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Abstract. The discovery by Seth C. Chandler (1891) that the motion of 
the pole (the reality of which had been established by K.F. Kiistner and by 
the simultaneous latitude observations at Honolulu and Berlin by German 
astronomers) resulted from two components i.e. a free circular motion 
with a period of 427 days and a forced elliptical motion with a period 
of 365.25 days, raised considerable interest in the scientific community of 
astronomers and geophysicists. 

The celebrated Mecanique Celeste of Tisserand (1890) had been pub­
lished just one year before at a time when doubts still persisted and 
arguments could be presented in favor of the fixed pole. Starting with 
Tisserand's arguments, we describe in this paper the impact of the succes­
sive contributions by A. Greenhill, S. Newcomb, Th. Sloudsky, S. Hough, 
G. Herglotz, A. Love, J. Larmor and H. Poincare to the solution of the 
problems raised by the Chandler period. 

The lines of reasoning taken by these eminent scientists were rig­
orously correct so that, after about one hundred years, contemporary 
researchers, who benefit from a far better knowledge of the inner struc­
ture of the Earth and are able to take advantage of modern computing 
power, do not contradict any of their conclusions and instead refine them 
with an accuracy which was not imaginable one century ago. 

1. The rigid Earth rotation 

F. Tisserand (1845-1896) and H. Poincare (1854-1912) were both members of 
the Commission pour l'etude de la variabilite des latitudes as Poincare succeeded 
Tisserand after his death. Both are eminent representatives of the famous French 
school of celestial mechanics having left monumental works and having provided 
major contributions to many problems in astronomy. Tisserand wrote the second 
volume of his celebrated Mecanique Celeste, issued in 1890, when the existence 
of the polar motion was only suspected but not proved.1 

When he presented this volume at the 1890 Freiburg meeting of the Com­
mission Permanente of the International Geodetic Association, he declared (page 
77): "Le mouvement de rotation de la Terre a ete etudie assez completement, no-
tamment ce qui concerne les petits deplacements du pole a la surface. Quelques 

1 "les portions conservees ainsi dans p et q ne pourrant pas etre controlees par {'observation, qui 
donne a peine quelques presomptions de leur existence". (Mecanique Celeste II, p. 395). 
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uns des petits termes signales pourront jouer un role dans la determination 
de la nutation initiale. L'ouvrage se termine par un expose des recherches 
recentes sur la variability possible des latitudes, en vertu des actions geologiques 
et meteorologiques." 

At the same meeting, when W. Forster (1832-1921) Director of the Berlin 
Observatory, pushed strongly for the organization of simultaneous latitude deter­
minations at Honolulu and Berlin, Tisserand became sceptical and temporising, 
asking to delay the decision and to first use methods of observation other than 
the Horrebow - Talcott one in European observatories. 

1.1. Astronomical Forced Nutations superposed on the Chandlerian 
free mode 

It appears rather curious that in chapter XXVI entitled "Fixite des Poles a 
la Surface de la Terre" of his Mecanique Celeste, Tisserand develops the very 
small terms of a nearly diurnal polar motion due to lunisolar torque expressed 
in centimeters of displacement at the Earth's surface as an argument that the 
polar motion can only be very small. 

As a matter of fact these terms had been calculated and published in 1881, 
before Tisserand by Th. von Oppolzer (1841-1886) with respective amplitudes of 
0"009, 0"006 and 0"003. They are nothing else than the radii of the circular cones 
rolling "a la Poinsot", without slipping, on the large space cones of precession 
and of fortnightly and semiannual nutations. 

These terms can be obtained directly and more easily from the tidal po­
tential development, corresponding to the tidal tesseral diurnal waves K\, 0\ 
and Pi (Melchior 1983). They have practically the same amplitudes as the 
corresponding tidal deviations of the vertical at the poles. 

Due recognition was given to von Oppolzer by F. Ross (1912) and by the ILS 
Central Bureau who designated them as the "Oppolzer terms" and introduced 
them as corrections in the reduction of latitude observations. In a short list of 
six references, Tisserand mentions the 1886 von Oppolzer treatise but does not 
refer to him in the developments of his Chapter XXVI. 

1.2. Rotation of a deformable Earth 

The chapters written by Tisserand refer to a totally rigid Earth. The two last 
chapters (XXIX and XXX) of his treatise were written by R. Radau. They are 
more descriptive and relate the precursory research by W. Hopkins (1793-1866) 
about the role of a liquid core enclosed within a smooth ellipsoidal boundary in­
side a rigid crust to precession and nutation (1839, see §3.). Radau also reminds 
the reader of the objections of Lord Kelvin (1824-1907) against an interna] struc­
ture of the Earth consisting of a massive liquid core inside a thin crust (1863), 
an idea deriving from some geological considerations related to the phenomena 
of volcanism. 

The most interesting part of chapter XXIV is the development of simple 
calculations of possible changes of the axes of inertia and rotation due to dis­
placements or additions of large masses at the Earth's surface. It refers to the 
original paper (1889) by G. V. SchiapareUi (1835-1910) who is probably the first 
to have used the wording "Geodynamics" to describe these kinds of phenomena. 
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Finally Radau derives the equations of the diurnal and semidiurnal nuta­
tions and, in the last chapter (XXX) develops the Liouville equations for the 
rotation of a body of variable form and the related researches of G. H. Darwin 
and Lord Kelvin. These developments have been largely used until now. 

2. Chandlerian Polar Motion and Earth's Elasticity 

The remarkable discovery of S. C. Chandler, in 1891, gave immediate rise to 
several important papers addressing the problem of the Earth's elasticity (New-
comb, Hough, Herglotz, Love, Larmor) and the problems raised by the presence 
of a liquid core (Sloudsky, Hough, Poincare). 

2.1. Newcomb interpretation 

The Astronomical Journal issue 249 by which Chandler (1846-1913) announced 
his discovery is dated November 23, 1891. The reaction of Newcomb was quick 
as he gave his interpretation of the lengthening already in the December 23, 1891 
issue 251 of the same journal. S. Newcomb (1835-1909) was thus the first to 
identify the Chandlerian circular component of the polar motion with the 304.4 
sidereal day free Eulerian mode (1891, 1892) whose period is lengthened to 427 
days because of the elastic deformation of the Earth induced by the centrifugal 
force tesseral disturbing potential: 

W = — -cor2(p cos A + qs'm A) sin 26. (1) 

(9 is the colatitude, A the longitude, (p, q, r) the projections of the vector rotation 
w on the axes fixed to the Earth's mantle). 

He proposed a very simple and elegant geometric interpretation. Let (see 
Fig. 1) To be the initial position of the pole of inertia, R\ the instantaneous pole 
of rotation at time t. The centrifugal force potential (1) creates internal stresses 
which deform the Earth so that the principal axes of inertia are changed and the 
instantaneous pole of inertia moves to I\. The Eulerian motion refers to I\ while 
the astronomically observed motion is referred to I0, the mean pole of inertia. 
It clearly appears that the Chandlerian angular speed x around IQ is smaller 
than the Eulerian angular speed a around I\ which qualitatively explains the 
lengthening of the period. 

2.2. Hough analysis 

In his 1896 paper about the rotation of an elastic spheroid, S. S. Hough (1870-
1923) re-examined Newcomb's interpretation of the solution of the problem in 
an analytical form. 

The model is a homogeneous oceanless spheroid of revolution (moments 
of inertia A,A,C), composed of isotropic, incompressible, gravitating material 
whose figure conforms to that required for hydrostatic equilibrium, so that when 
the body is undisturbed one may suppose it free from strain in its interior. 

Putting 

H = n, ^ = F + ^ V + 2/2)--, (2) 
Q Z 0 
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Figure 1. Newcomb explanation for the Chandler period. 

where p, p, are the density and rigidity of the Earth's material, u the angular 
velocity of rotation about the axis z,p the hydrostatic pressure at x, y, z and V 
the gravitational potential, Hough obtains the well known equation for ip: 

v2Uv 
8*_ 
dt2 4^ 

d4 

1> = o, (3) 
dt2dz2_ 

which reduces to the Poincare equation when n = 0. If the motion relative to the 
moving axes consists of a simple harmonic vibration of period 2TT/\, the Hough 
equation becomes 

, 2 x 2 
2 1 

V2(nV2 + \2)2-4u2X dz2 V> = o . (4) 

To solve the problem one has to take care of the boundary conditions which 
imply that the components of surface-tractions vanish at all points on the dis­
placed surface. Their expressions are not too difficult to obtain but rather cum­
bersome (Hough's equations (16)). In the case of a spheroid of small flattening 
e, one can neglect the square of e and take as the equation of the free surface 

r = o{l + eT-i\ (T2 is a spherical harmonic function of order 2). (5) 

It is well known that a homogeneous spheroid, rotating in a sidereal day, 
has a geometrical flattening 

5w2a3 

AGM 
1 

232 
(6) 
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so that 

A C-A 
(7) 

and A is a small quantity of the order w3. 
The determination of the elastic distortions follows from a rather long but 

simple procedure adopted by Kelvin as well as by Love to obtain the flattening 
which would be induced in a sphere of radius a by a centrifugal force when 
distortion is resisted by elasticity alone: 

£' = S = 5k W-0.444). (8) 
(2n2 + An + 3 = 19 for n = 2) if the rigidity is taken as the rigidity of steel: 

H = 8.19 X 10udyne/cm2 = 8.19 X 1010Pa. (9) 

Taking the components of the angular momentum2 

hi = / / / [(wy — vz) — u>xz]dm — p £ojxzdS, 

or 

hi = i\ / / [(wy — vz)dm — pu> £xzdS, (10) 

and 

hi = — A2 / / l[(wy — vz)dm — pu)i\ I I £xzdS. (11) 

Introducing these developments into the equations of angular momentum: 

hi - h2u> = 0 h2 + hiu = 0, (12) 

Hough has obtained: 

A = YTTfs = skw- (13) 

Thus, for an homogeneous elastic spheroid, the free period lengthens from 
232 to 335 days. Hough, recognizing that the problem of the heterogeneous 
Earth is much more complicated, is, at his epoch (1896), only in a position to 
make speculations. He therefore proposes to decrease the flattening 1/232 to 
1/304.4 the value of the constant of precession and, by a simple proportionality 
obtains: 

2(u,v,w) being the components of the elastic displacement of a particle, £ the displacement along 
the normal to the surface. 
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A = ^ x 335 = 440 days, (14) 

a period in excess of the Chandler period which let him conclude that the effec­
tive rigidity of the Earth is slightly greater than that of steel. 

2.3. Love and Larmor Elastic Yielding Theory 

To characterise the spherical elasticity properties, A.E.H. Love (1863-1940) in­
troduced (1909) two dimensionless parameters describing the deformations of 
a spherical Earth body. These parameters, called "Love numbers" are defined 
as follows: h specifies the amount by which the surface of the Earth yields to 
tidal forces, k specifies the amount by which the potential of the Earth is altered 
through the rearrangement of the matter within it, due to the tidal yielding. 

Lord Kelvin (1863) had previously related the same parameters to the mean 
density p and mean rigidity p, of an incompressible homogeneous elastic sphere 
of radius a and gravity g at its surface, obtaining the often reported relations 

, 5 / 1 9 / i V 1 , 3 , 

which, for h - 0.60 and gpa = 3.45 x 1011 Pa would give p. = 1.15 x 1011 Pa, is 
quite a bit higher than the rigidity of steel.3 

For a spherically symmetrically stratified heterogeneous Earth whose Theo­
logical parameters p (density), A (compressibility), p (rigidity) depend only upon 
the radius vector r, the Love numbers are related to these parameters through a 
system of six linear differential equations which can also be transformed into a 
differential equation of the sixth order in h as given by G. Herglotz (1881-1953), 
(1905). 

As the lengthening of the polar free motion period from 304.4 to 427 sidereal 
days is due to the perturbing tesseral potential W2 (Eqn. 1.) one may expect a 
relation between the ratio of the Chandler to the Euler periods with the Love 
number k. 

We follow here the short demonstration proposed (1909) by Sir Joseph Lar­
mor (1857-1942). The perturbing potential can be written 

W2 = - i w 2 r 2 s i n 2 0 = -\u3r2(l - P2{B)). (16) 

P2(0) — 3cos
2 is the second order zonal harmonic spherical function (0: co-

latitude). The resulting deformation and rearrangement of the matter changes 
(C — A) to (C — A') and gives rise to the additional potential 

W2 = k^2r2P2 = ^ { ( C - A) - (C - A')}p2 (17) 

3The rigidity of a steel bar results from molecular cohesion while the rigidity n of the planet 
Earth results from the enormous pressure gpa prevailing in its interior: Kelvin called it "earth's 
tidal effective rigidity." 
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as the gravitational potential of the Earth is 

yr „(M C-An \ , , 
^ = G ( V - - T 3 - P 2 + ---J (18) 

with the radius vector 

r = o(l + £sin20) = a(l + | e ) ( l - | e P 2 Y (19) 

The coefficient of P2 in V2 — W2 at the surface r = a is to be made equal to 
zero: 

I ( oj2a\ G,„ AS n ( GM\ 2 
3< 

so that, combining (17), (19) and (20) one obtains 

(20) 

7 = c^^-l^G-^-^^-^^9 <»> 

(22) 1 - — = k " 2 a / 2 g 

r £ — (J1aj2g'> 

which is the formula obtained by Love in his own paper. Larmor points out 
that "like Clairaut's formula for gravity, this relation is independent of any 
hypothesis as to the Earth's internal structure, except such as is involved in the 
definition and value of k." However this approach neglects the effect of rotation 
and uses a spherical model. With r0 = 304.4 sidereal days, r = 427 or 432 s.d., 
u>2a/2g = 0.001729 and £ = 0.003353, Equation (22) gives k = 0.270 or 0.277. 

The value k ~ 0.30 is obtained with the most recent theoretical models for 
the main sectorial lunar semidiurnal wave Mi or the main tessera! lunar diurnal 
wave 0\. Introducing this value in Eqn (22) would give a Chandler period r of 
449 sidereal days. This results from the fact that the liquid core of the Earth is 
decoupled from the mantle yielding. 

As a matter of fact, Herglotz had already obtained Equation (22) in 1905, 
after more complicated developments in the form 

ro/r = (e - uj2a/2g)/[e - q[l + A 4 / ( l - ZVa/5)A1}},4 (23) 

where 

q = (5u2a/4g)(l + 19^/2p/9a)_1 = (aj2a/2g)h. 

Using To = 232 s.d. as Hough did, Herglotz found r = 343 s.d. while To = 304.4 
s.d. would have given him 450 sidereal days. 

4Ai and A4 being determinants of rather complicate constructions. Here Ai = 0.0001292, 
A4 = 0.00007587 (see Herglotz 1905). 
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3. The 19th Century Earth model: an inviscid incompressible ho­
mogeneous fluid contained inside an ellipsoidal rigid shell 

In the last century, the temperature gradient measured in deep mines (but no 
more than 2 000 m depth) was extrapolated by geologists which led us to believe 
that the Earth's constitution could be a thick fluid interior enclosed in a thin 
rigid shell. Volcanism was another argument in favour of this hypothesis. 

The precursory papers by Hopkins (1839), Greenhill (1879-80) and Lord 
Kelvin (1885) took on great importance as soon as the existence of a polar 
motion was established and its characteristics described by Chandler. These 
fundamental papers obviously inspired the theoretical developments made by 
Th. Sloudsky (1841-1897), (1895), Hough (1895) and Poincare (1910). 

As early as 1839, W. Hopkins — as reported by Kelvin (W.Thomson, 1863) 
"to whom is due the grand idea of thus learning the physical condition of the 
interior from phenomena of rotary motion presented by the surface" — published 
two papers entitled "On the Phenomena of Precession and Nutation, assuming 
the Fluidity of the Interior of the Earth." 

Considering the Earth's density as uniform throughout, Hopkins introduced 
the pressure on the spheroidal inner surface (of ellipticity a) of the rigid shell 
due to the centrifugal force resulting from the rotation of the liquid core. Taking 
q = o/a(core), with C(shell) = C(l - q~5) to the first order of the ellipticity, 
he found a free retrograde nutation of period T( l — q~5)ct, that is practically 
C(shell)/Ca « 358 sidereal days (Hopkins, 1839, pages 410-411). A nearly 
diurnal retrograde free wobble of very small amplitude (1/358 of the nutation 
amplitude) is associated with this free nutation as a result of the Poinsot repre­
sentation. 

The Hopkins conclusions were that: 1) the precession and the lunar nutation 
will be the same whatever the thickness of the shell; 2) that "in addition to the 
above motions of precession and nutation, the pole of the earth would have a 
small circular motion, depending on the internal fluidity." 

Later Lord Kelvin taking again and developing the Hopkins argument strong­
ly objected to the thin crust model on the basis of the precession and nutation 
observed amplitudes but this was refuted by Delaunay and Newcomb. Kelvin 
then abandoned this argument (Thomson, 1863, revised 1890) and based his 
view upon the small amplitude of the solid Earth tidal deformation, concluding 
that the Earth's global rigidity was that of steel (see §2.3). 

Let us now consider the behaviour of this model when the solid shell is 
rotating about an axis inclined on its principal axis of inertia. If the core was 
spherical and its constituent fluid nonviscous, the Euler period would be short­
ened instead of lengthened. 

In that case indeed, the core and mantle are decoupled and the core does not 
participate in the rotation and precession of the mantle. Let I be the moment 
of inertia of this spherical core and A* = A — I = B — IC* = C — I then 

2TT A" _ 2ir A-1 
~uC* - A* ~ UC - A 

(24) 
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a period shorter than the 304.4 sidereal days of the completely solid Earth. It 
should be decreased by 10% to become about 270 sidereal days.5 

Today we well know that a fluid contained inside an ellipsoidal shell in 
rotation supports one particular inertial oscillation, the spin-over mode which 
consists of a rotation about an axis slightly inclined on the rotation axis of the 
shell. It is now called the Poincare mode to remind us of his famous 1910 paper. 
It should have been called "Hopkins-Hough-Sloudsky mode" (see §3.2). 

However, a hundred years ago the question was not so evident until two 
major papers were quite simultaneously published in 1895 by S.S. Hough in 
Cambridge and by Th. Sloudsky in Moscow. 

3.1. The ellipsoidal boundary condition 

The incompressibility approximation (solenoidal flow: div v = 0) may be jus­
tified when the speed is much less than the speed of sound. Let the internal 
boundary of the ellipsoidal shell be 

X V Z 

cr bl c* 
which is the interface between the incompressible liquid core and the Earth's 
rigid mantle. Suppose that the shell is precessing with a slow rotation vector il 
of components (fti, 0 2 , ^3) referred to the principal axes of the ellipsoid. The 
velocity of a point at the shell's internal boundary is (OAr) wth components 

022 — H3J/ ^32: — Sliz ftij/ — n2a:. 

To satisfy the boundary condition we take the fluid particles velocity (u, v, w) 
in the core as deriving from a potential <f>. Then, the boundary condition is that, 
along the normal to the ellipsoidal boundary, one must have 

(ni,_n,„J + (n„_QI,)^ + (Q1,.^.U+#»+|^(J,) 

which expresses a null flux across the boundary. We seek a solution of the form: 

4> = Ayz + Bzx + Cxy, (27) 

which satisfies the condition of incompressibility div v = 0,V2<^ = 0 (Lamb, 
1879, art 110) and introduce it in the boundary condition (26). Identifying sep­
arately the terms in xy, in yz, in zx gives the velocity potential of the irrotational 
motion resulting from the shell's angular velocity Q.. 

a2-b2 

0* + cl cz + a1 a1 + bz 

from which we obtain the fluid particle velocities induced by the rotation of the 
ellipsoidal shell: 

bA = 8.0101037fcff m2; / = 8.5081036*s m2; I/A 3* 0.10 
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u = 

V -

W -

_ d<f> 
dx 

_ d<t> 
dy 
dcj> 

dz 

c2 

c2 

a2 

a2 

b2 

-a2 

+ a2' 
- 6 2 

+ 62' 

- c 2 

cr + b* 
/»2 2 

xn3 + —ZJLzSlu (29) 
bz + c* 
c2 -a2 

¥ + c2 c2 + a'2 

cur/v = 0, V2v = 0 

(Greenhill, 1879, page 239 (6); Kelvin, 1885, page 197; Hough, 1895, page 471; 
Sloudsky, 1895 page 303). The terms containing ^3 disappear when a = b. 

Of course all terms are nullified for a spherical shell (o = 6 = c) because in 
the absence of viscosity there is no viscous boundary layer to transmit informa­
tion about rotation perturbations from the shell to the liquid core. 

3.2. Inertial rotation in the core: Poincare artifice 

A movement may exist in the fluid core, independent of the shell rotation. To 
describe it Poincare artfully used a transformation of the ellipsoid (25) into the 
sphere 

x'2 + y'2 + z'2 - 1 by putting x' = x/a y' = y/b z' - z/c (30) 

A rigid body rotation of this sphere (the simplest mode assumed by Poincare 
that appears plausible from physical intuition) by a rotation vector w(u\, u>2->u3) 
slightly inclined upon the axis of rotation of the mantle results in velocities of 
the fluid particles: 

(31) 

The cavity being closed, the component u' cannot be a function of x', v' of 
y', w' of z', w'. The particles do not penetrate the core-mantle boundary and 

u' 
v' 
w' 

= U>2Z' • 

= OJ3X' • 

= uiy' 

- «3y', 
-uxz', 
- u2x'. 

6The kinetic energy 

T = i / / / p(u2 + v2 + w2)dxdydz 

= lMUb2-c2)2
Q2 {c

2-a
2)2

 {a
2-b2)2 

2 5 \ ft2 + c2 ' ^ c2 + a2 2 ^ a2 + 62 3 

(the products of inertia being null) shows that the liquid core is kinetically equivalent to a 
mass M of principal moments of inertia: 

Mb2-c2 Mc2-a2Ma2-b2 ._ 

TiTf? T^T^T^r^ (GreenhlU'1879' page239) 
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Figure 2. Annual displacement of the true celestial pole Pv as a result 
of the solar semiannual prograde nutation (semi axis 0"55, 0*.50). The 
resulting curve is an epicycloid with amplitude 1/.10. E\ = spring, Si 
= summer, E2 = autumn, 52=winter. The annual precession rate A $ 
being about 50" and sin0A* = 20", one has EXE2 = 10". 

should not penetrate the inner core if it has the same flattening. Thus only a 
rotation is possible. Such a rotation is usually called the "spin-over" or "tilt-
over" free mode (see Appendix 2). One may suggest that it could be excited by 
the periodic impulses exerted on the Earth's axis of rotation when a nutation 
path proceeds through a sharp regression as shown in Figure 2 (the very great 
difference of the periods of the nutations with respect to the precession makes 
each nutation component perform an epicycloid). 

Returning to the ellipsoidal shape one has 

a a a 
u = -u2z - TW3J/ = -u2z - u>3y = (1 + e)u2z - u3y, 

b b a 
v = -OJ3X u\z = u3x wiz = u3x - (1 + £)u\z, (32) 

a c c 
c c c 

™ = ju-iy u2x = - (« i j / - u2x) = (1 - e)(wij/ - u2x), 

a velocity field which indeed does not penetrate the boundary (25) as Y. ui§^ — 

When a = b, e = (a - c)/c (flattening) 

curlv — 1- + -jui, ( - + - )w2, 2«3 (a flow of constant vorticity). 
If we add the irrotational velocity field induced by the ellipsoidal shell pre­

cession 0 (29) to this core motion with a small flattening of the interface such 
that 

a 2 - c 2 , „ . , . .„ . . , 2a2 2c2 

a = -j-.—•^[uh'pticity) 1 + a = —z 1 - a = 

(numerical values corresponding to the Earth's liquid core are given in Appendix 
1) we recover the explicit laminar solution obtained by A.G. Greenhill in 1880 
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and by Th. Sloudsky in 1895 (page 305), i.e. the toroidal velocity field with 
a = b: 

- fe 2a2 

+ c 
r<^2 

a2-c2 

a2 + c2" 
Q2}z-u3y, 

V = U)zX — 

2c2 

r W j -

2a2 

a2 + c 

A 

rwi -

M 
a 2 - c 2 

a2 + c2 

2c2 

fli ?*, 

-w2 -

(33) 

f*2 k a2 + c2 a2 + c2 J I a2 + c2 a2 + c2 

curlv = 2w (Poincare constant vorticity). 

In the fluid core, the Navier-Stokes equation, expressed in a frame where 
the mantle diurnal rotation is stationary, is 

d/dtv + ( v V ) v + 2ttAv = uV2\ + Vip, (34) 

where ip is the reduced pressure which includes the centrifugal acceleration while 
v is the dynamic viscosity, but we consider here a perfect nonviscous fluid core: 

Taking the curl:7 

d/dtcurlv + curl[curl(v)Av] + 2cur/(ftAv) = 0 (35) 

and with the components of v as given by eqn. (33), with a = b, we obtain: 

: \ du\ 1 / a c\ du>2 

2dt V~ 2\c + a) &t' 2\c +
 a J ^ t , 

dcn3 

dt 

-curl (cwr/v)Av 
\(c a\ 

w2w3, 
2 \ a c / 

- - I - + - W1W3, 0 
2 \ a c , 

CliW(flAv) = W3fi2 W2fi3, 
c 

—Wif23 — LO3Q1, —W2W1 W!ft2 
c a a 

Adding these three terms we recover the equations for the time variation of 
the rotation vector u of the core which Greenhill in 1880 and Sloudsky (Eq. 45, 
page 304) also obtained in 1895: 

du>i 

~dT 

du>2 

~~dT ' 

a2-c2 

a2 + c2 

a2-c2 

W2Q3 + w 2 0 3 

2a1 

,a2 + c2 

duj3 _ 2c2 

~dT ~ 

U3SI1 - U1Q3 -

a2 + c2 

2a2 

a' + c' 

a2 + c 

U1SI2 ~ ^ f i l 

w3ft2, 

2 w 3 f i i , (36) 

7with vVv=curl vA v - 5 grad v2 
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For the steady case (J^w = 0) one obtains the numerical values (Appendix 2): 

wi = 1.657 x 10~5w3 = 12.08 x 10~10ra</s-1,(spin - over) 

arctg(uilujz) = 3"47,(tilt - over) 

and for the velocity at the core-mantle boundary: 

auj-i, = 4.21 x 10~3ms- 1 . 

If the container is stationary (ft = 0) the third equation gives W3 = constant 
and consequently the two other equations can be integrated: 

ux(t) = Ksin(at + <f>), u>2{t) = K cos(at + (f>). 

The angular speed is 

0 = ^T^" = 3 9 ^ ( A p p e n d l X 1} 

which is called "free core nutation" with a period of 392 sidereal days. Finally 
Sloudsky reaches the same conclusion as Hough (§3.3) that there exists a nearly 
diurnal free wobble in addition to the Chandler free wobble but he does not 
evaluate the period of this principal motion concluding only that it may be 
twelve or fourteen months. 

The motions described by equations (33) and (36) correspond to the inertial 
coupling between core and mantle. As the fluid was supposed to be perfect, i.e. 
nonviscous, there is no boundary layer along the mantle internal surface and 
no viscous coupling. The no slip nor stress-free boundary conditions are not 
satisfied. 

The theory of boundary layers and of their role in the transmission of infor­
mation from the solid envelope to the bulk of the liquid body has indeed been 
introduced by Prandtl in 1904, i.e. nine years after the papers by Sloudsky 
and by Hough were published. Also the Ekman boundary layer (and its famous 
spiral) applicable to the case of rotating bodies, was introduced in 1905. 

Its results state that if the boundary was spherical (a = c) the mantle 
rotation (ft) could not force any rotation of the fluid core which clearly appears 
in the equations (29) and (33) where all terms containing the components of ft 
have (a2 — c2) as factor. 

We know presently that four different couplings exerted by the core on the 
mantle may act to tighten the core to the mantle rotation: inertial (ellipsoidal 
form of the boundary), topographical (roughness of the boundary), viscous (vis­
cosity of the fluid) and electromagnetic (core dynamo). The couplings have been 
calculated and their strength evaluated in several recent papers. 

3.3. The oscillations of a rotating ellipsoidal shell containing a ho­
mogeneous incompressible fluid according to S.S. Hough (1895) 

With the same conventions as in §2.2, Hough uses Eqn (33) for the velocity 
components: 
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c2-a2 

c2 + a2 zil2 - 2/w3 + zu2: 

a2 -c2 

v = -5——~zQ,i - zu>i + xu>3, (37) 

a2 - c2 

w = (yili - xQ2) + yui - xu>2, 
a1 + cl 

where 2a2/(a2 + c2) was taken as unity. 
The components of the total angular momentum H (shell + core) are of 

the form 

hi = As(Qi + wi) + / / p(wy — vz)dxdydz, (38) 

or 
,2 _ „2\2 M(a2-c2)2 M,_2 , ^ 

5 a2 + c2 1 + 5 
hx = As(n1+u1)+— / fl! + — (a2 + c 2 ) ^ A2,A3,-. 

M, /» are the mass and the density of the fluid, A5, yls, Cs the principal moments 
of inertia of the shell. The equations of angular momentum with no external 
forces are: 

{hi - h2r + h3q = 0} p=Q,i+ui, 

{h2-h3p + h1r = 0} q = Q2 + oj2, (39) 

{h3 - hiq + h2r = 0} r = ft3 + u3. 

The development is straightforward and, putting each variable proportional 
to e - ^ ' , Hough obtains the period biquadratic equation in the fourth and second 
powers of A and of W3 with roots nearly equal in pairs. Supposing that the density 
of the rigid shell of mean radius r\ is the same as the density of the liquid core, 
that the cavity is approximately spherical of mean radius r and treating its 
flattening e as a very small quantity whose first power only is retained, one 
obtains, A\, A\, C\ being the principal moments of inertia of the liquid core, 
the roots 

A2 = OJ2[{CS - As)/As + eq]2 (the Chandler wobble), (40) 

and 
A2 = w2(l + 2E) or A = ±(1 + E), 

the free nearly diurnal wobble with 

M = T?prBe = Ai- diClairaut), Cs = ~p(rl - r5), (41) 
15 15 

*=7r = ^T—s' E = e(l + q). eC r? — r* 
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The parameter q increases with the size of the core radius r. With the actual 
values ri = 6371 km, r = 3485 km, one has q = 5.15 x 10~2, £ = 1.31 x 10~4, E = 
0.00268 and A = 15.081°/hour, the frequency of the nearly diurnal wobble (period 
23h 52m 16s) with which the Hopkins free nutation is associated (Poinsot) with 
a period of 392 days and an amplitude 392 times the wobble amplitude. 

If we consider now the principal moments of inertia of the Earth as a whole: 

C = Cs + (2/5)Ma2 = Cs[l + «(1 + 2c)], 

A = As + ( l /5)M(a2 + c2) = As + qCs(l + e), (42) 

we obtain the period of the free mode of a thin spheroidal shell containing a 
homogeneous fluid 

2* CS _2ir C 1_ 
OJCS-AS W C - A H ? ' y J 

while for an Earth supposed solid throughout (q = 0) it is 

27T C 
ro = —— — = 305.4 sidereal days, Euler period + one day. 

u> C — A 

As q is a positive parameter, the period of the free mode of a thin spheroidal 
shell containing a homogeneous fluid is shorter than the Euler period by a factor 
( r / n ) 5 . 

The Hough formula (43) gives as shortenings of the Euler period related to 
different core radii: 

Shell 804 1609 2900 Km 
Core 5566 4762 3471 Km 

shortening —156 —71 —15 Days 

Modern studies have given a quite larger shortening of 50 days with respect to 
the Euler period (Smith and Dahlen, 1981). 

As a conclusion of a second paper, Hough (1896) referred to in the preceding 
section, stated that "the effects of the elastic deformations would more than 
counteract the influence of the reduced effective inertia due to internal fluidity 
and that with a given degree of rigidity the period of oscillation would be still 
further prolonged." This was definitely established by Jeffreys (1949) and fully 
confirmed by modern research. 

3.4. The precession of deformable bodies according to Poincare (1910) 

We consider the spheroid as an ellipsoid of revolution (a = b) then, let A, A, C 
represent the principal moments of inertia of the whole Earth, 
Ai, Ai, C\ the principal moments of inertia of the fluid core, 
F,F,H = C\ the expressions (b/c) J2 mz% + (c/^) YL m 2 / 2 ? . . . . . . . in the core, 
u>(p, q, r) the absolute rotation of the whole Earth, projections on moving axes 
uj\ (pi, <?i, 7-j) the relative rotation of the fluid core, projections on axes taken as 
fixed, and 
L, M, N the components of the moment of the external forces. 
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Then the kinetic energy of the system is 

2T = Ap2 + Aq2 + Cr2 + AlP
2 + Aiq

2 + dr2 + 2FPPl + 2Fqqx + 2Hrrx. (44) 

The Lagrange equations are 

d/dt(Ap + FPl)- r{Aq + Fqi) + q(Cr + Hrx) = L, (45) 

while the Helmholtz equations for the fluid core are 

d/dt(AlPl + Fp) + n{Aiqi + Fq) - gi(Cirj + Hr) = 0. (46) 

In the third Lagrange equation one takes N = 0 when there is no viscous effect: 

d/dt(Cr + Cm) + F(Pqi - pxq) = N = 0. (47) 

Subtracting the third Helmholtz equation 

d/dt(Cir + Cxn) + F(Pqi - Plq) = 0, (48) 

one obtains: r = constant = u>, r\ = constant = u>i supposed to be very small. 
The four remaining equations may be written 

Ap + Fpi + (C - A)uq - Fujqi - L = K cos kt, 

Aq + Fq\ - (C - A)ujp + Fwpi = M = -K sin kt, 

Fp + Aipi - duqi = 0, (49) 

Fq + Aiqi + Clujpi = 0, 

and, with u = p+ iq, u>\ — p\ + iqi, L + iM = Ke~,u,lt, their combinations are 

Au> - i(C - A)LJU + Fui + IFUJUI = Ke~iwit, 

FLJ + Aiu>i + iCiuui = 0. (50) 

The free oscillation frequencies A (w = me'Af,wi = nelXt) are given for K = 0 
by the condition 

Det(X) = 

Replacing A with As + A\ 

AX-{C- A)u FX + Fu 
FX AiX + Ciu 

Det(X) = 
A s A - ( C - 4 ) w + AiA FX + Fu 

FX Ai(A + w) + ( C i - A i ) w 

(51) 

(52) 

AX(A + OJ){ASX - (C - A)u} + E2A2X2 + 

{eiAsA-t + e^dA^uX - exA^C - A)LJ2 = 0. (53) 
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if 

A\ A\ 

In the spherical case (t\ = 0) the condition is 

(A + w ) { A s A - ( C - A ) w } = 0, (54) 

and we find again: a nearly diurnal free wobble Ai = — w and an Eulerian 
free wobble with a period shorter than the Eulerian period for a rigid Earth 
A2 = u(C - A)IAs, i.e. a period of about 270 sidereal days. 

Considering now a forced nutation of frequency A = —w,- and putting w — 
u>i = Aw;, the determinant is 

Det(ui) = 

The solution is 

AAui - Cut FAtOi 
FAui-Foj AiAu>i + (Ci - Ai)u> (55) 

_ (Auji+euj) 
W = —=:—:—;—A, (56) 

Det(ui) y ' 
and, for a totally solid Earth, without a fluid core (As = 0, F = 0) 

_ _ Aw; + eiu 
U° - £ l Cw2 - (C - Aei )«Aw, + AAtof [ ' 

Thus 

w _ f Ax(wAw;-Aw,2) y1 

w0 I COJ - AAu>i)(eiU) + Aw,-) J 

(details of this development are given in Melchior (1983). 
Numerical values 

A ~ C ~ 80.10 x 1036kg m2, Ai ~ Ci ~ 8.04 x 1036kg m2, Ai/A = 0.100, 

£i = 1/392.15 (hydrostatic model) 

give 

/ 44.8 \ - 1 w 

* = fiH1 + rnl5+l) 'x=Aw7- (59) 

Thus a resonance takes place for 

x = —1\ = —392.15 or Aw; = —E\u, 
w,- = w - Aw,- = w(l + ej) with w = 15.0410697/wra7\ (60) 

The period is 
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1-K IT! 
T = — = —(1 - £1) = 24ft x (1 - 1/392.15) 

U{ Id 

= 23/i56ra20s. (frequency 15.074°/hour). 

We see that the diurnal free wobble period is determined by the flattening 
£i of the fluid core. 

In the same paper, another important conclusion of Poincare concerns pre­
cession and nutation. Taking 

p = a sin kt, q — a cos kt, 
Pi=aisinkt, qi = cti cos kt, (61) 

the equations to be solved are 

(Aa + Fax)(k + w) - aCu = K, 

(Fa + Aax)k + aiCiu = 0. (62) 

Some elementary developments give 

a E\n — 1 
a0 £1n-l + r), (63) 

where T] = A\jA ~ Ci/C characterizes the thickness of the mantle, (T) =• 0.11 for 
the real Earth.) a = ao when 77 = 0 (no fluid core) and n is the number of days 
of the forced period. Results show that if the product £\n, with E\ — 1/392.15, 
is very large, which is the case for precession (25,800 years) the amplitude a is 
the same as the amplitude ao for the solid Earth. This is not true for those 
nutations whose period is not long with respect to 392 days, 392.15 being the 
inverse of the flattening, in particular the annual, semiannual and fortnightly 
nutations. This property was christened "gyrostatic rigidity" by Kelvin (1890, 
§14, page 442). When it is to be distinguished from the known natural rigidity 
of an elastic solid it will be called gyrostatic rigidity. 

We can check this result very simply if we consider that the precession phe­
nomenon is the result of the torque exerted by the tidal tesseral force associated 
with the sidereal tidal wave K\, fixed in space, with a frequency A = — u with 
respect to the rotating Earth or Aw, = 0. We obtain from eqn. (57) and (58) 

K -i^t 
U0=c^e 

U)/U)0 = 1 , 

the same frequency as for a totally solid Earth. 
For the principal elliptical nutation of lunar node frequencies 

A = u ± N, AOJI T N, 
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, <--&) 1-
(c - A?) (£I + J) / ' 

— being small (« 1/6800) compared to s\, results show that w is also close to 
the solid Earth response QQ. This is no more true when Aw,/u is not small. 

This result of Poincare justifies the statement made by Lord Kelvin already 
in 1876 but without a mathematical proof published by him (1890, footnote at 
page 324). 

4. Hundred years later ... 

To conclude this memorial lecture, I feel "seasonable" enough to briefly describe 
the current state of our knowledge and understanding of the polar motion origin 
and characteristics. It seems that the 1910 Poincare paper terminated a period 
of real interest about the theory of polar motion and the underlying geophysi­
cal phenomena. Fortunately the well established International Latitude Service 
continued its activity, apparently for practical applications in geodesy only, not 
without difficulties (closure of Cincinnati and Tschardjui stations, interruptions 
at Gaithersburg). 

Only a few scientists continued to pay attention to the problem and, by 
chance, an outstanding genius, Sir Harold Jeffreys, maintained the attention of 
the scientific community on the unsolved problems of polar motion, nutations 
and Earth tides that he demonstrated to be key problems for internal geophysics. 
The International Geophysical Year (1957-1958) brought back the polar motion 
and Earth tides problem to the front of geodynamics, giving simultaneously a 
very strong impulse to all geophysics. As a result, hundreds of contributions to 
all aspects of Earth rotation have appeared during the last forty years. 

4.1. The Chandler period 

Thanks to the International Latitude Service activity, one hundred years of 
determination of the polar path have allowed us to perform many tentative 
determinations of the Chandler period. The conclusion upon which most of the 
authors agree now is that 

T = 435.2 ± 2.6 sidereal days (Wilson and Haubrich, 1976), 

with a quality factor Q about 100, that is a damping period of about 40 years. 
Earth models allow us to evaluate the contribution of each structural part (Smith 
and Dahlen, 1981): 

- rigid earth eulerian period 304.4 sidereal days 
- elasticity of the mantle (eqn. 22) + 143.0 

fluidity of the core —50.5 
- participation of the oceans + 29.8 

(pole tide) 
- anelasticity of the mantle +8 .5 

Altogether 435.2 sidereal days 

w 
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The Chandler motion, being a free motion, is subject to systematic damping 
(anelasticity of the mantle, dissipation in the oceans, viscous coupling at the 
core-mantle interface). It can be maintained only if continuously excited by 
irregular impulses, and this is not yet fully explained despite many tentative 
evaluations of the probable role of seismic activity, snow, atmospheric pressure 
and ground water impulses. 

4.2. The elliptic annual component 

This component is obviously of atmospheric origin. Contrary to the opinion 
expressed in his time by Sloudsky, satisfactory explanations have been obtained 
by considering mainly the variations of air pressure (mass redistribution) and 
also the torques exerted by winds and currents (Wilson and Haubrich, 1976). 
The ocean water redistributions, acting as an inverted barometer are also taken 
into account. Nevertheless the amplitude of this annual component is not fully 
explained and new investigations are surely needed. 

4.3. Free Core Nutation and nearly diurnal free wobble 

The theoretical frequency of this suspected retrograde wobble is — 15.0737°/hour 
(using the last century Hough equations (40) (41) we get —15.081°/hour) which, 
according to eqn. (60) corresponds to a core flattening E\ = 1/460.9 that is 
a — c = 7.56 km (<z = 3485km). This is very close to the frequencies of diur­
nal barometric and thermic variations while its amplitude is certainly extremely 
small so that attempts to extract it from the ground based astronomical obser­
vations are not convincing. 

However it is associated, in the Poinsot sense, to a retrograde free nutation 
in space of period 460 days having an amplitude 460 times the wobble amplitude 
which has been detected in VLBI measurements with an amplitude of the order 
of 0^0002 only.8 

Moreover the existence of the corresponding resonance frequency had been 
observed already in tidal measurements with tiltmeters in 1960 (Melchior 1992) 
and demonstrated with much higher precision by accurate measurements with 
superconducting gravimeters of the tesseral diurnal Earth tides component waves 
with frequencies 13.943°/h (wave Oj), 14.959° /h (wave A ) , 15.041°/h (wave 
K\) and, principally 15.082°/h (wave ifii). This last one unfortunately has a very 
small amplitude (Fig.3 — Melchior 1992). VLBI and tidal gravimeters agree very 
well about a diurnal resonance frequency of — 15.076°/hour which, according to 
Eqn. (60) corresponds to a flattening E\ = 1/431 (thus a — c=8.09km) and 
consequently associated with a free core nutation period of 431 days. 

Theory and observation can thus be reconciled if one increases the hydro­
static core flattening (9 km) by about 500 meters. Moreover these tidal tesseral 
diurnal waves are associated with the annual, semiannual and fortnightly nu­
tations which are affected by the same resonance effect as anticipated by Lord 
Kelvin and demonstrated by Poincare (§3.4, eqn 62). It made it compulsory to 
adopt new nutation tables taking that resonance into consideration (Melchior, 
1971; Dehant and Defraigne, 1997). 

Uncertainty in VLBI determinations is of the order of 0'.'00015. 
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F.C.N. 
.15.076 

(V.L.B.I. i supra, grav.) 

Figure 3. Free core nutation frequency. 
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4.4. The future ... 

The exceptional importance of the Chandler wobble results from the fact that, 
between the seismic high frequencies (up to one hour period for the free oscilla­
tions) and the very low frequencies of tectonic processes like the postglacial re­
bound there exist only a few periodic deformation processes: the Earth tides, the 
Chandler wobble and the astronomical nutations to allow investigations about 
the anelasticity in the Earth. 

We must recognise that the existence of a solid inner core inside a stratified 
convecting liquid core makes highly improbable the Sloudsky - Hough - Poincare 
description of the flow in the liquid core. Hydrodynamicists advocate indeed the 
formation, in the outer liquid core of a cylindric boundary layer tangent to the 
inner core and whose axis is the axis of rotation. The part of the liquid core 
external to this cylinder only would participate in the mantle rotation. Moreover 
any obstacle due to suspected topographical irregularities of the core mantle 
interface would generate Taylor columns (known since 1917) aligned with the 
rotation axis inside the liquid core (Melchior, §3.5, 1986). This corresponds to a 
geostrophic approximation justified by the extreme smallness of the Ekman and 
Rossby numbers of the liquid core. 

Moreover the influence of the magnetic field and Lorentz force is not clear. 
The exact role of the inertial couplings (ellipticity and topography of the bound­
ary) and the dissipative couplings (viscous and electromagnetic stresses in the 
hydromagnetic Ekman - Hartman boundary layer) remains a matter for more 
research. This will not be easy to model. Very fortunately, the extraordinary 
improvements due to the space techniques of measurements of geodetic and as-
trometric variable parameters shall surely give rise to new discoveries in the 
coming century. 

We would finally conclude by stressing how the statement by Lord Kelvin 
about Hopkins "grand idea" was truly objective (§3). It is also remarkable that 
the precursors in the 19t/l and beginning of the 20th century have announced, 
only on theoretical grounds the main mechanical properties of the free motions 
of the axis of rotation of the Earth. 

The lack of sufficient precise observational data prevent them going further. 
This may be now accomplished thanks to one century of persevering activity of 
the International Latitude Service and Polar Motion Service. 
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5. Appendix 1 

Earth's rotation angular velocity u = 7.29211510_5rarfs_1 Earth's lunisolar 
precession rate ft = 7.73842310~12ra</s~1 

For the Earth's core one has 
a = 3485103m, a-c = 8.89103m 
e = (a - c)/a = 1/392.15 = 0.002550 (hydrostatic flattening) 
a = (a2- c2)/(a2 + c2) = 0.0025533 (ellipticity) 
e2 = 0.000006502 
e3 = 0.000000016, 
a/c + c/a = 2 + e2 + e3 = 2.00000652 
c/a - a/c = - 2 - e2 - e3 = -0.0051065 
2a2/(a2 + c2) = 1 + a = 1.0025533 
2c2/(a2 + c2) = 1 - a = 0.997447 
Obviously the oscillations of the mantle hardly communicate themselves to 

a nonviscous fluid core. If one increases the flattening by 500 meters, then 
a-c = 9.39103m e = 1/371 = 0.00269 
Remark: for a homogeneous ellipsoid of revolution 

C - A _ a2 - c2 

A ~ a2 + c2 ' 

6. Appendix 2 

Considering the steady case (^w = 0) and taking a reference plane such that 
Q2 — 0, the third equation (36) gives w2 = 0 (because fti ^ 0 necessarily) and 
the first equation is satisfied. 

From the second equation (36) it then follows that 

( 2a2
 n \ ,(a2-c2

 n \ 
Ui/W3 = {-zTr** )'{*+?* - fi3J-

We take 
w3 S 7.292 x lO^rads-1 (the angle to Oz being very small) ft = 1.064 x 

10-7w3 ftj = ft sin 23.44° = 0.423 x 10-7w3 fts = ft cos 23.44° = 0.976 x 10-7w3 

obtaining the "spin-over" mode w\ or "tilt-over" arc tg (a>i/w3). «i = 1.657 x 
10_5w3 = 12.08 X 1 0 - l t W s - 1 arctg(u>i/u3) = 3.47" (Rochester et al. 1975) 
owj = (3.485106m)w! = 4.21 x 10_ 3ms_ 1 
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