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INTEGRAL FUNCTIONALS IN THE
DUALS OF L*-SPACES()

BY
H. W. ELLIS AND J. D. HISCOCKS

1. Introduction. Luxemburg and Zaanen [5] call an element ¢ of the topological
dual of a normed or seminormed vector space V" an integral if

ae)f, O(i.e. Fa€Vifu 2 farn NSy = o) implies lim g(f,) = 0.

n—*w

We denote the space of integrals by V. For the L* function spaces introduced by
Ellis and Halperin [2] another Banach subspace of the dual emerges, namely the
conjugate space L** which is the L* space determined by the conjugate length
function A*- L** is contained in (L‘)I but need not coincide with it.

There are measure spaces in which, for L*=11, L*'(L**, (L*". In [3] Ellis
and Snow characterized the dual of L' in terms of integrals with respect to collec-
tions of functions defined in terms of an arbitrary N.D-decomposition of the
measure space. The space of analogous collections of elements for an arbitrary L*
will be denoted by (LH® (§4 below). Always

L).' - (L).).sa( - (LJ.)I - (L)')*.

In §§3-5 the spaces L**, (L*)* and (L*)T are related and conditions whereby
each coincides with (L*)* are given.

2. Definitions and notation. We consider an arbitrary complete measure space
(X, S, p) where S is a c¢-algebra. We let M denote the measurable functions
valued in the extended reals, R. In a partially ordered space (B, <) with a zero we
denote by B, the elements f € B with f >0. A function 2:M,—R, is called a length
function [2] if

(L) A(f)=0 if f(x)=0 foralmostall xe X;

L2 M) SMf if fi <fos
(L3) Mf + 1) < Uf) + Ao
(L4) UKf) = kA(f),  keRy;
(LS) £; 12, f implies that  A(f) T 2, A(f).
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For fe M we define A(f)=A(|f]) and set £*={fe M*:A(f)< oo} (where M*
denotes the finite real valued elements of M). On £*, (L1), (L3) and (L4) imply
that 4 defines a seminorm. Making identifications modulo A-null functions gives a
space L* which is a Banach space. With the usual pointwise order .£* is a vector
lattice and (L2) implies that A is monotone on the positive cone of #*. When
fe&*, (L5) is an analogue of the Lebesgue monotone convergence property in
the space of integrable functions. Similar statements are true in L* ordered point-
wise modulo A-null functions. With conventional lack of precision we shall not
always distinguish #* and L*.

To each length function A corresponds a conjugate length function A* defined
on M, by

A¥(g) = sup ffg dp < + 0.
A =1

The space Z*" is called the conjugate of £2. If g € #**, defining ¢,: £*—R by

oolf) = f fg du,
Il = sup [,()] = sup | [ |
M =1 AMf)=1

= sup. fflgl dp = 2*(lg]) = 2*(g)

A=

and ¢, € (¥*)*. Furthermore if {f,,} € £* and £, |0 then f,g*]0, f,£710 and the
general Lebesgue convergence theorem implies that (I¢,) holds.

A function f: X—R will be called a step function if f=37 ; c,;xe;, e; € S (where
xA denotes the characteristic function of 4). With the added requirement that
each e, has finite measure f will be called a simple function. We denote by 4, M
respectively the spaces of step functions and of simple functions and define A*=
M N L M=M N PP M* and M* denote the closures of these spaces in £*
for the seminorm topology.

ReMARK. If f'e A there is a sequence of step functions f, € A with f,1f If X
is o-finite there is a sequence of simple functions increasing to f.

3. The spaces (ZA)I. For an arbitrary measure space (X, .S, ») we use the

following approach to the integral.
If f=>7 cipe; € M, we define

ffdv = i c(e) eR.
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If fe M, we define

[rar= sup| [ranseansi<s)er.

Finally if f€ M and [ f+ dv and/or [ f~ dv< o0, we define

ffdv=ff+dv—ff'dv.

Then £(X, S, »)=ZL'(»)={feM:[fdveR} is the usual space of integrable
functions without identifications. If f,, € M, and f,1f € £* then

lim | f,dv = f fav.

n-* oo

Given a space L*(X, S, u) and positive measure » on S, we define

2°6) = sup| [ranreation <t < +o

(For ge M, dv = g°du, we have A*(v)=24*(g).)
Given Z*(X, S, ), set S*={e € S:ye € £*}. For ¢ € (¥*)] define, on %,

tole) = ¢(ze) €R,
and extend the definition to all of S by
poe) = sup{u(e’), e’ € S, ¢’ < e}.

Then u,:S—R, and standard arguments show that u, is a measure on S that is
absolutely continuous with respect to p.
If fe £ and f,1f, f, € M., then f, € M* and f—f,]0. Hence, using (I¢)

3.1) f dy =lim f T dity = lim (£) = 9L,

and (3.1) remains valid in #* since (3.1) holds for f+ and f~. Thus every ¢ € (L~
can be expressed as an integral with respect to the corresponding measure u,,.
Furthermore

1%1) < sup{ [ s 1) < 1) = supla, 1) < 13 = .
If fe L%, M(f)#0, >0, f,1f, fn € A2, then for n sufficiently large,

ffd/t.p Sff,.dm, +¢;

fa e
d _——
l(f,.) Ao f (f) f A )

Since for ¢ € (L‘)+, @l =sup{e(f), f=0, A(f)<1} it follows that A*(u,)>[ @]
and equality holds.
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Conversely for an arbitrary countably additive measure » on § with 2*(v) <o,
define

w) = [1dn e
If f,1f with f, € A% for all n and fe £, then

f fdv =lim | f, dv <lim A(f)2%() < Af)A*@) < oo.

n—>w n—>o

Considering f+ and f- it follows that if f € #* then f € #(v) and (Ig,) is implied
by the general Lebesgue convergence theorem. Thus ¢, € (&* i

Writing ¢'=¢,, ¢’ determines a positive measure u,,, with ¢,(f)= [ fdu,. for
all fin £*. Since the integrals with respect to » and u, coincide on #7,

2¥@) = 2*(pg) = l@,ll.

Dropping the assumption that ¢ is positive, if ¢ € (&£ Y1, then g= g+ — ¢~ with
¢*, ¢~ and |p|=¢*+¢~ in (LHL. Since £* is a seminormed vector lattice,
gl = Il || || for every ¢ € (£L*)*. We set K o= Pq+—MHq- Where it is defined (which
includes S*), define

. gl(.ulp) = gl(:u'lqtl):
and write

f fdu, = f fdugr — f fduys  feLuy).
Since £* < £1(uy,) this is finite for every f€ #* and
[0 = 9" = 7 = 901
We set A*(u,)=A*(uy,). Using the above results for (£,
AXpg) = M) = Il = il

THEOREM 3.1. To each ¢ € (¥ ’1)1 corresponds measures vy =[,+, Vs=fl,- on S,
determined by @t and @, with

(32) o(f) = f fdv,— f fdv,

and || @||=A*(u,)=A*(v1+v,). Conversely if v, and v, are measures on S with
A%(v) <0, i=1, 2, then (3.2) gives p € (L with || @l =A*(v,+,).

THEOREM 3.2. [5]. (LY '=(LH* if and only if
(" f.l0, f, €L, implies that lim,_, ., A(f,)=0.

Proof. Since |p(fILlol A(f,), 1) implies (Ig) for every ¢ € (L**. Con-
versely if (Ip) holds for every @ € (L*)*, (I*) holds [5, p. 671, Lemma 22.6].
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Tuaeorem 3.3. If (LY =(L** then M*=IL*.

Proof. #* is a vector subspace of L*. Assuming that #*£L* letf’ e L*—.4*.
A corollary of the Hahn-Banach theorem then shows that there exists ¢ & (L*)*
with @(f)=0, fe A*, p(f")70. Since

o(f) = " (fD—*(f" )= (fH+ 9 (f)
we can assume that ¢, f'>0. Then

o(f) = f fdu, felIl.

There exists a sequence f, € M* with f,1f’. Using the countable additivity of ¢
and the Lebesgue monotone convergence theorem, 0 < ¢(f")= lim,,_, , § f, du,=0,
a contradiction.

4. The spaces (#*%. In [3] Zorn’s lemma was used to show that in an
arbitrary measure space (X, S, u) there exists a decomposition

X=X1UX2,

with X; N Xo=¢; Xo=VU,y €, 0<pule,)<o, ac; ule, Ney,)=0, a#ad,
and such that if ¢’ € S, ¢’ < X then either u(e)=0 or u(e')=+ 0. Foreache € S
with 0<u(e) < o, there is then a countable collection of subscripts {a,} with

we) = Sule 1 e,).

Such a decomposition was called an ND-decomposition.

When X is o-finite, X; and X, are measurable, u(X;)=0 and X, is expressed as
a union of sets of finite positive measure with null intersections.

Fixing an ND-decomposition, where (e,, S,, %) is the restriction of (X, S, u) to
e,, we set

M7= I Mle,, S., 1),

ae.ﬂ

and denote points by g_,={g, € M(e,, S,, p); a € &/ }.
If E€ S is o-finite, then u(E N e,)=0 except for a countable collection {g;}.

Defining

gz = (SUp; g )Xk if u(E Ne,) #O0 for at least one a € &7,
gg=0 if u(Ene)=0 forall aecs,

we have gz € M(X, S, u). For an arbitrary length function 4 on (X, S, 1) we
define
A*(g,) = sup{A*(gg), E € S, E o-finite},
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and denote by (Z*7 the elements g, € M¥ with A*(g,)<co. Then (F*¥
is a vector subspace of M on which A* is a seminorm; a norm with identifica-
tions modulo A*-null functions. We note that

(&N < TI ¥ (ewr Sar 0)-

aesd

LemMA 4.1, If 2*(g,) < 0, f, € L*, then for at most countably many a € s/
(@.1) f fofadp # 0.

Proof. There is no loss of generality in assuming that each g, > 0 almost
everywhere in e, and that £, >0, A(f;)=1. Suppose that (4.1) holds for uncountably
many a € &/. There then exists >0 and {a,} with

ffogmdu>d, i=1,2,...
If E= Ue,,

(g > M(gy) > f figgdn=3 f fot dit = +c0,

giving a contradiction.

DeriNTION. For each g, € (1%, fe #* define

e(gurf) = e(f) = U {ea, aesl: f |2l du > o}.

Set g,=g,n if e(f)#¢; =0 if e(f)=¢. Then e(f) € S, is o-finite and g, € M.
We denote the complement of e(f) by é(f).

LemMa 4.2. If ¢ € (ZHL and ., is the corresponding measure on S, then each set
e,, a€ L, is u, o-finite.

Proof. Let {e,, b € B} denote the measurable subsets of ¢, satisfying
0 < py(e) < o, 0 < ule) < uley).

Order collections of disjoint subsets from {e,} by inclusion. Each chain then has
an upper bound so that Zorn’s lemma implies the existence of a maximal collection
which is countable since u(e,)<oo. Let e, denote the union of the sets in this
maximalcollection. Then e, —e;, € S.If u(e,—e,)=0, u,(e,—e;)=0. If u(e,—e.) >0,
po(e,—e,)=0 or + oo as does e* for any e* € S, e* = ¢,—e;. Thus ¢,—e,, is either
@, null or u, purely infinite. Since the definition of u, does not permit purely
infinite sets we conclude that u,(e,—e;)=0 and thus e, is u,, o-finite.
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If pe (.S”‘)i then for each e,, ae o/, u, is absolutely continuous with re-
spect to u on e,, e, is u-finite and u, o-finite and the Radon-Nikodym theorem
gives g,:e,—~R* with g, € M and such that

y(e) =fga du, e€S, eCe,.

It then follows that for each fe £*,
@ o) =[fan=[fudn ces ece aca
Set g,={g,, a € &}. Then
1) = sup] | fdugi B otnite, 1) < 1) < 2519 = Il

Thus to each ¢ € (£*)] corresponds g, € (£*) related by (4.2). It follows from
(4.2) that if fe 2,

@(If | xe.) # 0,
iff e, < e(g,,f)=e(f), and in particular for at most a countable collection of
subscripts a. For an arbitrary ¢ € (£* z

e(p,f) = Yle, ae L o(f] xe,) # 0}

will coincide with e(g,,, f) for the g, determined by ¢ and will also be denoted by
e(f).

THEOREM 4.1. There is an isometric isomorphism between (£*)¥ (with identifi-
cations) and the subspace of (£ of different elements ¢ with o(fyé(f))=0 for
each f e £*. To each g, corresponds ¢ by

43) o = [ferdu  fe 2
Proof. Let g, € (,2”’1)°f . Defining ¢ by (4.3),
le(NI < ANA*(ge) < Af)A*(g) < oo,
and ¢p: Z*—>R.
Since e(af)=e(f), a#0; e(f+f') < e(f) Ue(f’), (a countable union of sets

e, a€ ). It is easy to verify that (f+f')g,.,=fg,+f'g, almost everywhere
and ¢ is linear and so in (Z*)}. To see that ¢ € (L*)] let £, € #*, f,10. Since

e(f) < e(f),
o(f,) = f Fu8sn du = f fugrdm  m=1,2,..

The Lebesgue general convergence theorem then implies that lim,, ¢(f,)=0.
Finally we observe that | f%é(f)g, du=0 for every a € &/ which implies that
@(fre(f))=0 for each fin L*.
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Let g € (,Spl) and deﬁne @ by (4.3). Then |¢|<A*(g,). As shown after

Lemma 4.2, ¢ determmes g€ (3’1) with A*(g.)< | ¢| and with (4.2) holding.
Thus if fe #*, ae o,

[femsp du = #—g0) =0
This implies that 1*(g,,—g.,)=0 and thus

X(gq) = A¥(g2) < ol £ 2*(g)
so that [ ]| =A*(g,,).
On the other hand if we start with ¢ € (£*)] o P determines g, € (£

with A*(gﬂ)<”zp|| As in the preceding paragraph, g, determines ¢’ with | ¢'||=
A*(g.,). Furthermore for every f€ #*,

o'(f) = ¢ (fxe()) = e(fre(/):

It follows that p= ¢’ if and only if p(fxé(f))=0 for every fe L.

We next consider the behavior of the functionals in (,i”*i on the sets é(f),
f€Z2. Since e(f) is o-finite, &(f) € S. There are three possibilities

(i) #(&(f))=0. Then, setting f°=fy&(f), A(f®)=0 and so ¢(f°)=0;

(i) 0<u(é(f)) <oo. Then &(f) is the union of a null set and an at most count-
able collection of sets ¢,, a € &Z. If u(&(f) N e,)#0, e, is not contained in e(f)
and @(f°ye)= [ fz, du=0. It follows again that ¢(f°)=0.

(iii) u(é(f))=+co. If X; contains a purely infinite set s €S with ¢(f,)#0,
o(f2&(f.))#0 and ¢ has no isometric correspondent in (Z*¥. A simple
example is given by taking X={a, b}, S=P(X), u{a}=1, u{b}=+ o, A(f)=
max{f(a), f(b)}, X,={b}, X,={a}. Then (£*¥ coincides with the functionals
vanishing at b and is different from (# W= (LH*,

On the other hand if &(f) is o-finite it follows as in (ii) that ¢(f°)=0.

Tueorem 4.2, If ¢ € (ZH)L then ¢ € (gl)f if and only if for every s € S*,
4.4 ¢(15) = py(s) = sup{e(xs’) = py(s), s < s, u(s’) < oo}

Proof. Consider fe % f O=fyé(f). There then exists {f,} € A4 i, f"Tf with
o = [ 12 duy =lim (1, du,

Now f,= D7 c;xs; with each s;€8% s, < é(f). If s< s, t,(s)<co then
se St

1) = o) < i— o(fys) = O,

as in (i) and (i) above. It follows that | f, du,=0 for each n and therefore
o(f)=0.
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Conversely if ¢ € (£* ‘f and s € S*, then

00
o(xs) = glxs N exs)) = ¢(x Usn ea‘)
for certain a; € /. Then (4.4) follows from (I¢).

THEOREM 4.3. (LH7=(LY" if and only if (4.4) holds for every e (FHL.
If the simple functions are dense in £*, (4.4) holds for every ¢ € (LML (%=
(LY* if and only if (I*) holds and M*=F*,

Proof. The first statement follows from Theorem 4.2,
If M*=%* and s e S* then, given £>0, there exists f= 37 c,xs, € M* with
Aps—f)<e. If s'={x:f(x) >0} N s, u(s) <o and

Ays—xs') < As—f) < e
Thus for any ¢ € (.S”")i,
p(18)—p(xs) < lloll As—xs) < llgll &,

which implies (4.4).
If M*=2*, (£ =(L*" and, if (I*) holds
(LH = (L = (&H*
by Theorem 3.3.
Now assume that (ZH¥=(LH* Since (FH¥ < (FH < (FH* it
follows from Theorem 3.3 that (I*) holds and #*=.%"*. Assuming that /*5.%*,
an argument similar to that in Theorem 3.3 gives the existence of ¢ € (¥* f ,

fe £ with ¢(f)>0 and ¢(g)=0 for every g in M* Then o(f)=o(fye(f)) with
e(f) o-finite. Since there then exists {g,} = M* with g,1fxe(f),

@(f) = lim ¢(g,) = 0,

Nn—>x
giving a contradiction.
We observe that the spaces £ “ with X not finite gives examples where

(LH? %« (LY =21 with = LA
Note that in this case (F*)¥ 5 (FH*.

5. The spaces £**. If ¢ € £} there exists g € M, with A*(g) = | ¢| and
N =[lgduck, fe"

It is clear that ¢ € (Z* i with ()= [, g du, s € S%.
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For an arbitrary ND-decomposition define g, ={gye,;aec s/} If se S*, ge
F(s), {x € 5:8(x)#0} is o-finite and (4.4) follows easily. Thus #** < (£*¥ and,
in general,

(5.1) L < (ZH7 < (&Y < (LH~

On the other hand if ¢ € (LY, then ¢ € L*" if and only if there exists g€ M
with 2*[(g—g.)xe.d=0 for every a € oZ.

We observe that if X is o-finite or if every fe L* has o-finite support then
LM =(IH =Y.

Speaking loosely, if @ € (L then ¢ will be in L*" if it is possible to piece
the g, together to form a measurable function g on X. Examples are given in [3]
for L* where the {g,} determine a function g which is not measurable and where
there can be no function g equal to each g, almost everywhere in e,, a € 7.

)M

THEOREM S.1. If L** =(L*)* then (I*) holds and M*=L*. If (I*) holds, if M*=L*
and (5.2) to each ¢ € (L*)* corresponds a o-finite set E with ¢(fyE)=@(f) for every
fe L*, then L*"=(L**.

Proof. The first part is given by Theorem 4.2 since L** = (L*)* implies that
L*=(LH~.

Assuming (I*) and M*=L?, then (LY =(L%* by Theorem 4.2. To ¢ e(L*)*
corresponds g, with A*(g)=|¢l. By (5.2) ¢(f)=¢(fyE) for every fe L*
where Eis o-finite, u(E N e,)=0 for all but a countable set of subscripts in 7, say
a,i=1,2,.... If g= Z;”g‘,‘ then

o) = f fer du = f fg du,

for every fe L* and A*(g)=|l¢|l. We conclude that L*=(LY% =(L%*.
That (5.2) is not a necessary condition is shown by the following

ExaMpPLE. Let X=(0, 1), S=2(X), u(e)=number of points in e(= + oo if e is
infinite); A(f)= [ fdu, f€ M,. Then L*=L*. An ND decomposition of X is given
by X1=¢, Xo=Uue0.1) {@} (Where the sets are disjoint). Since (I*) holds in L! and
M*=L1; (LY*=(LY)7=L". Clearly each g determines g= > 8. €M so that
(LY*=L*". However zX e (L** without (5.2) holding.

Halperin [4] has solved the problem of necessary and sufficient conditions for
the reflexivity of L*. His conditions (1.3), (1.3)* correspond to (5.2) for (L** and
(L*')* with u(e;) replaced by A(ye,), A*(ye;). The condition (I*) together with
M*=L*imply his (1.1) and M**=L"" is his (1.2). We sketch a proof in the present
context. It shows that when L is reflexive (5.2) is a necessary condition.
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THEOREM 5.2. L* is reflexive if and only if
G) (I and (I**) hold in L* and L**;
(i) M*=L* M*=L";
(iii) (5.2) holds in (L** and in (L*")*;
(iv) Every f € M can be expressed as f=f,+f, with A¥**(f)=A(f1), A**(f)=0.

Proof. Necessity. By [4, Lemma 3.3] if L*=(L*** then (L»*=L*"' and
(L**)*=L**=L* By Theorem 5.1 (i) and (ii) are necessary. (5.2) is then a con-
sequence of (i) in L* and L***=L* As in [4] (iv) is also necessary.

Sufficiency. (i), (ii) and (iii) imply that L**= (L** and L***=(L*")* by Theorem
5.1. As in [4] (1.4) implies that L***=L* and completes the proof.
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