
Appendix A

Homework Exercises

1. First-derivative matrix
Let

f ′
1 = A f1 + B f2 + C f3

f ′
N = A fN + B fN−1 + C fN−2

(where the constants A, B, and C have different values in each formula).
(a) Find expressions for the constants in each formula so that the error is

proportional to �2.
(b) Use your results from part (a) to define a matrix D such that

f ′
i = Di j f j ; i = 1, 2, . . . , N .

(c) Type in the Matlab function ddz printed below. Verify that it corre-
sponds to the finite difference approximation to the first-derivative that
you defined in part (b). Then type in the script ddz_err (in a separate
m-file). This script tests the accuracy of ddz for a given function ( f = z5

in this case). Run the script to demonstrate that the error is second order
in �.

(d) Try it with a few other functions to see if the result is generally valid.
(Two is enough.) Now try it for the case f = z2. Can you make sense of
the result?

2. Second-derivative matrix
Repeat the analyses above for the second-derivative. To begin with, assume
that:

f ′′
i = A fi−1 + B fi + C fi+1 ; i = 1, 2, . . . , N

f ′′
1 = A f1 + B f2 + C f3 + D f4

f ′′
N = A fN + B fN−1 + C fN−2 + D fN−3
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(a) Find expressions for the constants A, B . . . in each formula so that the
error is proportional to �2 .

(b) Write a Matlab function called ddz2, similar to ddz, that computes a
second-derivative matrix using your results from part (a). Modify the
script ddz_test so that it computes the second-derivative using your
function ddz2 and tests its accuracy. Demonstrate that your approxima-
tion is accurate to second order.

3. Differential Eigenvalue Problem
(a) Analytically determine the values of the constant λ for which the following

boundary value problem has solutions:

f ′′ = λ f ; f (0) = f (π) = 0. (A.1)

(b) Now do the same thing numerically. Start by defining a vector of equally
spaced z values zi ; i = 1, 2, . . . , N , such that z0 and zN+1, if they were
included, would be equal to 0 and π . Use your subroutine ddz2 to com-
pute the second-derivative matrix for z , then replace the top and bottom
rows so as to be consistent with the boundary conditions f0 = fN+1 = 0
. Set N = 10. The eigenvalues of your matrix should now correspond
to the values of λ that you found in part (a) (at least inasmuch as the
finite difference derivative you derived is accurate). Check this by using
the Matlab routine eig to find the eigenvalues, then the routine sort to
sort them from smallest to largest. Plot the eigenvectors corresponding to
the smallest and largest1 eigenvalues. You should find that the former is
a smooth, well-resolved function, whereas the latter has a lot of poorly
resolved small-scale structure. Correspondingly, the smallest eigenval-
ues should match the analytical solution closely, whereas the largest will
not.
[At the end of this assignment is a sample script that you can use as you
wish.]

(c) Repeat part (b) using one-sided derivatives for the top and bottom rows
instead of boundary conditions. What difference does this make to the
result?

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function d=ddz(z)

% First derivative matrix for independent variable z.

1 In absolute value.
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% 2nd order centered differences.

% Use one-sided derivatives at boundaries.

% check for equal spacing

if abs(std(diff(z))/mean(diff(z)))>.000001

disp([’ddz: values not evenly spaced!’])

d=NaN;

return

end

del=z(2)-z(1);N=length(z);

d=zeros(N,N);

for n=2:N-1

d(n,n-1)=-1.;

d(n,n+1)=1.;

end

d(1,1)=-3;d(1,2)=4;d(1,3)=-1.;

d(N,N)=3;d(N,N-1)=-4;d(N,N-2)=1;

d=d/(2*del);

return

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Script ddz_err

% Example script for OC680 Hmwk #1.

% This script tests the first-derivative matrix computed in ddz.

% The result

% shows that the method is 2nd order in the time step grid

% increment.

% The assignment is to do the same for the second-derivative.

NN=[10:10:100];

% compute error at each N

for i=1:length(NN);

N=NN(i);

% 0<z<1

del(i)=1/N;

z=[0:1:N-1]’*del(i);

% specify test function f(z) and its (exact)

% derivative fp(z)

f=z.^5;

fp=5*z.^4;

https://doi.org/10.1017/9781108640084.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108640084.015
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d=ddz(z); % compute derivative matrix

df=d*f; % compute finite-difference approximation

% to the derivative

err(i)=sqrt(mean((fp-df).^2)); % compute root-mean-squared

% error

end

% plot error vs. N

figure

loglog(del,err,’*’)

xlabel(’\Delta’)

ylabel(’ERROR’)

hold on

% regress to find power law and plot

p=polyfit(log(del),log(err),1)

err_th=exp(p(2))*del.^p(1);

plot(del,err_th,’-’)

ttle=sprintf(’ERROR = %.2f\\Delta^{ %.2f}’,exp(p(2)),p(1))

title(ttle)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% HMWK 1 Part 3

%

clear

close all

% define z values

N=10;

z=pi*[1:N]’/(N+1);

% compute derivative matrix

d=ddz2(z);

dz=z(2)-z(1);

% To use 1-sided derivatives, comment out the next two lines.

d(N,:)=0;d(N,N-1)=1/dz^2;d(N,N)=-2/dz^2;

d(1,:)=0;d(1,1)=-2/dz^2;d(1,2)=1/dz^2;

% compute eigvals & eigvecs

[v ee]=eig(d);e=diag(ee);
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% sort

[~,ind] =sort(abs(e),’ascend’);

e=e(ind);v=v(:,ind);

% Plot eigenvalues /i^2

% If the eigfn is well-resolved, this will be close to -1.

figure

plot([1:N],e./[1:N].^2’,’*’,’markersize’,10)

xlabel(’i’);

ylabel(’\lambda_i / i^2’)

title(’Is \lambda_i / i^2 = -1 ?’)

% Plot first and last eigvecs.

% The first is well-resolved, and its eigval is close to -i^2.

% The last is poorly-resolved, and the eigval is not close

% to -i^2.

figure

subplot(1,2,1)

plot(v(:,1),z,’b*’); hold on

plot(v(:,1),z,’b’)

ylabel(’z’)

title(’First eigvec (smallest abs(eigval))’)

subplot(1,2,2)

plot(v(:,end),z,’r*’); hold on

plot(v(:,end),z,’r’)

title(’Last eigvec (largest abs(eigval))’)

4. Benard Convection
(a) Given

σ 2 + (ν + κ)K 2σ + νκK 4 + Bzcos2θ = 0 (A.2)

as derived in class, show that

∂σ

∂cos2θ
> 0.

[Hint: You don’t have to solve the quadratic equation to do this. Just dif-
ferentiate each term.] What assumptions do you have to make about σ
and Bz for this to be true? Write a brief (one-sentence) justification for
each assumption. At what value of cos2 θ will σ be greatest (if all other
parameters are fixed)?

(b) Minimize the function (k̃∗2 + n2π2)3/k̃∗2 with respect to k̃∗2. Give both
the minimum value, and the value of k̃∗2 at which the minimum occurs, as
functions of n . Show that the critical Rayleigh number is 657.5.
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(b) Temperature differential from surface.
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Figure A.1 The diurnal cycle of upper ocean convection (courtesy J. Moum). For
reference, a temperature change �T = 2mK is equivalent to a relative density
change �ρ/ρ = 10−6.

5. A Convective Mixed Layer
Suppose that nocturnal convection in the upper ocean is driven by a density
difference �ρ/ρ0 = 10−6 over the upper 40 m (as in Figure A.1). Compute
the Rayleigh number, using the following values:

ν = 1.0 × 10−6m2s−1

κ = 1.4 × 10−7m2s−1

g = 9.81ms−2.

Plot σ(k̃) for these parameter values. What is the horizontal wavelength
(2π/k̃) of the fastest-growing instability? What are its growth rate and e-
folding time? Give the e-folding time in hours, and compare it with the length
of time over which convective conditions persist (say 12 hours). By what factor
would the amplitude of this instability grow during that time?

6. An Unstable Layer in an Inviscid Fluid
In a fluid with ν = κ = 0, suppose that the mean buoyancy gradient has the
following profile:

Bz = Bz0(1 − 2sech2αz). (A.3)
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Sketch this function and show that the fluid is stably stratified except for an
unstable layer surrounding z = 0.
Solve (2.29) with boundary conditions ŵ → 0 as z → ±∞ for the special
case k̃ = α. (Hint: try ŵ = sech2βz, where β is a constant to be determined.)
In a later project you will solve this numerically for a full range of k̃.
Note: Hyperbolic functions provide a useful model for simple shear flows.
Here are a couple of useful properties:

d

dx
tanh x = sech2x = 1 − tanh2x .

7. Numerical Analysis of Shear Instability
(a) Write a Matlab function to find eigenvalues σ and eigenfunctions ŵ of the

Rayleigh equation in finite difference form:

σ Ai j ŵ j = Bi j ŵ j (A.4)

for i, j = 1, 2, . . . , N with boundary conditions

ŵ0 = ŵN+1 = 0. (A.5)

The matrices A and B are defined by

Ai j = Di j − k̃2 Ii j

Bi j = −ik(Ui Ai j − Ui
′′ Ii j ) (A.6)

where D is the second-derivative matrix [including the boundary con-
ditions (A.5)], k̃ is the wave vector magnitude

√
k2 + �2, �U is the

background velocity profile, �U ′′ is its second-derivative, I is the identity
matrix and there is no sum on the repeated index i . After defining A and
B, use

[w,e]=eig(B,A); sigma=diag(e);

to solve the generalized eigenvalue problem (A.4). Finish by sorting
the eigenvalue/eigenvector pairs in order of descending growth rate. Out-
put the pair with the largest growth rate. Your function should accept the
vectors �z, �U , and the scalars k and � as inputs and deliver σ and ŵ for the
mode with the maximum growth rate as outputs.
Hints:
● In Matlab, a simple way to left-multiply a vector onto a matrix, vi Ai j

(with no sum on i), is like this: diag(v)*A.
● The identity matrix of size N × N is given by the built-in function
eye(N)
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● It’s a good idea to use the second-derivative matrix to compute U ′′ , but
use one-sided derivatives rather than boundary conditions for the top
and bottom rows, since it does not obey the same boundary conditions
as ŵ.

● Make sure your z vector excludes the boundaries!
● Sort using sort(...,’descend’).

(b) Write a script to test the function you developed in part (a) for the
following test case:

U � = tanh(z�); k� = 0.45; �� = 0; z� ∈ (−4, 4); � = 0.2.

The script should define the inputs for the function, call the function, then
plot the outputs. The resulting plot should show ŵ� versus z� , both as
real and imaginary parts and in polar form (magnitude and phase versus
z∗), and should include an annotation that gives the growth rate, e.g.,

title(sprintf(’\\sigma*=\%.3f’,your_value_of_sigma)).

You should get σ� = 0.175 .
[Hint: Remember that your vector of z� values should exclude the
boundaries.]

8. The Piecewise-Linear Shear Layer: Numerical Solution
Here you will solve the shear layer problem numerically for comparison with
the analytical solution.
(a) Repeat the derivation of σ� = σ�(k�) for the piecewise-linear shear layer

with all of the algebra included.
(b) Test your result from (a) using the numerical function developed in project

7. Use the scaled variables, so that the velocity profile is:

U � =
⎧⎨⎩

1, z� > 1
z�, − 1 ≤ z� ≤ 1
−1, z� < −1

Compare plots of σ�(k�) as well as eigenfunctions and growth rates of the
fastest-growing mode for both the analytical and numerical solutions. Try
a few different ranges for z, e.g. z=[−3 3]; z=[−6 6]; z=[−10 10], and
plot σ�(k�) for each. You should find that only when z=[−10 10] or larger
is the analytical form of (3.34) reproduced. That is because the boundary
conditions are different. In the analytical solution, we assumed that the
vertical domain is infinite, so that ŵ → e−k̃|z| as |z| → ∞.
[Hint: When comparing eigenfunctions, remember that they are only
defined up to a multiplicative constant, which may be complex. As a result,
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eigenfunctions that should be the same can look totally different. The solu-
tion is to normalize. The easiest way is to divide the eigenfunction through
by its value at some fixed height, e.g., z = 0.]

(c) Resolve the discrepancy in boundary conditions between (a) and (b) by
deriving and implementing an asymptotic boundary condition in your
code. For consistency with ŵ → e∓k̃z , require that ŵ′ = +k̃ŵ and
ŵ′ = −k̃ŵ at z = z1 and z = zN , respectively. At z = z1:

ŵ′
1 = ŵ2 − ŵ0

2�
= k̃ŵ1 ⇒ ŵ0 = ŵ2 − 2k̃�ŵ1.

Now substitute into the finite difference expression for the second-
derivative:

ŵ′′
1 = ŵ0 − 2ŵ1 + ŵ2

�2
= 2ŵ2 − 2(1 + k̃�)ŵ1

�2

After a similar process at the upper boundary, you should have:

D1,1 = −2(1 + k̃�)/�2 ; D1,2 = 2/�2 ; D1, j = 0 otherwise

DN ,N = −2(1 + k̃�)/�2 ; DN ,N−1 = 2/�2 ; DN , j = 0 otherwise.

After making this replacement in the derivative matrix, show that you can
match the analytical result with a much smaller domain.

9. Transforming the Rayleigh Equation
The vertical displacement η can be defined in terms of vertical velocity: w =
Dη/Dt .
(a) Linearize this equation by assuming small perturbations about a parallel

shear flow U (z)ê(x). Assuming a normal mode solution, show that

ŵ = ιk(U − c)η̂.

(b) Now show how the Rayleigh equation:

ŵzz =
(

Uzz

U − c
+ k̃2

)
ŵ

can be transformed into an equation for the vertical displacement eigen-
function:

[(U − c)2η̂z]z = k̃2(U − c)2η̂.

10. Energy Analysis for a Shear Layer
Using the function developed in problem 7, compute σ�(k�) for the hyperbolic
tangent shear layer U � = tanh(z�). Your plot should cover the range 0 < k� <
1. You should find that the growth rate and wavenumber of the fastest growing
mode are close to the “test case” suggested in homework problem 7b.
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Using the value of k� you identified as the fastest-growing mode, do the
following.
(From here on, stars indicating scaled quantities are dropped.)
(a) Plot profiles of

(1) ŵ (amplitude and phase)
(2) u′w′
(3) π ′w′

(b) Plot profiles of
(1) the kinetic energy K ′(z) = 1

2(u
′u′ + w′w′),

(2) the shear production rate SP(z) = −u′w′dU/dz, and
(3) the flux convergence FC(z) = −dπ ′w′/dz .

(c) Describe the pattern of energy transfer in words, i.e., where it’s created,
where it’s fluxed from and to.

(d) Plot profiles of 2σr K ′(z) and SP(z)+ FC(z) on the same axes. Check that
they are equal to within, say, a few percent. If not, debug and recheck your
results for (b) and (c).

(e) Add the x dependence to the eigenfunction: w′(x, z) = {
ŵ(z)eikx

}
r for

x ∈ [0, λ] and λ = 2π/k. The result will be a matrix, w′
i j = w′(xi , z j ).

Make a contour or image plot of w′. Is the tilt consistent with positive
shear production? [Hint: In Matlab, good choices for plotting functions of
two variables are contourf and pcolor.]

11. The Bickley Jet
(a) Using the techniques developed above, investigate the stability of the

Bickley jet:

U � = sech2(z�).

To encompass the domain of instability, you’ll need to scan wavenumbers
in the range 0–2.
(1) For each wavenumber, plot not only the fastest-growing but also the

second-fastest. You’ll find that there are two families of modes, the
sinuous and varicose modes.

(2) For the fastest growing mode of each family, repeat the analyses of
project 10.

(3) Write 1–2 paragraphs describing and comparing the properties of
these modes. Which grows fastest? What are their spatial scales?
Where are the critical levels? Where are the inflection points? Where
is kinetic energy created? Do these locations coincide with critical
levels, or with inflection points, or neither? You might get some ideas
from Smyth & Moum (2002, section 3.1, figures 3 and 4).
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Figure A.2 Cloud patterns over Guadalupe Island, near the Baja peninsula
(NASA). For use with project 11.

(b) Predict the ratio of wavelength of the fastest-growing mode to the jet
width. Obtain the same ratio graphically from the NASA satellite photo
below, and compare your results. (The comparison will of course be
approximate. Be happy if you get agreement to within a factor of 2. Sketch
on the satellite photo to indicate the lengths you used in your estimate.)

12. Sinusoidal Flow
Investigate the stability of the sinusoidal velocity profile

U � = sin(z�)

with impermeable boundaries at z∗ = ±H∗.
(a) Choose the boundaries such that H∗ = π . Solve the Rayleigh equation

numerically for 0 < k∗ < 1 and plot σ ∗(k∗).
(b) Repeat the procedure for several smaller values of H∗. What is the effect

of reducing H∗? At what H∗ does the instability vanish?
(c) What aspect of the inflection point theorem does this illustrate?

13. The Fourth-Derivative Matrix
(a) Derive a second-order finite difference approximation to the fourth deriva-

tive having the following form:

f (4)i = C fi−2 + B fi−1 + A fi + B fi+1 + C fi+2. (A.7)
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Hint: To simplify the algebra, write (A.7) in this form:

f (4)i = A fi + B( fi−1 + fi+1)+ C( fi−2 + fi+2). (A.8)

In the Taylor series expansions for the pairs of terms in parentheses, every
second term will cancel.

(b) In (A.7), the expressions for f1, f2, fN−1, and fN involve “ghost points”
(at which f is not specified). Explain how these expressions can be evalu-
ated using each of the following boundary conditions (in finite difference
form):
● Rigid boundaries: f0 = fN+1 = 0; f ′

0 = f ′
N+1 = 0.

● Frictionless boundaries: f0 = fN+1 = 0; f ′′
0 = f ′′

N+1 = 0 .
Note: It is sufficient to express the boundary conditions to second-order
accuracy, e.g.,

f0
′ = f1 − f−1

2�
= 0.

14. Matrix Solution of the Orr-Sommerfeld Equation
(a) Write a Matlab function to find eigenvalues and eigenvectors for the dis-

cretized Orr-Sommerfeld equation. Your function should accept as inputs
a column vector of z values, the corresponding background velocity vector
U (z), the viscosity ν, the wavenumbers k, �, and a choice of rigid or fric-
tionless boundary conditions at each boundary. It should deliver as output
the growth rate and vertical velocity eigenfunction for the fastest-growing
mode. The function should compute Uzz internally.
You will need to write a subroutine ddz4(z) to compute the fourth deriva-
tive using your results from project 2. That routine need not include
one-sided derivatives at the boundaries (because you will not actually use
it to compute the fourth-derivative of anything).
Try your code for the following test case:

0 < z� < 1; �z� = 0.005; U � = 4z�(1 − z�); ν� = 1/1e5;
k� = 1.55; l� = 0.

Refer to your notes on scaling to make sure you understand what the
starred variables mean, how they are input to your subroutine, and how
to interpret the output. Use rigid boundary conditions. We get σ� =
0.015 − 0.243ι .

(b) Suppose you needed to apply this result to a particular channel flow, with
width 15 m and maximum flow speed 2 m/s. Give the wavelength in
meters and the e-folding time in seconds (or minutes if that seems more
sensible).
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Figure A.3 Schematic velocity profile for a triangular jet.

15. Wave Resonance in a Jet
The triangular jet profile shown in Figure A.3 has three kinks where vorti-
cal waves can propagate. Sketch the three waves such that each adjacent pair
satisfies the criteria for resonance:

(a) The vertical velocity perturbations of each wave amplify the crests and
troughs of the other.

(b) The propagation velocities allow for the waves to be stationary relative to
each other.

Make your own sketch if you prefer.
Comparing with your analysis of the Bickley jet in homework 11 does your
sketch represent the sinuous or the varicose mode?

16. A Convectively Unstable Layer in an Inviscid Fluid, Revisited
In an earlier project you developed a code to solve the Rayleigh equation.
Adapt this code to solve (2.29), the equation for convection in a stationary,
inviscid fluid with an arbitrary buoyancy profile. You will now use this code
to address the unstable layer project 6 problem 2 more thoroughly.

(a) Using the Bz profile (A.3), reproduced below for convenience, compute
and plot the growth rate for a full range of k̃. For simplicity choose α = 1.

Bz = Bz0(1 − 2sech2αz). (A.9)

(b) For the special case k̃ = α, do your numerical results for σ and ŵ match
the analytical solution? Make a plot to illustrate the comparison.

(c) Does this case represent the fastest-growing mode?
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(d) If k̃ = α is not the fastest-growing mode, compute k̃, σ , and ŵ for the
fastest-growing mode and discuss any differences you observe. Make a
plot to illustrate the comparison.

(e) Is your result consistent with the upper bound on the growth rate given in
(2.34)?

17. Instability of a Separating Boundary Layer
A bottom boundary layer flowing over an obstacle tends to separate on the
downstream side. Figure A.4 is an aerial photo of Knight Inlet, a fjord on the
coast of British Columbia. Tidal flow in the fjord must cross a shallow sill,
which is the site of strong instability and turbulence. In this assignment, you
will do stability analyses of this flow.

Here is a sketch of flow over the sill. It shows regions of instability: a
stratified shear layer above, and a separating boundary layer lower down.

Below is an echosounder image of the flow.
We’ll examine the stratified shear flow instabilities soon. Here, we’ll look

at the instabilities of the separating boundary layer, where stratification is not
important. The velocity profile

U � =
{

z�2
(
6 − 8z� + 3z�2

)
, 0 ≤ z� < 1

1, z� ≥ 1

is a model of a boundary layer about to separate.

ebb tide

CSS Vector

Armi & Farmer, 2002, PRSL

sill

Figure A.4 Aerial photo of Knight Inlet, after Armi and Farmer (2002).

Figure A.5 Sketch of instabilities observed in sill flow (Armi and Farmer, 2002).
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Separating 
boundary 
layer with 
instabilities

Stratified 
shear flow 
instabilities

Tidal flow

z = 0

z = –100 m x = 600 m

Figure A.6 Echosounder image of instabilities observed in sill flow. (Adapted
from Armi and Farmer, 2002).

Before doing any stability analysis, what would you guess about the
stability of this flow?

Use your Orr-Sommerfeld code (written as part of project 14) to investigate
the stability of this profile. Place the upper boundary at z� = 3 and use a
grid spacing �� = .02. Use a rigid boundary condition at the bottom and a
frictionless boundary at the top. Make a contour plot (using contourf or pcolor)
of the growth rate versus wavenumber and Reynolds number for 0 ≤ k� ≤
2.1; 10 ≤ Re ≤ 106. Assume � = 0.

What is the minimum Reynolds number for which there is instability? (We
get 280.) Is the instability stabilized or destabilized by viscosity? At this
Reynolds number, is the frozen flow hypothesis valid?

In inviscid shear instability, the growth rate is approximately proportional
to the maximum absolute value of the background shear,

Smax = max
z

|Uz|.

Find the maximum growth rate for Re = 106. Express this growth rate as a
fraction of the maximum background shear.
Find the wavenumber of the fastest-growing mode for Re = 106. Express
the corresponding wavelength as a multiple of the original boundary layer
depth, 1. Now look at the instabilities on the separating boundary layer in the
echosounder image (Figure A.6). Estimate the wavelength of those instabili-
ties as a multiple of the original thickness of the boundary layer. (Don’t forget
to account for the aspect ratio of the image!) How does this result compare
with the result from your stability analysis?
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How do you interpret the result?

● The stability theory for a separating boundary layer describes the observa-
tion perfectly.

● We’re in the ballpark, but the data is imprecise and there may be other
phenomena involved.

● This is not a shear instability of a separating boundary layer.
● . . . ?

18. Instabilities in a Plunging Downslope Flow
Starting from your Orr-Sommerfeld function you wrote for project 14, write
a function to find eigenvalues and eigenvectors for a stratified shear flow in a
viscous, diffusive fluid. Your function should accept as inputs a column vector
of z values, the corresponding background velocity U (z) and buoyancy gra-
dient Bz(z), the viscosity ν, the diffusivity κ , and the wavenumbers (k, �) .
Boundary conditions should be frictionless and fixed-buoyancy. (Later, you’ll
upgrade the function to include other choices.) The function should deliver as
output the growth rate σ and the vertical velocity and buoyancy eigenfunctions
for the fastest-growing mode.
The following test cases crudely model the stratified shear flow instabili-
ties in the Knight Inlet observations. In each case, report the growth rate
and wavenumber of the FGM, and assess the validity of the frozen flow
approximation.

(a) U � = − tanh(z�); B�
z� = 0; z� ∈ [−4, 4]; �� = 0.2; Re = 106; Pr =

1. Boundaries are frictionless and fixed-buoyancy. (I get σ� = 0.1753 at
k� = 0.47.)
Compute the growth rate of the fastest-growing mode as a fraction of the
maximum background shear. Compare with the corresponding result from
project #1 of the this homework, the separating bottom boundary layer.
How do these two results compare? Can you guess the reason for the
difference?

(b) U � = − tanh(z�) B�
z� = 0.1 sech2(z�) z� ∈ [−4, 4]; �� = 0.2; Re =

106; Pr = 1. Boundaries are frictionless and fixed-buoyancy. (I get σ� =
0.1146 at k� = 0.44.)

(c) Same as (b), but Re = 100. (I get σ� = 0.0977 at k� = 0.43.)
(d) Same as (b), but Re = 20.

In cases (a–c), the wavenumber of the fastest-growing mode remains more
or less consistent. Use a typical value of this wavenumber, along with
the scaling relations discussed in class, to estimate the wavelength of the
instability as a multiple of the vertical scale over which the background
velocity varies. Compare this result visually with the shear instabilities
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in the echosounder image below. How does this ratio of scales of the
computed instabilities compare with what you see in the observations?

19. Sheared Convection
Here you will use your existing stratified shear flow function to investigate
the effect of background shear on convective instability. Sheared convection
is an important aspect of the dynamics of thunderstorms and of upper ocean
response to intense surface forcing (e.g., hurricanes). You’ll begin by testing
the code by reproducing the results we obtained analytically in the first week
of the course. You’ll then repeat the analysis with a background shear flow
added, and find something interesting.
(a) Test your software.

Using the Matlab script given below along with your subroutine for strati-
fied shear flow, plot growth rate versus wavenumber and Rayleigh number
for a flow with

0 < z� < 1; �� = 0.05; U � = 0; ν� = Pr = 7; κ� = 1;

B� = −Ra Prβ; β = z�; B�
z� = −Ra Pr · 1

Compute with both frictionless and rigid boundaries. In both cases, buoy-
ancy can obey fixed-buoyancy conditions. Check to make sure that the
critical values of Ra and k delivered by your code match the theoretical
values.
The following script will guide you through most of this, but you must
insert the call to your function for stability analysis of stratified shear flow
with the appropriate inputs and outputs. If you prefer to write your own
script, that is fine.

% Hmwk 7, project 1A

clear

close all

fs=18;

lw=1.6;

% set parameters

Pr=7; % Prandtl number

irigid=0; % boundary conditions (0=frictionless, 1=rigid)

% define z values

del=.05;

z_st=[del:del:1-del]’;
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% define profiles

beta=z_st;

beta_zst=ones(size(z_st));

U_st=zeros(size(z_st));

% analytical results for critical Rayleigh number

% and wavenumber

if irigid==0

Ra_c=(27/4)*pi^4; % frictionless boundaries (as derived

% in class)

k_c=pi/sqrt(2);

bcw=’ff’

elseif irigid==1;

Ra_c=1708; % rigid boundaries (Kundu 11.3)

k_c=3.12;

bcw=’rr’;

end

bcb=’cc’;

% ranges for loops over k and Ra

ks=[0:.2:12];nks=length(ks)

Ras=10.^[2:.2:5];nRa=length(Ras);

l_st=0; % 2D modes only

% loop over k and Ra

for i=1:nks

k_st=ks(i);

for j=1:nRa

Ra=Ras(j);

Bz_st=-Ra*Pr*beta_zst;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% put call to your stratified shear flow routine here

[s_st] = ...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sig(i,j)=real(s_st);

end

disp([num2str(i/nks) ’ done’]) % indicate progress

end

% plot growth rates along with analytical values for the

% critical Ra and k
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figure

contourf(ks,Ras,sig’,max(sig(:))*[0:.05:.95]);shading flat

hold on

plot([k_c-1 k_c+1],Ra_c*[1 1],’k’,’linewidth’,lw)

plot(k_c*[1 1],Ra_c*[1/1.5 1.5],’k’,’linewidth’,lw)

set(gca,’yscale’,’log’)

colorbar

ylabel(’Ra’,’fontsize’,fs,’fontangle’,’italic’,

’fontweight’,’bold’)

xlabel(’k*’,’fontsize’,fs,’fontangle’,’italic’,

’fontweight’,’bold’)

title(’Benard convection scaled growth rate’, ’fontsize’,

fs,’fontweight’,’normal’)

set(gca,’fontsize’,fs-2)

print(’-djpeg’,’hmwk7_1a’)

(b) The sheared case.
First, investigate the possibility that oblique modes (modes whose wave
vector points in a different direction than the sheared flow) are the most
unstable by doing the following. Modify the script you used for part A
so that the Rayleigh number is fixed at 1000, and loop instead over both
k� and ��. The range 0 ≤ k�, �� ≤ 4 is sufficient. Assume friction-
less boundaries. How do growth rates vary as the angle of obliquity is
increased?
Now apply a uniformly sheared background flow in the x direction, U � =
RePr z�, setting RePr = 20. Run the script again. Now how do growth
rates of oblique modes compare with those of 2D modes?
Consider convective modes with wave vector parallel to the sheared flow,
i.e., �� = 0. What effect does the presence of shear have on these
modes? Does it increase the growth rates, decrease them, or leave them
unchanged? Now consider the whole range of k� and ��. What is the angle
of obliquity for the fastest-growing mode? Knowing the effect of shear on
convective modes, could you have predicted the angle of obliquity for the
fastest-growing mode? [Hint: review section 4.3.2.]

20. Instabilities of the Eady Model
Based on section 8.8, implement a solution procedure

[σ, q̂, ŵ, b̂] = F(z,Uz, Bz, f, k, l).
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(a) Baroclinic modes
Test your code by computing growth rates as a function of k with � = 0
and Ri = 100. Compare the growth rate and wavenumber of the fastest-
growing mode with (8.60) and (8.61) or (8.62).

(b) Symmetric modes
Computing growth rates as a function of � with k = 0 and Ri = 0.75. Is
the growth rate independent of � as in the analytical solution for symmetric
instability? If not, why not?

(c) Comparison
What is the critical value of Ri above which the baroclinic mode grows
faster than the symmetric mode?
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