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Abstract. This paper is concerned with convex bodies in ^-dimensional /,,
spaces, where each body is accessible only by a weak separation or optimization
oracle. It studies the asymptotic relative accuracy, as n —>co, of polynomial-time
approximation algorithms for the diameter, width, circumradius, and inradius
of a body K, and also for the maximum of the norm over K.

In the case of l2 (Euclidean n-space), a 1987 result of Bar any and Fiiredi
severely limits the degree of relative accuracy that can be guaranteed in
approximating /Ts volume by any deterministic polynomial-time algorithm.
This led to a similarly severe limit on the relative accuracy of deterministic
polynomial-time algorithms for computing AT's diameter. However, these
limitations on the accuracy of deterministic computation were soon followed
by the work of Dyer, Frieze and Kannan showing that, for volume approxi-
mation, arbitrarily good accuracy can be attained with the aid of suitable ran-
domization. It was therefore natural to wonder whether the same is true of
the diameter.

The first main result of this paper is that, in contrast to the situation for
the volume, randomization does not help in approximating the diameter. The
same limitation on accuracy that applies to deterministic polynomial-time com-
putation still applies when randomization is permitted. This conclusion applies
also to the width, circumradius, and inradius of a body, and to maximization
of the norm over K.

The second main result is that, for each of the five "radius" measurements
just mentioned, the inapproximability results for deterministic polynomial-time
approximation are optimal for width and inradius when 1 =s/> =£ 2, are optimal
for diameter, circumradius, and norm-maximization when 2s£/?=£co, and in
the remaining cases are within a logarithmic factor of being optimal. In par-
ticular, all are optimal when p = 2. The optimality is established by producing
deterministic polynomial-time approximation algorithms whose accuracy is
bounded below by a positive constant multiple (independent of the dimension
ri) of the upper bounds on accuracy.

Since the bodies are assumed to be presented by a weak oracle, our
approach belongs to the algorithmic theory of convex bodies initiated by Grot-
schel, Lovdsz and Schrijver. In the deterministic case we sharpen and extend
l2 results due to these authors, and in the randomized case we refine some ideas
presented earlier by Lovdsz and Simonovits. The algorithms that establish lower
bounds on accuracy use certain polytopal approximations of lp unit balls that
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are obtained by polarizing and extending an l2 method of Kochol. The argu-
mentation for upper bounds requires, in addition to extending the l2 approach
of Barany and Fiiredi, a careful treatment of some results on entropy numbers
used by Carl and Pajor. It is closely related to some questions concerning
sphere coverings.

§0. Introduction. As the term is used here, a convex body (or simply body)
in R" is an ^-dimensional compact convex set. The collection of all such bodies
is denoted by ,7/n. Though our main concern is with general bodies, a special
role is played by bodies K that are Asymmetric, meaning that K = -K. Trans-
lates of 0-symmetric bodies are simply called symmetric.

This paper arises from a general interest in the computation or approxi-
mation of important measurements of a body Ke // " with respect to various
norms. Here we consider K's diameter, width, circumradius, and inradius, and
the maximum of ||x|| as x ranges over K, and we use the general term radii to
refer to all of these measurements. The /,, norms are of special interest, and in
view of the applications described in [GK93], the focus is primarily on large
(and variable) n. Hence our emphasis is on the computational complexity of
these measurements for the case in which the dimension n is part of the input,
and (since exact computation is in many cases NP-hard) on the task of describ-
ing the rapidity with which the relative accuracy of the best polynomial-time
approximation decreases as the dimension n increases.

The task of approximating radii is approached here in the realm of the
Algorithmic Theory of Convex Bodies developed by Grotschel, Lovasz and
Schrijver [GLS93], and we make frequent use of results from that book. The
theory applies not only to polytopes but to more general bodies as well. Bodies
are assumed to be given by oracles that solve certain specified sorts of problems
and can be used as subroutines by any algorithm. Using the binary Turing
machine augmented by such oracles, an algorithm is called an oracle-polv-
nomial-time algorithm if it is polynomial in the usual sense, with the under-
standing that the time required by each call to the oracle is only what is needed
to write the call's question onto and read the oracle's answer from a tape of
the Turing machine.

A 1987 result of Barany and Fiiredi [BF87] showed (in the oracle model)
that no deterministic polynomial-time algorithm can approximate the diameter
or width of a body K in Euclidean n-space (/2) with a relative error less than
O(sfn/logn). From basic results in convex geometry it follows easily that this
statement holds also for the other radii considered here. A first natural ques-
tion raised by this result is whether the implied inapproximability bound on
accuracy can be overcome if deterministic algorithms are replaced by ran-
domized ones. This question is especially appropriate in view of the striking
improvements in volume computation attained in [DFK89] and [KLS98] with
the aid of randomization. It turns out that, while [BF87]'s upper bound on
accuracy is easy to attain with the aid of the randomization, randomization
does not help to overcome the bound. That is the main result of the first part
of this paper.
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The second main part of this paper is devoted to deterministic algorithms.
It shows that, in l2 spaces, the upper bound on accuracy can in fact be attained
by deterministic algorithms, and that (with a lot of extra work) the underlying
idea can be applied to arbitrary /̂ -spaces for l=s/?=soo. The presented results
on order of accuracy are all sharp (asymptotically optimal) when p = 2, are
sharp for width and inradius when 1 =£/> =s 2, are sharp for diameter, circum-
radius, and norm-maximization when 2=S/?=£oo, and in the remaining cases
are within a logarithmic factor of being sharp.

The stated results imply that, for computation of radii, in marked contrast
to the situation for volume computation, the asymptotic relative accuracy of
randomized algorithms is not superior to that of deterministic algorithms.
However, it does turn out, as explained in a final section comparing the deter-
ministic and randomized approaches, that the degree of the polynomial meas-
uring the complexity of the algorithms can be improved when randomization
is allowed.

Our algorithms arise from the observation that the oracle complexity of
approximating the radii is closely related to the problem of covering a sphere
with a prescribed number of caps, or, equivalently, of approximating a sphere
with proper polytopes. This connection enables us to invoke basic results on
the measure of caps, along with a construction of Kochol [Koc94].

Another way of viewing the results is that, rather than approximating the
body K by another body (such as an ellipsoid in the approach of [GLS93]),
the Euclidean space E" is approximated by a suitable Minkowski space whose
norm is polytopal—i.e., for which the unit ball is a polytope—where the radii
can be computed in polynomial time with arbitrary accuracy. This approach
makes it possible, by using techniques of Carl and Pajor [Car85, CP88] involv-
ing entropy in Banach spaces, and combining these with a generalization of
Kochol's construction, to obtain both lower and upper bounds on the accuracy
of deterministic polynomial-time approximations of radii in an arbitrary finite-
dimensional lp space. These results yield quantitative information on how the
error in polynomial-time approximation of radii is influenced by the extent to
which a Minkowski space deviates from being polytopal.

Our main results are expressed in terms of relative accuracy, a function of
the dimension n that describes, in terms of worst-case behaviour, how far an
algorithm deviates from giving a precise measurement. For an exact algorithm,
the accuracy is 1 in all dimensions. In most of the problems considered here,
the accuracy approaches 0 as n-^oo, and the problem is that of estimating the
rapidity of this approach for the best possible oracle-polynomial-time algor-
ithms. For more formal definitions, see Section l.D.

Table 1 summarizes results obtained, in the paper's second main part, for
the accuracy of deterministic oracle-polynomial-time approximations with
respect to the /,, norm. There, p is either co or an arbitrary rational number
with 1 =sp<oo, andp' is defined by the equation l/p+l/p' = 1, where l/oo is
defined to be 0. DOP indicates that a measurement can be deterministically
approximated with arbitrary accuracy in oracle-polynomial time. (The reason
for using P instead of P is simply that we usually use P to denote a polytope.)

Note that, in the Euclidean case, our estimate 0( V(log ri)/ri) applies to all
five of the measurements considered. As a lower bound, our Q.( Vlog«)/n)
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Table 1. Accuracy bounds for deterministic oracle-polynomial-time approximation of radii.
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improves the Q(l/V«) provided by Grotschel, Lovasz, and Schrijver [GLS93]
for approximating the circumradius and the diameter, and also improves their
Q(!/((»+ 1) Vw)) for the inradius and the width. For p = 2, the upper bound
O{ V(log «)/») was already proved by Barany and Fiiredi [BF87].

It should be re-emphasized that our focus is on the case of varying dimen-
sion—i.e., the dimension n is part of the input—and on oracle-polynomial-time
approximation algorithms in which the same polynomial bound on running time
must apply simultaneously to alln. The results are dramatically different for the
same approximation problems in an arbitrary fixed dimension, for then the prob-
lems can be solved with arbitrary accuracy. See [Gru93] for theoretical and
[GMR94, GMR95] for additional computational results concerning the initial
step of our algorithms—approximating lp unit balls by polytopes.

Our section headings are below. Since the material of this paper may be of
interest from several viewpoints, we have included an unusually long back-
ground section. However, some readers will be able to skip this entirely, and
others, depending on their interests and knowledge, will want to skip parts of
it. Specific suggestions appear at the beginning of the next section.

1. Background.
l.A Convex geometry.
l.B Some properties of/,,-spaces.
l.C Oracles.
l.D Accuracy.

2. Randomization does not help!
2.A Bounds for the fractional covering number of the Euclidean sphere.
2.B Randomized algorithms for approximating radii.
2.C Inapproximability results for randomized approximation.

3. Deterministic approximation.
3.A Solutions with respect to polytopal norms.
3.B Approximation of /,, unit balls by polytopes.
3.C Deterministic algorithms for approximating radii.
3.D Entropy numbers, Rademacher type, and volume ratios.
3.E Inapproximability results for deterministic approximation.

4. Randomized versus deterministic approximation—a comparison.
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§1. Background. Workers in classical convex geometry may skip Subsec-
tion l.A. Readers who are interested only in Euclidean spaces may skip Sub-
sections l.B and 3.D. Readers who are familiar with the oracular approach to
convex bodies may skip Subsections l.A, l.C, and l.D.

§1.A. Convex geometry. In the case of a general finite-dimensional
normed space, the norm is denoted by | | | | , the unit ball by B, and the unit
sphere by §. The ambient dimension is usually assumed to be n, and often the
notation is simplified by not using any explicit index to indicate this. (Dimen-
sion indices are used mainly for emphasis, and to avoid confusion while
working in two different dimensions at the same time.)

Our primary concern is the approximation of radii with respect to the
classical /^-norms. For x = ( | l 5 . . . , £,n)

T& W, these norms are given by

V = i /

||JC||OO = m a x | ^ / | .

For computational reasons, attention is often restricted to rational values of p
and to p = co. Thus it is convenient to elect co as a special rational, and to
agree that such phrases as "for rational pe [1, co]" will refer to p - co as well
as to rationalpe[l, oo[.

The unit ball and unit sphere of an lp space are denoted by Ep and Sp

respectively. Note that the balls B, and BOT are polytopes. More generally,
any full-dimensional O-symmetric polytope P induces a polytopal norm \\-\\P

given by ||x||P = min{X^O:xeXP}, and P is then the unit ball of the induced
norm. If the polytope is / -presented (given as the convex hull of its vertices—
more precisely, a string (n,m;vu..., vm), with n, me N and u 1 , . . . , vme <G>", is
given such that P - conv {vt,..., vm}), or #-presented (given as the intersec-
tion of closed halfspaces described by linear inequalities—more precisely, a
string (n, m; A, b) is given, where n, me N, A is a rational m x n matrix, beQm,
and the set P= {xeW: Ax^b} is bounded), the norm is denoted by | | | | 7 or
| I!, and the unit ball by B, or IB,, .

The conjugate space, indicated by *, consists of all the linear functionals
on the original space, and the norm of a functional is the maximum of its
values on the unit ball. The polar K° of a body K is the set of all functionals
/ i n the conjugate space such t h a t / ( x ) ^ 1 for all xeK.

With respect to the chosen norm and its unit ball B, the inradius r(K) of a
body K is the radius of a largest ball that is contained in K, and the circum-
radius R(K) is the radius of a smallest ball that contains K. The width w{K) is
the minimum of the distances between parallel supporting hyperplanes of K,
and the diameter d{K) is the maximum of the distances realized between two
points of K. The maximum N(K) of the norm on K is the smallest positive X
such that K<z.XU. For simplicity, we refer to all of these functions as radii.
Furthermore, we often use an index to denote the underlying norm, e.g., d2

denotes the diameter defined with respect to the Euclidean norm.
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In the case of polytopes, the complexity of radius computations depends
heavily on the way in which the polytope is presented. For example, if a poly-
tope K is (rationally) / -presented, then finding the maximum of a given norm
on K can be accomplished by evaluating a suitable monotone function of the
norm at each vertex. On the other hand, when a polytope K is rationally # -
presented, computing the pih power of max*eje|WL> is NP-hard for each pe N,
even for the special case in which K is a O-symmetric n-parallelotope
[BGKL90]. (Here there are 2" vertices, but the ~/f -presentation requires only
In inequalities.) Similar comments apply to other radius computations. Con-
sider, for example, the problem of computing the square of a radius of a ration-
ally presented symmetric polytope in an l2 space. When "radius" means
"diameter" or "circumradius", the problem is approximable with arbitrary
accuracy in polynomial time for '/ -presentations and is W-hard for # -pres-
entations, but the role of / a n d dt is reversed when "radius" means "width"
or "inradius" [GK94].

In the present paper, we deal with bodies more general than polytopes, and
we approach them in terms of the oracles described in Section l.C. In a sense,
the oracular approach unifies the treatment of / - and fr -polytopes.

We often use the following basic properties of the radii of a body K (see
[GK92]).

PROPOSITION 1.1. w{K) s= 2r{K) and d{K) =s 2R{K), with equalities when K
is symmetric.

PROPOSITION 1.2. Width and diameter are invariant under central symmet-
rization, i.e., w{K) = \w{K-K) and a\K) = \a\K-K), where K-K denotes the
difference body of K.

PROPOSITION 1.3. IfK = -K, then

PROPOSITION 1.4. IfK=-K, then R(K)r(K°) = 1.

In Euclidean space, the following theorem for circumscribed balls (see
[JunOl, DGK63]) can be used by our approximation algorithms.

JUNG'S THEOREM. If Ke,Zy, then \d2{K) =sR2(K) =£ >/n/2(n + l)d2(K).

It follows that any approximation algorithm for the (Euclidean) diameter
yields an only slightly worse approximation for the circumradius, and vice-
versa. An analogous result holds for inscribed balls (see[Ste22]), but there the
upper bound for the ratio of width and inradius is O(\fn) rather than the 0(1)
that appears in Jung's theorem. Hence the case of the inradius requires separ-
ate attention.

Similar results also hold when the Euclidean norm is replaced by other
norms (see [DGK63] for references). However, in the general case, we develop
specific algorithms for each of the measurements in question, for it is then
possible to derive almost exact algorithms in several cases.
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§1.B. Some properties of lp spaces. We use the following relationship
among lp norms, which can be proved by a routine application of Lagrange
multipliers.

PROPOSITION 1.5. If neN and l^p^q^co, then IMI^IHIp5*
"l/p~Uq\\x\\g for each xe W. (Here, l/oo := 0.)

We also use the well-known formula for the volume of the n-dimensional
lp unit ball B"p (see p. 11 of [Pis88]).

PROPOSITION 1.6. If neN and l<p<x>, then

vol(B̂  = 2"^+ 1 / fy .

Finally, we need upper bounds on volume ratios which, in Subsection 3.E,
lead to bounds on ratios of radii and eventually to our upper bounds on the
accuracy of oracle-polynomial-time approximations of radii in lp spaces. The
bounds in the following proposition are our versions of bounds that were pro-
ved by Carl [Car85] and Carl and Pajor [CP88] with the aid of the notion
of entropy numbers, and an interaction between this and the concept of the
Rademacher type of a Banach space. These concepts are briefly reviewed in
Subsection 3.D, in order to make it clear that the results from [Car85] and
[CP88] that are used here do indeed serve the purpose for which we need them.
The essential point is that certain "constants" in their papers, while being
constant in the sense that they require, are nevertheless dependent on the ambi-
ent dimension n, and for our purposes this dependence must be examined more
closely.

PROPOSITION 1.7. For each pe[l,co], far each choice of h, neN with
20 log ((/)/«))+ I)3* «=£/», and for each ^-symmetric n-polytope P c B p with at
most 2h vertices, it is true that

2 / / \2

^ l o g ( ( V H ) + l ) ^ f o r 2 < / ? < 0 0 ;

As it turns out, the bounds for p < GO are optimal for our purpose but, as
pointed out by Pajor and Schechtmann, they can be improved in the case
p = oo by the following argument. Consider any O-symmetric n-polytope

with at most a polynomial number of vertices. Then the polytope
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F = 1/ *JnP is contained in 0>2 and Proposition 1.7 can be applied. Using the
facts that the volume is homogenous of degree n, voltBJ)17" = £2(1/V«), and

)1Ai = 2, we obtain

In the l2 case, a close relative of Proposition 1.7 appears in [BF87]. In
detail, the proofs for general /p-spaces are quite different from those for /2.
However, the underlying geometric ideas are similar. As we see later, the pre-
vious result uses a covering of a polytope with simplices all of which have the
same upper bound for their circumradii, while the argument of [BF87] uses the
fact that each point contained in a simplex is, for suitable ye N, "close" to at
least one of its /-dimensional faces. This extended an idea of Elekes [Ele86]
using the covering of a simplex by balls centred at its vertices.

A result concerning the polar problem, estimating the volume of a polytope
containing the unit ball and given by a linear inequality system, was proved
by Ball and Pajor [BP90]. There an ^-polytope is interpreted as the intersec-
tion of a lower-dimensional subspace with a higher-dimensional unit cube, and
a lower bound for the volume of that intersection is derived by using an exten-
sion of a theorem of Vaaler [Vaa79].

§1.C. Oracles. For deterministic computation, our underlying model is
the usual binary Turing machine (cf. [GJ79]). In discussing randomization, we
assume further that the Turing machine has distinguished coin-tossing states—
i.e., in prescribed situations two different transitions of the Turing machine are
possible, and the choice between them is made by tossing a fair coin (see
[Gil77]). In all other states the next step is decided deterministically.

For our purposes, both the deterministic Turing machine and its probabilis-
tic relative must be augmented by certain oracles that are described in detail
below. The machine can write information on a specified tape, the oracle takes
this information as the input to a certain problem, and writes the solution back
onto the tape. Though nothing is assumed about the manner in which the
oracle produces its output (it operates as a "black box"), it is assumed that
the size of the oracle's output is bounded by a polynomial in the size of its
input. An algorithm that involves calls on the oracle is then called an oracle-
polynomial-time algorithm if it is polynomial in the usual sense, with the under-
standing that each oracle call is measured by the time necessary to write its
input and to read its output. In particular, any oracle-polynomial-time algor-
ithm can use at most a polynomial number of calls to the given oracles.

An important consequence of the above definition is that any oracle-poly-
nomial-time algorithm can be turned into a genuinely polynomial algorithm
for any situation in which the oracle's action can be carried out in polynomial
time. In other words, for any problem n that can be solved in oracle-poly-
nomial time, a polynomial-time algorithm for the oracle's function immedi-
ately yields a polynomial-time algorithm for n . And vice versa, if II turns out
to be, say NP-hard, then the same holds for the problem solved by the oracle.

A way to deal algorithmically with a general body K was introduced and
extensively studied in [GLS93]. There it is assumed that only a small amount
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of a priori information about K is available, and that all further information
about K must be obtained from an algorithm (called an oracle) that answers
certain sorts of questions about K. It is usually assumed here that each body
K is circumscribed, i.e., a rational number R is given explicitly such that
K<zRB2. (Thus R is an upper bound for K's circumradius in l2.) The size of
K is then denned by size (K) '-=n + size (R). It is usually necessary to assume
also that K is well-bounded, i.e., K is circumscribed and, in addition, a positive
rational number r is given such that K contains a ball (whose position may not
be known) of radius r. (Thus r is a lower bound for K's inradius in l2 •) Then,
of course, size (K) := n + size (r) + size (R).

One important oracle for our purposes is the weak separation oracle, where
•'weak" refers to the fact that we have to allow for a rounding error, since
only finite precision is available. Recall that, for eS=0, the outer parallel body
and the inner parallel body of a body K are given respectively by

U2 and K(-e) - {xeU":x +eE2c:K}.

A weak separation oracle for a body K in U" solves the WEAK SEPARATION

PROBLEM. Given ysQ" and a positive rational e, assert that yeK(e), or deliver
a vector ceQ" with \\c\\,XJ = 1 such that cT^x^cTy + e for allxeK(-e).

For the situation in which the input K is a full-dimensional '# -polytope or
a full-dimensional / -polytope, [GLS93] produces deterministic polynomial-
time algorithms for well-boundedness and for solving the weak separation
problem. In general, however, as mentioned above, the separation oracle func-
tions as a "black box".

Under the assumption of infinite precision it makes sense to allow e = 0
instead of e > 0. In this case we say that a strong separation oracle solves the
strong separation problem. Proving our upper bounds on accuracy with strong
oracles yields in some sense stronger results, and this will be done in Subsec-
tions 2.C and 3.E. For the lower bounds, working with weak oracles and the
attendant details of finite precision is necessary in order to obtain the sharpest
results. This will be done in the case of the lower bounds for deterministic
algorithms, but for simplicity of presentation we use strong instead of weak
oracles in the discussion of randomized algorithms.

The origin of the algorithmic theory of convex bodies, and also one of its
major algorithmic tools, is the ellipsoid algorithm of Shor [Sho77], Yudin and
Nemirovskii [YN76], and Khachiyan [Kha79]. In particular, the following fun-
damental result can be proved with the aid of the ellipsoid algorithm (see
Corollaries 4.2.7 and 4.4.7 of [GLS93]).

PROPOSITION 1.8. There is an oracle-polynomial-time algorithm which,
accepting as input n e N, a circumscribed body KinR" given by a weak separation
oracle, a rational n-vector c, and a positive rational e, solves the WEAK OPTIMIZ-

ATION PROBLEM, i.e., either asserts that K{—e) = 0 or delivers a rational n-
vector v such that veK(e) and cTx^cTv + £ for all X&K(—E). Conversely, if the
body, not necessarily circumscribed, is given by a weak optimization oracle, then
the weak separation problem can be solved in oracle-polynomial time.
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Any such output point v of a weak optimization oracle is called a weak
optimizer over K of the linear functional associated with the vector c.

Besides investigating the relationships among various oracles for the same
body, [GLS93] provides results about oracles associated with bodies that are
formed by combining other bodies in various ways (see Section 4.7 of
[GLS93]). Here is an example.

PROPOSITION 1.9. There exists an oracle-polynomial-time algorithm which,
given as input a well-bounded body K presented by a weak optimization oracle,
solves the weak optimization problem for the difference body K- K.

For the reader not acquainted with the oracular method, these two prop-
ositions may serve to provide some feeling for the strength of the method.
Roughly speaking, the linear optimization problem is reduced to the separation
problem, and since the latter can be solved in polynomial time for both / -
and M -polytopes, any oracle-polynomial-time algorithm becomes a genuinely
polynomial-time algorithm for such polytopes. Thus, in a sense, the oracle
method provides a unified approach to / -polytopes and fr -polytopes. For
another illustration, consider a situation in which a poly tope P is # -presented,
and we want to solve some problem for the polytope P- P. In general, it is
not possible to produce an J? -presentation for P - P in polynomial time, but
a polynomial-time optimization oracle for P - P is available.

Whenever a body K is considered here without specified additional infor-
mation about its presentation, it is assumed that K is well-bounded, is at least
2-dimensional, and is presented by a separation or optimization oracle.

§1.Z>. Accuracy. Consider an arbitrary measurement for bodies—a func-
tion (p which, for each neN and each Ke.//", assigns a positive number
(p(K)—and consider an algorithm A for approximating q> by a function q>A.
For a function A: N—>[0,1] we say that

• the accuracy of A in approximating q> is at least A if there exist two func-
tions A.,:N—>[0, GO] and A.2:^—>]0, oo[ such that A = Ai/A2, and such
that, for each neN and each Ke.jf''", it is true that

?ii(n)9A(K)^(p(K)^X2(n)(pA(K). (1)

Further, for a function A: M —>[Q, 1], we say that
• the accuracy of A in approximating q> is at most A if there does not exist

any function A of the sort just described such that A<A.
Note that the latter is equivalent to the fact that, for each function A with
A<A, (1) fails for at least one Ke.y?" for any «eN.

Depending on the number of oracle-calls performed in the worst case,
algorithms can be divided into several different classes. With respect to any
such class . >• of algorithms for approximating q>, we say that / 's accuracy in
approximating <p is

• at least A if there exists Ae.af whose accuracy in approximating cp is at
least A,

• at most A if each A e. •./' has accuracy in approximating (p of at most A.
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When / consists of all deterministic (oracle-) polynomial-time algorithms
we simply speak of accuracy in deterministic {oracle-) polynomial-time
approximation.

For a function / : IM —»[0,1], we say that the accuracy is Q(f(n)) if it is at
least cf(n) for some constant c > 0, and the accuracy is O(f(n)) if it is at most
cf(ri) for some constant 0 < c < GO, where the constants are independent of the
dimension. When the accuracy is both Q(/(«)) and O( /(«)), we say that the
accuracy is 0(/(n)). In this case our asymptotic estimate for the accuracy is
optimal up to a factor independent of the dimension, and the same is true for
our algorithm that is used to justify the Q.(f(n)).

The above concept must be slightly modified for randomized approxi-
mation. In this case a number n with 1/2 <^t=£ 1 is given, and we say that the
accuracy of A in approximating (p with probability at least fi is at least A if (1)
holds with probability greater than or equal to /x. The other definitions are
modified analogously.

When . . / consists of all randomized (oracle-) polynomial-time algorithms
which, for some ^e ] l /2 ,1 ] , approximate <p with probability at least \i, we omit
explicit mention of .-/' and speak simply of accuracy in randomized (oracle-)
polynomial-time approximation. To understand the focus on the case 1 /2 < /x,
recall that there is a standard trick—choosing the median of the outputs from
a polynomial number of independent runs of the algorithm—whereby any
polynomial-time algorithm whose accuracy in approximating (p with prob-
ability at least /i is at least A can be used as a subroutine in producing a
polynomial-time algorithm whose accuracy in approximating q> with prob-
ability at least v is at least A, where v can be arbitrarily chosen from [n, 1[, cf.
[JW86]. Hence the restriction to 1/2 < jU is quite natural.

§2. Randomization does not help! Extending ideas of Elekes [Ele86],
Barany and Ftiredi [BF87] showed that, if c is a constant independent of the
dimension n, and a convex body K in Euclidean n-space is presented by means
of an optimization oracle, then a superpolynomial number of calls to the oracle
is required to approximate K's, volume deterministically with relative error less
than (cn/log («))". It follows easily that a superpolynomial number of calls is
also required to approximate A '̂s diameter or width deterministically with rela-
tive error less than Vcn/log n, and this statement about diameter and width
holds also for the other radii considered here. (See the Euclidean part of
Theorem 3.21.) Thus the results of Elekes, Barany and Fiiredi tell us that
deterministic algorithms are very bad in estimating these measurements for
bodies in high-dimensional Euclidean spaces. In the specific form just stated,
this negative conclusion concerns only the oracle model. However, the
measurements are also hard to compute when K is given as the solution set
of a system of linear inequalities, for then volume computation is #P-hard
[DF88, Kha88], and the computation of radii is NP-hard even for very simple
sorts of bodies [FO85, GK93]. Considering approximation instead of exact
computation, APX-completeness for small classes of polytopes can be proved,
and the problems considered here turn out to be at least APX-hard [BGK00]
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in general. (See [PY91], [MPS98], and especially [Jan98] for an introduction
to classes of approximation complexity for optimization problems.)

A breakthrough in the positive direction was achieved by Dyer, Frieze, and
Kannan [DFK89], who gave a randomized oracle-polynomial-time algorithm
that finds an approximation of the volume with arbitrarily small relative error.
Their original running-time bound of O*(n23) was improved in a sequence of
papers, culminating in an O*(n5) bound for an algorithm of Kannan, Lovasz
and Simonovits [KLS98]. (The notation O* indicates that certain factors
depending on logw and on the error bound are suppressed.)

The success of randomized algorithms in volume approximation, in con-
junction with the similar behaviour of volume and radii in deterministic
approximation, suggests that randomization might also be useful in computing
radii. It was proved in [LS92] that no oracle-polynomial-time algorithm can
compute the diameter of a body with arbitrarily small relative error, but this
does not exclude the possibility that randomization can help in improving the
accuracy. The present analysis does exclude that possibility by combining the
ideas of [LS92] with careful estimates for covering numbers of the Euclidean
sphere. (An approach in terms of covering numbers could also be used in
Section 3 for the deterministic case, but instead we work there with polytopal
approximations of the unit ball in order to facilitate the treatment of arbitrary
lp spaces.)

In the present section, "algorithm" means "randomized algorithm" and
details are simplified by considering only Euclidean spaces. For further simpli-
fication, we use exact (infinite-precision) arithmetic and assume that the bodies
are presented by strong optimization oracles. This yields the strongest results
for upper bounds on accuracy of approximation. To obtain the strongest
results on lower bounds, it would be necessary to deal with the consequences
of finite precision, much as is done in Section 3.

Though only the diameter is considered explicitly in this section, it is easy
to use the material in Section 3 to derive analogous results for the other radii
considered in this paper.

§2.A. Bounds for the fractional covering number of the Euclidean
sphere. The accuracy of diameter approximation in Euclidean spaces E" turns
out to be closely related to the efficiency with which the Euclidean unit sphere
S2 = {xe U": \\x\\2 =1} can be covered with spherical caps. For each ve § 2 and
0 < 5 < 1, we define the s-cap with centre v as the set {«€§2: vTu^s}, hence as
the set of all points of §2 that are separated from the origin by the hyperplane
{x: vTx = s}. (Here, s is the distance of the hyperplane from the origin.)

The smallest number of j-caps that can be used to cover the unit sphere
will be denoted by T(«, S), and called the covering number of the sphere by s-
caps. This number is closely related to the deterministic approximation of
diameters, as is explained in Section 4. However, in connection with ran-
domized approximation we must focus instead on the fractional covering num-
ber of the sphere by s-caps. This number, denoted by t*(n, s), is just the ratio
of the (n - l)-measure of the sphere to the (n - l)-measure of an .s-cap. It is
obvious that x*(n, s) < x(n, s).
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Our bounds for randomized approximation can be expressed in terms of
the function T* or, equivalently, in terms of y - 1/T*, SO that we need some
estimates of these quantities.

Let con - nn/2/T(\ +n/2), the volume of the n-dimensional Euclidean unit
ball. Then

—!— = 7 ( n , s) = ( " 1 ) 6 ) - f ( 1 - t * r ,
T*(«, s) ncon J

s

whence, with the aid of Stirling's formula asserting for « ^ 3 that

a>"-1 ^
2n con 2

we can obtain the following estimates.

LEMMA 2.1.

(a) For 0<s< sj2~Jn, 1/12<y(n,s)< 1/2.
(b) For -J2jn^s< 1,

6W«

/Voo/. Define, for an integer m>-2 and non-negative A,

i

Ji(s)= \rh{\-t2)m/2dt,

and apply partial integration with u(t) = (1 - r2)(m + 2)/2/(m + 2), u(0 = - r A " ' to
obtain

Since J^C?) > 0, it follows that

h 1 2 (m + 2)/2

^ ,+ 1

and

{m + 7\lh (<i\^-^—(\ t-H
m + 2)/2 0 + 1 ^ 1 n _ A(»i + 4)/2
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We need this for h = 0:

- ( 1 -s
2fm + 2)/2 — -M - / ) " " + 4)/2<(m + 2)^(^)<-

s (m + 4) s s

The above is true for all s. Now, for s s= s/2/(m + 6), we obtain

- ( 1 -^ 2 ) ( m + 2 ) /2<(m + 2)7^,(5)<-(l -52)<m + 2)/2,
2^ s

and hence conclude for m = n - 3 that

and

()
n 2

This proves part (b) of the lemma. Part (a) is not needed here, and so its
proof is omitted. •

§2.B. Randomized algorithms for approximating radii. We begin with a
theorem that expresses the accuracy of randomized approximation in terms of
the fractional covering number. The lower bound for oracle-polynomial-time
algorithms is then obtained by combining this theorem with the estimates for
the fractional covering number obtained in the previous subsection.

THEOREM 2.2. For each 0 < s < 1 there is an algorithm that, given a body
KcE", uses 4\x*(n, s)\ oracle calls, and produces an approximation dA(K) of
d(K) such that dA (K) =£ d(K) and prob (sd(K) =£ dA (K)) > 6/7.

Proof. Let M = 2[~T*(M, 5)1, and let « i , . . . , uM be independently, uni-
formly distributed random points on the unit sphere §" ~'. For 1 =£ i =£ M, com-
pute the maxima

ft), = max {ufx:xeK} -min {ujx: x&K} - max{uT(x-y): x, ye K},

and define dA(K) = max!S,SMft),.
Since each co, denotes the distance between two parallel supporting hyper-

planes of K, it follows that dA(K)md(K). To prove that the probabilistic con-
dition is satisfied, suppose that dA(K)<sd(K). Let p, qeK have ||/>-i?||2 =

d(K), let v be the unit vector pointing in the direction q -p, and let Cs denote
the 5-cap centred at v. Then Cs contains no «,, because, if «,-e Cs, then, by the
definition of an 5-cap,

a>, = max uf(x-y)^uf(q -p) = d(K)ufv^sd(K),
z.ysK
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and hence dA(K)»co^sd(K), contrary to the supposition. Now, the prob-
ability that no u, belongs to C, is

volB- ,(§"-')/
"4,-_!_r

M

completing the proof. D

Theorem 2.2 could be formulated more generally: using l\vz*{n, s)~\ oracle
calls with v > 0 yields correct results with probability greater than 1 - e~v.

THEOREM 2.3. There is a koeN and an algorithm A which, given a body
K<zE" and keN with kosik^2"/3, uses fewer than k oracle calls to compute an
estimate dA(K) of d{K) such that dA(K)^d(K) and

Proof. The theorem follows from Theorem 2.2, once we show that

4[T*(n,s')]^k for/=

For 4ss/c<2", Lemma 2.1 yields

/ loeA:\(1"")/2

4fT*(n,/)l=s24VlogA: 1— 5 '

24 V'bp(5/4e)
n
<log':)/2

where the last inequality holds for large enough k. •

§2.C. Inapproximability results for randomized approximation. As in the
case of the lower bound, we start with a general theorem that connects the
accuracy of approximation to the fractional covering numbers.

THEOREM 2.4. Let 0 < s < 1, and let A be an algorithm that computes, for
every body Kczt", an estimate dA{K) of d(K) such that ^iob{{sd{K)^
dA {K) s£ d(K)) 5s 3/4. Then A must use at least x*(n, s)/2 oracle calls in the worst
case.
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Proof. Suppose that A makes at most / oracle calls, where t < T*(n, s)/2.
Choose s'<s so that t<x*{n,s')/2. Run two copies of the algorithm simul-
taneously. In one, the input is the unit ball B". In the other, an input body K
is constructed at random as follows: we choose a random unit vector v uni-
formly, and let K be the convex hull of the set B " u { ( l / s > , -{l/s')v}. The
algorithm has internal coin flips, and we use the same coin flips in both copies.
Let dA and d'A be the outputs of the two algorithms. These are random vari-
ables, depending on the internal coin flips of the algorithms as well as on the
random choice of v.

Let ux,..., u, be the unit vectors for which the optimization oracle is called
with input B", let C\ ..., C' be the /-caps centred at w , , . . . , « , , and let Q -

' Then

prob (veQ) = — -——

Whenever v <£ Q, the two copies of the algorithm run in the same way and
produce the same output. Thus prob (dA *• d'A) < 1/2.

By the assumptions on the performance of A, we also know that

prob (d'A « 2) = prob (d'A =£ s'd(K))« prob (d'A < sd(K))« 1 /4

and prob (2<dA) = prob (d(B") <dA)^l/4. But this implies a positive prob-
ability for joint occurrence of the three events

dA^2, 2<d'A, and dA = d'A,

leading to the contradictory conclusion that 2 < 2. •

Note that Theorem 2.4 remains true if the bound 3/4 for the probability is
replaced by an arbitrary constant pL with 1/2 < ju < 1, and x*{n, s)/2 is replaced
by T*(«, s)/l, where /< 0 and 1< (2j i- 1) + (1 - 1//) = 1\i- \/l.

Combining Theorem 2.4 with a tight lower bound for the fractional cover-
ing number, we obtain the following.

THEOREM 2.5. Suppose that X is a real number in the interval
[y/2, y/n/2]. If an algorithm A computes an approximation dA{K) of d(K) for
each body KczE", and A is such that

prob (dA (K) *£ d(K)« ^ dA (K)) & 3

\ X / 4

for each K, then A must use at least (0.9)A2A"/2 oracle calls.

Proof. In view of Theorem 2.4, it suffices to prove that \.%X2x2/2 is a lower
bound for x*{n, X/ V«).

Lemma 2.1 yields

j2\(l-n)/2

which finishes the proof. •
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Theorem 2.5 yields the following relation between the quality of approxi-
mation and the polynomial degree of the algorithm.

COROLLARY 2.6. Let h^\ and let A be an oracle-polynomial-time algor-
ithm which, for each body KczR", uses O(nh) oracle calls to compute two values
dA (K) and dA (K) such that

prob (dA (K) *s d(K) *£ dA (K)) > 3/4.

Then, for some KoczE",

Proof. It follows from Theorem 2.5 that, whenever fewer than
(0.9)A2;""/2 oracle calls are made to determine two values dA{K) and dA(K)
such that these determine with probability at least 3/4 a lower and an
upper bound for the diameter, then dA(K)/dA(K)> sfn/X. Now the proof is
finished by observing that (0.9)Ux2/2> Jhfogn2hlog"3= sj\ognnh = £l{nh) for
A= -J2h log n. •

The following is just the "negative" formulation of Corollary 2.6. It shows
that randomization does not help to overcome the upper bound of Barany and
Fiiredi [BF87] mentioned earlier.

THEOREM 2.7. If A is an algorithm that uses a polynomial number of oracle
calls to compute an approximation dA{K) for each body KaE", then there is a
c > 0 such that, in every dimension n, there exists a body A^ocE" with

prob (dA (Ko) =£ d(K0)« c -^- dA (Ko)) « -.
\ \ log« / 4

We remark that the arguments used in this and in the previous subsection
yield the following observation. Let fcB be a convex body and set M =
vol(B)/vol(B\A"). Then any randomized algorithm that distinguishes an iso-
metric copy of K from B with probability at least 2/3 must make at least
M/3 calls on the oracle describing K. On the other hand, we can generate 3M
random points and check whether they belong to K; this distinguishes K from
B with probability at least 2/3.

Theorem 2.7 shows that randomization does not help to do any better than
the known bound for deterministic approximation. The good news is that
asymptotically optimal randomized algorithms are available (see Theorem 2.3).
However, we show in section 3.C that we can also do that well determin-
istically, even when using only weak oracles and taking rounding into account.
Further, we obtain similarly sharp results for approximating radii in arbitrary
lp spaces.
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§3. Deterministic approximation. In this section, "algorithm" always
means "deterministic algorithm".

As was mentioned in the introduction, there are at least two different ways
to approach our problems, and each has its own flavour. In Section 2, covering
numbers of spheres were used for randomized approximation of radii. In the
present section, we approach the deterministic approximation of radii by find-
ing an approximation of the given lp norm by a polytopal norm, computing
the radii with respect to that norm in polynomial time, and then taking the
result as an approximation of the radius with respect to the given norm.

§3.A. Solutions with respect to polytopal norms. We consider the inradius
in detail (since it poses the most difficult problem), and then say a few words
about the other radii.

Suppose that the unit ball B7 of a polytopal norm is / -presented, and we
want to compute the inradius of a convex body K presented by a strong separ-
ation oracle. For each rational r > 0, the existence of a point in the convex set

SKr={aeW:a + rB, <zK]

is equivalent to the condition that r^r, (K). Since the unit ball is / -pre-
sented, for each aeU" we can use the separation oracle to decide whether
aeSKr, and if the decision is negative we obtain a hyperplane separating K
and a + rv for some vertex v of E>7 . By the definition of the set SK,r, this yields
a hyperplane separating a and SKr. Therefore we can solve the separation
problem for SKr and hence, using the central cut ellipsoid method presented
in [GLS93], either decide that SK_r is "almost empty" or obtain a point of SK,r.
A suitable binary search then yields an approximation of r, (K) with arbitrary
accuracy in oracle-polynomial time. (This works even for non-symmetric poly-
topal norms.)

By Propositions 1.1 and 1.2, the inradius algorithm can be used to compute
the width of K if we can solve the weak separation problem for K- Km oracle-
polynomial time. An algorithm solving this problem appears in [GLS93],
mainly using Propositions 1.8 and 1.9. Also, we see from Proposition 1.3 that
it is not necessary to apply the ellipsoid algorithm in each step, because
SK-K,r^0 if and only if 0eSK_*,,..

Turning now to details, we begin by defining, for two bodies C and K, a
containment problem that is a special case of a class of containment problems
introduced in [BG97].

WEAK C-CONTAINMENT PROBLEM. Given aeQ" and a positive rational
e, assert that a+ CaK{e), or deliver a vector csQ" with ||c||o.• = 1 such that
there exists a vector uea+ C with cTx =£ cTu + £ for all xe K(-e).

In general, the weak C-containment problem cannot be solved in poly-
nomial time (unless P = coMP), since it is already coNP-complete to decide
whether the standard cube is contained in a given affine image of a / -cross-
polytope [BGKL90, FO85, GK93]. However, the problem is easy in the fol-
lowing special case.
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LEMMA 3.1. The Weak C-Containment Problem is solvable in oracle-poly-
nomial time if the body K is circumscribed and the body C is a / -poly tope.

Proof. Let (« , s ; v \ , . . . , vx) represent C, and let e and a be the input of
the Weak C-Containment Problem. Call the weak separation oracle for K with
input e and a + vt for 1 =£/=£.?, where vi,... ,vs are the vertices of C. If all
assertions are affirmative—i.e., if a + v^ K(e) for all /—we obtain a+ CczK(e)
by convexity. If not, at least one call, say the first, delivers a rational ^-vector
c w i t h | | c | | x i = 1 a n d cTx^cT(a + v}) + e fo r a l l xeK(-e). S ince a + v{ea + C,
this yields a valid answer for the C-containment problem. •

Now we can prove the following.

LEMMA 3.2. There exists an oracle-polynomial-time algorithm A which, for
input consisting of a positive rational pi, a string IB, = (n, s; i\,..., vs) defining
the unit ball of a polytopal norm, and a well-bounded body K, delivers a number
TA(K) with

rA(K)*Zr,{K)<(l+n)rA(K),

and a point aA (K) with aA {K) + rA (^T)O, c K.

Proof. First note that, in polynomial time, we can find positive rationals
7,, y2 such that y ^ c B , cy2B2; see [GLS93]. Now, let the rationals r and R
denote respectively a positive lower bound for K's Euclidean inradius and an
upper bound for A '̂s Euclidean circumradius, and let p denote a rational with
0<p«0ir) /(2y2) .

For r > 0, define the circumscribed convex set

By the definition, if 5^ , r ^0 then r,(K)^r. On the other hand, since, for
arbitrary xeR",

x + pyiB2 + HB, e x + (p + r )B, ,

SKA-PYI) = 0 yields r, (K)<r + p.
Assume for a moment that we can either find asSK_r or decide whether

SxA-PYi) ~ 0 for arbitrary r. Define r/ = r/y2 and ru = R/yx. Since
7iB2cB, cy 2 B 2 , we obtain r^r, (K)^ru. Solve the problem just mentioned
with r = j(r/ + ro). If we find aeSK,r we set r,= r, and otherwise ru = r. We
repeat this until, after a polynomial number of steps, ru-r^p; then set
rA = r/ and conclude that

(K)<ru + p^r,+ 2p^rA(K) + 2p

72

In addition, setting aA {K) equal to the query point given to the oracle together
with rA(K) yields aA(K) + ^ ( ^ B , czK.
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But the problem of either finding a point a&SKj- or asserting that
SKA~PYI)*®

 c a n be solved in oracle-polynomial time with the central cut
ellipsoid method (see Theorem 3.2.1 in [GLS93]), assuming that we can solve
a slight modification of the weak separation problem for the set SK,r. More
exactly, while the second answer of a weak separation oracle does not change,
we demand yeSKr instead of yeSfc,r(£) a s the first answer. Now, note that,
by Lemma 3.1, the (standard) separation problem for SK,r (a input, C= rE,
fixed) can be solved in polynomial time. Thus we can complete the proof by
noting that the modified oracle just mentioned was derived in [BG97]. •

In particular, it follows from Propositions 1.1 and 1.2 that the width of K
can be computed by dealing instead with the inradius of K - K, and here is the
conclusion.

COROLLARY 3.3. There exists an oracle-polynomial time algorithm A
which, for input consisting of a positive rational fi, a string B7 = (n, s; vt, . . . , rs)
defining the unit ball of a polytopal norm, and a well-bounded body K, delivers a
number wA(K) with

(\ + n)wA(K).

Furthermore, a pair of parallel hyperplanes with distance (1 +n)wA(K) that con-
tains K can be computed.

For a O-symmetric body K, there is an oracle-polynomial-time algorithm
that solves the weak separation problem for the polar of K (see [GLS93]).
This makes it possible, using the propositions of Subsection 1 .A, to reduce the
problem of diameter approximation to that of inradius approximation. Simply
note that the diameter is invariant under symmetrization, and that, for a cen-
trally symmetric body K, d(K) = 2R(K) and R(K) = \/r{K°). Here is the
specific conclusion.

PROPOSITION 3.4. There exists an oracle-polynomial-time algorithm A
which, for input consisting of a positive rational jU, a string B , = (n, s; Q, b)
defining the unit ball of a polytopal norm, and a well-bounded body K, delivers a
number dA (K) with

In addition, two points x and y contained in K(n) are computed with

The circumradius is not invariant under symmetrization, but with respect
to a given polytopal norm the computation of the circumradius can be
approached as follows (giving a rough description in terms of exact arithmetic).
Let the polytopal unit ball be tf -presented, more precisely, given by
{x:±qfx^l for i= \,... ,k}. Then the circumradius of K with respect to
the induced norm is given as the solution of the linear program that asks
for the minimum of p such that p±ufa^8f for /= 1,...,A:, where Sf =
maxx^K±ufx, {cf [GK93]). (Note that a is a candidate for the centre of A""s
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circumsphere with respect to the polytopal norm.) Since a (weak) optimization
problem is at hand, the circumradius problem is reduced to a linear optimiz-
ation problem, and this can be solved in polynomial-time using an ellipsoid
algorithm. To be more precise, a binary search with respect to the value v of
the objective function is performed, and in each step an ellipsoid algorithm
determines whether the intersetion of a convex set with a proper half-space is
empty or not. The half-space is determined by a separating hyperplane on
which the evaluation of the objective function equals the current binary search
value v. This means that we must develop a separation oracle for a convex set
that depends on v. The details are omitted (they can be found in [Bri98]), but
here is the conclusion.

LEMMA 3.5. There exists an oracle-polynomial-time algorithm A which, for
input consisting of a positive rational n, a string B , = (n, s; Q, b) defining the
unit ball of a polytopal norm, and a well-bounded body K, delivers a number
RA (K) with

and also a point aA (K) with aA (K) + RA {K)U , D I

Finally, we record the result for norm-maximization,.

LEMMA 3.6. There exists an oracle-polynomial-time algorithm A which, for
input consisting of a positive rational fi with fi<\, a string B^ = (n,s; Q,b)
defining the unit ball B , of a polytopal norm || • || , , and a well-bounded convex
body K, delivers a number NA (K) with

and also a point xA{K) with ||JC^(AT)|| t = NA(K).

§3.B. Approximation of lp unit balls by poly topes. Recalling our plan to
deal with lp norms by taking solutions with respect to appropriate approxima-
ting polytopal norms, we now want to construct, for each fixed />e[l, oo], / -
and // -polytopes that approximate the /,, unit ball B^ of W and have encoding
length that is bounded by a polynomial in n. In order to treat the case in
which p is not an integer, an approach polar to that of Kochol [Koc94] is
developed. However, the main idea is taken from his construction of the
asymptotically optimal spherical codes in Euclidean space whose existence was
shown by Barany and Fiiredi [BF88]. When additional effort is necessary,
methods of Carl and Pajor [CP88] are used.

The construction is carried out in two stages. We first consider approxi-
mations where, given a positive integer r\, we are allowed to use an m-polytope
with rf' facets or vertices to approximate the ra-dimensional unit ball B™. (The
approximation error of our specific construction depends only on r\ and not on
the dimension m.) To obtain oracle-polynomial-time algorithms, we then choose
m logarithmic in the underlying dimension n and, using the w-polytopes as sub-
structures, we construct n-dimensional / - or 7/ -polytopes whose encoding
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— I U "lengths are bounded by a polynomial in n and whose deviations from Up -
depend on n.

Approximation in m-dimensional subspaces. For the first stage of the con-
struction, let m denote a positive integer. Note that, in the following, e.g.,

To provide easier reading of the proof, the algorithm for constructing the
subspaces is split into two lemmas. In the first lemma it is assumed that all
computations can be done with infinite precision. The somewhat tiresome cal-
culations for the Turing model are given in the second lemma.

LEMMA 3.7. For each /3 > 1 andpe[l, oo[, there is a positive integer r\ -
rj(p,p) that has the following property: for each meN, there exists a 0-sym-
metric poly tope P with at most r\m facets and with

Up.

Proof. First note that l\ is a polytopal norm and that its unit ball, the
regular cross-polytope, has 2m facets. Hence it suffices to consider the case in
which 1 < p < GO . For /3 > 1, we define

C' = Z"Jn(/W/' ')B/,A{0}, C= {c'/\\c'\\p<c'eC},

and claim that the polytope

P= f] {x:crx=sl}
csC

has the required properties.
That Up<zP follows immediately by polarity from the fact that CaSp'. To

establish the second inclusion, Pc /3 / ( j3- l)Up, we show that, for each xeSp,
there exists a ceC with c7xS=(/3- l)//3. Starting with x- ( £ , , . . . , ^m)TeSp,
we define the index-sets

/+={i:&380} and / _={ / :£ ,« )}

and the vector c' = (y ' v , . . . , y'm)T by setting

Then \\c'\\p'^j3m]/p'\\x\\p
p'

i = f5ml/p', so that c'eC, and, in addition, using the
fact that

\\q

)TeUmfor/), qeU with l^p^q^co and x = (<!;,,... ,%m)TeUm (see Proposition 1.5),
we have

= fimWp'\\x\\p - \\x\\^$mxlp' -mUp'.
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Now consider the vector c - c'/\\c'\\p'. Obviously, ce C and, furthermore,

UP'

It remains to show that, for an appropriate constant T] (independent of m),
the cardinality of the set C (and hence of C) is at most T]m. The idea is to
associate, with each point c' of the integral lattice U", a cube with side length
1 and centre c'. The volume of each cube is equal to 1 and the cubes do not
overlap, so that the cardinality of the set C" is equal to the sum of the volumes
of the corresponding cubes. Each cube is contained in ym1/p'Up' for an appro-
priate y>P, and therefore the volume vo\(ym1/pBp>) is an upper bound for
\C\.

Since

for each c'e C", it will suffice to set y = /3 + 1/2. Using Proposition 1.6, we see
that

(Yd
|C| = |C"|« vol (ymWp'BP') = ymmm/p' vol (By) = (2y)mmm/p' ^-L-

At this point, we use the following quantitative version of Stirling's
formula:

lnyy + i/2e'y+1/<-l2y) f o r j>0 .

This yields the followng inequalities:

\ / \ m/p' +1/2

"P'I^V) e /P'
and

1 \\"> /i\m/p' + m/2

1 + - < ( 2 « ) ™ / 2 - e~m/p'<
p II \P I

Hence

^ (max {1,

and setting r\ = [max {1, V(2w)//}2(J3+ l/2)ey/12l finishes the proof. D

To obtain a (rational) ^-polytope we have to modify the construction,
due to the restriction to finite precision in the Turing model.
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LEMMA 3.8. For each choice ofrationals j8, v> 1, and pe[\, oo[, there is a
positive integer T) = J](p, j8, v) that has the following property: for each msN
there exists a ̂ -symmetric (rational) // -polytope P with at most r\m facets and
with

\Ulp.

Proof Of course, the idea of the construction is the same as in Lemma
3.7, but minor modifications are needed whenever the restriction to finite pre-
cision becomes active. To model this, let e be a positive rational number and
k a positive integer with 2~fc=se. This means that rounding down or up to the
kth digit behind the binary point of a number \i leads to an error less than e.
We denote the rational numbers obtained from this rounding process by \f
and \f respectively, so that

Now, if given v> 1, determine e with (1 +me)i/p' + e «£v, and choose a
number k (which indicates the finite precision of the Turing machine) with
2~k^e. Recalling the sets

C' = Zmn(pm1/p')Bp-\{0}

and

C ={c'/\\c'\l-: c'eC'}

of the proof of Lemma 3.7, we define their rounded versions (indicated by ~)
by setting

C' = Zmn|c- = (y' , , . . . , y'mf- I (\?',\P'T^((PPT + 2e)m\\{0}

and

C={c'/\i/(c'):c'eC}, where ̂ (c')= I (if'lTT

Note that C'czC', because, for each c' - (y\,..., y™)re C, we have

and hence e'e C". From the fact that C'^C' it follows that

conv Ccconv {c7||c'||^:c'e C'}.

Now, setting P= O?£c{x:cTx^l}, we claim that B/,ci)c(v/3/(j3- \))EP.
For the first inclusion, just note that, since vHOHIcil//' CcEy. For the
second, we show that ((/3- l)/j3)Eycvconv C. Using Lemma 3.7, we know
that ((/3 - l)//3)B/,cconv C, and hence it suffices to show that

conv {cVlIc^-: e'e C'jcvconv {£'/>(<"): e'e C'} = vconv C,
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because we have already seen that conv C is contained in the set on the left.
Since all components of c' are integers, we obtain

W r ((17= i (\?'

. <x:= +e ̂  (it, (ir ^+e)\UP'

+ £

whence the desired conclusion follows.
It remains to show that | C\ =s rf'. Recalling the corresponding part in the

proof of Lemma 3.7, it suffices to show that we can determine a number y,
independent of in, such that C'cfm]/pUp'. For this, take an arbitrary c'eC'.
Then

= X

and we can continue as in the proof of Lemma 3.7. •
Polynomial-size approximation. Now let us show how the construction in

w-dimensional subspaces of IR" can be used to produce full-dimensional
polytopes.

LEMMA 3.9. For each rational /5 > 1 and rational pe[l, oo], there are posi-
tive numbers y = y(P,p) and r\ = T](/3,/?)/or VV/J/C/; the following is true: for each
n, heN with 2n^h<nrj", there exists a ^-symmetric y?-polytope B # with at
most h facets such that

[log (h/n))

and there exists a ^-symmetric / -polytope B7 with at most h vertices such that

Proof. Since the two conclusions are equivalent under polarity, attention
may be confined to the search for EB,. The case p = co is trivial, and so we
assume that 1 »£/>< GO. By Lemma 3.8, there exist, for each j3 > 1, a number
r\(fl,p) such that, for each meN, we can construct a O-symmetric m-dimen-
sional * -polytope B™ with at most r\m facets and with

p-rp-
(Note that the parameter v in Lemma 3.8 was introduced only for technical
reasons, to facilitate the deduction of that lemma from Lemma 3.7. Hence
Lemma 3.8 could be reformulated without v.)
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When 2n =£ A =£rf'n, the desired ^-dimensional '#-polytope B^ is obtained
by setting B.*, = B5,, and recalling that \\x\\p = n]/p for each vertex x of B j .
Now suppose, on the other hand, that rf2n < h, and define

i , h
m = logn - and 5=1 — 1.in

•m
Since h<nrf we have m<n, and interpret W as W x • • • x W x R* with
« — (5 — l)m = m^m and 5 a positive integer. Then apply Lemma 3.7 in each
of the s - 1 copies S i , . . . , Ss-1 of Rm and in the copy 5, of W*. For 1 «y«5,
let Cj denote the set of outer normals defining the M -polytope approximating
B^1 or Wp", and let c, denote the canonical embedding of S,- into W. Then
setting

P=C\icr)c{x:cj(c)Tx^l}

guarantees that, for each xe P, \\xPj\\p^P/(P - 1), where xp' denotes the projec-
tion of x into Sj. Hence, using m3=2,

+ 1 II
m l\p-\

logn2log(Vn)\j8-l/'

and setting

3
7 logn2\j3-l

yields

)

As before, the inclusion B^cB, follows from a polarity argument, and so
we can finish the proof by showing that the number/of facets is at most h. In
fact, since n, m5 2, we see that

w Jn m n

Improving the performance by using Hadamard matrices. In attempting to
improve Lemma 3.9, we encounter an interesting phenomenon that is caused
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by our restriction on the encoding size of the polytope approximating the unit
ball. It can be explained as follows.

Suppose that, working in the ^-dimensional lp space Wp, we may choose
between nUpEi and B^ for outer approximation of By by an n-polytope P that
has small circumradius RP(P). Since Rp(n

]/p'Ul) = n[/p' and Rp(Ex) = nUp,
taking U^ is better when p > 2 and worse when p< 2. However, if we want to
use the containing polytope as the basis of an oracle-polynomial-time approxi-
mation algorithm for the circumradius of a body in Up1, we are always forced
to choose B x because E} has 2" facets.

Even though the set ni/pUi itself cannot serve as the desired polytope, Bi
will serve as a guide for our (suboptimal) procedure, which is that of producing
a O-symmetric w-dimensional ^-polytope P such that B^cP, each facet nor-
mal of P is also a facet normal of Bi, and the total number of facets of P
is not too large. Certain invertible linear transformations play a role in the
construction of P, and these mappings are defined with the aid of Hadamard
matrices (hereafter, H-matrices). To provide a better understanding of the
method, we start with the simple case of the unit cube Boo • In the dual situ-
ation the idea is to transform Bj by using H-matrices, a technique used by
Carl and Pajor to show that, when 2=£/?< oo, their estimates in [CP88] for 'f -
approximation of the lp unit ball with respect to the volume are asymptotically
optimal when the number of allowable vertices is linear in the dimension.

An H-matrix of order n is an n x n matrix whose entries are all -1 or 1 and
whose rows (and columns) are pairwise orthogonal. The integer n will be called
an H-number when such a matrix exists. It is well known that, aside from 1
and 2, each H-number is divisible by 4. A long-standing conjecture is that
every multiple of 4 is an H-number, but this is still open for infinitely many
such multiples. (See [SY92] for a survey of the problem.) However, from our
algorithmic viewpoint this difficulty can be handled by approximating R" by
a relatively small collection of mutually orthogonal subspaces, in each of which
H-matrices are given explicitly.

That each power of 2 is an H-number is a consequence of the following
well-known recursive construction:

(H2« HA
i/2° = ( l ) and H2*+< = \

\H2" -H2"

Our algorithms will use these H-matrices, which were first described by
Sylvester [Syl67]. The next lemma shows that the sort of mapping we need can
be performed by any H-matrix.

L E M M A 3.10. If there exists an nxn H-matrix H, then, for each pe[l,2],
there exists a O-symmetric n-polytope P with 2n facets such that

and, for each pe [2, oo], there exists a O-symmetric n-polytope Q with 2n vertices
such that

n~l/2EpcQcEp.
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Proof. Because of polarity, it suffices to consider the first statement. With

B«,= fl {x:±efx^l},
1 =S i ̂  n

consider the polytope

P = rTl/pHEa0 = 0 {x:±rTl/p\He,)Tx^\}.

Since ||j>r1/p/fe,-||p' = 1, UpczP. Furthermore, for each xe P, there exists a point
ye Bco with x = rCx/pHy, and we conclude that

Now we use orthogonal subspaces to obtain sufficient approximations even
in dimensions for which no H-matrix is known or existent.

LEMMA 3.11. For eachpe[l, co], there is a number y ~y(p) that has the
following property: ifpe[l, 2], then there exists a ̂ -symmetric n-polytope P with
2n facets such that

and, ifpe[2, co], then there exists a ̂ -symmetric n-polytope Q with 2n vertices
such that

Proof Let / = [jog n\, and let d = (<50,..., 8,)T denote the {0,1}/+ '-vector
uniquely determined by n = '£lk = 05k2k. Whenever 8k = 1, we use the 2k x 2k

Sylvester matrix to construct a 2fc-polytope P2t with 2A + 1 facets and
2 * k k \ / kB
p Cf c(2 J ap .

Now, using the same embedding technique and notation as in the proof of
Lemma 3.9, we obtain pairwise orthogonal subspaces So,..., St with

= dk2
k, and an n-polytope P that contains Bp and has

8k2
k+' = 2« facets. Furthermore, it is true for each xeP that

/ / 9/>('+l)/2_1 ryp/2

\\x\\p ~ Y \\xPk\\p< Y (1pn\k - - -<~ np/2

Q fco

and hence that ||x||p«7 y/n, where the multiplier y = 2l/2/(2p/2 -\)h'p is inde-
pendent of n. •

Although this simple construction is optimal for 1 < p «£ 2 when we are
restricted to a linear number of facets, it seems obvious (and turns out to
be true) that allowing a polynomial of higher degree should lead to a better
approximation. Again it seems natural to transform "simple" polytopes in
such a way that all outer normals are chosen from the set of outer normals of
Bi. However, controlling this behaviour turns out to be difficult, and hence
our actual approach is based on the more manageable idea of choosing outer
normals that are, in a sense, the outer normals of certain lower-dimensional
cross-polytopes.
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LEMMA 3.12. For each /3 > 1 andpe[\,2], there is a number 77 = r)(P,p)
that has the following property: for all meN, A;eNu{0}, there exists a
O-svmmetric (2*m)-polytope P with at most 2kr\m facets such that B^czPc
{li/(li-\))2k/2ml/p-[/2Up.

Proof. First we define a generalization of the Sylvester matrices by setting

(H2* HA
H2» = I and H2 \

\H2
k -H2

k

where / denotes the mx m identity matrix. Then H2
t is a 2km x 2*>n-matrix

whose eigenvalues are ± 7 ? , and it is obvious that H2
k = Hjk and H2^ =

2'kH2K

Now, given m, p and /3 as input, use Lemma 3.7 to construct an w-dimen-
sional polytope P with at most r)m facets and B™cPmc(j3/(/3- 1))B™. Let P
denote the (2*w)-polytope obtained by applying the construction method of
Lemma 3.9 (using 2k orthogonal subspaces), and let C be the set of its nor-
malized outer normals, i.e., P= C]csC{x:cTx^ 1}. It follows that \C\^2k7]m

and

p := 2-k/pHP = f L c{x: 2-k/p'(Hc)Tx«1},

where H= H2". By the construction we obtain \\2~k/p'Hc\\P' = 1, whence UpciP.
Furthermore, for each xeP there exists a unique point yeP with

v = 2~k/pHy, and we continue with

, 2k I n \ 2 \ 1 / 2

As before, we can extend this result to arbitrary dimensions.

LEMMA 3.13. For each j3 > 1 andp& [1, co], there are positive numbers y =
y(fi,p) and r\ = r\(fi,p) such that the following holds for all n, heN with
2n^h<nr\": ifpe[l,2], then there exists a ^-symmetric W-polytope B^ with
at most h facets such that

(\og{h/n))i/p "'

and ifps[2, co] there exists a ^-symmetricpolytope B7 with at most h vertices
such that

Proof. Again it suffices, because of polarity, to consider the case when
pe[\,2]. Rather than explicitly producing the :tf-polytope B* as described,
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we merely show the existence of a (not necessarily rational) polytope (called
P) of the desired sort. To produce B , then requires a rounding argument that
is left to the reader. This argument slightly increases the value of the constants
7 and r\, but does not affect their existence or their independence of the
dimension.

If h^ifn, where r\ is defined as in Lemma 3.7, then Lemma 3.11 can be
applied here. Therefore it remains only to study the case in which h > r\2n, and
we choose (given ji, p and ri) m as in the proof of Lemma 3.9. Now define / =
Llogw/mJ, and compute ( 5 0 , . . . , 8/)Te {0,1}'+1 and meN, with 0^m<m and
n = JJk=p5km2k + m. If 8k= 1, we apply Lemma 3.12 and obtain a (2*m)-poly-
tope P2 m with at most 2kr]m facets and with

Bf"cP2tl"c-^- 2k/W/"~l/2Bfm.

In addition, if w * 0 , then we apply Lemma 3.7 in dimension m, and denote
by x1** that part of an n-vector x lying in the m-dimensional subspace
(set Hx7""!̂  = 0 if m = 0). Using the same embedding as before, we obtain an
n-polytope Pz> Ep with at most

£ 77m2* + 77ri i=S77m2'+1^2--«/!
* = o n m

facets. We conclude, for any xeP, that

n \p JP/2

i (m
l/p~U2Y 2p>n

Hence

where y can obviously be chosen independently of n and /i. •

Although Lemma 3.13 improves Lemma 3.11 by gaining a logarithmic fac-
tor, we conjecture that this result is still not optimal.

To end this section, we summarize its results that are used in what follows.

THEOREM 3.14. For each rational pe[l,oo] there is a polynomial-time
algorithm which, given n as input, delivers a ^-symmetric n-dimensional # -poly-
tope B , and a ^-symmetric n-dimensional / -polytope B / , such that the
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conditions listed in Table 2 are satisfied for constants y, that depend on p but not
on the dimension n.

Table 2. Polynomial-time approximation of lp unit balls by
/ - and ^-polytopes.

VpczB,c

„„ „ «1/2 „„ if 1 •

n

*<=-r.' ilog«

Up'1 /log/A
A n j
1 (log/7)'7"

f „">

\(2<p<

ifp = oo.

i(p= 1,

if l</>«

if2</><

oo,

;2,

0 0 ,

1 1
T-:B"C:B,C:B" if/» = oo.

Proof. The results follow from Lemmas 3.9 and 3.13, if we choose poly-
topes whose size can be bounded by a polynomial in n. Note that the deter-
mination of the sets containing the, say, vertices of the / -polytope, can be
done in polynomial time. •

§3.C. Deterministic algorithms for approximating radii. Now we combine
the results obtained in Subsections 3.A and 3.B.

First note that, if T I = S 1 ^ T 2 , then from TiB^cB^cBp it follows that
T,T, (K)^rp(K)^rv (K), and from B , c B , (ZT2UP it follows that

A ) and N

Then it is easy to prove

THEOREM 3.15. For each rational pe [1, co], the lower bounds for the
accuracy of oracle-polynomial-time approximation are as indicated in Table 3.

Table 3. Lower bounds for accuracy of deterministic oracle-poly-
nomial-time approximation of radii.

p ' p ' ;'

1

OOP

a( ' ^
l« 1 / 2 /

l</)«2

((\ogn\'/p'\

Alog") '^

" I «'/2 /

2

i

'(logn)17^

oo

"U i 7 2 i
OOP

Proof. Briefly, given n as input, we approximate the lp unit ball by an
appropriate polytope, using the results of Subsection 3.B. For this we choose,
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depending on the measurement in question, either an outer approximation IB,
of Up with a polynomial number of facets or an inner approximation B, of
Up with a polynomial number of vertices, i.e., we obtain either T1B;)(zB/ C B P

or UpCiB? ct2Up, where the exact values for xt and t2 (depending on n and
the degree of the polynomial bounding the complexity of the algorithm) can
be found in Lemmas 3.9 and 3.13. Then we solve the polytopal problem with
the algorithms of Subsection 3.A (after choosing an error parameter /i> 1),
and take this solution as an approximation for the original problem. This
yields the following estimates of accuracy for oracle-polynomial-time approxi-
mation algorithms.

Inradius:

Width:

p\r,(K-K)=l
2w, (K-K)

= w,(K)<(\+p)wA(K).

Circumradius:

Diameter:

-K) = l
2dp(K-K) = dp(K)

Norm-maximization:

A ( ) A ) p ( ) T 2 f ( ) ^
l+fi \ - n

Since fi > 1 can be chosen arbitrarily, we obtain the desired results using the
values computed for the polytopal norms as approximations for the values
with respect to the lp norm. •

For bodies that are / -presented or # -presented polytopes, the lower
bounds in Theorem 3.15 hold for ordinary polynomial-time computation, and
the two occurrences of BOP" can be replaced by IP. This follows from the fact
that for such bodies the weak separation problem can be solved strongly (i.e.,
setting e - 0). (In other words, a genuinely polynomial-time oracle is avail-
able.) These lower bounds apply to both types of presentation, which is of
interest in the case of pairs (measurement, type of presentation) for which the
problem of exact computation is NP-hard. See [GK93] for the classification.
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as to tW-hardness or ordinary polynomial-time solvability, of radius
computation.

It should be mentioned once more that the general idea of approximating
bodies by polytopes is an old one, and that for each fixed dimension, rather
sharp results are available (see especially [Gru93] for the investigation of the
asymptotic behaviour in fixed dimension with respect to the number of vertices
or facets). Also, it is noted in [Dud94] that the inradius of a convex body can
be approximated by replacing the body step by step with an approximating ;# -
polytope whose inradius can be computed with arbitrary accuracy; however,
complexity aspects are not considered there.

§3.D. Entropy numbers, Rademacher type, and volume ratios. This subsec-
tion is devoted to the proof of Proposition 1.7, which is used in Subsection 3.E
to derive upper bounds for the accuracy of deterministic approximation of
radii in /,,-spaces.

After defining dyadic entropy and Rademacher type, we state two results
(Propositions 3.16 and 3.17) involving these notions and then show how they
can be used to prove Proposition 1.7. Finally, we prove Propositions 3.16 and
3.17.

Entropy Numbers. When UE and BF are the unit balls of Banach spaces
E and F, ke N and u: E—>Fis a linear operator, the kth entropy number ent,t(w)
of M is the infimum of all e> 0 such that the image u(BE) can be covered by k
translates of the e-ball eEF. The dyadic entropy numbers £fc(u) are defined by
ek(u) = ent2

s-'(u)- It follows from these definitions that vo\(uEE))/
vo\(BF)^2k~ie"k(u), where n-dira{F). Thus upper bounds on (dyadic)
entropy numbers can be used to provide upper bounds on volume ratios.

To obtain good upper bounds on entropy numbers requires finding sparse
coverings of bodies by small balls. Such covering problems are well-known
for their difficulty, and it is a common experience that, in all but the most
tractable situations, random methods may provide the best approach. Thus it
is not surprising that the next definition involves an averaging procedure. This
procedure will be involved, through the use of a theorem on ^-valued random
variables, in establishing bounds on entropy numbers.

(RADEMACHER-) TYPE g. For ge [1, 2], a Banach space F is said to be of
{Rademacher-) type g if there is a constant C such that

< 1 \ 1/2

2

I

i = 1

2 x 1 / 2

I rt(t)xt
- I

dt\ «C X ||x,
/

I IJ?

i= 1

for each finite sequence X i , . . . , x, of points of F, where r, denotes the Rade-
macher function defined by rt(t) = sign (sinTnt) for ts[0,1] and isN. The
type g constant of F is defined as the infimum of such constants C, and is
denoted by rg(F). (The terminology space of type p is standard in discussing
entropy numbers, but to avoid confusion with lp spaces we speak in the defi-
nition of spaces of type g.)
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In the above definition, "constant" means independent of the choice of /
and of the vectors Xi,...,xh but it permits dependence on the dimension
of the space. For a geometric interpretation, note that in Euclidean space
the inequality becomes, with C=\, the equality known as the parallelotope
equality.

The above definition does not restrict a Banach space to be of unique type;
indeed, for each (p,g)e[l, oo]x [1,2] the Banach space ln

p is of type g. See
[TJ88, MS86] for details, including the corresponding type constants that are
in general dependent on the dimension of the space. For our purpose it suffices
to deal with the case g = min {p, 2).

PROPOSITION 3.16. The n-dimensionalspace Fp is of typeg = min {p, 2}, with
associated type g constants tp(lp)^3 if 1*5/7=5 2, T2(lp)^3 V2(]H((1 +p)/2)/

£ i / if2<p<oo, and / /

The next result is a version of part of Proposition 1 in a paper of Carl
[Car85] that turns out to be appropriate for our purposes. A proof (along the
lines of the original) is presented later in order to make sure that the result
serves our needs.

PROPOSITION 3.17. If h, keN with 20\og((h/k)+l)^k^h, and u is a
linear operator from /f to a Banach space F of type g, then

where \\u\\ = sup x e B ? |

Here, for convenient reference, is a restatement and proof of Proposition
1.7. As was mentioned in Subsection l.B, the purpose of this result is to eluci-
date the dependence on the ambient dimension of certain "constants" in results
of [Car85] and [CP88].

PROPOSITION 3.18. For each pe[l, GO], for each choice of h, neN with
20 log ((/;/«)+1) =£«=£/;, and for each O-symmetric n-polytope PczUp with at
most 2h vertices, it is true that

for2<p< oo,

s24(20e)1/2(l+lnn)1

Proof. Let ±xt,..., ±xh denote the vertices of the polytope P. In Prop-
osition 3.17, choose F—lp, k — n, and define a linear operator u from E= /('
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to lp by ±£it-*±Xi for 1 =s*s£/i. Obviously, u(U\) = P and hence, using \\u\\p^ 1
and Propositions 3.16 and 3.17, the result follows from the types and type g-
constants of the lp spaces. •

It remains to prove Propositions 3.16 and 3.17. For the former, we use
inequalities due to Khintchine [Khi23] and Kahane [Kah68]. See also [Pie80]
and [LT79] for more information on the constants.

KHINTCHINE'S INEQUALITY. For each se]0, oo[, neN, and JCGR", it is
true that

T l r l s « 1 l l f i

where c, = 1 for 0<.y=s2, and c, = V2(r((l +s)/2)/r(l/2))1/s otherwise.

KAHANE'S INEQUALITY. For each se]l, oo[, let Ks = ((2s - l)/(s - l))s '.
Then, for each finite sequence x , , . . . , xt of points in an arbitrary Banach
space,

I r,(t)x, df- I r,(/)x, dt
1=1 II

r,(t)x, dt.

Proof of Proposition 3.16. For any xh . . . , j ; ,eR", with xt = (%n,... ,^in)
T

for 1 =s/^/, we obtain, using Kahane's inequality twice and Khintchine's once,

1/2 1

I r,(t)x, dt\ I /-,(*)*, dt
l /= i lip

; = l

I

yUp /I

= K2

i

/= i

UP
\

= K2

\J=l

\

dt
/ = i

MP

dt

P/2\\/p

This holds for arbitrary 1 =£/?< oo. Now, if 1
arbitrary /-vector y, and obtain

, we use I for an

. 1/2

I-
i= 1

dt\
n 1

X I
j = \ 1 = 1

I
i= 1

Up
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If 2=S/? < co we obtain, using the triangle inequality in lf,/2,

1 r,(t)Xi dt\^K2c,
7 = 1 \'= 1

p/2\2/p\\/2

=i V/=i

2M1/2

i

.'= i

The last case that is interesting for our purpose is the upper bound for
T2(/m). For each ps [2, oof we obtain

1/2 / 1 1/2

> X ||x,||t

/

/ = i

1/2

Now consider the term K2Cpn1/p. With cp^ V(/>/2)+ 1 it is sufficient for
our purpose to consider the function / : [1, co[^>R given by p<->p'/2n1/p. Its
derivative i s / ' : ] l , oof^lR,p^p~U 2nx / p{\/2-{\nn)/p), whence^* = 2Inn is a
global minimizer with/(^*) = s/Ye VhTn. D

The type of a Banach space X plays an important role in estimating the
expectation E of the norm of the sum of independent X-valued random vari-
ables. To prove Proposition 3.17, we need the following result of Hoffmann-
Jargensen and Pisier [HJ74, HJP76].

PROPOSITION 3.19. If leN, ge[l,2], and F is a Banach space of type g,
then

for all independent F-valued random variables X\,..., Xm with finite gth moment.

I
i = i

f '

Proof of Proposition 3.17. Define y, = u{et) for X^i^h, and V =
{±yx,... ,±yh}, and choose any jew([Bt)- Since w(Bt) = conv V, there exist
AT, AT, . . . , AL A A ^ 0 such that I * = 1 W + A7)=1 and y = X*= , (AT-A7).v,,
This implies that the F-valued random variable Z that attains v, (resp. - v,)
with probability AT(A7) has expectation EZ = y, and by its definition ||Z|| s£ ]jz/jj.
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Now for 20 \og((h/k)+\)^k^h let

k

99

and consider k independent F-valued random variables Z , ,
Z described above. Using Proposition 3.19, we obtain

., Z£ of the sort

I
— 1z, -ky

g

= E
k

1
i - 1

(Z, -EZ,)

Thus there exist yll...,y£eV such that \\l^i^-ky\\g^48Tg
g(F)k\\u\\s, or,

equivalently, | | 1A£ , = , j>,--.y||s£4Tg(F)£-1 + 1/*||K||. Hence the point y lies in a
ball with radius .5 = 4rg(F)k~l + i/g\\u\\ and centre \/k £ .= t j>,-. There are at most
' = C'+kk ') such centres, because f is an upper bound for the cardinality of the

fset
Hence t balls with radius s suffice to cover w(IBf), and it follows that

en t, («)«.?.
Using the quantitative version of Stirling's formula already stated in Sub-

section 3.B, we now conclude that

(2h + ic-\\ 1/=( c n
It follows by the choice of k that

l o g / = s ^ - l , hence r«

2 A - 1

', whence ek(u)*Zs. D

§3.E. lnapproximability results for deterministic approximation. The
underlying idea for the inapproximability results is that any oracle-polynomial-
time algorithm for, say, approximating the inradius cannot decide, given the
unit ball presented by an appropriate oracle as input, whether the input body
is the unit ball itself or the convex hull of a polynomial number of vertices
inscribed in the unit sphere (cf. [BF87] in the l2 case). Hence an upper bound
for the inradii of / -polytopes of polynomial size contained in the lp unit balls
yields an upper bound for the accuracy in oracle-polynomial time approxi-
mation of the inradius.

To illustrate how the accuracy of an algorithm is determined by its capa-
bility of distinguishing between bodies, assume that Ae.^~ is an algorithm
approximating a measurement <p by a function (pA, and that there exist, for
each neN, bodies K" and K" such that A outputs (pA(K") = (pA(K")- Now, let
the accuracy of A be h\/X2, where the functions Xt and A2 are as in the defi-
nition of accuracy, and consider an arbitrary n.

By the definition of accuracy, the number (pA (K") delivered by the algor-
ithm must be such that Xi{n)(pA{K")^(p{K")^X2(n)(f)A{K") for /= 1, 2. Hence

X2{n)
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This implies that the accuracy of A in approximating <p is bounded above by
the function X defined by

- = mm

max
Now assume that our algorithm for, say, approximating the inradius can,

under the additional assumption of infinite precision, use a strong optimization
oracle for a body K that is known to be contained in the unit ball. Assume
further that in fact this oracle describes IB̂ ,, not known a priori to the algor-
ithm. Any oracle-polynomial-time algorithm can use only a polynomial num-
ber of oracle calls to gain information toward the determination of (f>(Bp), and
since the oracle describes the unit ball we obtain a polynomial number of
points that are contained in the unit sphere. Then the algorithm can only
assert for K that Ki = P<zKczBp = K2, where P is a polytope inscribed in the
unit ball with a polynomial number of vertices, because the answer to each
oracle-call made by the algorithm is valid for any such K.

Following this argumentation, it remains to find estimates for the inradius
of polytopes P contained in the unit ball Up and having a polynomial number
of vertices. Since \o\(P)/\ol(Bp)^a" implies rp(P)^a, Proposition 1.7 yields
the required result.

PROPOSITION 3.20. For each pe[l,oo], there exists a constant p-p{p)
that has the following property: for each choice ofn, heN with 20logh^n^h
and for each ^-symmetric n-polytope PczUp with at most 2h vertices, it is true
that

Now we can state the main result of this section.

THEOREM 3.2.1. For l^p^co, the upper bounds for the accuracy of
oracle-polynomial-time approximation are as indicated in Table 4.

Table 4. Upper accuracy bounds for deterministic oracle-polynomial-time
approximation of radii- and norm-maximization

p 1 l</>=£2 2=£/?<oo oo

— -

Proof The inradius result follows from combining the above argumen-
tation with Proposition 3.20. For width, circumradius and diameter note that,
by the propositions in Subsection 1 .A, "negative" results for the inradius yield
analogous results for the other radii. For norm-maximization, just recall that,
for O-symmetric bodies, NP(K) = RP(K). D
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A comparison of Theorems 3.15 and 3.21 shows that, for oracle-poly-
nomial-time algorithms that approximate certain radii with respect to the lp

norm, ((log n)/n)i/p is the optimal order of approximation of inradius and
width when/? =£2, and ((\ogn)/n)[/p) is the optimal order of approximation for
circumradius, diameter and norm-maximization when/;5*2. In the remaining
cases, there is still a gap between the lower and upper bounds for the optimal
order of approximation. The ratio of the upper to the lower bound is
(log,,) '"2-1"' .

§4. Randomized versus deterministic approximation—a comparison. In clos-
ing, we want to compare the upper and lower bounds for both randomized and
deterministic approximation of diameter in Euclidean spaces (in the following
denoted by d). For this purpose, we restate the results for the deterministic
case in a slightly different form, and we assume that infinite precision is avail-
able in both cases. In particular, we assume that the bodies are presented by
strong optimization oracles. The proofs are omitted, but can be found in
[BGK+98] or derived from the results in Section 3.

It follows from the theorem of Jung and the results of Section 3 that anal-
ogous results (with slightly different constants) hold for the Euclidean circum-
radius, inradius and width of K, and for the maximum of the l2 norm over K.

The following result extends that of Theorem 3.21 for p = 2 by describing
a trade-off between the number of vectors that determine a covering of the
sphere and the relative error.

THEOREM 4.1. For each 0<s<\, there is a deterministic algorithm A
which, for every body KczE", uses r(n,s) oracle calls to compute a value dA(K)
such that

Using the deterministic algorithm for the construction of a covering of the
sphere, we conclude

THEOREM 4.2. For each 0 < s < 1/2, there is a deterministic algorithm A
that finds, for every body K<zW,a value dA (K) with sd(K) =£ dA (K)« d(K). This
A does by using O((l/s2)el2s") oracle calls whose input is determined in
0{(n2/s2)ensl") operations.

As a corollary, we obtain

COROLLARY 4.3. For any constant h>\, there is a deterministic poly-
nomial-time algorithm A that finds, for every body KczW, a value dA(K) with

This A does by using O(nh) oracle calls whose input is determined in O(nh + 2

operations.
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Proof. Regarding Theorem 4.2, it suffices to observe that, for s =
V(A-l)logn/(20n),

s2 (A-l)logn (A-l)logn

On the other side, we have the following from Section 3.E, as well as from
[BGK+98].

THEOREM 4.4. IfO<s<l, and A is a deterministic algorithm that com-
putes, for every body KczU", an estimate dA(K) of d(K) such that

sd(K)<dA(K)^d{K),

then A must use at least x{n, s)/2 oracle calls in the worst case.

Bounding x(n, S)/2 from below for s = \J(2h log n)/n, we obtain

COROLLARY 4.5. If h^ 1 is a constant and A is a deterministic algorithm
that computes, for every body KczR", an estimate dA(K) ofd(K) such that

sj2h\ogn/nd(K) < dA (K)« d(K),

then using 0{nh) oracle calls does not suffice in the worst case.

In order to compare these results with randomized approximation, we
express the accuracy of diameter algorithms in terms of the required number
of calls to the optimization oracle.

• Corollary 4.3 yields a deterministic algorithnm that uses O(nh) oracle-
calls and approximates the diameter with accuracy at least
\j(h - 1 )/20 V(log n)/n. The input for the oracle-calls is determined by
O(n'' + 2) operations.

• Corollary 4.5 states that approximating the diameter with accuracy at
least 4lh V(logri)/n cannot be done with 0{nh) oracle calls.

• Theorem 2.3 yields a randomized algorithm that uses O(nh) oracle-calls
and whose accuracy in approximating the diameter with probability at
least 6/7 is at least \fh^/(\ogn)/n.

• Corollary 2.6 states that if an algorithm uses only O(nh) oracle calls, then
the probability is less than 3/4 that it approximates the diameter with
accuracy at least V2~W(logft)/«.

Note that, although randomization does not yield an improvement in the
asymptotic accuracy, it might be possible to decrease the degree of the involved
polynomial. In particular the deterministic algorithm presented here requires
O(nh) oracle calls, where h > 1. On the other side, we conclude the following,
from Theorem 2.3 and Jung's theorem, for convex bodies presented by weak
optimization oracles:

COROLLARY 4.6. Even if restricted to a linear number of oracle calls, the
accuracy for randomized oracle-polynomial-time approximation of the Euclidean
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diameter and circumradius is

/log«\

103

However, more generally, without considering the degree of the polynomial
involved, the theorems mentioned above can be summarized as follows.

THEOREM 4.7. The accuracy for both randomized and deterministic oracle-
polynomial-time approximation of the Euclidean diameter, width, circumradius,
inradius and the norm-maximum is

Finally, we want to give a short informal explanation of why randomiz-
ation helps for volume computation but does not help (except in reducing the
degree of the polynomial) in approximating the diameter. For this, recall one
of the basic ideas that are used in a couple of randomized volume algorithms,
cf. [DFK89]. For a body that is contained in the unit ball, the volume is asymp-
totically equal to the ratio of the number of sample points contained in it to
the total number of sample points, where the samples are chosen uniformly at
random from the unit ball. Each oracle call determines whether a given point
is contained in the convex body, and hence, no matter what the oracle's
answer, the answer provides additional information about the volume. How-
ever, for a typical 0-symmetric body K, a single point at maximum distance
from the origin is needed to determine the diameter, and with high probability
many useless oracle calls are necessary to detect this point or even to dis-
tinguish K from the largest 0-symmetric ball contained in K.
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