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Abstract

A nonlinear evolution equation correct to fourth order is developed for gravity-capillary
waves on linear shear currents in finite water depth. Therefore, this equation covers both
effects of depth uniform currents and uniform vorticity. Starting from this equation, an
instability analysis is then made for narrow banded uniform Stokes waves. The notable
feature is that our investigation due to fourth order shows a remarkable improvement
compared with the third-order one, and produces an excellent result compatible with
the exact result of Longuet-Higgins. We observe that linear shear currents considerably
change the modulational instability properties of capillary-gravity waves, such as the
growth rate and bandwidth of instability.

2020 Mathematics subject classification: primary 76B07; secondary 76B15, 76B45.

Keywords and phrases: nonlinear Schrödinger equation, gravity-capillary waves,
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1. Introduction

Generally, in coastal and ocean waters, the velocity profiles are typically established by
bottom friction and surface stress due to the wind, and so the velocity profiles change
with water depth. Currents produce shear at the bottom of the ocean, namely ebb,
and flood currents caused by tides may have a significant influence on water waves.
In any region where the wind is flowing, there is a surface drift of the water, and
water waves are particularly responsive to the velocity in the upper layer. Capillary
waves are usually generated by the wind, which also produces a shear flow in the upper
layer of the water so that the capillary waves move in the presence of vorticity. These
short waves play a significant role in the subsequent development of wind-generated
gravity-capillary waves (GCWs), contribute to some extent to the ocean surface stress
and consequently participate in air–ocean momentum transfer. Therefore, an accurate
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[2] Nonlinear self-modulation of gravity-capillary waves 249

representation of the surface stress is important in modelling and forecasting ocean
wave dynamics.

As waves nearly always coexist with currents in the sea, nonlinear wave–current
interactions attract the attention of many scientists to carry out research in hydro-
dynamics and ocean engineering. It is well known that currents can considerably
alter the characteristics of surface waves [2, 20, 25, 35]. Preceding studies have
established that the interactions between waves and currents are mainly dependent
on the direction of propagation and the vertical distribution of currents [17, 23, 35].
There are many situations where currents are vertically sheared. Illustrations include
wind-driven currents and ebb flow at a river mouth [29, 27]. So the effect of vertical
vorticity should be considered in the wave–current interaction.

Surface water waves moving steadily on a rotational current have been analysed
by several authors, namely, Tsao [40], Dalrymple [7], Brevik [3], Simmen and
Saffman [37], Teles Da Silva and Peregrine [38], Pak and Chow [34], Kishida and
Sobey [21], Constantin [6] and so forth. Johnson [19] investigated the modulation of a
two-dimensional harmonic plane waves travelling in the presence of arbitrary vorticity,
but did not discuss elaborately the instability analysis as a function of the vorticity and
water depth. The modulational instability analysis of weakly nonlinear waves with
current shear was made by Oikawa et al. [30]. Choi [5] also studied the modulational
instability of gravity waves on shear currents. For fixed wave steepness, he then
compared his findings in the case of irrotational motion and observed that the envelope
of the modulated wave grows faster for positive shear current and slower for negative
shear current. Okamura and Oikawa [31] numerically studied the instability properties
of two-dimensional Stokes waves on a linear shear current to three-dimensional small
rotational disturbances. A nonlinear Schrödinger equation (NLSE) for periodic gravity
waves on deep water that includes an inhomogeneous current with horizontal shear
was derived by Hjelmervik and Trulsen [13]. Using this equation for Monte Carlo
simulations, they investigated the effect of nonlinearity with respect to the variation of
significant wave height, kurtosis and occurrence of freak waves.

Thomas et al. [39] developed a third-order NLSE for surface gravity waves on arbi-
trary water depth in the presence of constant vorticity, and presented the importance
of the coupling between the mean flow response and the vorticity. Hsu et al. [16]
then elaborated that paper to include capillarity, and studied both the effects of
vorticity and capillarity on modulational instability. Later, Dhar and Kirby [9] derived
a fourth-order nonlinear evolution equation (NLEE) for GCWs on finite depth with
constant vorticity. From the studies on vorticity modified NLSEs of preceding authors,
it is revealed that they considered only the effect of vorticity. In fact, vortices usually
occur in combination with depth-uniform currents. Therefore, it is necessary to derive
an equation which includes both the effects of depth-uniform currents and vorticity.
Keeping this point in view, Liao et al. [22] derived a linear shear current modified
NLSE correct to third order on arbitrary water depth and showed that shear currents
play an important role in modulational instability properties of weakly nonlinear plane
waves, such as the growth rate of instability and bandwidth.
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Dysthe [11] reported that the fourth-order NLEE is an excellent starting point for
analysing the nonlinear effects of surface waves in deep water. Therefore, according to
Dysthe [11], one avenue of interest is to combine higher-order terms in the third-order
NLEE, and the purpose of this paper is to develop a higher-order NLEE and to
investigate a theory for GCWs on linear shear current in finite water depth. The new
fourth-order outcome shows a remarkable modification in the instability behaviour
from the third-order one in deep water. This paper is an extension of the paper by Dhar
and Kirby [9] to include the effect of depth uniform current on modulational instability
properties.

The paper is structured as follows. In Section 2, the basic equations for the problem
are given. In Section 3, we develop a fourth-order NLEE for GCWs on linear shear
current in a finite depth of water. We present the evolution equation for deep water
and discuss the coupling between the mean flow term and the current shear in
Section 4. Next, we make the modulational instability analysis of a uniform wave train
in Section 5 and finally, conclusions with results are given in Section 6.

2. Basic equations

Consider the equation of the undisturbed free surface as the y = 0 plane. Here,
we take two-dimensional Cartesian coordinates x, y in which the x-axis is directed
towards the direction of propagation of the waves and the y-axis is oriented upwards.
We suppose that the fluid motion is incompressible and nonviscous and the waves are
moving steadily on a vertical linear shear current, which can be separated into a depth
uniform current v and a uniform vorticity −ω. Let y = η(x, t) be the equation of the
free surface in the perturbed state. There is a potential function φ(x, y, t) for which the
total velocity u of the fluid flow can be represented as

u(x, y) = (v + ωy)i + ∇φ(x, y, t),

where v is the speed of the linear shear current along the direction of propagation
of the waves at the free surface and i represents the unit vector along the x-axis.
As the vorticity −ω of the basic flow is constant, the velocity field induced by a
two-dimensional perturbation must be irrotational due to Kelvin’s theorem [39].

As the perturbation is supposed to be potential, the perturbed velocity potential φ
and the stream function ψ of the fluid satisfy the two-dimensional Laplace equations
as follows:

∇2φ = 0, ∇2ψ = 0, in − d < y < η(x, t), (2.1)

in which φ, ψ are connected by the Cauchy–Riemann relations

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
.
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[4] Nonlinear self-modulation of gravity-capillary waves 251

The kinematic free surface boundary condition is

∂φ

∂y
− ∂η
∂t
− v

∂η

∂x
=

(
∂φ

∂x
+ ωη

)
∂η

∂x
, on y = η(x, t). (2.2)

The dynamic surface boundary condition is given by

∂φ

∂t
+ v

∂φ

∂x
− ωψ + gη = −1

2
(∇φ)2 − ωη∂φ

∂x
+

(T
ρ

)
ηxx

(1 + η2
x)3/2 , on y = η(x, t), (2.3)

where T and ρ denote the surface tension coefficient and density of bulk water,
respectively.

Also at the bottom, φ and ψ satisfy the following boundary conditions:

∂φ

∂y
= 0, ψ = 0, on y = −d. (2.4)

We consider the solutions of equations (2.1)–(2.4) as follows:

G = G0 +

∞∑
m=1

[Gm exp{im(kx − σt)} + c.c.], (2.5)

where G stands for φ(x, y, t), ψ(x, y, t) and the free surface elevation η(x, t), k and
σ represent carrier wavenumber and frequency respectively and c.c. means complex
conjugate. Here φ0, φm, φ∗m, ψ0, ψm, ψ∗m (m = 1, 2, . . .) are slowly varying functions of
x1 = εx, t1 = εt, y ; η0, ηm, η∗m (m = 1, 2, . . .) are functions of x1, t1. Here, ε is a slow
ordering parameter which measures the weakness of nonlinearity and 0 < ε << 1.

The linear dispersion relation to determine the frequency σ of the carrier wave is

f (σ, k) ≡ σ2(1 − v)(1 − v + β) − gkμ(1 + κ) = 0,

where v = v/c, c = σ/k, the velocity of the carrier wave, β = μω, ω = ω/σ,
μ = tanh p, p = kd, κ = Tk2/ρg.

The group velocity cg becomes

cg = c{(1 − v)2p(1 − μ2)/μ + (1 − v)(1 − v + β)(1 + 3κ)/(1 + κ)

+ v(2 − 2v + β)}(2 − 2v + β)−1.

3. Derivation of evolution equation using multiple scale method

In this section, we develop an NLEE accurate up to fourth order for narrow banded
GCWs in the case of finite water depth, and discuss the two types of singularity.

On substituting the expansions in equation (2.5) into equation (2.1) and using
bottom conditions in equation (2.4), we get the required solutions for φm, ψm,
(m = 1, 2) as follows:
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φm =
cosh ((y + d)Km)

cosh (dKm)
Cm,

ψm =
sinh ((y + d)Km)

cosh (dKm)
Dm,

(3.1)

where Km = km − iε(∂/∂x1) and Cm, Dm are functions of x1 and t1. Next, for m = 0,

φ0 =
cosh ((y + d)εk)

cosh (εdk)
C0,

ψ0 =
sinh ((y + d)εk)

cosh (εdk)
D0,

(3.2)

in which C0, D0 are functions of k, ω1, and φ0, ψ0 are Fourier transforms of φ0, ψ0,
respectively, given by

(φ0,ψ0) =
1

2π

� ∞

−∞
(φ0,ψ0) exp[−i(kx1 − ω1t1)] dx1 dt1.

Inserting the expansions in equation (2.5) into the Taylor’s expanded form of equations
(2.2) and (2.3) about y = 0 and then equating coefficients of exp im(kx − σt), for
m = 1, 2, 0 on both sides, we obtain three sets of equations into each of which we
substitute the solutions for φm, ψm given by equations (3.1)–(3.2). For the purpose of
solving these equations, we take the expansions as follows:

Hm =

∞∑
n=1

εnHmn (m = 0, 1), H2 =

∞∑
n=2

εnH2n, (3.3)

where Hp stands for Cp, Dp and ηp (p = 0, 1, 2).
Inserting equation (3.3) into the three sets of equations and then equating coef-

ficients of several powers of ε, we get a sequence of equations. From the first
(lowest) and second-order equations of the three sets, we get solutions for (C11, C12),
(C22, η22, C23, η23) and (C01, η01, C02, η02), respectively.

The equation corresponding to equation (2.3) of the first set of equations can be put
in the following convenient form:

f (σ1, K1)η1 = −i{(σ1 − K1v) + ωμ}a1 − K1μb1, (3.4)

where σ1 = σ + iε(∂/∂t1), K1 = k − iε(∂/∂x1) and a1, b1 are obtained from nonlinear
terms.

We retain terms up to fourth-order O(ε4) and insert solutions for different perturbed
quantities arising on the right-hand side of equation (3.4). Finally, applying the
transformations

ξ = ε(x − cgt), τ = ε2t, (3.5)
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and taking η = η1 = εη11 + ε
2η12, we get the fourth-order NLEE as follows:

i
∂η

∂τ
+ α1

∂2η

∂ξ2 + iα2
∂3η

∂ξ3 = μ1 | η |2 η + iμ2 | η |2
∂η

∂ξ
+ iμ3η

2 ∂η
∗

∂ξ

+ μ4η
∂

∂ξ
F−1
[ F ∂

∂ξ
(| η |2)

k tanh (εkp)

]
, (3.6)

where F represents the spatial Fourier transform. The coefficients α1, α2 and
μi(i = 1, 2, 3, 4) are given in Appendix A.

We have applied the scaling transformations η′ = 2kη, ξ′ = kξ, τ′ = στ in equation
(3.6) and then dropped the primes. The nonlinear spatio-temporal evolution of weakly
nonlinear GCWs can be described by the NLEE in equation (3.6), provided the wave
steepness is small (� 1) and the spectral bandwidth is narrow (� 1).

Note that the derivation of the NLEE correct to fourth order involves some algebra.
To render the results convincing, it is useful to compare with other results.

We can check that the coefficients α1 and μ1 corresponding to cubic NLEE reduce
to those of Liao et al. [22] for κ = 0 and to those of Hsu et al. [16] for v = 0.

In the expression for μ1, due to the presence of the factor

μ2(1 − v) − κ{(3 − μ2)(1 − v) + 3β}

in its denominator resulting from the expression for η22, the NLEE in equation (3.6)
does not remain valid when κ satisfies equation (3.7). The value of κ for which the
singularity occurs is

κ =
μ2(1 − v)

(3 − μ2)(1 − v) + 3β
. (3.7)

Herein, the speeds c of the carrier wave and second harmonic wave coincide (for
clarification, see [28]), resulting in the phenomenon known as second harmonic
resonance.

This resonance, also called capillary-gravity resonance, was first pointed out for
β = 0, v = 0 and for deep water by Wilton [41], where κ = 1/2. The physical
significance of the value of κ = 1/2 was explained by Harrison [12] for deep water.
He argued that the effect of nonlinearity on GCWs is completely different depending
on whether κ is greater than or less than 1/2. The effect of nonlinearity (higher
harmonics) for κ > 1/2 is to distort the wave profile, so that the crests are flattened
and the troughs are sharpened. Wave profiles of this kind are known as pure capillary
waves. A nonlinear effect reverse to this is observed when κ < 1/2 and profiles of this
kind are called gravity waves.

We also get a second possible singularity related to the long/short wave resonance,
in which the group velocity of the short wave is equal to the phase velocity of the
long wave. The last term within the brackets of the expression for μ1 (see Appendix A)
corresponds to the coupling between the wave induced mean flow response and the
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FIGURE 1. Behaviour of κ against kd: (a) v = 0 and different values of ω; (b) ω = 0.3 and different values
of v; (c) ω = −0.3 and different values of v.

vorticity which occurs at third order, and this coupling has a significant impact on
modulational instability. This term of μ1 is found to be singular when

(γ − v)(γ + ωp) =
(1 − v)(1 − v + β)p

μ(1 + κ)
,

where γ = cg/c, and may be expressed as

cg(cg + ωd) = gd for v = 0. (3.8)

Equation (3.8) reduces to c2
g = gd in the absence of vorticity, which corresponds

to a long wave resonance found by Davey and Stewartson [8], and Djordjevic and
Redekopp [10].

We have plotted the critical surface tension coefficient κ given by equation (3.7) as
a function kd in Figure 1 for some values of v and ω. It is found that the value of κ
decreases with the increase of negative vorticity (ω > 0) and eventually, the influence
of capillarity is lost. Again, the value of κ increases with the increase of positive
vorticity (ω < 0), and the influence of capillarity is expected to become important.
Further, we observe that for a fixed value of negative vorticity, the depth uniform
following current decreases the value of κ, while the reverse current increases it. The
effect reverse to this is found in the case of positive vorticity. The curve drawn in Figure
1(a) for v = 0 and ω = 0 is identical to the curve in figure 2(a) of Hsu et al. [15].
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4. Evolution equation for deep water and nonlinear coupling

Herein, we first reduce the evolution equation for deep water, and then discuss
the coupling due to nonlinearity between the wave-induced mean flow term and
the vorticity, which occurs at both third and fourth orders. The infinite depth
approximation is μ = tanh p→ 1. Further, if tanh (εkp)→ 1 (with p = kd) is used in
the last term of equation (3.6), then it takes the form

μ̃4η
∂

∂ξ
F−1
[F ∂

∂ξ
(| η |2)

k

]
= μ̃4ηH

[
∂

∂ξ
(| η |2)

]
,

in which H is the Hilbert transform operator given by

H[Γ(ξ)] =
1
π

P
∫ ∞
−∞

Γ(ξ′)
ξ′ − ξ dξ′.

Now equation (3.6) for deep water can be written as

i
∂η

∂τ
+ α̃1

∂2η

∂ξ2 + iα̃2
∂3η

∂ξ3 = μ̃1 | η |2 η + iμ̃2 | η |2
∂η

∂ξ
+ iμ̃3η

2 ∂η
∗

∂ξ

+ μ̃4ηH
[
∂

∂ξ
(| η |2)

]
, (4.1)

where the coefficients for deep water are given in Appendix B. Without vorticity and
depth uniform current v, these coefficients agree with those of Hogan [14].

At third order, the coefficient μ̃1 of equation (4.1) contains two terms. The first term
is obtained from the dispersion relation of GCWs propagating on a linear shear current,
and the second term arises from the nonlinear coupling between the wave-induced
mean flow response and the vorticity. Without vorticity, it is to be noted that this
coupling disappears. Again, for β = 0 and v = 0, the third-order nonlinear coefficient
μ̃1 vanishes when ω = −2/3 and equation (4.1) contains only fourth-order nonlinear
terms. At fourth order, the coefficient μ̃4 arises from a nonlinear coupling between
wave-induced current and the wave field, and this coupling is still present when ω = 0,
as found a long time ago by Dysthe [11]. The significant effect introduced to fourth
order is the wave-induced mean flow response to nonuniformities in the radiation stress
caused by modulation of the finite amplitude wavetrain, as reported by Dysthe [11].

5. Modulational instability analysis and results

On the basis of the NLEE for deep water, we investigate here the influence of
linear shear current on the modulational instability and obtain the nonlinear dispersion
relation and the instability condition.

The solution for the uniform wavetrain of equation (4.1) is

η = η0 exp(iΔστ),
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where η0 is the wave steepness and the nonlinear frequency shift Δσ is given by

Δσ = −μ̃1η
2
0.

We next introduce the following small perturbation in the above solution:

η = η0[1 + η′(ξ, η)] exp(iΔστ). (5.1)

We substitute equation (5.1) in equation (4.1), linearize with respect to η′ and η∗′,
and separate the equations after setting η′ = η′r + iη′i , where η′r and η′i are real. Then we
take the Fourier transform of these equations defined by

(η′r, η
′
i) =
∫ ∞
−∞

(η′r, η
′
i) exp(−iλξ) dξ,

and obtain two equations[
∂

∂τ
− i(α̃2λ

3 + η2
0μ̃2λ − η2

0μ̃3λ)
]
η′i + [α̃1λ

2 + 2η2
0μ̃1 − 2η2

0μ̃4 | λ |]η′r = 0

and

α̃1λ
2η′i −

[
∂

∂τ
− i(α̃2λ

3 + η2
0μ̃2λ + η

2
0μ̃3λ)

]
η′r = 0.

Assuming τ-dependence of η′r and η′i to be of the form exp(−iΩ̃τ), we get the
nonlinear dispersion relation as follows:

Ω̃ = γ̃λ − α̃2λ
3 − η2

0μ̃2λ ±
√
α̃1λ2(α̃1λ2 + 2η2

0μ̃1 − 2η2
0μ̃4 | λ |), (5.2)

where Ω̃, λ are the perturbed frequency and wave number, respectively.
For instability,

α̃1(α̃1λ
2 + 2η2

0μ̃1 − 2η2
0μ̃4 | λ |) < 0, (5.3)

and the growth rate Im(Ω̃) then becomes

Im(Ω̃) = λ
√
−α̃1(α̃1λ2 + 2η2

0μ̃1 − 2η2
0μ̃4 | λ |), (5.4)

where Im(Ω̃) indicates the imaginary part of Ω̃.
From equation (5.3), the bandwidth of instability becomes

λ =

√
−2μ̃1

α̃1
η0 +

μ̃4

α̃1
η2

0.

Again, Ω̃r, which is the real part of Ω̃ at marginal stability, gives

Ω̃r = γ̃
[√−2μ̃1

α̃1
+
μ̃4

α̃1
η0

]
η0.
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FIGURE 2. Plot of modulational instability growth rate against λ for v = 0 and several values of ω and κ:
(a) η0 = 0.1; (b) η0 = 0.2.

If the condition in equation (5.3) is satisfied, the maximum growth rate G̃m takes the
form

G̃m =| μ̃1 |
[
1 − μ̃4

μ̃1

√
− μ̃1

α̃1
η0

]
η2

0, (5.5)

which occurs for wavenumber of perturbation λm

λm =

√
−μ̃1

α̃1
η0 +

3μ̃4

4α̃1
η2

0.

Further, Ω̃rm, the real part of Ω̃ corresponding to λm takes the form

Ω̃rm = γ̃
[√−μ̃1

α̃1
+

3μ̃4

4α̃1
η0

]
η0. (5.6)

Physically, we observe two types of nonlinear interaction influencing the results.
First, the relative signs of the frequency dispersion term α̃1ηξξ and the nonlinear term
μ̃1 | η |2 η of equation (4.1) that occur at third order govern the overall modulational
instability properties of the solution. It is important to note that the key element is
the sign of the product α̃1μ̃1. Second, the corrections to the modulational instability
that occur at fourth order come from the nonlinear interaction between the induced
mean flow term μ̃4ηH[(∂/∂ξ)(| η |2)] and the frequency dispersion term α̃1ηξξ. Further,
significance has been attached to the term iμ̃2 | η |2 ηξ of equation (4.1). We observe
from equation (5.2) that it gives the real O(η2

0) correction to the frequency of very long
plane perturbation to the wave train.

Figures 2 and 3 exhibit the influence of vorticity, depth uniform current and
capillarity from the fourth-order result on the growth rate of instability given by
equation (5.4) in deep water. Herein, the instability growth rate is found to be
considerably changed by the magnitude and sign of the current shear. As observed
from Figure 2, the current shear for ω > 0 tends to increase the growth rate, whereas
the current shear for ω < 0 has the reverse effect. Figure 3 exhibits that depth uniform
reverse currents can spread out the onset criterion and considerably increase the growth
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FIGURE 3. Plot of Im(Ω̃) as a function of λ for ω = 0 and several values of v and κ: (a) η0 = 0.1;
(b) η0 = 0.2.

FIGURE 4. Plot of G̃m against η0 for v = 0 and different values of ω and κ: (a) fourth-order result;
(b) third-order result.

FIGURE 5. Plot of G̃m as a function of η0 for several values of v and κ: (a) ω = 0; (b) ω = 0.5.

rate, whereas following currents decrease the growth rate. Furthermore, the effect of
capillarity depresses the growth rate giving a stabilizing influence up to a certain value
of λ and the growth rate is shown to increase with the increase of η0.

Using equation (5.5), the maximum growth rate of instability G̃m has been drawn
in Figures 4 and 5 against η0 for v = 0 and ω = 0, 0.5 respectively. It is observed
from Figure 4 that the maximum growth rate obtained from fourth-order results first
increases with η0 and then it diminishes, whereas the maximum growth rate obtained
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[12] Nonlinear self-modulation of gravity-capillary waves 259

FIGURE 6. Plot of Ω̃rm as a function of η0: (a) v = 0; (b) ω = 0.

from third-order results increases steadily with η0. Further, the maximum growth rate
increases with ω and it decreases with the increase of depth uniform current v. The
curve corresponding to v = 0, ω = 0, κ = 0 is the same as the curve found in figure 2 of
Dysthe [11], and he reported that equation (5.5) for v = 0, ω = 0, κ = 0 is considerably
close to the exact findings of Longuet-Higgins [24, 25] for η0 < 0.3. Thus, we get an
excellent agreement with the findings obtained by Longuet-Higgins [24, 25].

The plot of Ω̃rm given by equation (5.6) has been depicted against η0, as shown
in Figure 6. From Figure 6(a), we find that the curve obtained from the results for
v = 0, ω = 0 and κ = 0 is the same as that obtained in figure 3 of Dysthe [11]. This
particular curve, as indicated by Dysthe, is in good agreement with the curve found
from the exact findings of Longuet-Higgins [24, 25], and the experimental results of
Lake and Yuen [42] and Benjamin and Feir [1] for η0 < 0.2.

5.1. Instability growth rate and bandwidth for finite depth Note that the last
term of equation (3.6) contains a term tanh (εkp). In accordance with Brinch-Nielsen
and Jonsson [4], the arbitrary water depth supposition is tanh (εkp) = εkkd, and they
have noted that fourth-order terms of equation (3.6) do not contribute to the expression
for Im(Ω), where Ω represents the perturbed frequency for finite water depth.

To obtain the growth rate Im(Ω) for finite depth, we replace α̃1 and μ̃1 by α1 and
μ1, respectively, in equation (5.4), where α1 and μ1 are the coefficients of third-order
dispersive and nonlinear terms, respectively, of equation (3.6). Thus, at third order, the
normalized growth rate becomes

Im(Ω)

η2
0

=
λ

η0

√
−α1

{
α1

(
λ

η0

)2
+ 2μ1

}
, (5.7)

and the instability bandwidth is

λ =

√
−2μ1

α1
η0. (5.8)
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FIGURE 7. Instability diagrams in the (β, kd) plane for v = 0: (a) κ = 0; (b) κ = 0.035. The unstable
regions are in blue while the stable regions are in white (colour available online).

Further, the maximal growth rate of instability Gm becomes

Gm = |μ1|η2
0. (5.9)

For v = 0, the expressions of Im(Ω) and Gm reduce to the corresponding expressions
of Hsu et al. [16].

The instability diagrams are shown in Figure 7 as a function of the parameters
β and kd for κ = 0 and 0.035. For κ = 0, this diagram is identical to figure 3 of
Thomas et al. [39]. The critical water depth kdcrit of kd for β = 0 has the well-known
value of 1.363, above which the instability prevails. For finite depth, the condition
α1μ1 < 0 corresponds to modulational instability. For ω = −2/3, α1μ1 alters sign and,
as a consequence, the nature of stability changes. Hence, in deep water, there is no
instability when −1 < ω ≤ −2/3.

Stable and unstable regions are plotted in Figure 8 for ω = 0, v = 0. The red
and black curves (online) are due to the singularities in the nonlinear coefficient μ1.
For ω = 0, v = 0, results for instability boundaries are presented by Djordjevic and
Redekopp [10], and exhibited in figure 6 of Hsu et al. [16], and our stability diagram
matches the findings of Djordjevic and Redekopp [10]. Thus, we can check that this
limiting case is again produced correctly.

The effect of negative vorticity (ω > 0) is shown in Figure 9 for v = 0. The red
and black curves correspond to the singularities of μ1. It is found that the vorticity
has a considerable effect on the instability diagram of GCWs. With the increase of ω,
the instability band along the kd-axis that corresponds to small values of κ becomes
narrower.

In Figures 10 and 11, the growth rate Im(Ω)/η2
0 given by equation (5.7) against λ/η0

has been plotted for v = 0, and some values of ω and κ for finite depth and deep water,
respectively. From Figure 10, one can observe that for finite depth, the growth rate
increases notably due to the combined effect of vorticity and capillarity when ω > 0,
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FIGURE 8. Instability diagram in the (kd, κ) plane for ω = 0, v = 0. The unstable regions are in cyan
while the stable regions are in white. The red curve is due to the singularity in μ1 obtained from the
second harmonic resonance given by equation (3.7) and the black curve is due to the singularity in μ1
obtained from the long wave resonance condition given by equation (3.8) (colour available online).

consistent with the results of Hsu et al. [16]. As observed in these figures for κ = 0,
as shown by Liao et al. [22] and Thomas et al. [39], the current shear for ω > 0 tends
to significantly enhance the modulational instabilities, whereas the current shear for
ω < 0 has the adverse effect. Again, the growth rate increases with the increase of
water depth.

The plots of Im(Ω)/η2
0 as a function of λ/η0 for ω = 0 and 0.5 in finite depth are

shown in Figures 12 and 13, respectively. It is found that the growth rate increases with
the increase of depth uniform opposing current.

Figure 14 shows that in deep water, depth uniform reverse currents signifi-
cantly increase the growth rate, whereas following currents decrease the modula-
tional instability, consistent with the findings in figure 4(b) of Liao et al. [22] for
ω = 0, κ = 0.

In Figure 15, the growth rate Im(Ω)/η2
0 in quiescent water has been drawn at

different water depths kd and two values of κ. The curve for kd = 1.37 indicates
that the instability vanishes as kd tends to 1.363, which is compatible with the
celebrated classical theory. It is observed that the growth rate increases with water
depth, compatible with the previous results of Ma et al. [26] and Sedletsky [36].

The maximum growth rate Gm given by equation (5.9) at different water depths
kd against η0 is plotted for v = 0 and ω = 0 in Figures 16 and 17, respectively. From
Figure 16, we find that the maximum growth rate increases with ω and Figure 17
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FIGURE 9. Instability diagrams in the (kd, κ) plane for v = 0 and several values of ω. The unstable regions
are in cyan while the stable regions are in white (colour available online).

FIGURE 10. Plot of Im(Ω)/η2
0 as a function of λ/η0 for v = 0 and several values of ω and κ: (a) kd = 1.5;

(b) kd = 2.

shows that depth uniform reverse currents increase the maximum growth rate, whereas
following currents decrease the growth rate.

Next, in Figures 18 and 19, the ratio of the maximum growth rate Gm to its value
without shear currents is drawn against ω and v, respectively. In Figure 18, graphs are
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FIGURE 11. Plot of Im(Ω)/η2
0 as a function of λ/η0 in deep water for v = 0 and several values ω and κ.

FIGURE 12. Plot of Im(Ω)/η2
0 as a function of λ/η0 for ω = 0 and several values of v and κ: (a) kd = 1.5;

(b) kd = 2.

FIGURE 13. Plot of Im(Ω)/η2
0 as a function of λ/η0 for ω = 0.5 and several values of v and κ: (a) kd = 1.5;

(b) kd = 2.

drawn for ω > −2/3 and for several values of kd and κ. It is found that for finite depth,
the influence of ω is to diminish the maximum growth rate when −2/3 < ω < 0, while
for ω > 0, growth rate first increases with ω and then its value diminishes. For deep
water and for kd = 3.14, it increases steadily with ω > 0. The influence of capillarity is
to increase the maximum growth rate for both finite depth and deep water when ω > 0.
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FIGURE 14. Plot of Im(Ω)/η2
0 as a function of λ/η0 in deep water for ω = 0 and several values v and κ.

FIGURE 15. Plot of Im(Ω)/η2
0 as a function of λ/η0 at several water depths kd for v = 0, ω = 0 and

κ = 0, 0.035. BFIs indicates the Benjamin–Feir instability [22] in deep water.

FIGURE 16. Plot of Gm against η0 for v = 0 and some values of ω and κ: (a) kd = 1.5; (b) kd = 2.

Furthermore, in Figure 19, we observe first an increase and afterward a decrease of the
maximum growth rate for different values of water depth kd.

Figures 20 and 21 show the behaviour of the normalized maximum growth rate
of instability against kd. In these cases, the normalization is performed by taking
the ratio of the maximum growth rate to its value when kd → ∞. We found from
Figure 20 that for ω ≈ 0, the critical value kd related to re-stabilization is very close
to 1.363. Herein, the maximum growth rate increases with the water depth kd > 1.363,
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FIGURE 17. Plot of Gm against η0 for ω = 0 and some values of v and κ: (a) kd = 2; (b) kd = 2.5.

FIGURE 18. Plot of Gm/G0m against ω for v = 0 and some values of kd and κ. Here, G0m represents the
maximum growth rate when the shear currents are absent.

FIGURE 19. Plot of Gm/G0m against v for ω = 0, κ = 0 and some values of kd. Here, G0m represents the
maximum growth rate when the shear currents are absent.

but diminishes with | ω |, compatible with the findings of Thomas et al. [39]. Again,
Figure 21 shows that depth uniform reverse current increases the maximum growth
rate, while following current decreases the growth rate.

The ratio of the normalized instability bandwidth to its value in the absence of shear
currents as a function of ω and v has been plotted respectively in Figures 22 and 23. It
is found that for finite depth, the bandwidth of instability BW first increases and then
its value decreases with ω, while for deep water, its value increases steadily with ω.
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FIGURE 20. Plot of Gm/G0m against kd for v = 0 and some values of ω and κ. Here, G0m represents the
maximum growth rate when kd → ∞.

FIGURE 21. Plot of Gm/G0m against kd for ω = 0 and some values of v and κ. Here, G0m represents the
maximum growth rate when kd → ∞.

FIGURE 22. Normalized bandwidth of instability against ω for v = 0 and several values of kd and κ.

Moreover, for ω > 0, the influence of capillarity shows an increase in the bandwidth
for both finite depth and deep water. As found in Figure 22, as described by Thomas
et al. [39], our findings without surface tension are in good agreement with the exact
numerical results of Oikawa et al. [30]. From Figure 23, we also observe that the
instability bandwidth increases with the increase of v but decreases with the increase
of kd.
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FIGURE 23. Plot of BW against v for ω = 0 and several values of kd and κ.

5.2. Benjamin–Feir index The concept of the Benjamin–Feir index (BFI) in
connection with the random waves was started by Janssen [18] and then elaborated
by Onorato et al. [32]. The ratio of the mean square slope to the normalized width of
the spectrum is considered as the definition of the BFI. Onorato et al. [33] defined the
BFI as

BFI =
η0

Δk

√∣∣∣∣∣μ1

α1

∣∣∣∣∣.
Further, the BFI for deep water and for ω = 0, κ = 0 becomes

BFI0 =
4η0

Δk
,

where Δk means a typical spectral bandwidth. So the normalized BFI takes the form

R =
BFI
BFI0

=
1
4

√∣∣∣∣∣μ1

α1

∣∣∣∣∣. (5.10)

Onorato et al. [33] have reported the influence of water depth on the BFI in their
figure 1. Thomas et al. [39] have also described the influence of water depth and current
shear on the BFI. Herein, we have given attention to the influence of both capillarity
and depth uniform current on the BFI. To measure the influence of capillarity on the
BFI, we have taken ω = 0, v = 0 in equation (5.10) and then we have portrayed in
Figure 24(a) the ratio R of the BFI in the presence of capillarity to its value without
capillarity in deep water against kd for several values of κ. It is found that the BFI
increases with water depth kd for a fixed value of κ and also the BFI increases with the
increase of surface tension κ. For κ = 0, our results are in good agreement with those
of Onorato et al. [33]. The normalized BFI diagram we have obtained is compared in
Figure 24(b) with that obtained in figures 11 and 12 of Thomas et al. [39] for v = 0,
κ = 0. In that way, we can check that this limiting case is again produced accurately.
Further, to measure the influence of depth uniform current on the BFI, we have set
ω = 0, κ = 0 in equation (5.10) and then we have drawn in Figure 24(c) the ratio R of
the BFI with depth uniform current to its value without current as a function of kd. It
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FIGURE 24. Normalized BFI as a function of kd: (a) v = 0, ω = 0 and κ = 0, 0.035; (b) v = 0, κ = 0 and
ω = −0.3, 0, 1, 2; (c) ω = 0, κ = 0 and v = 0, 0.2, 0.25, 0.3.

is found that the BFI increases with kd for a fixed value of v but it decreases with the
increase of v.

6. Conclusion

In this paper, a higher-order nonlinear evolution equation for gravity-capillary
waves in a finite depth of water with linear shear current is developed using the
multi-scale expansion. On the basis of the results obtained from both the third-
and fourth-order evolution equations, the effect of vorticity, surface tension and
depth uniform current on the modulational instability properties of weakly nonlinear
gravity-capillary waves are studied. The findings of the present study can be summed
up as follows. (i) The main focus is that the new fourth-order results give significant
deviations on the instability characteristics compared with the third-order ones and
provide better results consistent with the exact results of Longuet-Higgins [24, 25].
(ii) At fourth order, the coefficient μ̃4 arises from a nonlinear coupling between
wave-induced current and the wave field, and this coupling is still present without
current shear. (iii) It is observed that the vorticity significantly modifies the modula-
tional instability and for a finite depth, the combined effect of vorticity and surface
tension increases the growth rate considerably in the presence of negative vorticity
(ω > 0). (iv) For waves moving in the same direction as the depth uniform current, the
current is observed to have a stabilizing influence on the waves and reduce the growth
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rate of modulational instability. For a uniform reverse current, a rapid destabilization
of the waves is predicted in both the cases of finite and infinite depths of water. (v)
In deep water, the growth rate of instability decreases up to a certain value of λ, the
wavenumber of disturbance, and then it increases due to the effect of capillarity when
ω > 0. (vi) Finally, it is found that BFI increases with the increase of both the values
of surface tension κ and the depth uniform current v.

Appendix A

The coefficients appearing in the NLEE in equation (3.6) are as follows:

α1 = −
1

μ(2 − 2v + β)

[
μ(γ − v)2 + {pβ(1 − μ2)}γ + (1 − v)2p2μ(1 − μ2)

− {(1 − v)2 + β}p(1 − μ2) − (1 − v)(1 − v + β)κ
1 + κ

{3μ + 2p(1 − μ2)}
]
,

α2 =
1

3(2 − 2v + β)

[1
2

fkkk − 3βp2(1 − μ2)γ + {6γ + 3(pω(1 − μ2) − 2v)}α1

]
,

μ1 =
1

8μ2(1 − v)2(1 − v + β)(2 − 2v + β)

×
[ (P + Qκ)(1 − v)
μ2(1 − v) − κ{(3 − μ2)(1 − v) + 3β}

+ Sκ +
2AB

C(1 + κ)

]
,

μ4 =
(2 − 2v + β)

4μ2{1 − (γ − v)ω}
,

P = (9 − 12μ2 + 13μ4 − 2μ6)(1 − v)5 + 3(9 − 6μ2 + 5μ4)(1 − v)4β

+ (33 − 3μ2 + 4μ4)(1 − v)3β2 + (21 + 5μ2)(1 − v)2β3 + (7 + 2μ2)(1 − v)β4 + β5,

Q = (1 − v + β){(3 − μ2)(7 − μ2)(1 − v)4 + 2(21 + μ2 − 2μ4)(1 − v)3β

+ 2(15 + 6μ2)(1 − v)2β2 + (9 + 5μ2)(1 − v)β3 + β4} + 2{(μ2 − 3)(1 − v) − 3β}
× {(4μ2 − 1)(1 − v)2β2 + (9μ2 − 2)(1 − v)β + (6μ2 − μ4 − 1)},

S = 2μ2(1 − μ2)(1 − v)2 − {2(1 − μ2) + 3μ2/(1 + κ)}(1 − v + β)2,

A = {(1 − v + β)2 − μ2(1 − v)2}(1 + κ)(γ + pω) + (1 − v)(1 − v + β)(2 − 2v + β),

B = (γ − v)(1 − μ2)(1 + κ) + (1 − v + β)(2 − 2v + β),

C = (γ − v)(γ + pω) − p(1 − v)(1 − v + β)
μ(1 + κ)

,

where

γ = cg/c = [(1 − v)2p(1 − μ2)/μ + (1 − v)(1 − v + β)(1 + 3κ)/(1 + κ)
+ v(2 − 2v + β)]/(2 − 2v + β).
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Appendix B

The coefficients appearing in equation (4.1) are as follows:

α̃1 = −
1

(2 − 2v + ω)

[
(γ̃ − v)2 − 3(1 − v)(1 − v + ω)κ

1 + κ

]
,

α̃2 =
1

(2 − 2v + ω)
[2(γ̃ − v)α̃1 − κ],

μ̃1 =
1

8(1 − v)2(1 − v + ω)(2 − 2v + ω)

×
[ (P̃ + Q̃κ)(1 − v)
(1 − v) − κ(2 − 2v + 3ω)

+
S̃κ + 2ÃB̃/C̃

1 + κ

]
,

μ̃4 =
(2 − 2v + ω)

4{1 − (γ̃ − v)ω} ,

where

P̃ = 8(1 − v)5 + 24(1 − v)4ω + 34(1 − v)3ω2
+ 26(1 − v)2ω3

+ 9(1 − v)ω4
+ ω5,

Q̃ = (1 − v + ω){12(1 − v)4 + 40(1 − v)3ω + 42(1 − v)2ω2
+ 14(1 − v)ω3

+ ω4}
− 2{2(1 − v) + 3ω}{3(1 − v)2ω2

+ 7(1 − v)ω + 4},
S̃ = −3(1 − v + ω)2,

Ã = {(1 − v + ω)2 − (1 − v)2}(1 + κ)ω,

B̃ = (1 − v + ω)(2 − 2v + ω),

C̃ = (γ̃ − v)ω − (1 − v)(1 − v + ω)
(1 + κ)

,

γ̃ =
(1 − v)(1 − v + ω)(1 + 3κ)

(2 − 2v + ω)(1 + κ) + v
.
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