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On the Logic of Interrogative Inquiry
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In earlier publications Jaakko Hintikka has introduced the interrogative model of
inquiry and studied some of its applications.1 At its simplest, the interrogative model
takes the form of a game between a player known as the Inquirer and a source of
information we call Nature. The inquirer is trying to derive a conclusion C from a given
set of premises T by standard deductive means augmented by additional information
gained from Nature. (We can think of C as a set of formulas related disjunctively to each
other.) The inquirer may obtain this additional information by means of questions put to
Nature. The answers to these questions, when available, are then added to the premise set
T. When a question is answerable but no true answer is available, Nature may respond
with a false answer.

The deductive steps employed are subject to certain limitations. For instance, if the
derivation is being carried out in a Beth-style tableau system, we require that the deductive
steps obey the subformula principle.2 Also, we disallow in general the arbitrary addition
of tautological disjunctions to the left-hand column of the tableau. (The addition of
contradictory conjunctions to the right column is allowed if one half of the contradiction
occurs in the subtableau).3 In addition, the movement of a formula by a negation rule
from the right column to the left one is prohibited. (The converse movement from the left
column to the right one is admissible.)

Likewise, limitations are placed upon the conditions under which questions may be
put to Nature. One is to allow a question only if the presupposition of the question is
present in the left-hand column of the subtableau. Additionally, one may further limit the
set of possible questions by allowing only those questions whose answers are of a certain
quantificational complexity.

An interrogative game proceeds relative to a particular model M of the given language,
which is assumed to be a first-order language. When C is derivable from T in M, we say
that C is a model consequence of T in M, and express this by

(1) M:ThC

Clearly, if no questions are allowed, M becomes irrelevant and the relation of model
consequence reduces to the usual relation of deductive consequence.
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Conversely, with certain qualifications it can be shown that a sentence is true in M if it
can be established by means of an unrestricted interrogative procedure without any initial
premise T. Thus in a sense both the concept of deductive consequence and the concept of
truth are special cases of the relation (1).

The interest that the interrogative model has is largely due to the fact that it enables us
to study strategies of scientific inquiry and perhaps even strategies of discovery in the
form of strategies of question selection. Moreover, it turns out that the principles of
interrogative strategy selection are closely related to the principles governing the choice of
deductive strategies. This lends a new significance to the old phrases "logic of science"
and "logic of scientific discovery".

Because of this partial strategic parallelism between empirical (interrogative) inquiry
and deductive reasoning, it is of crucial importance to study the precise extent to which
metatheoretical results obtained in logical theory have counterparts in interrogative inquiry.
The purpose of this paper is to launch such a study. It will be shown that some of the
most important results concerning the deductive consequence relation can be extended to
the relation of model consequence. One such result is Craig's interpolation theorem.4

This result has as an important consequence Beth's theorem relating implicit and explicit
definability.5 We shall extend Craig's result to the interrogative model, and then proceed
to define the interrogative counterpart to definability. This notion turns out to be in effect
what is commonly called identifiability.6 We shall then prove a result analogous to
Beth's relating implicit and explicit identifiability.

Interpolation Theorem: Assume that M:THC, and that (a) T is consistent; (b) not f-C;
and (c) C does not contain individual constants. (It may contain dummy names, i.e., free
individual variables.) Then there is a formula I such that: (i) each nonlogical constant of I
occurs in both T and C, except for a finite number individual constants bi, b2,...,bn
which name members of the domain Do(M) of M. These constants will have been
introduced by Nature's answers to wh-questions in the course of the derivation of C from
T i n M . (ii)M:TI-I. (iii)II-C.

Comment: We are not making any assumptions as to what kinds of answers Nature will
give, as long as their totality remains the same throughout the argument.

Proof: By induction on the length I of a derivation of M:ThC. A basis for induction is
obtained from case 1=0.

Let 1=0. Then the tableau corresponding to M:ThC is closed without the application
of any rules. By the tableau closure conditions, there is a formula F such that (1) F
occurs both in T and in C; or (2) F and -F occur in T; or (3) F and -F occur in C. But
(2) is ruled out by (a) and (3) by (b). In the case (1), F serves as the interpolation
formula.

In general, we assume the result for l=n; and prove it for I=n+1. We shall here
consider only a few sample cases. It will be clear from these how to extend the proof to
the remaining cases.

Sample Case 1: The first step in the derivation of M:ThC is the rule for a disjunction
(F v G) in the left column. Two subtableaux result, each of length n or less, like the
original except that by F and G, respectively, has been added to their left column. By
hypothesis, each subtableau has an interpolation formula. Let us call them I' and I",
respectively. Then I = (I1 v I") will serve as an interpolation formula for the derivation
of length l=n+l, as one can easily show.
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Sample Case 2: The first step in the derivation M:Tl-C is an universal instantiation of a
formula VxS[x] in the left column with respect to an individual symbol appearing only in
the right column. Then this symbol must be a dummy name z, for C did not initially
contain individual constants. For this reason, any individual constant occurring in the
right column also occurs in the left one. Let the universal formula be VxS[x] and its
instantiation S[z]. But by the inductive hypothesis, there is a derivation of length n of
M:TU{S[z]}hC and hence an interpolation formula J[z] for this derivation. Then it
can be shown that VxJ[x] serves as an interpolation formula for the longer derivation.
Obviously it contains the right symbols, and clearly, VxJ[x]hC, for VxJ[x]hJ[z] and
J[z](-C. We can also show that M:ThVxJ[x] as follows: Start a tableau with T in the
left column and VxJ[x] in the right one. It can be built further as follows:

3x S[x]
(member of T)

S[z]
(instantiation)

VxJ[x]

J[z]
(instantiation)

By the inductive hypothesis we can close this tableau, which shows that M: ThV xj[x]
and completes the proof of this subcase.

Sample Case 3: The first step of the derivation is an application of existential instantiation
to a formula in the right column with respect to an individual symbol occurring only in the
left column. Let the existential formula be 3xS[x] and the symbol a constant b. Then
there is a derivation of length n of M:Tl-CU {S[b]}, and by the inductive hypothesis
there is an interpolation formula J[b] for this derivation. Then 3xJ[x] will serve as an
interpolation formula for the derivation of length n+1. Obviously, it has the right
symbols, and since by the inductive hypothesis M:ThJ[b], we now have M:TK3xJ[x].
Also, 3xJ[x]l-C, for by assumption J[b]l-C where b does not occur in C.

The case in which the instantiation is with respect to a dummy name z is dealt with
similarly.

The remaining deductive cases proceed similarly. We will now address the two
interrogative cases.

Sample Case 4: The first step of the derivation is a prepositional question whose
presupposition is (F v G) resulting in the addition of (say) F to T. Then by hypothesis
there is an interpolation formula I for the resulting derivation of length n. This I satisfies
conditions (i)-(iii) for the derivation of length n+1, and thus is a suitable interpolation
formula for this derivation.

Sample Case 5: the first step in the derivation is an application of the rule for wh-questions
where the presupposition of the question is 3xS[x]. The result is the addition of S[b] to
the left column. By hypothesis, there is an interpolation formula I[b] for the resulting
derivation of length n. This I=I[b] satisfies conditions (i)-(iii) for the derivation of
length n+1, as one can easily show.

Since the only case in which I contains nonlogical constants not shared by T and C is
this last case, it follows that any such constant is a name introduced by answers to
wh-questions. This completes our sketch of the proof of the interpolation theorem.
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Next we shall consider interrogative counterparts to definability, i.e., different
concepts of identifiability. A one-place predicate P is said to be implicitly identifiable in
M on the basis of T just in case

M:TP(b) or
M:T-P(b)

for each b naming a member of Do(M) by means of questions and answers which do not
contain P. A one-place predicate P is said to be explicitly identifiable just in case

(2) M:Tl-Vx(P(x) o D[x, a i , a 2 , . . . , a n ] )

Likewise where P is not found in D and ai,a2,.-an are names of members of Do(M).

In order to study these concepts, we shall first prove the following lemma:

Lemma: Let T' be like T except that occurrences of P in T are everywhere replaced by P'
in T'. Let M1 be like M except that P1 is interpreted in it in the same way as P.
Furthermore, let the tautological formula

V = Vx(P(x) «-> P'(x)) v - Vx(P(x) <-> P '(x))

be available to be added to the left column. Then if P is implicitly identifiable in M on the
basis of T, i.e., if

(3) M:TPh(b) or M:TH - P(b)

for each b, we have

(4) M:TUT'l-Vx(P(x) <->

Comment: Both in (3) and in (4) it is assumed that Nature answers only questions that do
not contain P. We shall also assume that Nature will answer all wh-questions with a
quantifier-free answer.

Proof: Construct a tableau for (4). Add V to the left column and apply the disjunction
rule to it, adding Vx(P(x) <-» P'(x)) to one subtableau and -V x(P(x) <-> P'(x)) to the
other. The first closes immediately. In the other we in effect have 3x((P(x) & -P'(x))
v (-P(x) & P'(x))). This can serve as the presupposition of a wh-question which by
assumption yields an answer of the form

(5) (P(b) & -P'(b)) v (-P(b) & P'(b)).

Apply the disjunction rule to (5). By symmetry, it suffices to consider only the subtableau
containing P(b) & -P'(b), hence P(b) and -P'(b). Now because of the implicit
identifiability of P in M, either P(b) and P'(b) or -P(b) and -P'(b) can both be derived
interrogatively in M' from T U T \ This closes the tableau and proves the lemma.

Extended Beth's Theorem: Assume that Nature will answer all wh-questions with
quantifier-free answers. If either M:Tl-P(b) or M:Th -P(b) for each b naming a
member of Do(M), then M:TJ-Vx(P(x) o D[x, ai , ai,...,an], where P does not
occur in D and ai, a2,...,an are a finite number of names of members of Do(M), in
both cases without questions that contain P.
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In brief, if a predicate is implicitly identifiable, it is explicitly identifiable. In the proof
of the extended Beth's theorem, M:Tl-C will express interrogative derivability by means
of questions and answers that will not involve P or P'.

Comment: We have to make here the auxiliary assumption that tautological disjunctions
(S v -S) can be added to the left column if S or -S already occurs in it.

Proof: Let P1, T1 and M1 be as before. By the lemma above, (4) holds, therefore
also

(6) M':T U TWx(P(x) <-> P'(x)). Hence

(7) M':T U {P(x)}h(T' -> P'(x)).

(Moving formulas between the two columns in this way is made possible by the auxiliary
assumption mentioned above.) But by the interpolation theorem (7) implies that there is
an interpolation formula I[x] with x as its only free variable such that

(8) M':T U{P(x)}hI[x] and

(9) I [x]HT' -> P'(x)).

Here I[x] may also contain names of individuals introduced by Nature's answers to
wh-question in establishing (6). But (8) entails

(10) M:Th(P(x) -

and (9) entails

(11) I[x]H(T -> P(x)), hence also

(12) Th(I[x] -> P(x)).

Together (10) and (12) entail

(13) M:Th(P(x) <-» I[x]) and hence also

(14) M:ThVx(P(x)

The interpolation formula I[x] therefore serves as the desired definiens, proving our
Extended Beth's Theorem.

Our extension of Beth's theorem is easily seen to hold for other constants than one-
place predicates.

The interest of the interpolation theorem is illustrated by the way in which the
complexity of the interpolation formula I reflects the complexity of the process of showing
that M:ThC. As in the deductive case, the quantificational complexity of I (roughly, the
number of layers of quantifiers in I) is determined by the number of those applications of
deductive instantiation rules (cf. sample cases 2-3 above) which introduce a new
individual symbol to one of the columns, as can be seen by reviewing the proof of the
interpolation theorem. Now we can like wise see that the interrogative complexity of the
questioning process which establishes that M:ThC determines the number of the
parameters (names of members of Do(M)) occurring in I. Similar remarks can be
addressed to our extension of Beth's theorem.
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It is important to notice that in the interpolation theorem the model consequence that
M;ThI can be established by a questioning process with the same restrictions on
allowable questions as were used for the derivation corresponding to the proof that
M:Tt-C. Likewise, in the theorem concerning implicit and explicit identifiability (14) can
be established by the same kind of questioning as was needed to establish (6).

Our main results are relative to a given model M, but they can be generalized to the
entire space of models e.g., as follows:

Absolute Interpolation Theorem: Assume that the conditions of the interpolation theorem
hold for T and C in each model M of T. Then there exists a deductive interpolation
formula I of the form 3xi, 3X2,...3xn I[xi, X2,...,xn] between T and C. Again, the
interest of this result stems from the fact that the structure of the interpolation formula
reflects the structure of the interrogative argument which establishes C.

This version of the theorem is not trivial. For reasons of space, its proof cannot be
presented here. It constitutes an important link between the relations of deductive
consequence and model consequence.

Likewise, we have the following absolute version of Beth's theorem:

If P is implicitly identifiable on the basis of T in each model M of T, then there are k and
Dj (i=l, 2, ..., m) such that

(8) TK3xi,3x2 , . . .3xnV, ' jy"Vy(P(y) <-> Dj[y, x i , x2 , ..., x n ] .

This result is in effect known from the theory of definability.7

The precise consequences of our results for the philosophy of science will have to be
spelled out separately. A few examples may nevertheless be in order. Our interrogative
counterpart to definability, viz. the notion of identifiability, is an especially promising
concept. The identifiability of (say) a one-place predicate P in M on the basis of T is
clearly very close to what philosophers of science have meant by its observability or
measurability.8 The dependence of this concept on T vindicates the views of those
philosophers who have argued that observability is relative to an underlying theory. In a
sense, it may be suggested, one can in this way prove the famous thesis of the theory-
ladenness of observations.

Moreover, it is not hard to see that identifiability is what many philosophers and
methodologists have meant by definability.9 For instance, in the onetime controversy
between H. A. Simon and Patrick Suppes concerning the definability of concepts
occurring in certain scientific theories (especially in classical mechanics), the parties were
literally speaking of different things, in that Simon was speaking of identifiability while
Suppes was speaking of ordinary definability.

In other respects, too, earlier discussions of the definability of various scientific
concepts are put in a new light by the introduction of an explicit concept of identifiability.

It is also of interest to note that the presence of a disjunction in our absolute version of
Beth's Theorem for identifiability. What it means is that in different models (applications)
of an explicit unambiguous theory, a certain concept may have to be identified differently.
This shows that there is a fallacy in the arguments of those philosophers of science who
have argued from a difference between the ways a given concept is identified in two
theories to the incommensurability of those theories.
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But are not our results made unrealistic by the fact that we are restricting our attention
to first-order languages? Most philosophers of science would apparently think so, but
they are proved wrong by the format of such results as our interpolation theorem. It
concerns each model of a certain kind. Now what strengthening first-order logic means is
eliminating somehow some of the former models. But such an elimination usually makes
little difference to results concerning each model of a certain sort. Thus there even seems
to be a general methodological moral here for philosophers of science: don't
underestimate the uses of the model theory of first-order logic.

Notes

e.g., Hintikka (1984) and (1988b). Important applications are presented inter alia
in Hintikka (1988c and in (1988a).

2For the tableau method, see Beth (1955).

3The admissibility of tautological premises of the form (F v -F) to the left column (and
analogously for the right column) makes a difference to the available model consequences,
unlike the deductive case. For the interpretation of these apparently tautological premises,
see Hintikka (1988b).

4Craig (1957). In 1960, J.W. Addison wrote that "the Craig interpolation theorem
begins to emerge as the most important result in pure logic since 1936." (See Addison,
1962.)

SBeth (1953).

^This notion of identifiability plays a major role inter alia in econometrics and systems
theory. Cf., e.g., Koopmans (1949); Hsiao (1983). Our extension of Beth's theorem to
identifiability instead of definability is a first step toward a general logical theory of
identifiability.

7It is closely related to the Chang-Makkai theorem. See Rantala (1977).

8Cf. here Raimo Tuomela (1973).

9See here Simon (1947,1959 and 1970); Suppes (1957); McKinsey, Sugar and
Suppes (1953); Jammer (1961) especially chapter 9.
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