
J. Austral. Math. Soc. (Series A) 44 (1988), 164-170

ON DUAL RADICALS AND RING ELEMENTS

B. DE LA ROSA and R. WIEGANDT

(Received 19 June 1986; revised 14 September 1986)

Communicated by R. Lidl

Abstract

If a property P of ring elements satisfies conditions (a)-(d), then the largest homomorphically closed
class having no non-zero /"-element is a dual radical in the sense of AndrunakieviC, and every dual
radical can be obtained in this way. Also properties defined by polynomials are considered and as an
application we get various characterizations of the Behrens radical.
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1. Introduction

The role of properties of elements in defining concrete radicals is well known. A
systematic approach to the radical producing effect (as such) of element proper-
ties, may be found in [7]. The purpose of this paper is to continue this
investigation of radicals as functions of element properties. We shall consider
associative rings only.

Our interest is focused on a class of radicals which may be characterized as
uniquely determined largest homomorphically closed classes of rings which are
void of non-zero elements with some definite properties. These radicals are
obtained by imposing two conditions on the element properties P concerned,
namely that P-elements be invariant under homomorphisms, and that they retain
their P-character relative to ideals which may contain them.
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Among the radicals thus obtained we isolate a family of special radicals 9t with
the following representation:

/ SR is the upper radical determined by a special class of
(*) I subdirectly irreducible rings, the hearts of which have non-zero

\ P-elements

This is done by imposing two additional conditions on P, namely that P-elements
of any ideal of a ring be P-elements of the ring as well, and that non-zero
P-elements do not occur in trivial rings. Our two main results yield the fact that
the representability of a radical 91 in the form (*) is equivalent with the duality of
9J in the sense of Andrunakievid.

We also emphasize the simple polynomial property

"a • f(a) = 0, where f(X) is any polynomial in Z[ X]"

as a radical producing element property, and as an application we characterize
the Behrens radical in a variety of ways.

2. Radicals representable through special element properties

Let P be a property an element of a ring may possess. We shall consider the
following conditions; none, some or all of which may be satisfied by the property
P concerned.

(a) If a is a F'-element of a ring A and 4* any homomorphism of A, then »Ka) is a
P-element of *p(A).

(b) If a is a P-element of a ring A and a e KA, then a is a P-element of the ring
I.

(c) If a e KA is a P-element of the ring I then a is a P-element of the ring A.
(d) Trivial rings have no non-zero P-elements.

As examples we may mention idempotent element, (satisfying (a)-(d)); non-nilpo-
tent element, (satisfying (b)-(d)); and unity element, (satisfying (a), (b) and (d)).
Our interest in this paper centers on the following class of rings defined in terms
of a property P of elements:

§ P = {̂ 4: (i/* is a homomorphism of A) => \p(A) has no non-zero P-elements}
The following statement is evident.

LEMMA 1. If P is any property of elements then !QP is the uniquely determined
largest homomorphically closed class of rings having no non-zero P-elements.
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For completeness we restate Theorem 2 of [7] as our

T H E O R E M 1. If P is a property of elements which satisfies conditions (a) and (b)

then $QP is a radical class.

Adding conditions (c) and (d) to the attributes of the property P has a
considerable influence on the resulting radical § P . This is exhibited in our next
result.

THEOREM 2. Let P be a property of elements which satisfies conditions (a)-(d).
Then §P is the upper radical WWl of the special class Wl of subdirectly irreducible
rings the hearts of which have non-zero P-elements.

For the proof of this theorem we shall need the following simple consequence
of Zorn's Lemma.

LEMMA 2. If a is a non-zero element of a ring A then A has a subdirectly
irreducible homomorphic image A/M with the non-zero element a + M in its heart.

PROOF OF THEOREM 2. If A £ tQP then A has an image B with a non-zero
/'-element. It follows by Lemma 2 and conditions (a) and (b) that B, and hence
A, has a non-zero image in Wl, showing that A £ <%Wl. Thus we have that
Wffll c Q p. Conversely, if A <£ ^3K then A has a non-zero image in 97L Such an
image of A must (by (c)) have a non-zero /'-element, and so A € §P. Hence
&p c <^3ft; and we have §P = ^3K.

It remains to show that 3JJ is a special class of rings: Let T be any ring in Tt.
Then the heart H(T) has a non-zero /"-element. By (d) we have that H(T) is a
simple idempotent ring. It follows that T is a prime ring. The hereditariness of Wl
is now also immediate. (See e.g. [4], Lemma 76.) Since every essential extension of
a subdirectly irreducible ring with idempotent heart has the same heart, the class
ffll is also closed under essential extensions.

We shall refer to an element property P which satisfies all four conditions
(a)-(d) as a special element property, and in this case denote the upper radical
§ P of the special class of subdirectly irreducible rings the hearts of which contain
non-zero P-elements, by the symbol § p.

Next we consider element properties defined by polynomials. Let / be a
polynomial in one variable over the integers and define the property Pf as
follows: an element a e A is a Pf-element of the ring A ifaf(a) = 0.

THEOREM 3. For any polynomial f(X) e Z[X], SdPf is a radical. Moreover,
either $ Pj does not contain all trivial rings, or Pf is a special element property, and
hence §Pf= §pf.
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PROOF. Since Pf obviously satisfies conditions (a) and (b), § Pf is a radical.
Furthermore, it is clear that Pf satisfies (c). Finally, if ^Pf contains all trivial
rings then condition (d) holds for Pf.

Before formulating a converse to Theorem 2, we recall a construction by
Andrunakievic', [1]: If 9t is a supernilpotent radical then the upper radical 9t^, of
the class of subdirectly irreducible rings with 9{-semisimple hearts is a special
radical, and ft c mr

THEOREM 4. Let "Si be a supernilpotent radical and define the property P as
follows:

(n) a non-zero element a e A is a P-element of the ring A if {a £ I<A) =»
a + I € ?H(A/I).

(z) 0 is a P-element in each ring.
Then P is a special element property, and §p = SR .̂

PROOF. TO prove the validity of (a), let a ¥= 0 be a P-element of A and \p a
homomorphism of A. If i(a) + 0, let K<\j/(A) with tp(a) € K. Then a £ 4>~l(K)
so that a + ^(K) <£ ^R(A/i>-x(K)). Hence we obtain »//(a) + K £

Next let a ¥= 0 be a P-element of A and K any ideal of A with a e K.
Suppose that a <$ M<K, and set W.(K/M) = L/M. Assume that a e L. Let
M* denote the ideal of A generated by M. By Andrunakievic's Lemma we have
that

( L / M * 3 ) / ( A / / M * 3 ) = L/M G m,

and we know that M/M*3 e 9t because 9t contains the nilpotent rings. Since 9t
is closed under extensions we conclude that L/M*3 e 9t. Hence we have that

a + A/*3 G L / M * 3 c 9?(/i:/M*3).

Since m(K/M*3) is an 9t-radical ideal of A/M*3 it follows that a + A/*3 e
*3i(A/M*3), a contradiction. Thus we have that P satisfies (b).

To prove that (c) holds we consider a non-zero P-element a of an ideal / of a
ring A. Let K<A such that a € K. Then a € I n K<I, so that a + I n K <£
91(1/1 n K). Hence we must have that a + K <£ 3t((/ + A")/K) =
( ( / + JO/A") n 9t(y4/A"). It follows that a + K <£ $i(A/K).

The validity of (d) is immediate by definition of P and the fact that trivial rings
are SR-radical. Thus we have shown that P is a special element property.

Finally, it easily follows that the 9t-semisimple hearts on the one hand and the
hearts containing non-zero P-elements on the other, constitute exactly the same
class of prime simple rings. Hence we have that 9?p = <iRlj>.
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By Theorems 2 and 4 we have

COROLLARY 1. A radical 1R is representable in the form QF if and only if SR is a
dual radical, that is, 9? = dir

This means that certain radicals have no representations within our scheme.
Theorem 2 yields the following sufficient condition for non-representability (see
also Theorem 3).

COROLLARY 2. Let P be any special element property, and f(X) e Z[X] any
polynomial such that §Pf= §Pf. If Sft is a radical with /? c 3t but /}+ <£ SR, then
3t # §p and 9? pf

These non-representable radicals include well known (even special!) ones, like
the prime radical /?, the Levitzki radical .£?, the nil radical Jf and the Jacobson
radical # (see [4]).

Let us observe that non-representable supemilpotent radicals may have lower
radical representations of the form SQP where P is non-special. For instance,
JV= &T where "T-element" means "non-nilpotent element"; a property which
satisfies (b), (c) and (d) only. This may even happen in the case where the radical
concerned is a dual radical. For instance defining "[/-element" to mean "unity
element" we see that this property satisfies (a), (b) and (d) only. By [6], Theorem 1
we have that $ v = <&, the Brown-McCoy radical. We note here that '8 = §p,
where "P-element of A" means the unity element of a simple ideal of A".

3. An example: the Behrens radical

One of the most obvious candidates for a special element property is
PI: the element a e A is idempotent.

In view of [5], Theorem 3, the corresponding radical § P 1 is the Behrens radical,
that is, the upper radical of the class of subdirectly irreducible rings having
non-zero idempotent elements in their hearts. (See [3] and [2].) We now consider
the following list of element properties which will be proved to be suitable
alternatives for PI.

P2: the element a e A is a cyclotomic element of A, that is, there exists a
cyclotomic polynomial ®n(X) = TlJi^iX — at) such that a®n{a) = 0. (A priori
the coefficients of $n(X) are complex numbers, but we know that they are in fact
rational integers.)
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P3: the element a e A satisfies a" — a = 0 for some n > 3.
P4: the element a e A satisfies a" + a""1 + • • • +a — 0 for some n ^ 2.
P5: the element a e A is von Neumann regular, i.e. there exists an element

x e A such that axa = a.
It is clear that each of the properties Pj, (1 < j < 5), is special. Our next result
shows that they all define the same radical, yielding various characterizations § PJ

of the Behrens radical.

THEOREM 5. The following conditions on a ring A are equivalent:
(1) A contains a non-zero idempotent element.
(2) A contains a non-zero cyclotomic element.
(3) A contains a non-zero element a such that a" — a = 0 for some n > 3.
(4) A contains a non-zero element a such that a" + a"~1 + ••• +a = 0 for some

n>2.
( 5 ) A contains a non-zero von Neumann regular element.

PROOF. (1) => (2): If a2 = a, (a =* 0), then for the cyclotomic polynomial
<&2(X) = X - 1 we have a$2(a) = 0. (2) =» (3): Let 0 # a e A such that a$n(a)
= 0, <bn{X) = TlfifiX - a,). If n = 1 we have ^ ( X ) = X - 1, so that a2 - a
= 0 and hence a3 - a = 0. If « > 2 there exists a g(X) e Z[X] such that
®n(X)g(X) = X" - 1. It follows that a<J>n(a)g(a) = an + 1 - a = 0. (3) => (4):
Let 0 =£ a G ,4 such that a" - a = 0, with « > 3 minimal. Then a"'1 ¥= 0, and
(a"'1)2 = a2"'2 = a" • a"~2 = a • a"~2 = a"'1. Now the nonzero element b =
-a""1 satisfies b1 + b = 0. (4) => (1): Let 0 * a e ^ such that a" + a""1

+ • • • +a = 0 for some (minimal) n > 2. Then a" =£ 0, and

{a"f = a"+1 • a"-1 = [an+l +(an+ ••• +a)]a"~1

= [a(an + ••• +a) + a]a"~l = a".

Hence a" is a non-zero idempotent element.
Finally, (1) => (5) is obvious; and (5) => (1) follows from {axa = a # 0) =>

(ax)2 = ax # 0.
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