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Algebraic cycles on the Jacobian of a curve with a

linear system of given dimension

Fabien Herbaut

Dedicated to Joseph Steenbrink on the occasion of his 60th birthday

Abstract

We present relations between cycles with rational coefficients modulo algebraic equivalence
on the Jacobian of a curve. These relations depend on the linear systems that the curve
admits. They are obtained in the tautological ring, the smallest subspace containing (an
embedding of) the curve and closed under the basic operations of intersection, Pontryagin
product and the pullback and pushdown induced by homotheties.

1. Introduction

In this paper we extend a theorem of Colombo and van Geemen for d-gonal curves to linear systems
of higher dimension. To express our results in § 1.3 we recall in § 1.1 the Beauville decomposition
theorem which enlightens the structure of the tautological ring described in § 1.2. The main points
of the proof are summarised in § 1.4.

1.1 We use the notation CH (X) for the Chow ring associated to a smooth algebraic variety X, and
A(X) for its quotient modulo algebraic equivalence. These rings will always be considered tensored
by Q. The brackets [V ] mean we consider the class of a subvariety V of X. Let X be an Abelian
variety over C whose group law we denote m and dual variety we denote X̂ . It admits homotheties
x �→ kx which we will also denote k for k ∈ Z. We have another product between algebraic cycles,
the Pontryagin product, defined between two cycles α and β by α ∗ β = m∗(p∗α.q∗β) with p and
q the two projections associated to the product X ×X. Beauville introduced in [Bea83] the Fourier
transform F , a Q-linear automorphism between A(X) and A(X̂) which exchanges the two products.
He used it to prove in [Bea86] the decomposition theorem which states that the operators k∗ and
k∗ simultaneously diagonalize. For each codimension p the subspace Ap(X) splits:

Ap(X) =
g⊕

i=p−g

Ap
(i)(X) where α ∈ Ap

(i)(X) if and only if for all k ∈ Z k∗α = k2g−2p+iα

(or, equivalently, k∗α = k2p−iα). (1)

It is conjectured that Ap
(i)(X) vanishes for i < 0. This is proven if p ∈ {0, 1, g − 2, g − 1, g}.
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1.2 Let C be a smooth projective complex curve of genus g � 2 and JC its Jacobian variety. As C
embeds into JC , we can consider the associated cycle [C] in Ag−1(JC ) and its decomposition1:

[C] = C(0) + · · · + C(g−1) where C(i) ∈ Ag−1
(i) (JC ). (2)

Note that the cycle [C] does not depend on the embedding of the curve, as we work modulo
algebraic equivalence. The tautological ring R is the smallest subspace of A(JC ) which contains [C]
and is stable under the two products and the operators k∗ and k∗. Actually, R is finite-dimensional:
Beauville proved in [Bea04] that R is the subalgebra for the Pontryagin product generated by
C(0), . . . , C(g−1). So we can describe R as a quotient of the Q-algebra Q[C(0), . . . , C(g−1)] by an ideal
of relations we have to determine. However, to discuss the vanishing of algebraic cycles is always a
difficult problem. Few results are known for R. The cycle C(0) is never zero. Neither are C(1) and C(2)

for generic curves of respective genera g � 3 and g � 11 as Ceresa [Cer83] and Fakhruddin [Fak96]
proved, respectively. More recently, Ikeda [Ike03] proved for each degree d the existence of a smooth
plane curve C for which the component C(i) is nonzero in CH g−1

(i) (JC ) when i � d − 3.

On the other hand, one could ask for vanishing results. Polishchuk has presented in [Pol05] an
ideal Ig of relations which hold for all curves of genus g. For nongeneric curves, Colombo and van
Geemen proved the main result.

Theorem (Colombo–van Geemen [CV93]). If C is a d-gonal curve then C(i) = 0 in Ag−1
(i) (JC ) for

i � d − 1.

1.3 In this paper, we extend this theorem to curves which admit linear systems of higher dimension.
More precisely, we state the following result, where we use the abbreviation gr

d for linear systems of
dimension r and degree d.

Theorem 1. Let C be a curve which admits a base point free gr
d. For each integer s � 0 the

following relation holds in Ag−r
(s) (JC ):∑

0�a1,...,ar
a1+···+ar=s

β(d, a1 + 1, . . . , ar + 1)C(a1) ∗ · · · ∗ C(ar) = 0,

where

β(d, a1, . . . , ar) =
d∑

i1=1

· · ·
d∑

ir=1

(−1)i1+···+ir

(
d

i1 + · · · + ir

)
i1

a1 . . . ir
ar .

In § 7 we study applications of this theorem to plane and space curves. For almost all genera g
there exists a curve with a g2

d (respectively, a g3
d) giving new relations. By new relations we mean

that they could not be deduced from the g1
d′ that the g2

d (respectively, the g3
d) induces and from

knowledge of Ig. We list such relations for g � 9 in the Tables 1 and 2.

Do we obtain new vanishing statements C(i) = 0 in Ag−1
(i) (JC )? No, because the monomial

relations we obtain are B(r, d, g)C(d−2r+1) = 0, where for each dimension r the integer B(r, d, g)
is the number of (r − 2) planes which cut the curve (mapped to Pr by the gr

d) in 2r − 2 points.
When such a situation arises, we can construct (by projection) a g1

d−2r+2. In this case, the monomial
relation above does not teach us more than Colombo and van Geemen’s theorem. We explain this
in § 6.

1Perhaps it is useful to recall that C(i) is denoted π2g−2−iC in [CV93] and that Polishchuk worked with the classes
pi = F(C(i−1)) in [Pol05].
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1.4 The first sections are devoted to the proof of Theorem 1. Let Cd be the d-fold symmetric product
of the curve C. Choosing an element of Cd provides a morphism ud : Cd −→ JC . Throughout the
whole paper, G will denote a gr

d and Gn the truncated linear system of degree n; this is the set of
divisors of Cn we can complete to a divisor of G:

Gn = {D ∈ Cn | ∃E ∈ Cd−n,D + E ∈ G} for 1 � n � d.

These truncated linear systems may be considered as subvarieties2 of the symmetric products Cn.
The scheme structure is described in [ACGH85, paragraph 3 of ch. VIII]. They play an important
role in Colombo and van Geemen’s proof. We use the notation δi1,...,ir for the generalized diagonals
δi1,...,ir = {i1x1 + · · ·+ irxr | xi ∈ C} in the (

∑
iu)-fold symmetric product of C. The cornerstone of

the present note is the following generalization of a formula3 they obtained in the case r = 1, which
expresses the algebraic classes [Gn] (and, in particular, [G] = [Gd]) as functions of the diagonals.

Theorem 2. If C admits a base point free gr
d then the following equivalences hold in An−r(Cn) for

r � n � d:

[Gn] =
∑

1�i1�···�ir

( d

n −
r∑

u=1

iu

)( r∏
u=1

(−1)iu−1

iu

)[
δi1,...,ir +

(
n −

r∑
u=1

iu

)
o

]

where we choose a point o of C.

We state in § 4 a relation between [Gr], . . . , [Gn] for all r � n � d. It enables us to prove
Theorem 2 by induction in § 5. In § 6, we note that ud∗[Gd] is zero in A(JC ), because Gd is G and
ud contracts this projective space onto a point in the Jacobian.

Remark. Please note that in [VK07] van der Geer and Kouvidakis gave simpler relations than
those of Theorem 1 using the Grothendieck–Riemann–Roch theorem. Don Zagier proved that the
two sets of relations are equivalent.

2. Brief reminder about the Fourier transform and the tautological ring

The results recalled here are proven in [Bea83] and [Bea86]. We will identify JC and its dual
to consider the Fourier transform F : A(JC ) → A(JC ). It can be defined by the correspondence
associated to the exponential of the class of the Poincaré line bundle in A(JC × JC ). As F ◦ F =
(−1)g(−1)∗, this is an isomorphism. It exchanges the two products, that is

F(x.y) = (−1)g F(x) ∗ F(y) and F(x ∗ y) = Fx.Fy.

The decomposition (1) leads to a bigraduation, in the sense that

Ap
(i)(JC ).Aq

(j)(JC ) ⊂ Ap+q
(i+j)(JC ).

The proof of the existence of the decomposition (1) gives

FAp
(i)(JC ) = Ag−p+i

(i) (JC )

2They have already been used by Kouvidakis in [Kou93] to construct curves in the symmetric product whose Neron
Severi classes are known. Izadi has also used the truncated linear systems in [Iza05] to study how curves deform in
Abelian varieties.
3Proposition 3.4 of [CV93] states that if G is g1

d, then we have the equality in Ag−1(JC ):

un∗[Gn] =

n∑
i=1

(−1)i−1

i

(
d

n − i

)
i∗C.
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and so the Pontryagin product is also homogeneous of degree −g with respect to the bigraduation

Ap
(i)(JC ) ∗ Aq

(j)(JC ) ⊂ Ap+q−g
(i+j) (JC ).

The subspace R is spanned by homogeneous elements for both graduations, so R is bigraded
and if we note Rp

(i) for the intersection Rp
(i) = R ∩ Ap

(i)(JC ), we have

R =
⊕

0�p�g
0�i�p

Rp
(i)

.

3. Relations between truncated linear systems

Let us consider G, a base point free gr
d. It induces a nondegenerate morphism4 Φ : C → Pr and

truncated linear systems Gn. We will also consider for positive integers r, n the subvariety Hn
Pr ⊂

(Pr)n of n-tuples whose components are contained in a hyperplane

Hn
Pr = {(yi) ∈ (Pr)n | ∃H ∈ Pr∗,∀i ∈ {1, . . . , n}, yi ∈ H}. (3)

Now we introduce the morphisms ΨP : Ck → Cn which are defined for integers 0 � k � n and
for P an ordered k-partition of {1, . . . , n} (this is a partition of {1, . . . , n} into k ordered subsets
A1, . . . , Ak). We set

Ψ(A1,...,Ak) : Ck −→ Cn

x �−→ y

where yi = xj if and only if j is the unique integer such that i ∈ Aj. We also denote by σk the
quotient morphism σk : Ck → Ck. We can now state the main result of this section.

Proposition 1. We have, for each integer n � r, the equality in CH (Cn)

Φn∗[Hn
Pr ] =

n∑
k=r

1
k!

∑
P ordered

k-partition of {1,...,n}

ΨP∗(σk
∗[Gk]).

We first state a set theoretic analogue of Proposition 1 in § 3.2. We conclude in § 3.3 where we
prove that (Φn)−1Hn

Pr is reduced. In § 3.1 we compute the class of Hn
Pr in CH ((Pr)n).

3.1 One has, by [Ful83, Proposition 8.4], that

CH (Pr) =
Q[h]

(hr+1)
(4)

where h is the class of a hyperplane of Pr. By [Ful83, Proposition 8.3.7] we have

CH ((Pr)n) 
 Q[h1, . . . , hn]
(hr+1

1 , . . . , hr+1
n )

where hi is the class of a hyperplane in Pr at the position i. Following this isomorphism, we can
state the following.

Proposition 2. For integers 0 � r � n we have, in CH ((Pr)n),

[Hn
Pr ] =

∑
I⊂{1,...,n}
#I=n−r

(∏
a∈I

ha

)
.

4This amounts to saying that no hyperplane of Pr contains Φ(C).
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Proof. Let us consider the incidence variety I = {(x,H) ∈ Pr × Pr∗ | x ∈ H}. Let B be a basis
of Cr+1, and B∗ the dual basis. Such bases induce systems of coordinates on Pr and (Pr)∗. If
([x0 : . . . : xr], [a0 : . . . ar]) represents an element of Pr × Pr∗, the equation of I is

∑
aixi = 0. So I

is a hypersurface of bidegree (1, 1) in Pr×Pr∗. Now let us consider the variety I = {(x1, . . . , xn,H) |
xi ∈ H ∀i ∈ {1, . . . , n}}.

I ⊂ (Pr)n × Pr∗

π

���������
�������

���

pi

����
��

��
��

���
��

��
��

��

(Pr)n Pr × Pr∗

The projection pi maps (x1, . . . , xn,H) onto (xi,H) while π maps it onto (x1, . . . , xn). We have
Hn
Pr = π(I), and I is the transverse intersection

⋂n
i=1 p−1

i (I). Following the isomorphism

CH ((Pr)n × Pr∗) 
 Q[h1, . . . , hn, h]
(hr+1

1 , . . . , hr+1
n , hr+1)

where hi is the class of a hyperplane at position i and h the class of a hyperplane in Pr∗, we have
in CH n((Pr)n × Pr∗) the equality

[I] =
n∏

i=1

(hi + h). (5)

Finally, taking the pushdown π∗ is the same as considering the coefficient of hr in the product (5).

3.2 We establish here the set theoretical equality between cycles leading to Proposition 1.

Proposition 3. For integers 0 � r � n we have

(Φn)−1Hn
Pr =

n⋃
k=r

( ⋃
P k-partition

of {1,...,n}

ΨP(σ−1
k Gk)

)
.

Proof. Let X be an irreducible component of (Φn)−1Hn
Pr . The generic point x of X is an ordered

n-tuple with exactly k distinct elements x1, . . . , xk repeated according to a certain partition P of
{1, . . . , n} into k sets. Then x belongs to (Φn)−1Hn

Pr if and only if the points Φ(xi) belong to a
same hyperplane, that is (x1, . . . , xk) ∈ σ−1

k Gk, and then x ∈ ΨP(σ−1
k Gk). As the other inclusion is

straightforward, we have

(Φn)−1Hn
Pr =

n⋃
k=1

⋃
P k-partition

of {1,...,n}

ΨP(σk
−1Gk).

Suppose that k � r. We know that k points of Pr always lie in a hyperplane, so Gk = Ck and
σ−1

k Gk = Ck. So ⋃
P k-partition

of {1,...,n}

ΨP(Ck) ⊂
⋃

P r-partition
of {1,...,n}

ΨP(Cr)

and the proposition follows.

3.3 The following proposition is a sufficient statement for the cycle theoretic application of
Proposition 1.
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Proposition 4. The inverse image (Φn)−1Hn
Pr is of dimension r, and generically reduced along

each of its irreducible components of dimension r.

We learned the following proof from the referee.

Proof. One knows by Proposition 3 the decomposition of (Φn)−1Hn
Pr into irreducible components

of dimension r. Thus, it suffices to show that at a generic point of each of these components the
tangent space to (Φn)−1Hn

Pr is r-dimensional. Let us denote by L the line bundle associated to
the linear system G and W ⊂ H0(L) the space of sections of L. Thus, (Φn)−1Hn

Pr is the degeneracy
locus of the bundle map

ev : W ⊗OCn −→
n⊕

i=1

pr∗iL

given by evaluation
s �→ (s(x1), . . . , s(xn))

above a point x = (x1, . . . , xn) of Cn. At a point x ∈ Cn where ev has only a one-dimensional kernel
generated by σ, the tangent space to the degeneracy locus is exactly ker dσ where

dσ : TCn,x =
n⊕

i=1

TC,xi −→
(
⊕n

i=1 pr∗iL)x
Imevx

is the projection modulo Imevx composed with the direct sum of the dσi : TC,xi → Lxi . Note that
all of the differentials dσi are surjective if and only if the section σ vanishes transversally at each xi.
In this case, the tangent space is r-dimensional.

To conclude, consider the description of the irreducible components of (Φn)−1Hn
Pr given in

Proposition 3. As Φ is nondegenerate, and by Bertini, at the generic point x of each component the
kernel ker evx is generated by one section which vanishes transversally at each xi.

4. Classes of the truncated linear systems

Let I, I1, . . . , Ir, J1, . . . , Js be subsets of {1, . . . , n} and let o1, . . . , os be points of C. We use the
notation:

∆I = {(x1, . . . , xn) ∈ Cn | ∀(i, j) ∈ I2, xi = xj},
OI

oj
= {(x1, . . . , xn) ∈ Cn | ∀i ∈ I, xi = oj},

and
∆I1 . . . ∆IrOJ1

o1
. . . OJs

os
for the intersection.

Theorem 3. Assume that the curve C admits a base point free gr
d and let D be a reduced divisor of

this linear system whose points of the support are pairwise distinct. We have the following equalities
in CH n−r(Cn) and CH n−r(Cn), respectively:

(i) we have

σ∗
n[Gn] =

∑
I1,...,Ir⊂{1,...,n}
o1,...,os distinct

( r∏
u=1

(−1)iu−1(iu − 1)!
)

[∆I1 . . . ∆IrO{a1}
o1

. . . O{as}
os

];

(ii) we have

[Gn] =
∑

1�i1�···�ir
o1,...,os distinct

( r∏
u=1

(−1)iu−1

iu

)
[δi1,...,ir + o1 + · · · + os],

where we note that s = n − ∑r
i=1 iu.
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The sum of the first statement is taken over the choice of r subsets I1, . . . , Ir of {1, . . . , n} which
are pairwise disjoint. We do not order these sets, except by their growing cardinals i1 � · · · � ir.
For each choice of I1, . . . , Ir, we denote by a1, . . . , an−∑ iu the elements of {1, . . . , n} \ ⋃r

k=1 Ik we
order from the smallest to the largest.

In both statements, the points o1, . . . , on−∑ iu are chosen pairwise distinct in the support of the
divisor D. These points are considered ordered in the sum (i) and unordered in the sum (ii).

Proof. Statement (ii) is a consequence of statement (i) and of the pullback–pushdown formula
applied to the degree n! morphism σn:

σn∗ ◦ σn
∗ = n! IdCH (Cn).

To conclude, one counts the diagonals ∆I1 . . . ∆IrO
{a1}
o1 . . . O

{as}
os that σn maps to δi1,...,ir +o1+· · ·+os

and the number of antecedents of a generic point x ∈ δi1,...,ir + o1 + · · · + os by σn. We know that
Gr = Cr and σ−1

r Gr = Cr. We deduce that σ∗
r [Gr] = [Cr]. This is Theorem 3 for n = r. Suppose

that Theorem 3 is proven for n � m − 1. By Proposition 1, we have

σ∗
m[Gm] = Φm∗[Hm

Pr ] −
m−1∑
k=r

1
k!

∑
P ordered k-partition

of {1,...,m}

ΨP∗(σk
∗[Gk]) (6)

and Proposition 2 gives the class of Hm
Pr in CH ((Pr)m)

[Hm
Pr ] =

∑
I⊂{1,...,m}
#I=m−r

(∏
a∈I

ha

)
.

By the definition of D we have

Φm∗[Hm
Pr ] =

∑
o1,...,om−r∈Supp(D)
1�a1<···<am−r�m

O{a1}
o1

. . . O{am−r}
om−r

, (7)

where the points oi are chosen in the support of D and are not necessarily distinct. By the induction
hypothesis the classes σ∗

k[Gk] for k � m−1 are sums of classes of varieties ∆J1 . . . ∆JrO
{b1}
o1 . . . O

{bs}
os

where (J1, . . . , Jr, {b1}, . . . , {bs}) is a partition of {1, . . . , k}. By definition of the morphisms ΨP ,
the classes ΨP∗[∆J1 . . . ∆JrO

{b1}
o1 . . . O

{bs}
os ] are again classes of the form [∆I1 . . . ∆IrOA1

o1
. . . OAs

os
] with

(I1, . . . , Ir, A1, . . . , As) a partition of {1, . . . ,m}. So we can express the cycle σ∗
m[Gm] as a linear

combination of such classes.
We will fix a partition (I1, . . . , Ir, A1, . . . , As) of {1, . . . ,m} and look for which integers k of

{r, . . . ,m−1} and which partitions (J1, . . . , Jr, {b1}, . . . , {bs}) of {1, . . . , k} there exists a k-ordered
partition P of {1, . . . ,m} such that

ΨP∗[∆J1 . . . ∆JrO{b1}
o1

. . . O{bs}
os

] = ∆I1 . . . ∆IrOA1
o1

. . . OAs
os

.

We also have to determine the coefficients associated to these classes in the sum (6).
We will consider the partitions such that for all u ∈ {1, . . . , r}, ΨP(∆Ju) = ∆Iu. If we

denote by iu and ju the cardinals of the sets Iu and Ju, we have by definition of the varieties
∆Iu and the morphisms ΨP the inequalities 1 � ju � iu for all u ∈ {1, . . . , r}. The classes
∆J1 . . . ∆JrO

{b1}
o1 . . . O

{bs}
os come from the cycles σ∗

k[Gk] with k =
∑r

u=1 ju + s. All of these con-
tributions are associated to the coefficient

− 1
k!

r∏
u=1

(ju − 1)!(−1)ju−1
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which appears in the sum (6). To choose J1, . . . , Jr, {b1}, . . . , {bs} amounts to choosing r disjoint
subsets of cardinals j1, j2, . . . , jr. We count k!/j1! . . . jr! such ways.

To finish we have to choose an ordered partition P of {1, . . . ,m} such that for all u ∈ {1, . . . , r}
we have ΨP

(
∆Ju

)
= ∆Iu, and that for each v ∈ {1, . . . , s} we have ΨP(O{bv}

ov ) = OAv
ov

. It amounts
to choosing ordered partitions of the sets Iu in ju subsets. The symbol {a

b} stands for the Stirling
number of the second kind. This is the number of ways to partition a set of a objects into b nonempty
sets.5 So the number of ways to partition such a set into b ordered sets is b!{a

b}. In this case, we
count

∏r
u=1 ju!{iu

ju
} admissible ways to choose P.

We will distinguish four cases depending on whether the sets Iu are singletons (in this case
Φm∗[Hm

Pr ] contributes) and whether the sets Av are singletons.

First case: both Iu and Av are singletons. Such classes must come from Φm∗[Hm
Pr ], with coeffi-

cient 1 by (7). So it is equal to the following product where for all u ∈ {1, . . . , r} we have iu = 1:
r∏

u=1

(−1)iu−1(iu − 1)!.

Second case: the sets Iu are singletons, but one of the sets Av is not. There is, as above, one
contribution with coefficient 1 which comes from Φm∗[Hm

Pr ]. The cardinals i1, . . . , ir which are equal
to one make the other contributions come from the cycles σ∗

r+s[Gr+s]. Precisely, they come from
classes ∆J1 . . . ∆JrO

{b1}
o1 . . . O

{bs}
os with j1 = · · · = jr = 1. The coefficient associated is −1 which

cancels the contribution of Φm∗[Hm
Pr ].

Third case: one of the sets Iu is not a singleton, but the sets Av are singletons. In this case, the
pullback Φm∗[Hm

Pr ] does not contribute. On the other hand, we have to enumerate the contributions
from the cycles σ∗∑

ju+s[G
∑

ju+s] for the integers ju which satisfy 1 � ju � iu and
∑

ju + s < m.
The second inequality is equivalent to

∑
ju <

∑
iu. So the sum is taken over the integers ju which

verify 1 � ju � iu and such that there exists u ∈ {1, . . . , r} making ju different from iu. It is
equivalent to consider the sum for all ju such that 1 � ju � iu and to subtract the contribution
corresponding to the term for which iu = ju for each u ∈ {1, . . . ,m}. The total contribution is
then

−
( i1∑

j1=1

· · ·
ir∑

jr=1

r∏
u=1

(−1)ju−1(ju − 1)!{iu
ju
} −

r∏
u=1

(−1)iu−1(iu − 1)!
)

.

Note that the first sum can be factorized by
i1∑

j1=1

(−1)j1−1(j1 − 1)!{i1
j1
}

which vanishes by Lemma 1. So the class of ∆I1 . . . ∆IrOA1
o1

. . . OAs
os

again appears with the coeffi-
cient

r∏
u=1

(−1)iu−1(iu − 1)!.

Fourth case: one of the sets Iu is not a singleton and one of the sets Av is not a single-
ton either. In a similar manner, the cycle Φm∗[Hm

Pr ] does not contribute whereas the

5One could consult [GKP89, ch. 6] to learn more about the Stirling numbers of the second kind.
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cycles ΨP∗[∆J1 . . . ∆JrO
{b1}
o1 . . . O

{bs}
os ] from the pushdown σ∗∑

ju+s[G
∑

ju+s] contribute as soon as the
inequalities 1 � ju � iu and

∑
ju +s < m hold. However, we have m =

∑
iu +

∑
#Av, and at least

one of the cardinals #Av is strictly greater than one. So the first inequality implies the second, and
the class of ∆I1 . . . ∆IrOA1

o1
. . . OAs

os
appears with the coefficient

i1∑
j1=1

· · ·
ir∑

jr=1

r∏
u=1

(−1)ju−1(ju − 1)!{iu
ju
}.

This concludes the proof of Theorem 3 admitting Lemma 1.

Lemma 1. For an integer i � 2 the following sum vanishes

G(i) =
i∑

j=1

(−1)j−1(j − 1)!{i
j}.

Proof. Use the well-known identity {i
j} = j{i−1

j }+{i−1
j−1} (one can consult [GKP89, Table 250]) and

thus replace {i
j} in the definition of G(i).

Now we can simplify Theorem 3 to obtain Theorem 2. Note that for integers i1, . . . , ir such that∑r
u=1 iu � n and points of the curve o, o1, . . . , on−∑ iu , we have

[δi1,...,ir + o1 + · · · + on−∑ iu ] =
[
δi1,...,ir +

(
n −

∑
iu

)
o
]

in An−r(Cn).

The number of ways to choose n − ∑
iu distinct points in the support of a divisor D ∈ G, that is,

among d elements, is
( d
n−∑ iu

)
. Theorem 2 follows.

5. Relations in the tautological ring modulo algebraic equivalence

We explain in § 5.1 how to deduce from Theorem 2 the relations of Theorem 1 between the compo-
nents C(i). In § 5.2 we discuss the nullity of these relations. We use in § 5.2 two lemmas which are
proved in § 5.3.

5.1 By definition, all of the divisors of a linear system are linearly equivalent. The morphism ud

contracts the r-dimensional variety G into a point of JC so, by definition of the pushdown, we have

ud∗[G] = 0 in CH g−r(JC ). (8)

We have already calculated the class of G (because G = Gd) in terms of translates of the generalized
diagonals δi1,...,ir + o1 + · · · + os = {i1x1 + · · · + irxr + o1 + · · · + os | xi ∈ C}. The morphism ud

maps these diagonals onto translates of the variety i1C + · · · + irC and is one to one. In order to
simplify the problem, we will consider relations modulo algebraic equivalence, but one could also
express relations modulo the translations in the Chow ring of the Jacobian. From the definition of
the Pontryagin product we have i1∗C ∗ · · · ∗ ir∗C = n[i1C + · · · + irC] where n is the degree of the
addition morphism.

i1C × · · · × irC

n:1
��

i1C + · · · + irC
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To each sequence i1, . . . , ir of integers we associate integers d1, . . . , du such that

i1 = · · · = id1 , id1 �= id1+1,

id1+1 = · · · = id1+d2 , id1+d2 �= id1+d2+1,

...
id1 + · · · + idu−1+1 = · · · = id1 + · · · + idu and d1 + · · · + du = r

and we write γ for the product

γ(d, i1, . . . , ir) = d1! . . . du!

The number of antecedents of a generic point of i1C + · · · + irC is d1! . . . du!, so we have

i1∗C ∗ · · · ∗ ir∗C = d1! . . . du! [i1C + · · · + irC]. (9)

By (8), Theorem 2, and (9), we obtain
∑

1�i1�···�ir�n

(−1)i1+···+ir

i1 . . . ir

(
d

i1 + · · · + ir

)
1

d1! . . . du!
i1∗C ∗ · · · ∗ ir∗C = 0.

For all integers i1, . . . , ir such that 1 � i1 � · · · � ir we count
(

r
d1,...,du

)
different r-tuples (j1, . . . , jr)

we obtain by permutations of the ik. So we can write
d∑

i1=1

· · ·
d∑

ir=1

(−1)i1+···+ir

i1 . . . ir

(
d

i1 + · · · + ir

)
i1∗C ∗ · · · ∗ ir∗C = 0. (10)

Now we use the decomposition (2), the action of the operator i∗ onto the components (that is
i∗C(a) = ia+2C(a)), and multilinearity to write

i1∗C ∗ · · · ∗ ir∗C =
g∑

a1=1

· · ·
g∑

ar=1

i1
a1+2 . . . ir

ar+2C(a1) ∗ · · · ∗ C(ar).

Then we use the inclusions Ap
(s)(JC ) ∗Aq

(t)(JC ) ⊂ Ap+q−g
(s+t) (JC ) and we project (10) onto Ag−r

(s) (JC )
for all s � 0 to prove Theorem 1.

5.2 The relations we quote are obtained in Ag−r
(s)

(JC ). For small values of s, these relations are
trivial. For example, for s = 0, the relation is monomial with C∗r

(0). It should be trivial, otherwise
we would obtain the vanishing of a small power of the theta divisor. The first nontrivial relation is
obtained for s = d − r + 1 as stated in the following proposition.

Proposition 5. We have

β(d, a1, . . . , ar) =

{
0 if a1 + · · · + ar < d − r + 1
(−1)da1! . . . ar! if a1 + · · · + ar = d − r + 1.

Proof. We denote t = i1+· · ·+ir and expand iar
r = (t−i1−· · ·−ir−1)ar using Newton’s multinomial

formula to get

β(d, a1, . . . , ar) =
∑
t�0

(−1)t
(

d

t

) ∑
b,b1,...,br−1

b+b1+···+br−1=ar

(−1)b1+···+br−1

(
ar

b, b1, . . . , br−1

)

× tb
t∑

i1=0

t−i1∑
i2=0

· · ·
t−i1−···−ir−2∑

ir−1=0

i1
a1+b1 . . . ir−1

ar−1+br−1 .
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By Lemma 2 below, the lower part of the sum above is a polynomial of degree
r−1∑
i=1

ai +
r−1∑
i=1

bi + b + r − 1 =
r∑

i=1

ai + r − 1

in t whose leading coefficient is ∏r−1
i=1 (ai + bi)!

(
∑r−1

i=1 ai +
∑r−1

i=1 bi + r − 1)!
.

The equality
∑d

t=0(−1)t
(d

t

)
ta = d!{a

d}(−1)d is the result (6.19) in [GKP89]. However, the Stirling
number {a

d} vanishes for a < d and equals one when a = d. So when
∑r

i=1 ai < d − r + 1, the sum
β(d, a1, . . . , ar) vanishes. In the case of equality

∑r
i=1 ai = d − r + 1, it remains to compute the

sum

(−1)dd!
∑

b,b1,...,br−1
b+b1+···+br−1=ar

(
ar

b, b1, . . . , br−1

)
(−1)b1+···+br−1

∏r−1
i=1 (ai + bi)!

(
∑r−1

i=1 ai +
∑r−1

i=1 bi + r − 1)!

which is (−1)d
∏r

i=1 ai! by Lemma 3 below.

5.3 We now provide the lemmas used in § 5.2.

Lemma 2. For all positive integers a1, a2, . . . , an the sum∑
0�i1,...,in

i1+···+in�t

i1
a1 . . . in

an

is a polynomial of degree a1 + · · · + an + n in t. Its leading term is∏n
i=1 ai!

(n +
∑n

i=1 ai)!
.

Proof. Suppose that Lemma 2 is proven up to rank n, and write the sum above with n + 1 terms
in this way:

t∑
i1=0

i1
a1

( ∑
0�i2,...,in+1

i2+···+in+1�t−i1

i2
a2 . . . in+1

an+1

)
. (11)

By the induction hypothesis, the term between parentheses is a degree (a2+· · ·+an+1+n) polynomial
in t− i1. Its leading coefficient is a2! . . . an+1!/(a2 + · · ·+an+1 +n)!. We denote it by P . There exists
a polynomial Q whose degree is less than a2 + · · · + an+1 + n and such that

P (t) =
a2! . . . an+1!

(a2 + · · · + an+1 + n)!
ta2+···+an+1+n + Q(t).

So (11) is equal to

a2! . . . an+1!
(a2 + · · · + an+1 + n)!

t∑
i1=0

i1
a1(t − i1)a2+···+an+1+n +

t∑
i1=0

Q(t − i1)i1a1 . (12)

We note N = a2 + · · ·+an+1 +n for brevity and develop (t− i1)N using Newton’s binomial formula.
The first sum of expression (12) becomes

N∑
k=0

(−1)ktN−k

(
N

k

)( t∑
i1=0

i1
a1+k

)
. (13)
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Now we use the induction hypothesis when n = 1 to prove that the sum between parentheses in (13)
is a degree a1 + k + 1 polynomial in t whose leading term is 1/(a1 + k + 1). So (13) is a polynomial
of degree a1 + N + 1 in t whose leading term is

N∑
k=0

(−1)k
(

N

k

)
1

a1 + k + 1
.

The simplification of this last sum given by formula (5.51) in [GKP89] enables us to conclude.

In § 5.2 we have used the following equality.

Lemma 3. For r positive integers a1, a2, . . . , ar, we have∑
0�b,b1,...,br−1

b+b1+···+br−1=ar

(
ar

b, b1, . . . , br−1

)
(−1)b1+···+br−1

∏r−1
i=1 (ai + bi)!

(
∑r−1

i=1 ai +
∑r−1

i=1 bi + r − 1)!
=

∏r
i=1 ai!

(
∑r

i=1 ai + r − 1)!
.

Proof. Write the sum in the following way

∑
b,b1,...,br−1

b+b1+···+br−1=ar

r−1∏
i=1

(
(−1)bi

(ai + bi)!
bi!

)(
1

b!(
∑r

i=1 ai + r − 1 − b)!

)
.

One could consult [GKP89, p. 321] for the following equalities which hold for all i ∈ {1, . . . , r − 1}:∑
bi�0

(−1)bi(ai + bi)!
bi!

Xbi = ai!
∑
bi�0

(
ai + bi

bi

)
(−X)bi =

ai!
(1 + X)ai+1

.

We also note that
∑
b�0

Xb

b!(
∑r

i=1 ai + (r − 1) − b)!
=

∑
b�0

(∑r
i=1 ai+r−1

b

)
Xb

(
∑r

i=1 ai + r − 1)!

=
(1 + X)

∑r
i=1 ai+r−1

(
∑r

i=1 ai + r − 1)!
,

so the sum we study is the product of
∏r

i=1 ai!/(
∑r

i=1 ai + r − 1)! by the coefficient of Xar in the
formal series

1
(1 + X)a1+1

· · · 1
(1 + X)ar−1+1

(1 + X)a1+···+ar+r−1.

This is the coefficient of Xar in (1 + X)ar , so it is 1.

6. Linear systems and (2r − 2)-secant r − 2 planes

The goal of this section is to analyze the relations C(i) = 0 we can deduce from Theorem 1. First of
all, for r = 1, one recovers Colombo and van Geemen’s theorem. The study of relations when r � 2
makes the following coefficients appear:

A(r, d, g) =
r−1∑
i=0

(−1)i

d − 2r + 2

(
i + g + r − d − 2

i

)(
d − 2r

r − 1 − i

)(
d − r + 1 − i

r − i

)
.

Using the relations of Theorem 1 we will prove the following.

Theorem 4. If C admits a base point free gr
d and if A(r, d, g) �= 0, then we have

C(i) = 0 in Ag−1
(i) for i � d − 2r + 1.
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However, we will explain how Theorem 4 can also be deduced from the theorem of Colombo
and van Geemen because A(r, d, g) is the number of projective spaces of dimension r − 2 which cut
the curve in 2r − 2 points. So Theorem 4 does not give us new relations, but it is interesting to
recover a number of geometrical significance such as the Castelnuovo number from the relations of
Theorem 1. It could also suggest the existence of a partial converse to the theorem of Colombo and
van Geemen.

6.1 The case of a g1
d

If C admits a base point free g1
d then Theorem 1 gives, for 0 � a � g − 1,

β(d, a + 1)C(a) = 0 in Ag−1
(a) .

The coefficients β(d, a) can be expressed in terms of the Stirling numbers of the second kind. One
can consult formula (6.19) of [GKP89]:

β(d, a) =
d∑

i=1

(−1)i
(

d

i

)
ia = d!{a

d}(−1)d.

Lastly, {a+1
d } is nonzero if and only if 0 � d � a + 1, so we have C(a) = 0 for a � d − 1. This is

Colombo and van Geemen’s result.

6.2 Proof of Theorem 4

Proof. By Proposition 5, the first nontrivial relation is obtained in Ag−d+2r−1
(d−2r+1) (JC ):

∑
1�a1�···�ar

a1+···+ar=d−2r+1

(a1 + 1)! . . . (ar + 1)!
γ(a1, . . . , ar)

C(a1) ∗ · · · ∗ C(ar). (14)

Now multiply (14) by C
∗(g+r−d−2)
(0) and order the terms with respect to the powers of C(0). We

introduce t which is the number of integers ai which are equal to zero. So we have a1 = · · · = at = 0
and at+1 > 0. By definition of γ we have γ(a1, . . . , ar) = t! γ(at+1, . . . , ar), and

r−1∑
t=0

∑
1�at+1�···�ar

at+1+···+ar=d−2r+1

(at+1 + 1)! . . . (ar + 1)!
t!γ(at+1, . . . , ar)

C
∗(t+g+r−2−d)
(0) ∗ C(at+1) ∗ · · · ∗ C(ar) = 0. (15)

By Fourier transform, Rg−1
(d−2r+1) is isomorphic to Rd−2r+2

(d−2r+1). This subspace is spanned by C(d−2r+1),
so its dimension is bounded by 1. The relations Polishchuk obtained enable us to express
C

∗(t+g+r−2−d)
(0) ∗C(at+1) ∗ · · · ∗C(ar) in terms of C

∗(g+2r−d−3)
(0) ∗C(d−2r+1). The corollary of Lemma 0.3

in [Pol05] gives

C
∗(g−1−∑k

i=1 ni)

(0) ∗ C(n1) ∗ · · · ∗ C(nk)

=
(

(−1)k−1 (g − 1 − ∑k
i=1 ni)!

(g + k − 2 − ∑k
i=1 ni)!

(
∑k

i=1 ni)!
n1! . . . nk!

)
C

∗(g+k−2−∑k
i=1 ni)

(0) ∗ C(1−k+
∑k

i=1 ni)
.

Thus (15) becomes a monomial relation whose coefficient is

r−1∑
t=0

(−1)r+t (t + g + r − d − 2)!(d − r + 1 − t)!
t!(r − t)!

( ∑
1�at+1�···�ar

at+1+···+ar=d−2r+1

(r − t)!
γ(at+1, . . . , ar)

)
. (16)
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We note that γ(at+1, . . . , ar) = γ(at+1 − 1, . . . , ar − 1) and reindex the sum to obtain∑
1�at+1�···�ar

at+1+···+ar=d−2r+1

(r − t)!
γ(at+1, . . . , ar)

=
∑

0�b1�···�br−t
b1+···+br−t=d−3r+1+t

(r − t)!
γ(b1, . . . , br−t)

.

As (r − t)!/γ(b1, . . . , br−t) is the number of (r − t)-tuples we can associate to the integers {b1},
{b2}, . . . , {br−t}, the sum corresponds to the number of positive integers whose sum is d−3r+1+ t.
If we consider the formal series 1/(1 − X) = 1 + X + X2 + · · · , the integer we are looking for
appears as the coefficient of Xd−3r+1+t in (1/(1 − X))r−t, that is

( d−2r
d−3r+1+t

)
. Now factor (16) by

(g + r − d − 2)!(d − 2r + 2)! to make the coefficient A(r, d, g) above appear. Note that C(d−2r+1) is

(up to a coefficient) the Fourier transform of C
∗(g+2r−d−3)
(0) ∗ C(d−2r+1), so when A(r, d, g) �= 0, we

have C(d−2r+1) = 0 modulo algebraic equivalence. This concludes the proof of Theorem 4 admitting
Lemma 4 below.

The following lemma is a consequence of the relations obtained by Polishchuk. Marini has also
noted and proven it in [Mar05].

Lemma 4. Let i be a positive integer. If C(i) = 0 in Ag−1
(i)

, then C(i+1) = 0 in Ag−1
(i+1)

.

Proof. If g ∈ {2, 3}, the only components which arise are C(0) and C(1), and the cycle C(0) never
vanishes because −F(C(0)) is the class of the theta divisor (see [Bea04]). Now suppose that g � 4.
As the gonality of the curve is less than g, apply the theorem of Colombo and van Geemen to
obtain C(g−2) = 0 and the implication C(g−3) = 0 ⇒ C(g−2) = 0. Now suppose that i � g − 4.
The point is that Rg−1

(i+1), which is spanned by C(i+1), is isomorphic to Ri+1
(i) , which is spanned

by C
∗(g−i−2)
(0) ∗ C(i+1) by [Pol05, Corollary 0.3]. Now consider the cycle C(0) ∗ C(1) ∗ C(i) which is

proportional to C
∗(g−i−2)
(0) ∗ C(i+1) by the same corollary.

6.3 The Castelnuovo number
The Grassmannian G(r − 1, r + 1) which parametrises the (r − 2)-dimensional linear subspaces of
Pr is a (2r − 2)-fold. The subspaces containing a point of the curve correspond to a codimension
one subvariety of G(r − 1, r + 1). So one can expect to find a finite number of Pr−2 which contains
2r − 2 points of the curve. Actually, the formula of Castelnuovo computes this number when it is
finite:

B(r, d, g) =
r−1∑
i=0

(−1)i

r − i

(
d − r − i + 1

r − 1 − i

)(
d − r − i

r − 1 − i

)(
g

i

)
.

One could consult [ELMS89] for a proof. When B(r, d, g) is nonzero, consider 2r − 2 such points
and then the hyperplanes which contain these points. The linear system we obtain in this way is
a g1

d−2r+2 and we can apply the theorem of Colombo and van Geemen. So when B(r, d, g) �= 0, we
have C(i) = 0 in Ag−1

(i) for i � d − 2r + 1. We conclude this second proof of Theorem 4 with the
following lemma.

Lemma 5. For each integer r � 1, we have the equality in Q[d, g]:

A(r, d, g) = B(r, d, g).

We use the algorithm of Zeilberger to prove that A(r, d, g) = B(r, d, g). We apply it thanks to
the software Mathematica and the package ZW that Paule and Schorne have developed [PS95].
It enables us to compute a linear recurrence relation

Q2(r, d, g)X(r + 2, d, g) + Q1(r, d, g)X(r + 1, d, g) + Q0(r, d, g)X(r, d, g) = 0
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Table 1. Relations deduced from Theorem 1 for plane curves of genus g � 9.

g1
d′ deduced Relations deduced from the g2

d

Genus g2
d from the g2

d with Theorem 1 Consequences

g = 5 g2
5 g1

3 3C(0) ∗ C(2) + C∗2
(1) = 0

g = 6 g2
5 g1

4 3C(0)C(2) + C2
(1) = 0

g = 7 g2
6 g1

4 2C(0) ∗ C(3) + C(1) ∗ C(2) = 0

g = 8 g2
7 g1

5 8C(1) ∗ C(3) + 3C∗2
(2) = 0 C(1) ∗ C(3) = C∗2

(2) = 0

g2
6 g1

4 C(1) ∗ C(2) = 0 C(0) ∗ C(1) ∗ C(2) = 0

C∗3
(1) = 0

g = 9 g2
7 g1

5 8C(1) ∗ C(3) + 3C∗2
(2) = 0 C(1) ∗ C(3) = C∗2

(2) = 0

C(0) ∗ C(1) ∗ C(3) = C(0) ∗ C∗2
(2) = 0

C∗2
(1) ∗ C(2) = 0

g2
6 g1

4 C(1) ∗ C(2) = 0 C(0) ∗ C(1) ∗ C(2) = 0
C∗2

(0) ∗ C(1) ∗ C(2) = 0

C(0) ∗ C∗3
(1) = 0

with coefficients Qi ∈ Q[r, d, g] that both A and B satisfy. We conclude because the first terms
are the same: A(1, d, g) = B(1, d, g) and A(2, d, g) = B(2, d, g). To learn more about Zeilberger’s
algorithm, one can consult [PWZ96]. One can also find an explanation of the ZW package in [PS95].

7. New relations in the tautological ring for nets and webs

We have seen in the last section that the relations C(i) = 0 we can deduce from Theorem 1 could
also be deduced from the theorem of Colombo and van Geemen. Do we obtain new relations modulo
algebraic equivalence? Yes, we give the new relations for plane and space curves of low genus in
Tables 1 and 2.

The integer A(2, d, g) = (d−1)(d−2)/2−g is the well-known number of nodes for a plane curve
of degree d and genus g. So for every plane curve the integer A(2, d, g) is positive. Conversely, when
the integers d and g satisfy g � 0 and (

√
8g + 1 + 3)/2 � d, there exists a plane curve with such

invariants. As explained in the last section, when the curve is singular, one can consider the line
passing through a singular point to obtain a g1

d−2. Let us denote d′ = d − 2 in this case. When the
curve is smooth, it only admits a g1

d−1. We denote d′ = d − 1 in this case. We indicate in Table 1
the relations6 deduced from Theorem 1. The new relations (those which cannot be deduced from Ig

and from Colombo and van Geemen’s theorem applied to the g1
d′ the curve admits)7 are written in

bold type.

Remark. For g sufficiently large, one can always find d such that a genus g curve exists with a g2
d

giving us new relations. Let us sketch the proof. The first non-trivial relation given by Theorem 1

6Keep in mind that Polishchuk used the cycles pi+1 = F(C(i)) to describe R. So to translate the relations, one has to
change C(i) into pi+1 and the Pontryagin products into intersection products.
7More precisely, to define relations one should consider the kernel R of the map π : C[C(0), . . . , C(g−1)] −→ R which
maps the indeterminate C(i) to the cycle C(i). One could also define (with Polishchuk’s formula) a Fourier transform
on C[C(0), . . . , C(g−1)] compatible with F . In these terms, a new relation is an element of R which is not in the smallest
ideal containing Ig, C(d′−1) and stable under Fourier transform.
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Table 2. Relations deduced from Theorem 1 for space curves of genus g � 9.

g1
d′ deduced Relations deduced from g3

d

Genus g3
d from g3

d with Theorem 1 Consequences

g = 6 g3
7 g1

3 C(0) ∗ C∗2
(1) = 0

g = 7 g3
8 g1

4 9C(0) ∗ C(1) ∗ C(2) + C∗3
(1) = 0

g = 8 g3
8 g1

4 9C(0) ∗ C(1) ∗ C(2) + C∗3
(1) = 0 C(1) ∗ C(2) = 0

C∗3
(1) = C(0) ∗ C(1) ∗ C(2) = 0

g = 9 g3
9 g1

5 8C(0) ∗ C(1) ∗ C(3) C(1) ∗ C(3) = C∗2
(2) = 0

+ 3C(0) ∗ C∗2
(2) C∗2

(1) ∗ C(2) = 0

+ 2C∗2
(1) ∗ C(2) = 0 C(0) ∗ C∗2

(2) = 0
C(0) ∗ C(1) ∗ C(3) = 0

g3
8 g1

4 9C(0) ∗ C(1) ∗ C(2) + C∗3
(1) = 0 C∗m

(0) ∗ C(1) ∗ C(2) = 0
for m ∈ {0. . .2}

C∗n
(0) ∗ C∗3

(1) = 0
for n ∈ {0, 1}

is ∑
1�a,b

a+b=d−3

(a + 1)!(b + 1)!C(a) ∗ C(b) = 0 in Rg−2
(d−3). (17)

The relations of Ig correspond to subspaces Rd+i
(i) for 0 � d � g/2− 1 and d+ 1 � i � g− d− 1 (one

has to see how the relations of the Theorem 0.1 of [Pol05] are parametrized). So when the inequality
d < g/2 + 2 holds, there is no relation of Ig which belongs to Rg−2

(d−3). Finally, if d′ = d − 1, there is
no relation deduced from the existence of the g1

d′ in Rg−2
(d−3). If d′ = d − 2, the only relation we can

deduce from the g1
d′ in Rg−2

(d−3) is C(0) ∗ C(d−3) = 0 which is different from (17).

The integer A(3, d, g) is the number of quadrisecants to the space curve Φ(C). Let us recall
Cayley’s formula

A(3, d, g) =
(d − 2)(d − 3)2(d − 4)

12
− g(d2 − 7d + 13 − g)

2
.

When A(3, d, g) is non-zero, the curve admits a g1
d−4 and so C(d−5) is zero modulo algebraic equiv-

alence. We note d′ = d − 4 in this case. Otherwise, we deduce from the existence of a g1
d−3 the

vanishing of C(d−4). We note d′ = d− 3. We give in Table 2 the results we obtain by Theorem 1 for
space curves of low genus. As above, a new relation is written in bold type. It means the relation
cannot be deduced from the theorem of Colombo and van Geemen applied to the g1

d′ and from the
relations of Ig. With the same argument as in the case of a g2

d, one can show that for g sufficiently
large there exists a genus g space curve for which Theorem 1 gives us new relations.
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