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Abstract. In this paper, we construct a uniformly recurrent infinite word of low complexity
without uniform frequencies of letters. This shows the optimality of a bound of Bosher-
nitzan, which gives a sufficient condition for a uniformly recurrent infinite word to admit
uniform frequencies.
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1. Introduction
Let us consider an infinite word u over a finite alphabet. We can naturally associate a
subshift with it. The goal of this paper is to describe some ergodic properties of this
subshift. By Oxtoby’s theorem, we know that the subshift is uniquely ergodic if and only
if, in u, each finite word has uniform frequency. Moreover, the subshift is minimal if u is
uniformly recurrent.

For a long time, people have tried to find some conditions on infinite words which
imply one of these properties. Keane gave in [7] a uniformly recurrent infinite word
with complexity 3n + 1 (from a 4-interval exchange map) which does not have uniform
frequencies. Later, Boshernitzan, in [2], proved that a uniformly recurrent infinite word
admits uniform frequencies if either of the following sufficient conditions is satisfied:

lim inf
p(n)

n
< 2 or lim sup

p(n)

n
< 3,

where p denotes the complexity function of u (see [1, Ch. 4, by Cassaigne and Nicolas],
for more details on the subject).
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The bound of the second sufficient condition of Boshernitzan being already optimal
by Keane’s result, our goal in this work is to establish the optimality of the bound of
the first sufficient condition. Additionally, we succeed to construct a uniformly recurrent
infinite word without uniform frequencies, the complexity function of which satisfies
lim inf p(n)/n = 2.

This result can be viewed as part of the more general question of relating some
properties of the complexity function and of the ergodic measures of a subshift. The goal
is then to bound the number of ergodic measures of the subshift in terms of the complexity
function.

Boshernitzan was the first to look at this question, see [2]. During his PhD thesis, see
[8, Ch. 5] and [1, Ch. 7, by Ferenczi and Monteil], Monteil has proved the same result with
different techniques: if lim sup p(n)/n < K for some integer K ≥ 3, then the subshift has
at most K − 2 ergodic measures. Since that time, more results have appeared in the same
vein. Cyr and Kra have also obtained similar results, see [4, 5]. In the first paper, they
prove that the bound of Boshernitzan is sharp. In the second one, they construct minimal
subshifts with complexity function arbitrarily close to linear but having uncountably many
ergodic measures. We can also cite Damron and Fickenscher [6] who obtained the bound
K + 1/2 under a condition on the bispecial words.

The construction presented in this paper was first announced at a conference in 2007,
and published without proof in [1] (Proposition 7.5.12). For several reasons, including
the fact that the more general results discussed above had appeared in the meantime, its
complete proof was not published then. Nevertheless, it was pointed out to us that our
proof is of a different nature, with an explicit construction of the infinite word, and that it
was thus interesting by itself.

After the preliminaries (§2), we construct an infinite word in §3, then we show in §4
that this word is without uniform frequencies of letters, we study the complexity of this
word in §5, and finally we prove that it is uniformly recurrent in §6.

2. Preliminaries
In all that follows, we consider the alphabet A = {0, 1}. Let A∗ denote the set of the finite
words on alphabet A, and ε the empty word. For all u in A∗, |u| denotes the length of
the word u (the number of letters it contains, with |ε| = 0) and for any letter x of A, |u|x
denotes the number of occurrences of the letter x in u. We call the Parikh vector of a finite
word u the vector denoted by U and defined by U = (

|u|0|u|1 ).
A finite word u of length n formed by repeating a single letter x is typically denoted

by xn. We define the nth power of a finite word w as being the concatenation of n copies
of w; it is denoted by wn. An infinite word is an infinite sequence of letters of A. Let Aω

denote the set of infinite words on A.
We say that a finite word v is a factor of u if there exist two words u1 and u2 on the

alphabet A such that u = u1vu2; we also say that u contains v. The number of different
pairs (u1, u2) such that u = u1vu2 is called the number of occurrences of v in u and is
denoted by |u|v , generalizing the notation |u|x for x ∈ A defined above. The factor v is
said to be a prefix (respectively suffix) of u if u1 (respectively u2) is the empty word.
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For any word u, the set of factors of length n is denoted by Ln(u). The set of all factors of
u is simply denoted by L(u).

Definition 2.1. Let u be an infinite word on the alphabet A = {0, 1}. A factor v of u is said
to be:
• a right special factor if v0 and v1 are both factors of u, and a left special factor if 0v

and 1v are both factors of u;
• a bispecial factor of u if v is simultaneously a right special factor and a left special

factor of u;
• a strong bispecial factor of u if 0v0, 0v1, 1v0, 1v1 are factors of u and a weak

bispecial factor if uniquely 0v0 and 1v1, or 0v1 and 1v0, are factors of u;
• a neutral bispecial factor of u if v is a bispecial factor of u which is neither strong nor

weak.

An infinite word u is said to be recurrent if any factor of u appears infinitely often. An
infinite word u is uniformly recurrent if for all n ∈ N, there exists N such that any factor of
u of length N contains all the factors of u of length n.

Definition 2.2. Let u be an infinite word on an alphabet A. The complexity function of u
is a function counting the number of distinct factors of u of length n for any given n. It is
denoted by p and satisfies

p(n) = #Ln(u).

We also define the functions s and b, respectively called first difference and second
difference of the complexity of u, as follows: s(n) = p(n + 1) − p(n) and b(n) =
s(n + 1) − s(n).

On a binary alphabet, the function s counts the number of special factors of a given
length in u. Let m denote the map from L(u) to {−1, 0, +1} defined by

for all v ∈ L(u), m(v) =
⎧⎨
⎩

−1 if v is weak bispecial,
+1 if v is strong bispecial,
0 otherwise.

The following formula was given by the first author in [3].

PROPOSITION 2.1. If u is a recurrent binary infinite word, then

for all n ≥ 0, s(n) = 1 +
∑

w∈L(u)
|w|<n

m(w) = 1 +
∑

w bispecial
|w|<n

m(w).

This relation allows to compute the complexity p(n) when we are able to describe the
set of strong and weak bispecial factors of the binary infinite word u.

Definition 2.3. Two bispecial factors v and w of an infinite word u on the alphabet {0, 1}
are said to have the same type if they are both strong, weak, or neutral. In other words, the
bispecial factors v and w have the same type if m(v) = m(w).
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Definition 2.4. [1, Ch. 7, by Ferenczi and Monteil] Let u be an infinite word on an
alphabet A.
• We say that u admits frequencies if for any factor w, and any sequence (un) of prefixes

of u such that limn→∞ |un| = ∞, then limn→∞ |un|w/|un| exists.
• We say that u admits uniform frequencies if for any factor w, and any sequence (un)

of factors of u such that limn→∞ |un| = ∞, then limn→∞ |un|w/|un| exists.

In [7], M. Keane gave an example of a uniformly recurrent infinite word with complexity
3n + 1 which does not admit uniform frequencies. Later, Boshernitzan [2] obtained the
following results.

THEOREM 2.1. (Boshernitzan [2]) Let u be an infinite word on an alphabet A. Then, u
admits uniform frequencies if its complexity function satisfies at least one of the following
conditions:
• lim inf p(n)/n < 2;
• lim sup p(n)/n < 3.

The example of Keane ensures that constant 3 is optimal in the second condition, that
is, it cannot be replaced with a larger constant.

3. Construction of a class of uniformly recurrent words
Let (li), (mi), (ni) be three integer sequences which are strictly increasing and satisfy the
following conditions:
• 0 < li < mi < ni ;
• mi/li increases exponentially to +∞;
• ni/mi increases exponentially to +∞.

Let us define in A∗ two sequences (ui) and (vi) in the following way: u0 = 0, v0 = 1
and for all i ∈ N, ui+1 = u

mi

i v
li
i and vi+1 = u

mi

i v
ni

i . The sequence (ui) converges toward
an infinite word u.

For i ≥ 1, consider the substitution σi defined by σi(0) = 0mi 1li , σi(1) = 0mi 1ni . Then,
we have

ui = σ0σ1σ2 . . . σi−1(0) and vi = σ0σ1σ2 . . . σi−1(1).

THEOREM 3.1. Any infinite word u so defined is uniformly recurrent.

The proof of Theorem 3.1 is given in §6 at the end of this paper.

4. The word u is without uniform frequencies
LEMMA 4.1. For all i ≥ 1, we have:
(1) |ui |0/|ui | ≥ (1 + (l0/m0))

−1 ∏i−1
j=1(1 + (lj nj−1/mj lj−1))

−1;

(2) |vi |1/|vi | ≥ ∏i−1
j=0(1 + (mj/nj ))

−1.

Proof. (1) Lower bound on |ui+1|0/|ui+1|. First, for all i ≥ 0, we have |ui | ≤ |vi |
since |u0| = |v0| = 1 and ui is a strict prefix of vi for i ≥ 1. Then, |vi |/|ui | =
mi−1|ui−1| + ni−1|vi−1|/mi−1|ui−1| + li−1|vi−1| ≤ ni−1/li−1 since li−1 < ni−1 for
i ≥ 1.
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As

|ui+1|0 = mi |ui |0 + li |vi |0 ≥ mi |ui |0
and

|ui+1| = mi |ui | + li |vi | = |ui |
(

mi + li
|vi |
|ui |

)
,

we deduce the following inequalities:

|ui+1| ≤ |ui |
(

mi + li
ni−1

li−1

)
and

|ui+1|0
|ui+1| ≥

(
1 + li

mi

ni−1

li−1

)−1

· |ui |0/|ui |.

Thus,

|ui |0
|ui | ≥ |u1|0

|u1|
i−1∏
j=1

(
1 + lj nj−1

mj lj−1

)−1

.

(2) Lower bound on |vi+1|1/|vi+1|. We have

|vi+1|1 = mi |ui |1 + ni |vi |1 ≥ ni |vi |1 and |vi+1| = mi |ui | + ni |vi | ≤ |vi |(mi + ni),

since |ui | ≤ |vi |. So,

|vi+1|1
|vi+1| ≥ ni

mi + ni

.
|vi |1
|vi | .

Hence,

|vi |1
|vi | ≥

i−1∏
j=0

(
1 + mj

nj

)−1
.

In the rest of the paper, we shall fix

li = 22.2i+4, mi = 28.2i

, and ni = 210.2i

for i ≥ 0. (∗)

Remark 4.1. The particular choice of sequences in (∗) was designed to get simple bounds
for frequencies (in Lemma 4.3) and to ensure the desired ordering of bispecial factors (in
Lemma 5.4). It is not the only possible choice, and we could have stated results for a larger
class of words. However, this would have made computations more complicated and less
explicit, while our purpose here is to construct one example as explicit as possible.

With (∗), the inequalities of Lemma 4.1 become:
(1) |ui |0/|ui | ≥ ∏i

j=1 1/(1 + 2−2j
);

(2) |vi |1/|vi | ≥ ∏i
j=1 1/(1 + 2−2j

).
So we get the following lemma.
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LEMMA 4.2. For all i ≥ 1,

min
( |ui |0

|ui | ,
|vi |1
|vi |

)
≥

i∏
j=1

1

1 + 2−2j
.

Then we have the following lemma.

LEMMA 4.3. For all i ∈ N,

|ui |0
|ui | + |vi |1

|vi | ≥ 3
2

.

Proof. For i = 0, the inequality is evident.
For i ≥ 1, write Pi = ∏i

j=1 1/(1 + 2−2j
). The sequence (Pi) is decreasing. Let us

show, by induction, that 4
3Pi = 1/(1 − 2−2i+1

).
We have 4

3P0 = 1/(1 − 2−2).

Assuming that for some i ≥ 0, 4
3Pi = 1/(1 − 2−2i+1

), it follows that

4
3
Pi+1 = 4

3
Pi × 1

1 + 2−2i+1 = 1

1 − 2−2i+1 × 1

1 + 2−2i+1 = 1

1 − 2−2i+2 .

So, for all i ∈ N,

Pi = 3
4

× 1

1 − 2−2i+1 .

Hence, with Lemma 4.2, we get

|ui |0
|ui | + |vi |1

|vi | ≥ 2 × 3
4

× 1

1 − 2−2i+1 ≥ 3
2

.

THEOREM 4.1. The letters of the word u do not admit uniform frequencies.

Proof. If the letters of u had uniform frequencies, then the frequencies of 0 and 1,
respectively denoted by fu(0) and fu(1), would satisfy fu(0) = limi→∞ |ui |0/|ui |, fu(1) =
limi→∞ |vi |1/|vi |, and fu(0) + fu(1) = 1, which is contradictory with Lemma 4.3.

5. Complexity of u
To estimate the complexity of u, we are going to observe its bispecial factors.

Notation 5.1. Let h, i ∈ N. We let u
(h)
i denote the finite word

u
(h)
i = σhσh+1σh+2 . . . σh+i−1(0)

and u(h) denotes the infinite word limi→∞ u
(h)
i . Note that u

(0)
i = ui and u(0) = u.

Definition 5.1. A factor of u(h) is said to be short if it does not contain 10 as a factor.
A factor of u(h) which is not short is said to be long.

LEMMA 5.1. (Synchronization lemma) Let w be a long factor of u(h). Then there exist
x, y ∈ A and v ∈ A∗ such that xvy is a factor of u(h+1) and w = sσh(v)p, where s is
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a non-empty suffix of σh(x) and p is a non-empty prefix of σh(y). Moreover, the triple
(s, v, p) is unique.

Proof. Since w is long, it cannot occur inside the image of one letter. Any occurrence of
w in u is therefore of the form sσh(v)p, so existence follows.

Uniqueness is a consequence of the fact that 10 occurs in u(h) only at the border between
two images of letters under σh.

LEMMA 5.2
(1) The short and strong bispecial factors of u(h) are ε and 1lh .
(2) The short and weak bispecial factors of u(h) are 0mh−1 and 1nh−1.

Proof. Let us first observe that in u(h), the factor 01 is always preceded by 10mh−1.
Therefore, a bispecial factor containing 01 must also contain 10 and is long.

Then the short bispecial factors are all of the form 0k or 1k , k ≥ 0. We see that ε

is strong bispecial (extensions 00, 01, 10, 11); 0k (0 ≤ k < mh − 1) is neutral bispecial
(extensions 00k0, 00k1, 10k0), as well as 1k (1 ≤ k < nh − 1, k �= lh); 1lh is strong bispe-
cial (extensions 01lh0, 01lh1, 11lh0, 11lh1); 0mh−1 is weak bispecial (extensions 00mh−11
and 10mh−10), as well as 1nh−1; 0mh and 1nh are not special, and 0k (k > mh) and 1k

(k > nh) are not factors.

LEMMA 5.3. Let w be a factor of u(h). Then the following assertions are equivalent:
(1) w is a long bispecial factor of u(h);
(2) there exists a bispecial factor v of u(h+1) such that w = σ̂h(v), where σ̂h(v) =

1lhσh(v)0mh1lh .
Moreover, v and w have the same type and |v| < |w|.
Proof. First, let us observe this fact: if a finite word v is a factor of u(h+1), then σ̂h(v) =
1lhσh(v)0mh1lh is a factor of u(h). Now, let us consider a bispecial factor v of u(h+1).
Therefore, the words σ̂h(0v), σ̂h(1v), σ̂h(v0), and σ̂h(v1) are factors of u(h); moreover,
0σ̂h(v) and 1σ̂h(v) are respectively the suffix of the first two words, whereas σ̂h(v)0 and
σ̂h(v)1 are respectively the prefix of the last two words. Hence, the word w = σ̂h(v) is
bispecial in u(h), and m(w) ≥ m(v).

Conversely, let w be a long bispecial factor of u(h). Then, according to the synchroniza-
tion lemma, we can write w uniquely in the form sσh(v)p, where s and p are respectively
the non-empty suffix and prefix of images of letters.

As 0w and 1w are factors of u(h), and σh(v)p starts with 0, it follows that 0s0 and 1s0
are factors of u(h). This is only possible if s = 1lh ( s = 1k with 1 ≤ k < lh or lh < k < nh

are excluded since 0s0 /∈ L(u(h)); s = 0k1lh with 1 ≤ k < mh and s = 0k1nh with 0 ≤
k < mh are excluded since 1s0 /∈ L(u(h)); and s = 0mh1lh and s = 0mh1nh are excluded
since 0s0 /∈ L(u(h))).

Similarly, 1p0 and 1p1 are factors of u(h), and this is only possible if p = 0mh1lh .
Therefore, w = σ̂h(v).

If w extends as awb with a, b ∈ A, then v also extends as avb. Therefore, m(v) ≥
m(w). It follows that m(v) = m(w): v and w have the same type. Moreover, it is clear that
|v| < |w|.
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In fact, long bispecial factors of u(h) are the images under σ̂h of the ‘less long’ bispecial
factors of u(h+1). Thus, step by step, any non-neutral bispecial factor w of u(h) of given
type will be written in the form σ̂hσ̂h+1 . . . σ̂h+i−1(v), where v is a short bispecial factor
of u(h+i) with the same type.

We will call bispecial factors of rank i, (i ≥ 0) of u(h), and write a
(h)
i , b

(h)
i , c

(h)
i , d

(h)
i as

the following words:

a
(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(ε);

b
(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(1lh+i );

c
(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(0mh+i−1);

d
(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(1nh+i−1).

The short bispecial ε, 1lh , 0mh−1, and 1nh−1 of u(h) are the bispecial factors of rank 0:
a

(h)
0 , b

(h)
0 , c

(h)
0 , and d

(h)
0 .

The non-neutral bispecial factors of u are therefore ai = a
(0)
i , bi = b

(0)
i , ci = c

(0)
i , and

di = d
(0)
i , for i ≥ 0.

Definition 5.2. Let V , W ∈ R
2. Let us write V < W when W − V has non-negative

entries and V �= W .

PROPOSITION 5.1. Let v, w, v′, w′ be four words such that v′ = σ̂i (v) and w′ = σ̂i (w).
Then their Parikh vectors satisfy

V < W 
⇒ V ′ < W ′.

Proof. Assume that V < W . Then, |v|0 ≤ |w|0, |v|1 ≤ |w|1, and |v| < |w|. On the one
hand, we have |v′|0 = mi(|v| + 1) and |w′|0 = mi(|w| + 1); hence, |v′|0 < |w′|0. On the
other hand, we have |v′|1 = li |v|0 + ni |v|1 + 2li and |w′|1 = li |w|0 + ni |w|1 + 2li ; so
|v′|1 ≤ |w′|1. Finally, |v′| = |v′|0 + |v′|1 < |w′|0 + |w′|1 = |w′|.
LEMMA 5.4. For all i ≥ 0, let Ai , Bi , Ci , Di be the Parikh vectors corresponding to the
non-neutral bispecial factors of u, ai , bi , ci , di . Then, we have

for all i ≥ 1, Di−1 < Bi < Ci < Ai+1 < Di .

Proof. Applying σ̂i−1 on the words b
(i)
0 , c

(i)
0 , σ̂i (a

(i+1)
0 ) = 1li 0mi 1li , and d

(i)
0 , we get the

following words:

d
(i−1)
0 = 1ni−1−1;

b
(i−1)
1 = 1li−1(0mi−11ni−1)li 0mi−11li−1 ;

c
(i−1)
1 = 1li−1(0mi−11li−1)mi−10mi−11li−1 ;

a
(i−1)
2 = 1li−1(0mi−11ni−1)li (0mi−11li−1)mi (0mi−11ni−1)li 0mi−11li−1 ;

d
(i−1)
1 = 1li−1(0mi−11ni−1)ni−10mi−11li−1 .
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The Parikh vectors corresponding to these words are:

D
(i−1)
0 =

(
0

ni−1 − 1

)
;

B
(i−1)
1 =

(
mi−1(li + 1)

ni−1li + 2li−1

)
;

C
(i−1)
1 =

(
mimi−1

li−1(mi + 1)

)
;

A
(i−1)
2 =

(
mi−1(mi + 2li + 1)

li−1(mi + 2) + 2lini−1

)
;

D
(i−1)
1 =

(
mi−1ni

ni−1(ni − 1) + 2li−1

)
.

From (∗), we have

ni−1li + li−1 < li−1mi , mi + 2li + 1 < ni , li−1mi + 2ni−1li < ni−1(ni − 1).

It follows the inequalities:

D
(i−1)
0 < B

(i−1)
1 < C

(i−1)
1 < A

(i−1)
2 < D

(i−1)
1 .

Applying σ̂i−2 on the words d
(i−1)
0 , b

(i−1)
1 , c

(i−1)
1 , a

(i−1)
2 , and d

(i−1)
1 , we get the words

d
(i−2)
1 , b

(i−2)
2 , c

(i−2)
2 , a

(i−2)
3 , and d

(i−2)
2 . By Proposition 5.1, it results in the following

inequalities:

D
(i−2)
1 < B

(i−2)
2 < C

(i−2)
2 < A

(i−2)
3 < D

(i−2)
2 .

And so, after the ith iteration, we get

D
(0)
i−1 < B

(0)
i < C

(0)
i < A

(0)
i+1 < D

(0)
i .

LEMMA 5.5. For all i ≥ 0,

|bi | < |ci | < |ai+1| < |di | < |bi+1|.
Proof.
• For i ≥ 1, the inequalities |bi | < |ci | < |ai+1| < |di | < |bi+1| follow from Lemma

5.4.
• For i = 0, recall that |b0| = l0, |c0| = m0 − 1, |a1| = 2l0 + m0, |d0| = n0 − 1, and

|b1| = l1(m0 + n0) + m0 + 2l0. So,

|b0| < |c0| < |a1| < |d0| < |b1|.

LEMMA 5.6. The function s associated with the word u satisfies:

for all n ∈ N, s(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if n = 0,
2 if n ∈ ⋃

i≥0
([|ci | + 1, |ai+1|] ∪ [|di | + 1, |bi+1|])∪]0, |b0|],

3 if n ∈ ⋃
i≥0

([|bi | + 1, |ci |] ∪ [|ai+1| + 1, |di |]).
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Proof. Let n ∈ N. We know that ai , bi , ci , and di , for i ≥ 0, are the only bispecial factors
of u which are strong or weak. Hence, using Proposition 2.1, we have

s(n) = 1 +
∑

w bispecial
|w|<n

m(w)

= 1 + #{i ≥ 0 : |ai | < n}
+ #{i ≥ 0 : |bi | < n}
− #{i ≥ 0 : |ci | < n}
− #{i ≥ 0 : |di | < n}.

Since for m ∈ [1, |b0| − 1], there is not a strong or weak bispecial factor of u with
length m, we have, for 0 < n ≤ |b0|:

s(n) = 1 +
∑

w bispecial
|w|≤n−1

m(w) = 1 + m(ε) = 2.

Suppose n > |b0|. Then, there exists i ∈ N such that n ∈ [|bi | + 1, |bi+1|]. Since the
sequences |ai |, |bi |, |ci |, and |di | are increasing, we are in one of the following cases:
• n ∈ [|bi | + 1, |ci |], then s(n) = 1 + (i + 1) + (i + 1) − (i) − (i) = 3;
• n ∈ [|ci | + 1, |ai+1|], then s(n) = 1 + (i + 1) + (i + 1) − (i + 1) − (i) = 2;
• n ∈ [|ai+1| + 1, |di |], then s(n) = 1 + (i + 2) + (i + 1) − (i + 1) − (i) = 3;
• n ∈ [|di | + 1, |bi+1|], then s(n) = 1 + (i + 2) + (i + 1) − (i + 1) − (i + 1) = 2.

THEOREM 5.1. The complexity function p of u satisfies:

for all n ≥ 1, p(n) ≤ 3n + 1.

Proof. By Lemma 5.6, s(n) ≤ 3 for all n ≥ 0. As p(n) = p(0) + ∑n−1
m=0 s(m), it follows

that p(n) ≤ p(0) + 3(n) = 3n + 1.

PROPOSITION 5.2. Let v, w, v′, w′ be four finite words such that v′ = σ̂i (v) and w′ =
σ̂i (w). Then for all λ > 0, we have

W > λ

[
V +

(
1
1

) ]

⇒ W ′ > λ

[
V ′ +

(
1
1

) ]
.

Proof. Assume that W > λ[V + ( 1
1 )]. Since |v′|0 = mi(|v| + 1) and |v′|1 = li |v|0 +

ni |v|1 + 2li , then

V ′ =
(

mi mi

li ni

)
V +

(
mi

2li

)
.

Here, W ′ is written in the same way. It follows

W ′ − λ

[
V ′ +

(
1
1

) ]
=

(
mi mi

li ni

)
(W − λV ) + (1 − λ)

(
mi

2li

)
− λ

(
1
1

)
.
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Since

W > λV + λ

(
1
1

)
and (1 − λ)

(
mi

2li

)
> −λ

(
mi

2li

)
,

it follows that

W ′ − λ

[
V ′ +

(
1
1

) ]
> λ

[ (
mi mi

li ni

) (
1
1

)
−

(
mi + 1
2li + 1

) ]

= λ

(
mi − 1

ni − li − 1

)
>

(
0
0

)
.

This proposition allows us to prove the following lemma.

LEMMA 5.7. For all i ≥ 0,

Bi+1 > li+1

[
Di +

(
1
1

) ]
.

Proof. Let us choose an integer i ≥ 1. Then, we have b
(i)
1 = σ̂i (b

(i+1)
0 ) =

1li (0mi 1ni )li+10mi 1li and d
(i)
0 = 1ni−1; the corresponding Parikh vectors are B

(i)
1 =

(
li+1mi+mi

li+1ni+2li
) and D

(i)
0 = ( 0

ni−1 ). It follows the inequality:

B
(i)
1 > li+1

[
D

(i)
0 +

(
1
1

) ]
.

By regressive induction on j ≤ i, suppose that

B
(j)

i+1−j > li+1

[
D

(j)
i−j +

(
1
1

) ]
,

where B
(j)

i+1−j and D
(j)
i−j are respectively Parikh vectors of the words b

(j)

i+1−j and d
(j)
i−j .

Thus, by Proposition 5.2,

B
(j−1)

i+2−j > li+1

[
D

(j−1)

i−j+1 +
(

1
1

) ]

since B
(j−1)

i+2−j is the Parikh vector of b
(j−1)

i+2−j = σ̂j−1(b
(j)

i+1−j ) and D
(j−1)

i−j+1 is the Parikh

vector of d
(j−1)

i−j+1 = σ̂j−1(d
(j)
i−j ). So,

B
(j)

i+1−j > li+1

[
D

(j)
i−j +

(
1
1

) ]
for 0 ≤ j ≤ i.

In the inequality above, we find the lemma by making j = 0.

THEOREM 5.2. The complexity function p of u satisfies lim inf p(n)/n = 2.

Proof. We have s(n) = 2 for |di | < n ≤ |bi+1|. So,

p(|bi+1|) = p(|di | + 1) + 2(|bi+1| − |di | − 1).
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By Lemma 5.6, we have p(n) ≤ 3n + 1 and we deduce that

p(|bi+1|) ≤ (3|di | + 4) + 2(|bi+1| − |di | − 1)

≤ 2|bi+1| + 1
li+1

|bi+1|

since |bi+1| > li+1(|di | + 2) as Bi+1 > li+1[Di + ( 1
1 )]. So,

p(|bi+1|)
|bi+1| ≤ 2 + 1

li+1
and lim

i→∞
p(|bi+1|)
|bi+1| = 2.

As p(n) ≥ 2n since s(n) ≥ 2 for n ≥ 1, we get lim inf p(n)/n = 2.

6. Proof of Theorem 3.1
Now, with Notation 5.1, we are able to explain the proof of Theorem 3.1.

Proof. Let us show that for i ≥ 0, there exists Ni such that any factor of u of length Ni

contains the prefix ui . Note that u does not contain 1n0+1.
(i) For i = 0, any factor of u of length N0 = n0 + 1 contains the prefix 0 = u0.

(ii) For i ≥ 1, any factor of u(i) of length N
(i)
0 = ni + 1 contains the prefix 0 = u

(i)
0

of u(i). Thus, any factor of u(i−1) of length

N
(i−1)
1 = (mi−1 + ni−1)(N

(i)
0 + 1)

contains σi−1(0) = u
(i−1)
1 .

By regressive induction on j, suppose that for some j ≤ i − 1, there exists N
(j)
i−j such

that any factor of u(j) of length N
(j)
i−j contains the word u

(j)
i−j . Then, any factor of u(j−1)

of length

N
(j−1)

i−j+1 = (mj−1 + nj−1)(N
(j)
i−j + 1)

contains σj−1(u
(j)
i−j ) = u

(j−1)

i−j+1.

So, for 0 ≤ j ≤ i − 1, there exists N
(j)
i−j such that any factor of u(j) of length N

(j)
i−j

contains the word u
(j)
i−j .

Consequently, letting Ni = N
(0)
i , it follows that any factor of u = u(0) of length Ni

contains the word ui . This completes the proof.
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