 1 and (V, ρ,N) be an n-dimensional F-ss WD representation of WK . Then
there exist:
• m ∈ Z>1, s1, . . . , sm ∈ Z>1; and
• a collection of irreducible ni-dimensional F-ss WD representations (Vi, ρi, 0), i = 1, . . . ,m;
such that V =

⊕m
i=1 Spsi(Vi). Moreover, if (V, ρ,N) is pure of weight w ∈ Z then each Vi is

strictly pure of weight w − si + 1.

Proof. The first assertion follows from the standard fact that any indecomposable F-ss WD
representation is of the form Sps(V ) for an irreducible F-ss WD representation V . If (V, ρ,N) is
pure of weight w, then so is each Spsi(Vi). From this and the definition of Spsi(Vi) it is elementary
to verify that Vi is strictly pure of weight w − si + 1. 2

Pure WD representations enjoy a remarkable rationality property of importance to us.

Lemma 3.9. A pure F-ss WD representation (V, ρ,N) of WK (of some weight w ∈ Z) has a
number field as a field of rationality.

Proof. By Lemma 3.8 it suffices to treat Sps(V ) when (V, ρ, 0) is an irreducible F-ss WD
representation which is strictly pure of weight w ∈ Z. Clearly Sps(V ) can be defined over the
same number field over which (Vi, ρi, Ni) is defined. Hence, we are further reduced to showing
that (V, ρ, 0) has a number field as a field of rationality when it is irreducible and strictly pure
of some weight w ∈ Z.
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It is enough to verify that the trace function T := tr ρ : WK → Ω has image contained in a
finite extension of Q in Ω. Fix a lift φ ∈ WK of FrobK . The eigenvalues of ρ(φ), say λ1, . . . , λn,
are contained in a finite Galois extension E of Q as they are Weil numbers. We will show that
there exists d > 1 such that for every m > 0,

ρ(φmτ)d = ρ(φm)d.

Then for every τ ∈ WK , the eigenvalues of ρ(τ) are contained in the set of α ∈ Ω such that
αd ∈ {λm1 , . . . , λmn } for some m > 1. The set of such α clearly generates a finite extension of E,
in which T (WK) must be contained.

Let us show the existence of d as above. For A,B ∈ GLΩ(V ) we write AB for BAB−1.
The homomorphism τ 7→ φτφ−1 induces a homomorphism θ : φZ → Aut(IK/IK ∩ ker(ρ)). Put

i := |IK/IK ∩ ker(ρ)| <∞ and j := |Aut(IK/IK ∩ ker(ρ))|. Then ρ(τ)i = 1 and ρ(τ)ρ(φj) = ρ(τ)

for all τ ∈ IK . Then (using ρ(τ)ρ(φj) = ρ(τ) and ρ(τ)i = 1 in the second and third equalities,
respectively)

ρ(φmτ)ijρ(φm)−ij = ρ(τ)ρ(φm)ρ(τ)ρ(φ2m) · · · ρ(τ)ρ(φijm)

= (ρ(τ)ρ(φm)ρ(τ)ρ(φ2m) · · · ρ(τ)ρ(φjm))i = 1.
(3.1)

Hence, we get the desired d by putting d := ij. 2

Later we would like to utilize some results of Arthur, in which local L-parameters are used in
place of Weil–Deligne representations. We recall the standard way to go between the two. Recall
that a local L-parameter for GLn(K) is a continuous homomorphism

ϕ : WK × SL2(C) → GL(V )

for an n-dimensional C-vector space V such that ϕ|WK
is semisimple and ϕ|SL2(C) is an algebraic

representation. For such a ϕ one associates a WD representation WD(ϕ) := (V, ρ,N) such that

ρ(τ) = ϕ

(
τ,

(
|τ |1/2WK

0

0 |τ |−1/2
WK

))
, N = ϕ

(
1,

(
0 1

0 0

))
.

The association ϕ 7→ WD(ϕ) defines a bijection between the set of equivalence classes of
L-parameters for GLn(K) and the set of isomorphism classes of n-dimensional Frobenius
semisimple WD representations. (In fact, it is a categorical equivalence.) In fact, the L-parameter
ϕ can be defined over any Ω in place of C and the various definitions for WD representations at
the beginning of § 3.1 carry over to ϕ. For instance, ϕ gives rise to a pure WD representation if
and only if ϕ|WF

is strictly pure of integral weight in the sense defined earlier.

3.2 Twists of the local Langlands correspondence
Let recK denote the local Langlands bijection for GLn(K) as in [HT01] (cf. [Hen00]) so
that for each irreducible smooth representation π of GLn(K), recK(π) denotes the associated
n-dimensional Frobenius semisimple Weil–Deligne representation of WK . Here both represen-
tations are considered on C-vector spaces. We introduce a different normalization

LK(π) := recK(π)⊗ | · |−(n−1)/2
WK

.

It was shown in [HT01, Lemma VII.1.6.2] that

LK(πσ) = LK(π)σ for all σ ∈ Aut(C/Q). (3.2)

(To be precise [HT01] shows (3.2) up to semisimplification, i.e. disregarding N , but this
easily implies (3.2) without semisimplification.) Hence, recK(πσ) = recK(π)σ for all σ ∈
Aut(C/Q(q1/2)).
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Lemma 3.10. Let π be an irreducible smooth representation of GLn(K) (on a C-vector space).

If LK(π) is pure of weight w ∈ Z, then Q(π) is finite over Q.

Proof. Immediate from Lemma 3.9 and (3.2). 2

3.3 Bound on field of rationality implies bound on ramification

For j ∈ R>0 let IjK denote the jth ramification subgroup of IK with respect to the upper

numbering. Similarly for any Galois extension M of L (which are extensions of K), we write

Gal(M/L)j and Gal(M/L)j for the upper and lower numbering ramification subgroups of

Gal(M/L). Denote by dep and cond the depth and conductor, which are defined for WD

representations of WK as well as irreducible smooth representations of GLn(K). The depth

of a WD representation (V, ρ,N) may not be as standard as the others so we recall it here:

dep(V, ρ,N) is defined to be the infimum among the elements j ∈ R>0 such that ρ(IjK) is trivial.

The infimum is actually attained and the depth is a rational number.

The following lemma will play a key role in the proof of finiteness results of § 5.5. In the

proof all extensions of E (which is a subfield of C) are considered in C.

Lemma 3.11.5 Fix n ∈ Z>1 and A ∈ Z>1. There exists d = dn,K,A ∈ R>0 (depending on n, A and

K) such that for every n-dimensional F-ss WD representation (V, ρ,N) whose field of rationality

is an extension of Q of degree at most A,

dep(V, ρ,N) 6 d.

Proof. Consider the representation ρ|IK : IK → GL(V ) with finite image. Let E be the field of

rationality of (V, ρ,N). By (3.2), ∧iρσ ' ∧iρ for all σ ∈ Aut(C/E). We take the trace and see

that the degree n characteristic polynomial of ρ(τ) has coefficients in E. Hence, each eigenvalue

λ of ρ(τ) for τ ∈ IK , which are roots of unity, must be contained in a finite extension of E of

degree at most n, so in a finite extension of Q of degree at most nA. Let f be the least common

multiple of the order of λ as λ runs over all eigenvalues of ρ(τ) for τ ∈ IK (i.e. the least power

f > 1 such that λf = 1). In particular ρ(τ f ) is a semisimple element with all eigenvalues equal

to 1, i.e. the identity element.

Put µ6nA :=
⋃

[E′′:Q]6nA µ∞(E′′) where µ∞(E′′) denotes the set of all roots of unity in E′′.

One sees from an elementary theory of cyclotomic fields that µ6nA is a finite set (its cardinality

is the least common multiple of m ∈ Z>1 such that ϕ(m) 6 nA, where ϕ is the Euler totient

function). We have f 6 |µ6nA|, an upper-bound which by construction depends only on n

and A.

The finite group H := IK/ ker ρ is equipped with an embedding ρ : H ↪→ GL(V ) induced

by ρ. Let E′ be the finite extension of Q obtained by adjoining all fth roots of unity. As H

has exponent dividing f , Brauer’s theorem [Ser77, § 12.3, Theorem 24] implies that ρ is defined

over E′, i.e. there exists a representation ρ′ : H ↪→ GL(VE′) on an E′-vector space VE′ such that

ρ′ ⊗E′ C ' ρ as H-representations.

Now choose any prime l relatively prime to f , and a place w of E′ above l. Denote by kw
the residue field of E′ at w. The l-adic representation ρ′ : H ↪→ GLn(E′w) has a model over

5 After furnishing the proof of the lemma, we found that a proof had been given to essentially the same problem
in [FM95, § 4.(a)]. We note two differences. First we work with the field of rationality rather than the field of
definition. Second we obtain an explicit bound on dn,A,K which is not immediately available from [FM95]. We also
mention an analogous result for crystalline representations, cf. [CE04, § 4].
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GLn(OE′w) in the sense that the model becomes isomorphic to ρ′ after extending scalars to E′w.6

We denote the model by the same symbol ρ′. The kernel of the map [ : GLn(OE′w) → GLn(kw)
taking matrix entries modulo the maximal ideal of OE′w is a pro-l group, which must have trivial
intersection with H. Hence, [ ◦ ρ′ is an injection H ↪→ GLn(kw). The upshot is that

|IK/ker ρ| = |H| divides |GLn(kw)|. (3.3)

The cardinality |GLn(kw)| can be made to depend only on nA. Indeed f and E′ depend only on
nA by construction. By choosing the minimal prime l coprime to f , and w above l minimalizing
|kw|, we arrange that the cardinality |GLn(kw)| depends only on nA, cf. (3.4) below.

Now it is enough to verify the existence of d ∈ Z>0 with the following property:

Gal(L/K̂ur)d = {1}

for all finite Galois extensions L of K̂ur such that [L : K̂ur] divides |GLn(kw)|, where K̂ur denotes
the completion of the maximal unramified extension of K. This is a standard exercise. Indeed,
writing eL (respectively eK) for the absolute ramification index of L (respectively K) so that
elements of L× take valuations exactly on (1/eL)Z (if p is normalized to have valuation 1), we
know that Gal(L/K̂ur)d′ = {1} for all d′ > eL/(p − 1) by [Ser79, IV.2, Exercise 3.c]. The same
is certainly true for the d′th upper numbering group since the latter is identified with the d′′th
lower numbering group for some d′′ > d′. Since eL 6 |GLn(kw)|eK , we conclude that the choice
of d = |GLn(kw)|eK/(p− 1) satisfies the desired property. 2

Corollary 3.12. Fix n,A ∈ Z>1. There exists d ∈ Z>0 (depending on n, A and K) such that
for every C-algebraic π ∈ Irr(GLn(K)) satisfying [Q(π) : Q] 6 A, we have that

dep(π) 6 d, cond(π) 6 dn.

Proof. Keeping (3.2) in mind, we apply Lemma 3.11 to find d ∈ Z>0 such that for every π as
above, the WD representation LK(π) := (V, ρ,N) has depth at most d. Since dep(π) = dep(V, ρ,
N) by [Yu09, Theorem 2.3.6.4], we see that dep(π) 6 d. The assertion on conductor holds true
thanks to Lemma 3.13 below. 2

The following lemma may be well-known but we present a proof here.

Lemma 3.13. For every π ∈ Irr(GLn(K)), cond(π) 6 n · (dep(π) + 1).

Proof. Let (V, ρ,N) := LK(π). Since recK and thus LK preserve conductor, we obtain from the
formula for the Artin conductor of (V, ρ,N) that

cond(π) = codim(V IK )N=0 +

∫ ∞
0

codimV IjK dj.

Each codimension is certainly less than n and by definition the integral is supported on the
interval 0 6 j 6 dep(V, ρ,N). The inequality again follows. 2

It is worth emphasizing that the constructive nature of the proof of Lemma 3.11 makes it
possible to find an explicit bound in that lemma (and also in Corollary 3.12). The first step of
the proof was to adjoin all roots of unity of degree at most n[E : Q]. This yields the explicit
bound f 6 |µn[E:Q]| 6 (2n[E : Q])!. To obtain an effective bound of better quality we establish
the following result.

6 This is true even for continuous l-adic representations of any profinite group. The main point is that the OE′
w

-
module generated by finitely many translations of an OE′

w
-lattice is still an OE′

w
-lattice.
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Lemma 3.14. For each n > 1 there is a constant cn > 0 such that the following holds. For any
number field E let F be the finite extension of E generated by all of the roots of unity that are
of degree at most n over E. Then

[F : E] 6 cn[E : Q].

Proof. We have F = E(ζN ) for some N > 1. Write N =
∏
pr||N p

r. It is not difficult to show that
φ(pr) divides n![E : Q] but we shall derive a more precise estimate below.

Since the extensions E(ζpr) are linearly disjoint over E,

[F : E] =
∏
pr||N

[E(ζpr) : E].

Let E(p) := E ∩Q(ζpr). Then similarly [E : Q] >
∏
p|N [E(p) : Q].

Since Q(ζpr) is Galois, it is linearly disjoint from E over E(p). Thus, we have [Q(ζpr) : E(p)] =
[E(ζpr) : E] and therefore

φ(pr) = [E(ζpr) : E][E(p) : Q].

Since [E(ζpr) : E] 6 n we can deduce the inequality

[E(ζpr) : E]

[E(p) : Q]
6 min

(
φ(pr), n,

n2

φ(pr)

)
.

Taking a product we deduce the estimate

[F : E]

[E : Q]
6
∏
pr||N

min

(
φ(pr), n,

n2

φ(pr)

)
6 cn.

In the last inequality we could extend the product to all prime numbers and the choice cn = nn

is admissible. This concludes the proof. 2

Using the Lemma 3.14 we have the bound f 6 cnA in the proof of Lemma 3.11. Since there
is a prime between f and 2f (if f > 2) by Chebyshev’s theorem, we can choose the prime l < 2f .
On the other hand [kw : Fl] 6 [Q(µf ) : Q] 6 f , hence |GLn(kw)| 6 n2lf 6 n2(2f)f . So a value

d =
eK
p− 1

AOn(A)

is admissible for the conclusion of Lemma 3.11 to hold. Actually we shall establish an improved
bound using a more efficient argument.

Lemma 3.15. (i) Let H be a finite subgroup of GLn whose traces generate a field E with
[E : Q] 6 A. The order of a p-Sylow of H is at most 6 cn,pAn for some constant cn,p depending
only on n and p.

(ii) In the statement of Lemma 3.11 the constant

dn,K,A 6 cn,KA
n (3.4)

is admissible, where cn,K depends only on n and K.

Proof. (i) Let Hp be a p-Sylow subgroup of H. By a result of Roquette, the Schur indices of Hp

are 1 if p 6= 2 and 1 or 2 if p = 2 (see [Yam79] for a direct proof using the Hasse invariant). Since
the traces of elements of Hp ⊂ H are in E, this shows that the representation Hp ⊂ GL(V ) can
be realized over E if p 6= 2 and over E(

√
−1) if p = 2.
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There remains the problem of estimating the order of a finite p-group Hp inside GLn(E).
Minkowski obtained optimal bounds when E = Q. The method can be extended to a general
number field E and Schur gave a different proof using character theory. Serre [Ser07] treated the
case of an arbitrary E. If p 6= 2, then

log |Hp|
log p

6 m

⌊
n

t

⌋
+

⌊
n

pt

⌋
+

⌊
n

p2t

⌋
+ · · ·

where t = [E(ζp) : E] and m ∈ Z>1 is the largest integer such that ζpm ∈ E(ζp). There are some
subtle modifications if p = 2 to get a sharp bound, but this is not relevant for us since we are
interested in the behavior for A large.

Certainly φ(pm) 6 [E(ζp) : Q] 6 tA. Therefore, there is a constant cn depending on n such
that |Hp| 6 cn(tA)n/t. In particular |Hp| 6 cn,pA

n for some constant cn,p depending only on n
and p.

(ii) This relies on the basic structure of the inertia group IK . For any Galois extension M
of L and any integer j > 1, the quotients Gal(M/L)j/Gal(M/L)j+1 can be identified with an
additive subgroup of the residue field of M . Since these are abelian group of p-power order we
have that Gal(M/L)1 is a p-group [Ser79, IV.2, Corollary 3]. We are in position to apply the
assertion (i). Then similarly to Lemma 3.11 we can conclude the proof of the estimate (3.4). 2

4. Automorphic representations of classical groups

In this section we recall the endoscopy and the associated Galois representations for automorphic
representations of symplectic, orthogonal and unitary groups. A key input is the integrality
proposition in § 4.1 coming from an arithmetic geometry study of Shimura varieties.

4.1 Galois representations associated to automorphic representations
Let n ∈ Z>1. Let F+ be a totally real field and consider the following two cases:

(CM) F is a CM quadratic extension of F+ with complex conjugation c (so that F+ = F c=1);
or

(TR) F = F+.

Let Π be a regular C-algebraic cuspidal automorphic representation of GLn(AF ) such that Π∞
has the same infinitesimal character as an irreducible algebraic representation Ξ of ResF/QGLn.
The highest weight for Ξ may be written as a(Ξ) = (aσ,i)σ∈HomQ(F,C),16i6n with aσ,i ∈ Z, viewed
as a character of the standard diagonal torus of ResF/QGLn. We further assume in each of the
above cases that:

(CM) Π∨ ' Π ◦ c;
(TR) Π∨ ' Π⊗ (det ◦χ) for χ : F×\A×F → C× such that χv(−1) is the same for every v ∈ S∞.

In case (CM), fix a subset Φ+ ⊂ HomQ(F,C) such that Φ+
∐

Φ+ ◦ c = HomQ(F,C) (called a
CM-type). Recall that various notation and notion about WD representations were introduced
in § 3.1 and the twist of the local Langlands correspondence LFv(Πv) in § 3.2.

Proposition 4.1. There exists a family of l-adic representations (for varying l)

{Rl,ιl(Π) : Gal(F/F ) → GLn(Ql)}l,ιl , l is a prime and ιl : Ql ' C

such that for every finite place v of F ,

LFv(Πv) = ιlWD(Rl,ιl(Π)|Gal(F v/Fv))
F-ss,
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LFv(Πv) is a pure WD representation of weight n − 1, and Πv are essentially tempered.
Moreover, there exists s(Π∞) ∈ Z (depending only on Π∞ and F ) such that for every finite
v, LFv(Πv)| · |−s(Π∞)/2 is integral.

Remark 4.2. When v /∈ S and v - l, the proposition tells us that LFv(Πv) is unramified, strictly
pure of weight n − 1 and the eigenvalues of Frobv on LFv(Πv) are qv-Weil numbers of weight

n− 1 which become algebraic integers after multiplying q
s(Π∞)
v .

Remark 4.3. A more elementary method seems available in some cases by exploiting the integral
structure on the space of algebraic modular forms (cf. [Gro99]) on classical groups which are
compact at infinity, without the need of arithmetic geometry and Galois representations. We
have not adopted it here as we do not know how to cover all cases with that approach.

Proof. Except for the last assertion the proposition is a result of combined effort: see [BGGT14,
Theorem A] as well as [Shi11, Theorem 1.2], [CH13, Theorem 1.4], [Car12a, Theorem 1.1] and
[Car12b, Theorem 1.1].

The last assertion on integrality remains to be justified. The main idea is that the Galois
representation Rl(Π) = Rl,ιl(Π) of the proposition is essentially realized in the cohomology of
a certain (n − 1)-dimensional compact Shimura variety Sh to which some general results in
arithmetic geometry (such as [Sai03, Corollary 0.6.(1)]) apply. A precise argument requires us
to import lots of notation and various pieces of results. For any difficulty caused by this when
reading our proof we apologize. We will recall at least some of the important notation and facts
as we go along.

In case (TR) it is possible to choose a CM quadratic extension L of F and an algebraic Hecke
character φ : L×\A×L → C× such that φφc = χχc and BCL/F (Π) is cuspidal. (One can make a
choice to ensure cuspidality by arguing as in [Clo13, § 1].) Then Π′ := BCL/F (Π)⊗φ is conjugate
self-dual, regular, and C-algebraic. Thus, the proof of the integrality assertion is reduced to case
(CM) for L and Π′ via Lemma 3.7.

From now on we put ourselves in case (CM). Starting with the case where n is odd, we will
derive the integrality result as a consequence of [Shi11] and [TY07]. It is desirable to reconcile
notation with [Shi11] at the outset to avoid confusion. Only in this proof G denotes the unitary
similitude group as in [Shi11]. Our Π corresponds to Π1 in that paper. The notation Π there,
designating a representation of G(AE), will be written as Π′ here. (So the finite part of the
representation Π′ of G(AE) ' GL1(AE)×GLn(AF ) descends to the finite part of an automorphic
representation of G(A).)

Since integrality may be checked after a series of finite cyclic base changes (Lemma 3.7)
we may and will assume that conditions (i)–(v) of § 6.1 and the five assumptions at the start
of [Shi11, § 7.1] are satisfied. In particular, F contains an imaginary quadratic field E. Fix an
embedding τE : E ↪→ C and choose Φ+ to be the set of F ↪→ C extending τE . Recall that
(aσ,i)σ∈Hom(F,C),16i6n is associated with Ξ. Choose a Hecke character ψ : E×\A×E → C× as
in [Shi11, Lemma 7.2], cf. [HT01, Lemma VI.2.10]. The proof in the latter reference shows
that ψ∞(z) = τE(z)a0 , where a0 := −

∑
σ∈Φ+,16i6n aσ,i. Let ξ be the irreducible algebraic

representation of G ×Q C ' GL1(C) ×
∏
σ∈Φ+ GLn(Fσ) of highest weight (a0, (aσ,i)σ∈Φ+,16i6n).

Put

dσ := max
16i6k

(max(0, aσ,i)), sσ :=
∑

16i6k

|aσ,i−dσ|, tξ := a0 +
∑
σ∈Φ+

kdσ, mξ =
∑
σ∈Φ+

(sσ +kdσ),

and s(Π∞) := 2tξ − min(0, a0). Note that s(Π∞) depends only on the data defining Π∞. One
can check that 2tξ −mξ = 2a0 +

∑
σ,i aσ,i, cf. [HT01, p. 98] and [TY07, p. 476].
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Consider the étale cohomology

Hn−1
ét (Sh,Lξ) := lim

−→

U⊂G(A∞)

Hn−1
ét (ShU ×F F ,Lξ)

as U runs over sufficiently small open compact subgroups of G(A∞). The limit is a Ql[G(A∞)×
Gal(F/F )]-module, which is admissible (respectively continuous) with respect to the G(A∞)-
(respectively Gal(F/F )-)action. For small enough U , Hn−1

ét (ShU ×F F ,Lξ) is finite dimensional
and

Hn−1
ét (ShU ×F F ,Lξ) = aξH

n−1+mξ
ét (Amξ ×F F ,Ql(tξ))

where aξ is an idempotent of [TY07, pp. 476–477], which gives rise to an element of the Chow
group CHn−1+mξ(ShU ×F ShU )Q. (The subscript Q indicates that the coefficient ring is taken to
be Q.) On the other hand, Hn−1

ét (ShU ×F F ,Lξ) is the direct sum( ⊕
BC(πS,∞)'(Π′)S,∞

Rn−1
l (π∞)⊗ (π∞)U

)
⊕
( ⊕
BC(πS,∞)�(Π′)S,∞

Rn−1
l (π∞)⊗ (π∞)U

)
(4.1)

where the first (respectively second) sum runs over π∞, the finite part of discrete automorphic
representations of G(A), such that BC(πS,∞) ' (Π′)S,∞ holds (respectively does not hold).
According to [Shi11, Corollary 6.8], there is a positive integer CG and a Gal(F/F )-representation
R̃′l(Π

′) such that CGR̃
′
l(Π
′) =

⊕
π∞ R

n−1
l (π∞) where the sum is taken over the same set as in

the first sum of (4.1). Corollary 6.10 of [Shi11] tells us that Rl(Π) in the proposition is given by

Rl(Π) := R̃′l(Π
′)⊗ recl(ψ). (4.2)

The decomposition (4.1) allows us to find an idempotent bξ in the Chow group CHn−1(ShU×F
ShU )Q such that CG·R̃′l(Π′)' bξH

n−1
ét (ShU×FF ,Lξ), equivariant for the Gal(F/F )-action. (First,

find an idempotent separating each π∞-part as in the [TY07, proof of Lemma 2.3]. Then one uses
a Hecke algebra element which acts with trace 1 on each π∞ such that BC(πS,∞) ' (Π′)S,∞.)
Write cξ for the pullback of bξ along the projection from AmξU × AmξU to ShU × ShU . Since

Hj
ét(ShU ×F F ,Lξ) for j 6= n− 1 is linearly independent from (π∞)K for any π∞ as in (4.1) by

[Shi11, Corollary 6.5.(i)], we may construct a correspondence Γ coming from CH(Amξ ×Amξ)Q
such that Γ acts on Hj

ét(A
mξ ×F F ,Ql(tξ)) as cξ ◦aξ if j = n−1 +mξ and zero if j 6= n−1 +mξ.

By construction we have an isomorphism of Gal(F/F )-representations

CG · R̃′l(Π′)(−tξ) ' Γ ·Hn−1+mξ
ét (Amξ ×F F ,Ql).

Finally we apply the argument of [Sai03, Proposition 3.5],7 noting that his condition (3) is

satisfied for Γ as above. The conclusion is that any lift φv of Frobv on H
n−1+mξ
ét (AmξU ×FF ,Ql) has

algebraic integers as eigenvalues. Hence, the WD representations associated with Hn−1
ét (ShU ×Fv

F v,Lξ)(−tξ) as well as R̃′l(Π
′)(−tξ)|Gal(F v/Fv) are integral. By (4.2), WD(Rl(Π)(−tξ) ⊗

rec(ψ)−1|Gal(F v/Fv)) is integral. We have

LFv(Πv)| · |−s(Π∞)/2
v = ιlWD(Rl,ιl(Π)|Gal(F v/Fv))

F-ss| · |−s(Π∞)/2
v

= ιlWD(Rl(Π)(−tξ)⊗ rec(ψ)−1|Gal(F v/Fv))⊗ ιlWD(rec(ψv)
−1| · |min(0,a0)

v ).

7 The difference is that Saito considers the whole H
n−1+mξ
ét of AmξU ×F F whereas we argue only on its

subrepresentation. Still it is easy to adapt his argument to our situation.
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Since WD(rec(ψv)
−1| · |−max(0,a)

v ) is integral by Lemma 4.4 below we are done with verifying the

integrality of LFv(Πv)| · |−s(Π∞)/2
v when n is odd.

It remains to justify integrality when n is even. The argument is essentially the same as
above, so it would suffice to point out what modifications are needed. In this case we put
ourselves in the setting of [Car12b], which shows that Rl(Π)⊗2 is realized up to an explicit twist
in H2n−2

ét (X,Lξ) for the (2n−2)-dimensional Shimura varieties therein. By arguing as above, we

obtain s(Π∞) ∈ Z such that WD(Rl(Π)⊗2|Gal(F v/Fv))| · |
−s(Π∞)
v is integral at every finite place v.

But the latter implies that WD(Rl(Π)|Gal(F v/Fv))| · |
−s(Π∞)/2
v is integral as well. 2

Lemma 4.4. Let F be any number field and ψ : F×\A×F → C× a Hecke character. At each infinite
place v, suppose that there are some mv ∈ Z60 and some continuous character F×v → C× such
that ψv(z) = τv(z)

mv for all z ∈ (F×v )0. Then for every finite place v and every uniformizer $v

of Fv, ψv($v) is an algebraic integer.

Proof. There exists an open compact subgroup U of ÔF =
∏
w-∞O×w such that ψ|U ≡ 1. Fix

a finite place v and a uniformizer $v. By strong approximation there exists a ∈ F× such that
a ∈ $vU in (A∞F )×. Since a ∈ ÔF , a is an algebraic integer. Now

ψv($v) = ψ∞(a) = ψ∞(a)−1 = ±
∏
w|∞

τw(a)−mv

where the sign comes from the character F×∞/(F
×
∞)0 with values in {±1}. The lemma follows. 2

4.2 Quasi-split classical groups
Later on several results will be established concerning automorphic representations of quasi-split8

classical groups. To this end we would like to introduce basic data for symplectic, orthogonal,
and unitary groups. Let F+ be a totally real field. We take F to be F+ in the symplectic
and orthogonal cases and a CM quadratic extension of F+ in the unitary case. Both G and G
below will be connected reductive quasi-split groups over F+. Let us suppress the choice of the
symplectic, symmetric, or hermitian pairings.

Define c ∈ Gal(F/F+) to be the identity if F = F+ and the nontrivial element if F 6= F+. For
n > 1 let Jn denote the matrix with (−1)i in (i, n+ 1− i)th entry for 1 6 i 6 n and zeros off the

anti-diagonal. Write θn (respectively θ̂n) for the automorphism g 7→ Jn
tg−cJ−1

n of ResF/F+GLn
over F+ (respectively g 7→ Jn

tg−1J−1
n of GLn(C)). The standard embedding of a symplectic,

special orthogonal, or general linear group will be denoted std.
In all cases below n ∈ Z>1, G = ResF/F+GLn (which is just GLn except the unitary case),

θ = θn ∈ AutF+(G), θ̂ = θ̂n ∈ AutF+(Ĝ), s ∈ Ĝ, and η : LG ↪→ LG is an L-morphism. We
will describe G, s, and η case-by-case. Only for even orthogonal groups, we use the Weil group
form of an L-group in order to accommodate a half-integral twist, which is needed for η to be
C-preserving.

(i) Symplectic groups: n is odd, G = Spn−1, s = 1,

η = (std, id) : SOn(C)× ΓF ↪→ GLn(C)× ΓF .

(ii) Orthogonal groups: n is even, s = 1,

8 The analogous results for non quasi-split groups are sketched in the last chapter of [Art13] but might require a
few more years for a complete proof.
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(a) type B: G = SOn+1, s = 1,

η = (std, id) : Spn(C)× ΓF ↪→ GLn(C)× ΓF ;

(b) type D: let δ ∈ F×/(F×)2 be the discriminant of the underlying quadratic form and

Fδ := F (δ1/2).

• We have G = SOn, δ = 1 so that G is a split group, s = 1, η0 = (std, id) : Spn(C)× ΓF ↪→

GLn(C)× ΓF and define

η : SOn(C)×WF ↪→ GLn(C)×WF , η := η0| · |1/2

where | · | is the modulus character on WF .

• We have G = SOn, δ 6= 1 so that G is a non-split group, LG = SOn(C) o ΓF (with ΓF
acting through Gal(Fδ/F ) on SOn(C) via order 2 outer automorphism); s = diag(−In, In),

η0 : SOn(C)o ΓF ↪→ GLn(C)× ΓF is an extension of the standard embedding SOn(C) ↪→

GLn(C) defined on [Wal10, p. 51] (the map Lξ in case d− = n, d+ = 1, and δ− = δ 6= 1).

Define

η : SOn(C)oWF ↪→ GLn(C)×WF , η := η0| · |1/2.

(ii)′ This is a subcase of case (ii); in case (ii)(a) it is the same as above; in case (ii)(b) further

assume that δ = 1 if n/2 is even and δ 6= 1 if n/2 is odd.

(iii) Unitary groups: G = Un, s = 1, LG = GLn(C) o ΓF+ (with ΓF+ acting through

Gal(F/F+) = {1, c}, the c-action being θ̂n),θ = θn,

η : GLn(C)× ΓF ↪→ (GLn(C)×GLn(C)o ΓF , g × γ 7→ (g, Jn
tg−1J−1

n )o γ.

Set ε := 0 in case (i), (ii)(a), and (iii) and ε := 1 in case (ii)(b). This auxiliary constant

accounts for the modulus character in the definition of η.

The reason for introducing case (ii)′ is the following: a classical group G over F+ admits

discrete series at real places (equivalently admits compact maximal tori) exactly when G belongs

to case (i), (ii)′, or (iii). In each of cases (i), (ii), and (iii), (G, s, η) is a twisted endoscopic datum

for Go〈θ〉 in the sense of [KS99], cf. [Art13, § 1.2] for symplectic and orthogonal groups. Observe

that in all cases

G(AF+) = GLn(AF ).

Lemma 4.5. Put ourselves in case (i), (ii), or (iii) as above. Let v be an infinite place of F+ as

above:

• if ϕv : WF+
v

→
LG is regular (i.e. the restriction ϕv|W

F
+
v

is not invariant under any nontrivial

Weyl element, cf. Definition 2.1), then ηϕv is also regular;

• η is C-preserving (Definition 2.21).

Proof. Both assertions are checked by explicit computations with root data. We will verify the

first assertion in case (i) and leave it to the reader in the other cases. We may choose maximal tori

T̂ and T̂ of G and GLn and Z-bases {ei} and {fj} for the cocharacter groups (1 6 i 6 (n− 1)/2,

1 6 j 6 n) and such that η restricts to T̂ ↪→ T̂ inducing ei → fi − fn+1−i on the cocharacter
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groups. It suffices to show that every regular element of X∗(T̂ )⊗ZC× maps to a regular element
of X∗(T̂) ⊗Z C×. Let

∑
i aiei with ai ∈ C× be regular. Since the Weyl group is generated by

permutation of the indices i and sign changes ei → −ei, the regularity means that ai’s are distinct
and that ai 6= 0. Then the image

∑
i ai(fi − fn+1−i) has the property that the coefficients of fj

are all distinct, i.e. has trivial stabilizer under the Weyl group action in GLn. This shows that
regularity is preserved under η in case (i).

It is easy to compute the half sum of positive roots to verify C-preservation in each case.
We only deal with case (ii)(b) to explain the role of the extra half-power twist there. Choose T̂ ,
T̂, {ei}, and {fj} (1 6 i 6 n/2, 1 6 j 6 n) similarly such that η0 induces ei → fi − fn+1−i on

X∗(T̂ ) → X∗(T̂). The Borel subgroups can be chosen such that the half sum of positive roots
is ρG = (n/2 − 1)e1 + (n/2 − 2)e2 + · · · + en/2−1 for G (respectively ρGLn = ((n− 1)/2)f1 +
((n− 3)/2)f2 + · · · + ((1− n)/2)fn). So η0(ρG) = (n/2 − 1)(f1 − fn) + · · · + (fn/2−1 − fn/2+1),

and η(ρG) = η0(ρG) + 1
2(f1 + f2 + · · ·+ fn). Hence, ρGLn − η(ρG) has integral coefficients in fj ,

showing that η is C-preserving (but note that η0 is not). 2

Lemma 4.6. Assertions (i), (ii), and (iii) of Lemma 2.25 hold true in the even orthogonal case
(ii)(b) (even though η does not satisfy the hypothesis in that lemma).

Proof. This is proved by the same argument in the proof of assertion (i) in Lemma 2.25 for
η0 : LG →

LG 2

4.3 Twisted endoscopic transfer for classical groups
We would like to recall elements of local twisted endoscopy at a non-archimedean place v of
F+ as these will be important to us. (The corresponding theory at archimedean places is well
known.) Kottwitz, Langlands, and Shelstad [LS87, KS99] defined transfer factors ∆v(γG, γG) for
all strongly regular semisimple elements γG ∈ G(F+

v ) and γG ∈ G(F+
v ) at every place v of F+.

In fact, we will use the Whittaker normalization of transfer factors, to be denoted ∆Wh
v , which

were defined in [KS99, § 5.3] in the quasi-split case.9 We say that φv ∈ C∞c (G(F+
v )) is a ∆Wh

v

transfer of fv ∈ C∞c (G(F+
v )) if

STO
G(F+

v )
δ (fv) =

∑
γ∼stδ

∆Wh
v (γ, δ)OG(F+

v )
γ (φv) (4.3)

for every pair (γG, γG) of strongly regular semisimple elements. The proof of the fundamental
lemma by Ngô, Waldspurger, and others (see [Ngo10, Wal97, Wal06, Wal08]) ensures that a
∆Wh
v -transfer of fv exists for every fv as above.

Proposition 4.7. In cases (i), (ii), and (iii) of the previous subsection,

∆Wh
v (γG, γG) ∈ Q (4.4)

for all strongly regular semisimple elements γG ∈ G(F+
v ) and γG ∈ G(F+

v ). (In fact, ∆Wh
v (γG,

γG) ∈ {0,±1} with the exception of case (ii)(b).)

Proof. We will only sketch the argument. Since ∆Wh
v differs from ∆0 of [KS99, § 5.3] by ±1

[KS99, p. 65] it suffices to prove the claim for ∆0. The transfer factors for classical groups were

9 Here ∆Wh
v depends on the extra choice of Whittaker data of [KS99, § 5.3], which will be chosen globally. The

reference to this choice will be suppressed as the transfer factors are only affected by sign, cf. [KS99, p. 65], and
do not affect the asserted rationality of transfer factors.
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computed in [Wal10]. In the cases of interest, it is shown that the transfer factor ∆I∆II∆III

belongs to {0,±1} for (G, s, η) as in cases (i), (ii)(a), (iii) and for (G, s, η0) as in case (ii)(b).

(See the cases of twisted linear groups in [Wal10, § 1.10], noting that χ is a character of order

dividing two in the odd twisted linear case and that µ− and µ+ may be chosen to be trivial in the

case of base change for unitary groups.) Note that Waldspurger suppressed ∆IV in his formulas

but the transfer factor ∆0 is ∆I∆II∆III∆IV . In cases (i), (ii)(a), and (iii) we see ∆IV = 1

following the definition of [KS99, § 4.5], so the values of ∆0 range in {0,±1}. In case (ii)(b) ∆IV

is a nontrivial function involving a half-power of the modulus character (cf. [KS99, (4.5.1)]) so

∆0 for (G, s, η0) takes values in Q(q
1/2
v ) but replacing η0 with η twists the transfer factor by an

extra half-power of the modulus character. As a result ∆0 with respect to (G, s, η) has values

in Q. 2

From here until § 6.5 we will restrict our attention to cases (i) and (ii) above. Case (iii) is

excluded until there only because our understanding of representations of unitary groups is still

limited. Nevertheless we will treat all three kinds of classical groups on an equal footing at the

expense of burdening notation (e.g. we distinguish between F and F+, which is unnecessary

in cases (i) and (ii)) so that the results in this article apply to unitary groups as soon as the

analogue of [Art13] for unitary groups is worked out. In fact, our results already produce some

partial results in the case of unitary groups by appealing to the progress on twisted endoscopy

(base change) for unitary groups in [KK05], [Moe07], and [Lab11] among others.

To use results for automorphic representations on quasi-split classical groups as in [Art13]

(symplectic and orthogonal) and [Mok12] (unitary), we assume that the following hypothesis

holds.10

Hypothesis 4.8. Suppose that the twisted trace formula for GLn and twisted even orthogonal

groups can be stabilized in the sense of [Art13, Hypothesis 3.2.1] and [Mok12, Hypo 4.2.1].

Even though we do not to strive to extract an optimal partial result from the current

knowledge, see § 6.5 for some unconditional results not replying on the above hypothesis in

case G is unitary. Now recall from § 4.2 that ε = 0 except for case (ii)(b) where ε = 1.

Proposition 4.9. For every (finite and infinite) place v of F+, every fv ∈ C∞c (G(F+
v )), every

∆Wh
v -transfer φv ∈ C∞c (G(F+

v )) of fv, and every tempered L-parameter ϕv :WF+
v
×SL2(C) →

LG,

we have an identity ∑
πv∈L̃P (ϕv)

Θπv(φv) = ΘΠv ,θ(fv) where Πv = rec−1(ηϕv)| · |ε/2 (4.5)

10 One can be optimistic that the hypothesis will become unnecessary before long. At the time of revision,
Waldspurger has released a series of five preprints (more to come) on the stabilization of the general twisted
trace formula. For an extra careful reader, we remark that both [Art13] and [Mok12] depend on the papers [A25]
and [A26] of [Art13], which have not appeared up to now, and that the proof of the weighted fundamental lemma
has not been completely written up, cf. the footnote in [BMM11, Appendix A]. [Mok12, Proposition 8.2.5] asserts
that Ban’s result, cited as [Ban] there and proved only for split groups, extends to quasi-split unitary groups but
this appears to be a nontrivial point to be justified. Arthur, as well as Mok, refers to work in progress by Mezo and
Shelstad on twisted endoscopy for real groups and by Waldspurger on the local twisted trace formula. This seems
fine: The former is basically addressed in the preprints cited as [Me] and [S8] in [Art13]; they have been updated
or expanded since Arthur’s book was published. The latter appeared in the preprint ‘La formule des traces locales
tordue’.
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for a unique finite subset L̃P (ϕv) of Irrtemp(G(F+
v )) (independent of fv and φv). The subsets

L̃P (ϕv) give a partition of Irrtemp(G(F+
v )) where L̃P (ϕv) and L̃P (ϕ′v) coincide exactly when

ηϕv is equivalent to ηϕ′v as L-parameters for G(F+
v ) (and are disjoint otherwise).

Remark 4.10. Even though this would be clear to the reader, let us clarify the meaning of Πv

in the proposition when v splits as wwc in F , which can only happen in the unitary case (then
G(F+

v ) is a general linear group). Then Fv = F ⊗F+ F+
v ' Fw × Fwc , thereby one may write

Πv = Πw ⊗ Πwc . On the other hand, ηϕv : WF+
v
× SL2(C) → GLn(C)HomF+ (F,C) determines an

L-parameter Φw for GLn(Fw) and an L-parameter Φwc for GLn(Fwc). Then Πv = rec−1(ηϕv)
is defined by Πw = rec−1(Φw) and Πwc = rec−1(Φw) in the usual sense. Actually in this case,

Πv = πv⊗πv where πv is the unique member of L̃P (ϕv). Similarly if v = wwc in F in the setting
of Corollary 4.16, we interpret LFv(Πv) and | · |v as LFw(Πw) ⊗ LFwc (Πwc) and | · |w| · |wc ,
respectively.

Remark 4.11. The set L̃P (ϕv) is the local L-packet for ϕv except when G is an even orthogonal
group, in which case it is a union of one or two L-packets. See the discussion above and below
the [Art13, Theorem 1.5.1]. Our notation L̃P (ϕv) corresponds to his Π̃φ.

Remark 4.12. Arthur also proved that when ϕv is a non-tempered A-parameter, the analogue
of (4.5) holds true if Θπv(φv) are summed with suitable signs. We will not need this for our
theorems.

Proof. This is part of the main local theorem by Arthur [Art13, Theorems 1.5.1 and 2.2.1]
when G is symplectic or orthogonal and by Mok [Mok12, Theorems 2.5.1 and 3.2.1] when G is
unitary. 2

The above proposition tells us that for each πv ∈ Irrtemp(G(F+
v )) there is a unique (up to

equivalence) tempered L-parameter ϕv such that πv ∈ L̃P (ϕv). In this case we will write

η∗(πv) := rec−1(ηϕv)| · |ε/2, (4.6)

cf. (4.5). Namely η∗ : Irrtemp(G(F+
v )) → Irrtemp(G(F+

v )) denotes the local functorial lifting given
by η.

Proposition 4.13. There exists mG ∈ Z>1 such that for every finite place v and every tempered

L-parameter ϕv, |L̃P (ϕv)| 6 mG. To be explicit, one can choose mG = 2n.

Proof. When G is symplectic or orthogonal, the [Art13, Theorem 2.2.1.(b)] says that there is a

bijection between L̃P (ϕv) and the set of characters on the group Sϕv (denoted Sψ in therein).
According to [Art13, (1.4.9)] Sϕv is an abelian group whose order divides 2n so the proposition
follows. In the case of unitary groups one argues similarly using [Mok12, (2.4.14)]. 2

Now we summarize some results on the global functoriality for classical groups that we will
need. (A good number of cases also follow from the method of converse theorem and integral
representations but we do not discuss them here.) We will cite only [Art13] (which treats
symplectic/orthogonal groups) in the remainder of this subsection without further comments
on the unitary group case, believing that the reader understands by now that the completely
analogous results in the latter case can be found easily in [Mok12].

Let us introduce some new notation, which is mostly consistent with that of [Art13] but not
always. Write Ψ̃ell(GLn) for the set of quadruples

ψ = (r, {(ni,Πi, νi)}ri=1)
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(in which (ni,Πi, νi) are unordered relative to the index i) where:
• r ∈ Z>1, ni ∈ Z>1, νi ∈ Z>1,

∑r
i=1 niνi = n;

• Πi are cuspidal automorphic representations of GLni(AF ), and such that Π∨i ' Πc
i for every

i and Πi � Πj for ever pair i 6= j.

Let Ẽell(GLn) denote the set of isomorphism classes of (twisted) endoscopic data for Go 〈θ〉 as
defined in [Art13, § 1.2]. Whether we are in case (i), (ii), or (iii), (G, s, η) belongs to Ẽell(GLn).
(In case (iii) our η corresponds to the L-morphism ξχ+ of [Mok12]. His ξχ− is not used in our
paper.) According to a classification of self-dual parameters as in [Art13, § 1.2], there is a natural
decomposition

Ψ̃ell(GLn) =
∐

H∈Ẽell(GLn)

Ψ̃2(H)

so that ψ belongs to Ψ̃2(H) if, loosely speaking, it satisfies the characterizing properties of the
parameters coming from H. See the paragraph preceding [Art13, (1.4.7)].

Let us explain the construction of local parameters from ψ ∈ Ψ̃ell(GLn). Put LF+
v

:= WF+
v
×

SL2(C) if v -∞ and LF+
v

:= WF+
v

if v|∞. Define

ψv : LF+
v
× SL2(C) →

LG

to be the L-parameter for G(F+
v ) given by

⊕r
i=1 rec(Πi) ⊗ Symνi−1(C2), where each direct

summand is the exterior tensor product of rec(Πi) on LF+
v

and Symνi−1(C2) on SL2(C). If

ψ ∈ Ψ̃2(G), then it is a nontrivial theorem that ψv (or an isomorphic parameter thereof) factors
through only η : LG ↪→ LG and no embedding of other elliptic endoscopic groups. (See the
Theorem 1.4.2 and the discussion above [Art13, (1.5.3)].) This determines ψ[v : LF+

v
×SL2(C) →

LG such that ηψ[v ' ψv canonically up to Out(G)-action. (The outer automorphism group has
order 1 or 2. See [Art13, § 1.2] for details.) It turns out that ψv always lands in Ψ̃+

unit(G(F+
v )) in the

notation of Arthur, which is designed to accommodate local components of discrete automorphic
representations of G. The precise definition of Ψ̃+

unit(G(F+
v )) is not needed for our purpose so

not recalled here.
Now we turn to the purely local setting and explain some local inputs beyond the tempered

objects to be used in this paper. Arthur associates to each ψv ∈ Ψ̃+
unit(G(F+

v )) (which may not

come from a global parameter ψ) a finite set Π̃ψv consisting of finite lengthG(F+
v )-representations

by extending the definition of tempered L-packets, i.e. Π̃ψv is the tempered L-packet (cf. the

paragraph above Proposition 4.13) if ψv is a tempered L-parameter. Although Π̃ψv is designed

to play the role of local A-packets, it should be noted that members of Π̃ψv may be reducible

or non-unitary. Let us define ÃP (ψv) to be the set consisting of irreducible subquotients of the
members of Π̃ψv .

Proposition 4.14. Consider cases (i), (ii), or (iii) of § 4.2. Suppose that π is a discrete
automorphic representation of G(AF+) unramified outside a finite set S. Then there exists a
unique ψ = (r, {(ni,Πi, νi)}ri=1) ∈ Ψ̃2(G) such that:

(i) πv ∈ ÃP (ψv) at every place v of F+;

(ii) if πv is tempered and all νi are trivial, then η∗(πv) =�r
i=1Πi,v| · |ε/2 at each place v of F+;

(iii) at every finite place v /∈ S, πv is isomorphic to the unramified member of ÃP (ψv), which is
unique (relative to the fixed hyperspecial subgroup Uhs

v ).

Remark 4.15. In case some νi is nontrivial so that we are in the nontempered case, one knows
from [Art13] only an equality of infinitesimal characters (i.e. supercuspidal support when v is a
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finite place) in case (ii). If we knew the Ramanujan conjecture for general linear groups, it would
be enough assume in case (ii) only that νi are trivial.

Proof. The first assertion is implied by [Art13, Theorem 1.5.2]. In case (ii) η∗(πv) is characterized
by Proposition 4.9, so the assertion follows from [Art13, (2.2.3)].

The last assertion is deduced from the [Art13, Theorem 1.5.1], which implies that ÃP (ψv)
possesses at most one unramified representation. (One can identify πv a little more explicitly.

When πv is unramified, ψv is also unramified (i.e. all Πi are unramified at v). Then

ÃP (ψv) contains a local L-packet for the unramified L-parameter given by ψ, cf. [Art13,
Proposition 7.4.1], so πv is that corresponding to the latter L-parameter via the unramified
Langlands correspondence.) 2

Corollary 4.16. In the setting of Proposition 4.14, let ψ = (r, {(ni,Πi, νi)}ri=1) be the
associated data to π and suppose that π is ξ-cohomological. Then there exists s(ξ) ∈ Z>0

depending only on G and ξ such that:

• for every finite place v, LFv(Πi,v| · |ε+ni−n/2)| · |−s(ξ)/2v is pure of weight s(ξ) +n− 1− ε and
integral.

If moreover the highest weight of ξ is regular, then:
• πv are tempered at all places v;
• ηϕπv are pure WD representations of weight −ε for all finite places v;
• ηϕπv are unramified and strictly pure of weight −ε if v /∈ S.

Proof. Let us begin by proving the first assertion. Proposition 4.14(i) at infinite places implies,
by the comparison of infinitesimal characters, that ηψw|WFw

is isomorphic to the direct sum over

all infinite places w of F of the L-parameter for Πi,w restricted to WFw
. (Of course Fw ' C for

w|∞.) Since π is ξ-cohomological thus regular and C-algebraic, Lemma 4.5 implies that ηψw is
a regular C-algebraic parameter. From this it follows that Πi,w| · |(ε+ni−n)/2 at w|∞ are regular
and C-algebraic. One deduces from Proposition 4.1 that there exists s(Πi,∞) ∈ Z>0 depending

only on the infinite component Πi,∞ of Πi such that LFy(Πi,y| · |(ε+ni−n)/2)| · |−s(Πi,∞)/2
y is pure

of weight s(Πi,∞) + n − 1 − ε and integral for each 1 6 i 6 r for every finite place y of F .
Clearly there are only finitely many WFw

-subrepresentation of ηψw|WFw
, so the number of all

possible infinitesimal characters for Π1,w, . . . ,Πr,w is finite at each w|∞. Since there are only

finitely many irreducible representations of GLn(R) or GLn(C) with fixed m ∈ Z>1 and fixed
infinitesimal character, there are only finitely many possibilities for Πi,∞. The proof of the first
assertion is complete as soon as s(ξ) is taken to be the maximum of s(Πi,∞) over all possible
{Πi,∞}16i6r.

Now suppose that the highest weight of ξ is regular. According to a standard result on
Lie algebra cohomology, πv at v|∞ must be discrete series to be ξ-cohomological. Considering
infinitesimal characters for ψv at v|∞, we see that νi = 1 for all 1 6 i 6 r. Since Πi| · |(ε+ni−n)/2

is of type (TR) or (CM) for each i, Proposition 4.1 tells us that Πi,v are essentially tempered
at all finite places v. Since Πi,v is already known to be unitary, Πi,v is tempered. Hence, ψv
is tempered and ÃP (ψv) is nothing but the tempered L-packet L̃P (ψv|L

F+
v

) at each v - ∞,

cf. Proposition 4.9. In particular, πv ∈ ÃP (ψv) is tempered. Since

ηϕπv =
r⊕
i=1

rec(Πi,v)| · |ε/2 =

r⊕
i=1

LF+
v

(Πi,v| · |(ε+ni−n)/2)| · |n−1/2, v -∞,
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Proposition 4.1 and Remark 4.2 allow us to verify the properties of ηϕπv in the corollary. 2

5. Finiteness results

The first two subsections prove local finiteness results for unramified and arbitrary
representations. After stating a global finiteness conjecture (Conjecture 5.10 below) for
C-algebraic representations with bounded coefficient fields in a fairly general setting, we establish
the conjecture for general linear groups and quasi-split classical groups.

5.1 Finiteness for unramified representations
Put ourselves in the setting of § 4.2.

Lemma 5.1. Fix s ∈ Z>0, A ∈ Z>1, and a finite place v of F+. There are only finitely many
πv ∈ Irrur(G(F+

v )) such that:

• LF+
v

(η∗πv)| · |−s/2v is strictly pure of weight n− 1 + s− ε and integral; and
• [Q(πv) : Q] 6 A.

Proof. Since the map η∗ : Irrur(G(F+
v )) → Irrur(G(F+

v )) has finite fibers (Lemma 2.23) it suffices

to prove the finiteness of the set of Πv ∈ Irrur(GLn(Fv)) such that LF+
v

(Πv)| · |−s/2v is strictly
pure of weight n − 1 + s and integral with [Q(Πv) : Q] 6 A. A first observation is that any
Πv = η∗πv for πv as in the lemma lands in the set just defined, where the inequality follows from
Lemma 2.25(ii). Next consider the bijection S : Irrur(GLn(Fv)) → (C×)n/Sn coming from the

Satake isomorphism for GLn. Then each complex number appearing in S (Πv| · |−(n−1+s−ε)/2
v )

must be a root of an (irreducible) monic polynomial xm + am−1x
m−1 + · · ·+ a0 with

1 6 m 6 A, am−1, . . . , a0 ∈ Z (5.1)

by integrality and the bound on [Q(Πv) : Q]. The condition on purity and weight (‘Weil bounds’)

implies that |λ|v 6 q
−(n−1+s−ε)/2
v for all roots λ ∈ C of the above polynomial, imposing a

constraint

|ai|v 6
(
m

i

)
q−(n−1+s−ε)/2
v for all 0 6 i 6 m− 1. (5.2)

As there are only finitely many polynomials satisfying (5.1) and (5.2), we are done. 2

5.2 Rationality of endoscopic transfer
Keep the notation of the previous subsection. We start by studying the behavior of the functorial
lifting η∗ relative to automorphisms of C.

Proposition 5.2. Let πv ∈ Irrtemp(G(F+
v )). Then

η∗(π
σ
v ) = (η∗πv)

σ for all σ ∈ Aut(C). (5.3)

If moreover Q(πv) is finite over Q then:

(i) Q(η∗πv) is also finite over Q;

(ii) Q(πv) contains Q(η∗πv) and is contained in a finite extension of Q(η∗πv) of degree at most
mG!; in particular, [Q(η∗πv) : Q] 6 [Q(πv) : Q] 6 mG! [Q(η∗πv) : Q].

Remark 5.3. Only the left inequality in part (ii) will be needed in our main results. The
proposition extends Lemma 2.25 from unramified (possibly non-tempered) representations to
tempered representations in the case of classical groups.

2035

https://doi.org/10.1112/S0010437X14007428 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007428


S. W. Shin and N. Templier

Proof. Put Πv := η∗πv. Since part (i) is an immediate consequence of part (ii), it suffices to
verify part (ii).

When πv is tempered, we would like to verify (5.3). For any fv ∈ C∞c (G(F+
v )) let φv ∈

C∞c (G(F+
v )) be its ∆Wh

v -transfer. For every σ ∈ Aut(C) we obtain from Proposition 4.7 and
(4.3) that

STO
G(F+

v )
δ (fσv ) =

∑
γ∼stδ

∆Wh
v (γ, δ)OG(F+

v )
γ (φσv ).

Hence, φσv is a KLS transfer of fσv . On the other hand, twisting (4.5) by σ leads to an identity

ΘΠσv ,θ(f
σ
v ) =

∑
η∗(ρv)=Πv

Θρσv (φσv ). (5.4)

Plugging in fσ
−1

v and φσ
−1

v in place of fv and φv (noting that fσ
−1

v is a ∆Wh
v -transfer of φσ

−1

v )
we derive

ΘΠσv ,θ(fv) =
∑

η∗(ρv)=Πv

Θρσv (φv). (5.5)

Comparing with ΘΠσv ,θ(fv) =
∑

η∗(ρv)=Πσv
Θρv(φv), cf. (4.5), we obtain an equality of stable

characters (evaluated on elements of C∞c (G(F+
v )))∑

η∗(ρv)=Πv

Θρσv =
∑

η∗(ρv)=Πσv

Θρv (5.6)

since ∆Wh
v -transfers of C∞c (G(F+

v )) generate the space of stable distributions on G(F+
v ). (In

the language of Remark 1 below [Art13, Theorem 2.2.1], the map f̃ 7→ f̃G is onto.) Then (5.6)
holds true also as the equality of finite character sums. Since Θπσv appears as a summand on the
left-hand side, it should also on the other side by linear independence of characters. We have
established (5.3).

Formula (5.3) readily implies that if σ ∈ Aut(C/Q(πv)) then Πσ
v = η∗(π

σ
v ) = η∗πv = Πv.

Therefore, Q(Πv) ⊂ Q(πv) and, in particular, Q(Πv) is finite over Q.
Now if σ ∈ Aut(C/Q(Πv)), then η∗(π

σ
v ) = Πσ

v = Πv. One deduces from (5.6) that πv, π
σ
v ∈

η−1
∗ (Πv). Thereby one obtains a group homomorphism

Υ : Aut(C/Q(Πv)) → Perm(η−1
∗ (Πv)), Υ(σ) : πv 7→ πσv

where Perm(·) denotes the permutation group. Since |η−1
∗ (Πv)| 6 mG by Proposition 4.13, the

kernel of Υ has index 6mG! in Aut(C/Q(Πv)). Then the fixed field of ker Υ is a finite extension
of Q(Πv) of degree 6 mG! and contains Q(πv). The proof of part (ii) is finished. 2

Remark 5.4. Alternatively (5.3) may be proved using a global argument (explained to us by Wee
Teck Gan): reduce to the case where πv is a discrete series. When πv is discrete, globalize πv to a π.
Consider η∗(π) and η∗(π

σ) (assumed isobaric). By comparing η∗(π)σ and η∗(π
σ) at almost all

unramified places, one deduces from strong multiplicity one that η∗(πv)
σ = η∗(π

σ
v ) at the place

v of interest. (Use Clozel’s result that the Langlands quotient is compatible with σ.)

5.3 Sparsity of arithmetic points in the unitary dual

Proposition 5.5. Fix A> 1, a finite place v of F+, an open compact subgroup Kv ⊂G(F+
v ) and

an irreducible algebraic G∞-representation Ξ. The set of Πv ∈ Irr(G(F+
v )) satisfying conditions

2036

https://doi.org/10.1112/S0010437X14007428 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007428


On fields of rationality for automorphic representations

(i) and (ii) below is finite:

(i) Πv appears as the v-component of some Ξ-cohomological isobaric representation Π =
�s

i=1Πi of G(AF+) such that Πi are cuspidal and Π∨i ' Πc
i⊗(det ◦χi) for χ : F×\A×F → C×

such that χv(−1) is the same for every v ∈ S∞;

(ii) [Q(Πv) : Q] 6 A.

Remark 5.6. Since C-algebraicity is incompatible with � (which is locally the Langlands quotient
for the normalized induction), Π being C-algebraic implies not Πi but Πi| · |(ni−n)/2 is C-algebraic
in condition (i).

Proof. By condition (ii) and Corollary 3.13 the depth (or conductor) of Πv is bounded, so the
set of Πv is contained in finitely many Bernstein components. We may show that the set of Πv

satisfying conditions (i) and (ii) is finite in each Bernstein component B. Suppose that Π0
v ∈ B

satisfies conditions (i) and (ii). Write LF+
v

(sc(Π0
v)) =

⊕k
i=1 Vi where Vi are irreducible WD

representations. For any other Πv ∈ B,

LF+
v

(sc(Πv)) =
k⊕
i=1

Vi ⊗ unr(λi)

where unr(λi) : GL1(F+
v ) → C× is the unramified character mapping every uniformizer of

F+
v to λi ∈ C×. Since Q(

⊕k
i=1 Vi) ⊂ Q(Π0

v) (cf. (3.2)), we have [Q(
⊕k

i=1 Vi) : Q] 6 A. Put

E := Q(V1)Q(V2) · · ·Q(Vk). Since Gal(Q/Q(
⊕k

i=1 Vi)) acts on {V1, . . . , Vk} (a multi-set) as
permutations,

[E : Q] 6 k!A 6 n!A.

Consider the action of Gal(Q/E) on the unordered set {Vi⊗unr(λi)}ki=1. Clearly there exists an
extension E′/E of degree 6 k! such that Gal(Q/E′) fixes the isomorphism class of Vi ⊗ unr(λi)
for every i. Observe that every λ ∈ C× such that Vi ⊗ unr(λ) ' Vi satisfies λn = 1. (For this
consider the equality of the determinants.) Setting E′′ := E(µn), we conclude that Gal(Q/E′′)
fixes λi for every i. In particular,

[Q(λi) : Q] 6 k!n!ϕ(n)A for all 1 6 i 6 k. (5.7)

By condition (i) and Proposition 4.1 there exists s > 0 (depending on Ξ) such that for every
Πv ∈ B satisfying conditions (i) and (ii), LF+

v
(sc(Πv))| · |−s/2 is pure of weight s + (n − 1)

and integral. (To deduce this, apply Proposition 4.1 to each Πi| · |(ni−n)/2, cf. Remark 5.6.) As
Lemma 3.8 applies to the present situation with all si in the lemma equal to one, we see that
both Vi| · |−s and Vi| · |−s ⊗ unr(λi) are strictly pure of weight in s + (n − 1) and integral. We

claim that λi is a Weil qv-number of weight zero such that q
s+(n−1)
v λi is integral. Indeed, for any

eigenvalue ω of a lift of geometric Frobenius on Vi, we know from the above that q
s+n−1/2
v /ω and

ωλi are integral. In view of the integrality of q
s+(n−1)
v λi and (5.7), an argument as in Lemma 5.1

shows that there are only finitely many λi with these properties. Therefore, the set of Πv as
above is finite. 2

Let G be as in cases (i), (ii), or (iii) of § 4.2. Recall that Arthur and Mok associate to
πv ∈ Irrtemp(G(F+

v )) a tempered L-parameter ϕπv : WF+
v
×SL2(C) →

LG. In a standard manner
this extends to the construction of all L-packets via Langlands quotients. Now we are about to
state a result providing a crucial input for the main results of § 6.1.

Corollary 5.7. Fix A > 1 and an irreducible algebraic ResF+/QG representation ξ. Suppose

that ξ has regular highest weight. Then the set of πv ∈ Irrtemp(G(F+
v )) satisfying the two
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properties below is finite:

(i) πv appears as the v-component of some ξ-cohomological discrete automorphic representation
π of G(AF+);

(ii) [Q(πv) : Q] 6 A.

Remark 5.8. In particular, the set of such πv is measurable with respect to the Plancherel
measure on G(F+

v )∧. We caution the reader that its measure may not be zero. Indeed it has
positive Plancherel measure precisely when it contains discrete series.

Remark 5.9. The regularity assumption on ξ should be unnecessary for the corollary to be true.
We imposed it for simplicity and also for the reason that the same hypothesis will be in place
for applications in § 6.

Proof. Let C(ξ, A) be the set of πv as above. We need to show |C(ξ, A)| < ∞. Since η∗ is a
finite-to-one map, we will be done if η∗ is shown to map C(ξ, A) into the union of the sets of
Proposition 5.5 for some Ξ, where Ξ depends only on ξ.

Each πv ∈ C(ξ, A) is the v-component of some π as in the corollary. Let ψ = (r, {(ni,Πi,
νi)}ri=1 be the data associated with π and put

Π :=�r
i=1((Πi ⊗ | · |1−νi/2)� (Πi ⊗ | · |3−νi/2)� · · ·� (Πi ⊗ | · |νi−1/2))⊗ | · |ε/2.

The infinitesimal character of πv at each infinite place v of F+ is the same as that of ξ∨v , where
ξ =

⊗
v|∞ ξv is a tensor product of irreducible representations with regular highest weights.

Remark 4.15 tells us that this infinitesimal character transfers via η to that of Πv. The regularity
on the former implies via the explicit description of η that the infinitesimal character of Πv is the
same as that of (the tensor product of two) irreducible algebraic representations of G of regular
highest weight. In particular, νi must be all trivial in ψ.

So Π = �r
i=1Πi| · |ε/2 and Πv = η∗(πv) by Proposition 4.14(ii), cf. Remark 4.15. Thanks

to Proposition 5.2 we know [Q(Πv) : Q] 6 A, which is Proposition 5.5(ii). It remains to
verify condition (i) of that proposition. This is clear except possibly the property that Π
is cohomological (for some Ξ), which we now explain. Since π∞ is ξ-cohomological it is
regular C-algebraic. This implies that Π∞ = η∗(π∞) is also regular C-algebraic (for GLn) by
Lemma 4.5 (and the sentence right below Definition 2.21). Now Lemma 2.12 tells us that Π∞ is
Ξ-cohomological for some Ξ. Moreover, Ξ is determined by the infinitesimal character of Π∞,
hence also by that of π∞, or just by ξ. We are done. 2

5.4 A finiteness conjecture
We think this is a good place to state an interesting finiteness conjecture on automorphic
representations in the spirit of the Shafarevich conjecture (Theorem 1.2). Earlier Fontaine and
Mazur proposed the analogue of the Shafarevich conjecture for l-adic Galois representations
[FM95, I.§ 3]. While their conjecture is still mostly open in dimension greater than one to the
best of the authors’ knowledge, we are able to verify our conjecture in many cases including
G = GLn. This opens up the possibility for an automorphic proof of Fontaine–Mazur’s finiteness
conjecture via the Langlands correspondence. At the moment we are unable to get many cases of
their conjecture since the correspondence is established in only limited cases. We wish to return
to this problem in the future.

In the conjecture G is allowed to be an arbitrary connected reductive group over any number
field F . Let Sram be the finite set of finite places v such that G ×F Fv is ramified (i.e. either
non-quasi-split over Fv or non-split over any finite unramified extension of Fv). Recall that
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hyperspecial subgroups outside Sram are fixed as in § 1.6 once and for all, and unramified
representations are considered with respect to this data. Denote by Z(g) the center of the
universal enveloping algebra of LieG(F ⊗Q C).

Conjecture 5.10. Fix A ∈ Z>1, S a finite set of places of F containing Sram and all infinite
places, and a C-algebra character χ∞ : Z(g) → C. Then the set of discrete automorphic
representations π of G(AF ) with the following properties is finite:
• πS is unramified;
• π∞ has infinitesimal character χ∞; and
• [Q(π) : Q] 6 A.

Remark 5.11. To state a more modest conjecture, one may replace the condition [Q(π) : Q] 6 A
by the condition that Q(π) is contained in a fixed finite extension of Q in C.

Remark 5.12. Since there are up to isomorphism only finitely many π∞ with a fixed infinitesimal
character χ∞, one may replace the above condition on the infinitesimal character by the condition
that π∞ is isomorphic to a fixed irreducible G(F ⊗R C)-representation π0

∞.

Remark 5.13. The π as in the conjecture should be C-algebraic according to the ‘if’ part of
Conjecture 2.8, which may well belong to the realm of transcendental number theory and would
be difficult to check. Fortunately we can still verify the conjecture in many cases without a priori
knowledge that π is C-algebraic; cf. § 5.5 below.

Remark 5.14. It should be stressed that no bound on ramification is imposed at places in S.
(Otherwise the conjecture would be uninteresting.) Such a bound is only a consequence of the
condition that Q(π) ⊂ E, at least in the setting of § 5.5 below. The conjecture is certainly false
if the condition Q(π) ⊂ E is omitted, as it is often well known that there are infinitely many
discrete automorphic representations if arbitrary ramification is allowed at one place, cf. [Shi12].

Remark 5.15. On the Galois side (as opposed to the automorphic side) the analogues of the
Fontaine–Mazur finiteness conjecture for complex and mod l Galois representations have been
proposed and investigated by [ABCZ94] and [Kha00]. The result of Anderson, Blasius, Coleman
and Zettler [ABCZ94] is as follows: given a number field K, there are finitely many complex
representations of the Weil group WK of bounded degree and bounded Artin conductor (their
proof uses Jordan theorem that finite subgroups of GL(d,C) are virtually abelian). Their result
confirms some very special cases of the Fontaine–Mazur finiteness conjecture.

5.5 Results on the finiteness conjecture
The aim of this section is to prove Conjecture 5.10 in some important cases. Namely the
conjecture will be established first in the case of general linear groups taking Lemma 3.3 and
Harish-Chandra’s finiteness theorem (Proposition 5.16 below) as crucial inputs, and next in the
case of classical groups via functorial transfer to general linear groups.

Proposition 5.16. For any C-algebra character χ∞ : Z(g) → C and for any open compact
subgroup U of G(A∞F ), the set of isomorphism classes of discrete automorphic representations π
of G(AF ) satisfying the following is finite:
• π∞ has a nonzero U -fixed vector; and
• π∞ has infinitesimal character χ∞.

Remark 5.17. We are using a weaker version of Harish-Chandra’s theorem in that our attention
is restricted to the discrete automorphic spectrum.
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Proof. The proposition results immediately from Harish-Chandra’s theorem 1 in [Har68]. (The
proof in [Har68] for semisimple groups is extended to the case of reductive groups as explained
in [Bor07, Theorem 7.4].) 2

Theorem 5.18. Conjecture 5.10 is true in the case of G = GLn for any n ∈ Z>1 and any ground
field F .

Proof. Suppose that π satisfies the condition of Conjecture 5.10. Corollary 3.12 tells us that
πv has bounded conductor (depending only on A, Fv, and n) at every v ∈ S. Therefore, the
cardinality of such π is finite by Proposition 5.16. 2

Theorem 5.19. Conjecture 5.10 is true for quasi-split classical groups as in cases (i), (ii), and
(iii) of § 4.2 (if Hypothesis 4.8 is assumed).

Proof. Write C(G,S, χ∞, A) for the set of Conjecture 5.10 (but we adopt the notation of § 4.2
in this proof, so F+ plays the role of F in the conjecture). Consider the association

C(G,S, χ∞, A) → Ψ̃2(G)

π 7→ ψ = (r, {(ni,Πi, νi)}ri=1

as in Proposition 4.14. Since π is unramifiedoutside S, the associated Πi enjoys the same property
for every i. Since η is C-preserving by inspection, Lemma 2.25, Proposition 4.14(iii), and the
strong multiplicity one theorem imply that Aut(C/Q(π)) permutes the set {Π1, . . . ,Πr}. Hence,
there exists some E ⊃ Q(π) with [E : Q(π)] 6 r! such that Aut(C/E) fixes all Π1, . . . ,Πr. Note
that [E : Q] 6 r![Q(π) : Q] 6 n!A.

Let us make some observation about infinitesimal characters. It is standard that χ∞
corresponds to a collection of complex L-parameters ϕχ∞,w : WC → Ĝ where w runs over the

infinite places of F . For each infinite place v of F+, it follows from πv ∈ ÃP (ψv) that ψv|W
F+
v

is isomorphic to ϕχ∞,w up to Out(Ĝ)-action when v|w. Let Xv be the set of all infinitesimal
characters of GLm(F ⊗F+ F+

v ) with 1 6 m 6 n corresponding to a W
F+
v

subrepresentation of

ηψv|W
F+
v

at each v|∞. Clearly X :=
∏
v|∞Xv is a finite set. Proposition 4.14, cf. the proof of

Corollary 4.16, tells us that the infinitesimal character of Πi,v belongs to Xv.
Let D(GL6n, S,X, n!A) be the set of cuspidal automorphic representations Π of GLm(AF )

with 1 6 m 6 n which are unramified outside S, have the infinitesimal character of Π∞ in X,
and satisfy [Q(Π) : Q] 6 n!A. According to Theorem 5.18, D(GL6n, S,X, n!A) is a finite set. We
have seen that for any (r, {(ni,Πi, νi)}ri=1 ∈ Ψ̃2(G) coming from π ∈ C(G,S, χ∞, A), every Πi

belongs to D(GL6n, S,X, n!A). Hence, the image of C(G,S, χ∞, A) in Ψ̃2(G) is finite. The proof
boils down to showing that each fiber of the arrow C(G,S, χ∞, A) → Ψ̃2(G) is finite. This is a
consequence of Proposition 4.14(iii): if π is in the preimage of ψ then πv at every finite place

v /∈ S is determined to the unique unramified member of ÃP (ψv). For each v ∈ S or v|∞, πv
must lie in the finite set ÃP (ψv). 2

6. Growth of fields of rationality in automorphic families

Let G be a quasi-split classical group as in cases (i), (ii)′, or (iii) of § 4.2 from here up to § 6.4.
In particular F+ denotes the base field of G. Note that this is different from the convention
of [ST12], which will be frequently cited in this section, where F is the base field. (We restrict
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from case (ii) to (ii)′ since we need results from [ST12] established under the assumption that
G has discrete series at the real places of F+.) In § 6.5 we concisely explain how the earlier part
of this section can be adapted to obtain an unconditional result for (non-quasi-split) unitary
groups. Throughout this section it is assumed that G is nontrivial so that the absolute rank of
G is at least one.

6.1 Growth of fields of rationality in level aspect
We start by recalling the level aspect families Fξ(Ux) of automorphic representations of G(AF+)
of weight ξ and level subgroups Ux as in [ST12, § 9.3] or [Shi12].

Let Ux be a sequence of level nx-subgroups of G(A∞F+). Here nx is a sequence of integral
ideals of OF+ such that N(nx) := [OF+ : nx] →∞. When G is a split group over F , the sequence
Ux is defined as

Ux = ker(G(OF+) → G(OF+/nx))

using the Chevalley group scheme forG over Z. In general, we refer the reader to [ST12, § 8] for the
precise definition via Moy-Prasad filtrations. We have a product decomposition Ux =

∏
v-∞ Ux,v

such that each Ux,v is a compact open subgroup of G(F+
v ). Set Uvx :=

∏
w-∞,w 6=v Ux,w.

A variant of the level sequence would be a tower of bounded depth in the sense of [DH99],
which corresponds to Ux+1 ⊂ Ux or nx | nx+1. But here we prefer to work more generally with
the condition that N(nx) →∞.

Let ξ be an irreducible algebraic representation of ResF+/QG over C, which can be viewed
as a representation of

∏
v|∞G ×F+ F+

v where v runs over infinite places of F+ (see § 2.2). In
this section we assume, except for Corollary 6.8, that the highest weight for every representation
of G ×F+ F+

v induced by ξ is regular. The regularity assumption is made mainly because the
equidistribution theorems as in [Shi12] and [ST12] rely on it. (This is why we also made the
assumption earlier for simplicity, cf. Remark 5.9).

Let S0 be a (possibly empty) finite set of places disjoint from nx for all x. Let f̂S0 be a
well-behaved function on the unitary dual of G(F+

S0
) in the sense of [Sau97, § 7] and [ST12,

§ 9.1]. (Such functions are very useful in prescribing interesting local conditions. Namely we can
impose that πS0 belongs to a bounded measurable subset of G(F+

S0
)∧ whose boundary has zero

Plancherel measure and whose image in the Bernstein variety (Θ(G) in [Sau97, pp. 164–165])

has compact closure. In fact, there is essentially no loss of generality in assuming that f̂S0 is a

characteristic function of such a subset.) Henceforth we will assume that µ̂pl
S0

(f̂S0) > 0 and that

f̂S0 takes nonnegative real values on the unitary dual.

Let Fx := F(Ux, f̂S0 , ξ) be the set (or family) of discrete automorphic representations π of
G(AF+) such that:

• πS0 belongs to the support of f̂S0 , i.e. f̂S0(πS0) 6= 0;
• π∞ has a nonzero Ux-fixed vector; and
• π∞ is ξ-cohomological (Definition 2.11).

To be precise this is a multi-set with a density function aFx(π) as in [RS87], [Shi12, § 3.3]
and [ST12, § 9.2]. In the present case we have for all π ∈ Fx,

aFx(π) := mdisc(π)f̂S0(πS0) dim((πS0,∞)U
S0
x ) (6.1)

where mdisc(π) is the multiplicity of π in the discrete automorphic spectrum. The exact nature
of the formula for aFx(π) does not play an explicit role in what follows but is needed in [ST12],

which we are going to cite from there. Note that it is nonnegative and if f̂S0 is a characteristic
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function, it takes integral values. The cardinality of a subset of the multi-set Fx is considered
in the obvious sense. For instance, |Fx| is defined to be the number of π in Fx counted with
multiplicities aFx(π).

Theorem 6.1. Let v 6∈ S0 be a fixed place of F+ such that either:

(i) Ux,v is maximal hyperspecial for all but finitely many x; or

(ii) ordv(nx) →∞ as x →∞,

Then |{π ∈ Fx : [Q(πv) : Q] 6 A}|/|Fx| tends to zero as x →∞.

Remark 6.2. We recall that the case G = GL(2)Q under assumption (i) is due to Serre [Ser97],
see Theorem 1.1.

Proof. We have seen in Corollary 4.16 that πv is tempered for all π ∈ Fx. We are in position
to apply Corollary 5.7 which implies that the set Zur (respectively Z) of all πv ∈ G(F+

v )∧,ur

(respectively πv ∈ G(F+
v )∧) for π ∈ Fx with [Q(πv) : Q] 6 A is finite. For part (i), concerning

Zur, we could use alternatively the easier fact that there are only finitely many associated Weil
numbers (Lemma 5.1). Since Zur and Z are finite, they are certainly a µ̂pl

v -regular relatively
compact subset of G(F+

v )∧.
We will follow the notation of [ST12] and all measures are chosen as in that paper. We have

|{π ∈ Fx : [Q(πv) : Q] 6 A}| = |{π ∈ Fx : πv ∈ Zur}|

=
τ ′(G) dim ξ

vol(Uvx )
µ̂x(Zur),

(6.2)

where τ ′(G) is the volume of G(F+)\G(AF+)/AG,∞, and µ̂x(Zur) is the automorphic counting
measure for Fx. (See § 6.6 and (9.5) with S0 = {v} and S1 = ∅ in [ST12].) The same as (6.2)
holds true for x � 1 with Z in place of Zur. (We want x � 1 so that every member of Z
has level at most nx at v.) A key ingredient for both (i) and (ii) is the automorphic Plancherel
equidistribution theorem [ST12, Corollary 9.22] (see also [Shi12, Theorem 4.4]), stating that

limx→∞ µ̂x(Zur) = µ̂pl
v (Zur) and the same for Z in place of Zur.

(i) According to [ST12, Corollary 9.25], limx→∞ (τ ′(G) dim ξ/vol(Uvx )|Fx|) = 1. Hence, the

limit in the theorem is nothing but µ̂pl
v (Zur), which is zero. (Note that Zur is a finite subset

of the unramified unitary dual which is a torus of positive dimension and the restriction of the
Plancherel measure is absolutely continuous with respect to the Lebesgue measure.)

(ii) By [Shi12, Proposition 5.2] and its extension to the setting of [ST12] by the same
argument, we have

lim
x→∞

τ ′(G) dim ξ

vol(Ux)|Fx|
= 1. (6.3)

([ST12, Corollary 9.25] cannot be applied as it assumes that nx is prime to v. Note that (6.3) is
consistent with the formula in the proof of part (i), in which case vol(Ux,v) = 1.) Therefore,

lim
x→∞

τ ′(G) dim ξ

vol(Uvx )|Fx|
µ̂x(Z) = lim

x→∞
vol(Ux,v)µ̂x(Z) = 0

since we have that vol(Ux,v) → 0 from that ordv(nx) → ∞. (Note that µ̂x(Z) tends to µ̂pl
v (Z),

which may not be zero due to discrete series in Z but has bounded value.) The proof is
concluded. 2
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Remark 6.3. It would be interesting to improve on the condition that Ux,v be maximal
hyperspecial. This is a question of Serre [Ser97, § 6.1] in the GL(2) case. The main obstruction is
the presence of square-integrable representations πv ∈ Z with π ∈ Fx. The proof does not extend
to these representations because µ̂pl(πv) > 0.

For convenience we introduce the multi-set

F6Ax := {π ∈ Fx : [Q(π) : Q] 6 A}.

It is to be understood that if π ∈ F6Ax , then π appears with the same multiplicity aFx(π) in
F6Ax . This way we make sense of |F6Ax |.

Corollary 6.4. Under the same assumptions, |F6Ax |/|Fx| tends to zero as x →∞.

Proof. Obviously [Q(πv) : Q] 6 [Q(π) : Q]. 2

6.2 Quantitative estimates
One may wonder about the precise size of F6Ax relative to that of Fx. For instance, the
following generalizes another Serre’s question for families of modular forms (Remarques 2 below
Théorème 6 of [Ser97]).

Question 6.5. Does there exist δ < 1 such that |F6Ax | = O(|Fx|δ)?

As a weaker variant (cf. Remark 5.11), for a fixed finite extension E of Q in C one may
ask whether there exist δ < 1 such that |{π ∈ Fx : Q(π) ⊂ E}| = O(|Fx|δ). We establish the
following estimate towards a positive answer to Question 6.5. Define Sunr to be the set of finite
places v of F+ such that Ux,v is hyperspecial at v for all large enough k. Let Runr be the sum of
the F+

v -ranks of G(F+
v ) for all v ∈ Sunr (it could be infinity).

Theorem 6.6. Suppose that Sunr is not empty (but it could be an infinite set). Then, as x→∞,

|F6Ax | �R
|Fx|

(log |Fx|)R
, (6.4)

for all R 6 Runr.

Example 6.7. In a typical example if Ux is a principal congruence subgroup of prime level nx,
then the set Sunr contains all finite places and Runr is infinite: the statement holds for all R > 0
which is an indication for an affirmative answer to Question 6.5 in this case. If Runr > 1 is finite,
then it is best to choose R = Runr. Note that the possibility Runr = 0 is excluded from the
proposition because Sunr is not empty; this is the case discussed in Remark 6.3.

Proof. We fix a finite set of unramified places S1 ⊂ Sunr disjoint from S0. Let R be a rectangle in
G(F+

S1
)∧,unr,temp. Lemma 6.16 yields the existence of φS1 ∈ Hunr(G(F+

S1
))6cκ which is such that

φ̂κ approximates the characteristic function of R. (The definition of Hunr(G(F+
S1

))6cκ is recalled
in § 6.4 below. The constant c > 0 depends on a choice fixed once and for all for G.)

Applying the automorphic Plancherel theorem with error bound [ST12, Theorem 9.16] to
the family Fx, we deduce that for all integer κ > 1,

µ̂Fx,S1(R) = µ̂pl
S1

(R) +O(qAl+BlκS1
|Fx|−Cl) +O(κ−R)

where Al, Bl, Cl > 0 are absolute constants and R > 0 is the sum of the ranks of G(F+
v ) for

v ∈ S1. Note that by choosing S1 ⊂ Sunr arbitrary large, the integer R is arbitrary large subject
to the condition that R 6 Runr.
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The optimal choice is κ = O(log |Fx|), which yields

µ̂Fx,S1(R) = µ̂pl
S1

(R) +O((log |Fx|)−R). (6.5)

Note that the constant in the remainder term does not depend on R. In particular, R can be
chosen to be a single element in which case µ̂pl

S1
(R) = 0 since the Plancherel measure is atomless.

We deduce that the following estimate holds for any finite set Z in G(F+
S1

)∧,unr,temp,

µ̂Fx,S1(Z)� |Z|
(log |Fx|)R

.

We apply this to the set

Z := {πS1 : π ∈ Fx, [Q(π) : Q] 6 A},

since it follows as before from Corollary 5.7 (or alternatively from Lemma 5.1 and the first
assertion of Corollary 4.16) that Z is a finite set. Thus, we can conclude the proof of the
proposition since

|{π ∈ Fx : [Q(π) : Q] 6 A}| � |Fx|µ̂Fx,S1(Z). 2

We now consider the case where the automorphic family admits ramification at only finitely
many fixed places S. Theorem 6.6 applies for any R > 0 since Runr is infinite, but we can prove
a stronger bound. Indeed Theorem 5.18 may be rephrased as a strong answer to Question 6.5.
For this it is unnecessary to assume that the highest weight of ξ is regular (thus, π∞ may not
be a discrete series). In fact, we will prescribe a condition at infinity which is weaker than the
ξ-cohomological condition. For a C-algebra morphism Z(g) → C (cf. § 5.5) and an open compact
subgroup Ux ⊂ G(A∞F+), define F(Ux, χ∞) to be the set of discrete automorphic representations
π of G(AF+) such that (for the corollary it is unimportant to think of F(Ux, χ∞) as a multi-set,
i.e. the multiplicity of each member may be taken to be one):
• (π∞)Ux 6= 0;
• π∞ has infinitesimal character χ∞.

Corollary 6.8. Fix A ∈ Z>1. Let G be either:
• G = GLn over an arbitrary number field F ; or
• G is a quasi-split classical group of § 4.2 over a totally real field F .11

Suppose that there exists a finite set S such that for every x, the level subgroup Ux has the form
Ux = US,xU

S,∞, where US,∞ is a product of hyperspecial subgroups of G(Fv) for all finite v /∈ S.
Then there is a constant C = C(A,G, χ∞, S) such that for all x

|{π ∈ F(Ux, χ∞) : [Q(π) : Q] 6 A}| 6 C.

Proof. Immediate from Theorems 5.18 and 5.19. 2

For instance, when G = GL2 over Q, the theorem applies to C-algebraic automorphic
representations arising from Maass forms, namely those with Laplace eigenvalue 1

4 . It is worth
comparing our results in this subsection with previous work in the case of elliptic curves.

Remark 6.9. We briefly discuss the most basic case of G = GL(2)Q, weight two and Q(π) = Q
(that is A = 1). See also the remarks following [Ser97, Théorème 7]. Modular forms of weight two
with integer coefficients are attached to elliptic curves and thus more precise results than (6.4)
are available.

11 For uniformity of notation we write F rather than F+ here.
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For an integer N ∈ Z>1, let Ell(N) be the number of isogeny classes of elliptic curves over
Q of conductor N . The following is currently known [DK00, § 3.1]:

X5/6 �
∑

16N6X

Ell(N)�ε X
1+ε.

On the other hand, by counting S-integral points on curves of given genus, it is shown by
Helfgott–Venkatesh [HV06, § 4.2] that Ell(N) = O(N δ) for some δ < 1

2 , improving earlier bounds
by Evertse, Silverman, and Brumer. The numerical value is improved further in [EV07] into
δ = 0.169 . . . .

6.3 Order of growth
It follows from Theorem 6.1 that there are automorphic representations πx ∈ Fx such that
[Q(πx) : Q] → ∞ as x → ∞. It is interesting to study the order of growth of [Q(πx) : Q] as
x →∞. We establish the following which generalizes a result of Royer [Roy00, Theorem 1.1] in
the case of G = GL(2)Q. By the degree of a Weil number α (or any algebraic number) we will
mean [Q(α) : Q].

Proposition 6.10. Let assumptions be as in Theorem 6.1(i). Then as x → ∞ there exists an
automorphic representation πx ∈ Fx such that

[Q(πx) : Q]� (log logN(nx))1/2. (6.6)

Proof. Consider the set of local representations πv ∈ G(F+
v )∧,unr as πv ranges over Fx. We see

from (6.5) that there are � logN(nx) distinct such representations πv. On the other hand, the

number of qv-Weil integers of weight one and degree at most d is at most q
O(d2)
v . (TheO(d2)-bound

is easily seen from the argument of the last paragraph in the proof of Lemma 5.1.) 2

In the depth aspect, that is under condition (ii) in Theorem 6.1, we can also give a lower
bound for the order of growth. Suppose that nx is supported on a fixed finite set of primes. Then
using the estimate in (3.4) we can deduce that there exists πx ∈ Fx such that

[Q(πx) : Q]� (logN(nx))1/n.

We have removed a logarithm compared with the order of growth (6.6) obtained in the level
aspect.

The remainder of this subsection is devoted to discuss the case of G = GL(2)Q and weight
two forms, where interestingly there is another method to establish the bound (6.6). This is
based on the following result about curves over finite fields which is of independent interest.

Proposition 6.11 (Serre [Ser97, § 7]). There are only finitely many curves over Fq whose
Jacobian is isogenous to a product of abelian varieties of dimension at most d.

The method of Serre is effective, see [Ser97, p. 93] for the example of q = 2 and d = 1. It
does not produce immediately an explicit upper-bound in general but there have been several
works in this direction, in particular we quote the following.

Proposition 6.12 (Elkies et al. [EHR14]). Let S ⊂ [0, π] be a finite set. If C/Fq is a curve of
genus g with Frobenius angles in S, then

g 6 23|S|2q2|S| log q.

The proof of Proposition 6.11 and of the effective bounds such as in Proposition 6.12 is based
on trigonometric inequalities. Precisely one uses the fact that there are θj ∈ [0, π], 1 6 j 6 g,
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such that q1/2eiθj (and also q1/2e−iθj ) are q-Weil integers of weight one and

2qn/2
g∑
j=1

cos(nθj) 6 q
n + 1 for any integer n > 1.

(The θj are the Frobenius angles and this holds because the right-hand side of the inequality
minus the left-hand side is equal to #C(Fqn), the number of points of C over Fqn .)

Proposition 6.12 implies the following effective estimate in the case of simple isogeny factors
of dimension at most d.

Corollary 6.13. If the Jacobian of a curve of genus g over Fq is isogenous to a product of
abelian varieties of dimension at most d, then

g 6 qq
O(d2)

.

The underlying constant in O(d2) is absolute (independent of q and d2).

Example 6.14. Let q = p be a prime number and r ∈ Z>1. The Fermat curve

Cr : Xpr+1 + Y pr+1 + Zp
r+1 = 0

is such that all eigenvalues of Frobenius are 2rth roots of −pr (see [GR78]). Thus, Jac(Cr) is
isogenous to a product of abelian varieties over Fp of dimension at most 4r. On the other hand, Cr
has genus pr(pr − 1)/2. Also it may be verified that the exponent of the class group Jac(C)(Fp)
is at most pr + 1, which is asymptotically the square-root of the genus and may be compared
with (6.7) below. Note that Cr is a hermitian curve over Fp2r and it is a maximal curve in the
sense that Cr(Fp2r) is of cardinality 1 + p2r + 2gpr which achieves equality in the Weil bound.

In fact, the same result as in Corollary 6.13 was established around 2000 by A. de Jong using
a different method. We would like to thank de Jong for explaining his result to us which had
remained unpublished.

Alternative proof of Corollary 6.13 (de Jong). A theorem of Madan and Madden [MM77] states
that the exponent E of the class group of a curve C of genus g over Fq satisfies

E �
(

g

log3 g

)1/4

. (6.7)

(Note that their arguments do apply uniformly in q and thus the above multiplicative constant
is absolute, although this is not explicitly stated in their paper. Precisely it can be verified that
each estimate in their proof improves when q gets large.)

On the other hand let Frq be the qth power Frobenius endomorphism of Jac(C) and let
P ∈ Z[X] be its minimal monic polynomial. Note that P has integral coefficients because Frq
is an element of the endomorphism ring of Jac(C) which is an order in a semisimple algebra.
Since Frq is a semisimple endomorphism by Tate’s theorem, P (Frq) acts as zero on Jac(C). Since
Frq acts as the identity on Jac(C)(Fq), we deduce that P (1) ∈ Z acts as zero on Jac(C)(Fq).
Therefore,

E | P (1).

The polynomial P divides the product of the characteristic polynomials of Frobenius on the
abelian varieties which are the simple isogeny factors of Jac(C). By assumption these abelian
varieties have dimension at most d and there are qO(d2) isogeny classes of them by counting the
Weil q-integers of weight one given via Honda–Tate theory, cf. the proof of Proposition 6.10.
Thus,

P (1) 6 qq
O(d2)

.
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Note that P (1) 6= 0 because Frq is always a nontrivial endomorphism. Combining the three
estimates we conclude the proof of the proposition. 2

Alternative proof of Proposition 6.10 for G = GL(2)Q in weight two. Consider the modular
curve X0(N) which is a smooth algebraic curve over Q of genus g0(N). Let (Ai)i∈I be the
simple isogeny factors of its Jacobian J0(N), counted with multiplicity, so that there exists an
injective isogeny

∏
i∈I Ai ↪→ J0(N) over Q (see [Mil86, Proposition 10.1]). By the theorem of

Eichler–Shimura we are reduced to finding a lower bound for the maximal dimension

d := max
i∈I

dimAi.

Suppose that the fixed prime p does not divide N . From now on we work over Qp and with a
small abuse of notation we still write X0(N), J0(N), and Ai for their base change X0(N)⊗QQp,
J0(N)⊗Q Qp, and Ai ⊗Q Qp, respectively.

There exists an integral model X0(N) over Zp and its reduction modulo p is smooth
irreducible over Fp. Also there exists a relative Picard scheme J0(N) which is a smooth abelian
group scheme over Zp. The generic fiber J0(N) ⊗Zp Qp can be identified with J0(N). Since
J0(N) has good reduction at p, the Néron–Ogg–Shafarevich criterion tells us that Ai has good
reduction at p for each i ∈ I. Let Ai denote the integral model of Ai over Zp which is an
abelian scheme. By the property of a Néron model, the injection

∏
i∈I Ai ↪→ J0(N) extends to

an injection
∏
i∈I Ai ↪→ J0(N). (The latter is an injection because the kernel is flat over Zp with

trivial group scheme as the generic fiber.) As an injection between abelian schemes of the same
dimension, it is also an isogeny.

Reducing modulo p we find that J0(N)⊗Zp Fp is isogenous to the product
∏
i∈I Ai ⊗Zp Fp.

Each simple isogeny factor of J0(N)⊗Zp Fp is a factor of Ai⊗Zp Fp for some i ∈ I. In particular,
all isogeny factors of J0(N)⊗Zp Fp have dimension at most d.

Since X0(N) ⊗Zp Fp is an irreducible smooth curve of genus g0(N) whose Jacobian can be
identified with J0(N)⊗Zp Fp we are in position to apply Corollary 6.13 which yields

g0(N) 6 pp
O(d2)

.

Since g0(N) � N as N →∞, this concludes the proof of Proposition 6.10 for G = GL(2)Q. 2

6.4 Uniform approximation in the unitary dual
In this subsection we record some lemmas on approximation by functions in the local Hecke
algebra of bounded degree. Only in this subsection let G be a connected reductive group over a
p-adic field K. Write Uhs for a fixed hyperspecial subgroup of G(K) and ΩK for the Weyl group
for G relative to K.

We begin with the classical problem of approximating periodic functions by trigonometric
polynomials. The following result is a version with sharp constants that comes from the work of
Beurling in the 1930s and rediscovered by Selberg in the context of the large sieve inequality. We
identify T = R/Z with the unit circle S1 inside C. Thus, a trigonometric polynomial is viewed
as an element of C[z, z−1.

Lemma 6.15 (Vaaler [Vaa85]). Let f be a function on T of bounded variation V (f) ∈ R>0. For
every integer κ ∈ N there are trigonometric polynomials P±κ of degree κ such that P−κ 6 f 6 P

+
κ

and ∫
T
P+
κ − P−κ =

V (f)

κ+ 1
. (6.8)
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In particular, ‖P±κ ‖1 6 ‖f‖1 +V (f)/κ+ 1 by the triangle inequality. Also the nth coefficients of
P±κ are uniformly bounded by much less than V (f)/|n| for all n 6= 0.

Proof. This is [Vaa85, Theorem 19] where it is also shown that the constants are sharp if f is a
sign function. We briefly recall the the construction of the polynomials:

P±κ (z) =
∑
|n|6κ

[
Ĵ

(
n

κ+ 1

)
f̂(n)± n

(2κ+ 2)
K̂

(
n

κ+ 1

)
ĝ(n)

]
zn,

for all z ∈ T. Here f̂(n) (respectively ĝ(n)) are the Fourier coefficients of f (respectively the
variation function of f). The Beurling functions J and K are entire of exponential type 2π with
Fourier transform:

Ĵ(t) := πt(1− |t|) cot(πt) + |t|, K̂(t) := 1− |t|, |t| < 1.

The properties of J and K and some arguments in Fourier analysis imply the first two assertions
of the lemma. Since f̂(n), ĝ(n)� V (f)/|n| for all n 6= 0, we deduce the third and final assertion
on the decay of coefficients. 2

The Satake isomorphism induces a topological isomorphism G(K)∧,unr,temp ' Âc/ΩK where

Âc ' Tr is a complex torus with r the K-rank of G. For φ ∈ Hunr(G(K)) we write φ̂ for the

corresponding function on the real torus Âc or its quotient Âc/ΩK . The truncated Hecke algebra
Hunr(G(K))6κ is defined in [ST12, § 2] so that the following holds (which is all we need to know
here): there exists a constant c > 0 (depending on a fixed choice of basis in the character group
of a maximal torus in G over K) such that for every κ ∈ Z>0, the set of φ ∈ Hunr(G(K)) such

that φ̂ is a (ΩK-invariant) polynomial of degree at most κ on Âc contains Hunr(G(K))6κ/c and
is contained in Hunr(G(K))6cκ. (Use [ST12, § 2.4] to see this.)

Lemma 6.16. Let c > 0 be as above. For every integer κ > 1, and every rectangle
R ⊂ G(K)∧,unr,temp, there is a Hecke function φκ ∈ Hunr(G(K))6cκ such that φ̂κ > 0 on

G(K)∧,unr,temp, φ̂κ > 1 on R while µ̂pl(φ̂κ)� µ̂pl(R) + κ−r and |φκ| � 1. Here r is the rank of
G(K).

Proof. We can apply Lemma 6.15 to the characteristic function 1I of any interval I of T, in which
case the total variation is V (1I) = 2. Then it is not difficult to deduce the following statement in
higher dimension. Let R = I1×· · ·×Ir be a rectangle in Tr. There are trigonometric polynomials
P±κ of degree at most κ in r variables such that P−κ 6 1R 6 P+

κ and∫
Td
P+
κ − P−κ � κ−r. (6.9)

We choose φ̂κ to be the ΩK-average of P+
κ . Then φκ ∈ Hunr(G(K)) giving rise to φ̂κ via the

Satake isomorphism belongs to Hunr(G(K))6cκ. Note that the first two assertions follow from
the inequality 1R 6 P+

κ .

The estimate of µ̂pl(φ̂κ) follows from (6.9) and the fact that the Plancherel density
on G(K)∧,unr,temp given by Macdonald formula is uniformly bounded below (see [ST12,
Proposition 3.3]). In other words we used that the Lebesgue measure on Âc/ΩK is absolutely
continuous with respect to the Plancherel measure.
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The Harish-Chandra Plancherel formula φ(1) = µ̂pl(φ̂) holds for all smooth functions φ, thus
in particular for all φ ∈ Hunr(G(K)). In the unramified case (see [Wal03, Theorem VIII.1.1] for
the general case) we have more generally the relation

φ(g) =

∫
G(K)∧,unr,temp

φ̂(π)Mπ(g) dµ̂pl(π), g ∈ G(K), (6.10)

where Mπ(g) = (v◦, gv◦) is a spherical matrix coefficient of π, that is v◦ is a unit Uhs-fixed
vector in the representation space Vπ. Let us justify formula (6.10) by computing the trace of
π(φ)◦π(g)−1 on Vπ and the Plancherel formula for φ(1). Note that π(φ) has image in Cv◦ because
φ is left Uhs-invariant. Using also the right Uhs-invariance, we infer that

π(φ)w = φ̂(π)(w, v◦)v◦

for all vector w ∈ Vπ. Thus, π(φ)g−1v◦ = φ̂(π)Mπ(g)v◦. Since π(φ) ◦ π(g)−1 maps Vπ into Cv◦,
this implies that its trace is φ̂(π)Mπ(g).

From (6.10) we deduce that |φκ(g)| 6 φκ(1) for all g ∈ G(K). Thus, we deduce from the

estimate for µ̂pl(φ̂κ) that |φκ| � 1. 2

6.5 The case of unitary groups
In this subsection let G be a unitary group as in § 4.2 or its inner form and assume
that [F+ : Q] > 2. We would like to explain unconditional results on the growth of field of
rationality which are already available from our current knowledge. Let us be brief: eventually
complete unconditional results for non-quasi-split unitary (respectively symplectic/orthogonal)
groups will follow from our earlier arguments once the unitary group analogue of [Mok12]
(respectively [Art13]) is extended to inner forms and Hypothesis 4.8 is verified.

We assert below that Theorems 6.1(i) and 6.6 hold true for unitary groups without any
hypothesis. Let Fx = F(Ux) be a level aspect family constructed for G, now a unitary group, as
in § 6.1. Let us define Sunr and Runr for G and Fx as in Theorem 6.6.

Theorem 6.17. Suppose that the highest weight of ξ is regular, that [F+ : Q] > 2, and that
Sunr 6= ∅ so that Runr is defined. Then for all R 6 Runr,

|F6Ax |/|Fx| �R |Fx|/(log |Fx|)R as x →∞.

The argument is the same as in Theorem 6.6 (also see Theorem 6.1). The theorem relies
on some of the earlier results, which we need to justify for unitary groups, but this is not so
complicated as we are concerned only with the unramified local components here. The necessary
results are provided by [Lab11, Corollary 5.3], especially the weaker analogue of Proposition 4.14
(here ‘weaker’ means that no information is available at finitely many v where π, η or the
extension F/F+ is ramified at v). In Corollary 4.16, only the first assertion is needed and
derived from the latter substitute. Then the methods of proof for Theorems 6.1 and 6.6 justify
Theorem 6.17 once it is noted that the final main ingredients, namely Lemma 5.1 and the level
aspect Plancherel equidistribution theorem with error terms [ST12], are still valid for unitary
groups.

6.6 Concluding remarks
As we have noted earlier, the arguments and main results of this paper should apply to non-
quasi-split classical groups as soon as the work [Art13] and [Mok12] are extended to those groups.

2049

https://doi.org/10.1112/S0010437X14007428 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007428


S. W. Shin and N. Templier

There are several directions in which our work may be generalized. An obvious problem is to deal
with other reductive groups. As for the growth of field of rationality, we raised the question of
removing the hypotheses from Theorem 1.7 and power saving in Question 6.5. Any quantitative
refinement such as power saving would be of arithmetic significance, already in the case of weight
two modular forms and field of rationality Q, cf. Remark 6.9. Another widely open question is
how much of § 6 remains valid for families in the weight aspect (for instance, as defined in [ST12]).
In this respect even the case of modular forms is still unsolved (Maeda’s conjecture). Note that
the finiteness of Weil numbers in the argument for Theorem 1.1 fails if weight grows to infinity.
Finally we would like to mention Hida’s recent study of field of rationality (‘Hecke field’ in his
terminology) for p-adic families of modular forms and arithmetic applications [Hid11, Hid12],
providing a perspective different from ours.
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