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Influence of thermal buoyancy on the wake
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Direct numerical simulation of the three-dimensional (3-D) wake transition of
a heated square cylinder subjected to horizontal cross-flow is performed in the
presence of buoyancy. In order to capture the effects of large-scale heating, a
non-Oberbeck—Boussinesq model is utilized, which includes the governing equations for
compressible gas flow. All computations are performed at low free stream Mach number
M = 0.1 using air (free stream Prandtl number, Pr = 0.71) as the working fluid. The 3-D
instability modes A and B, which correspond to free stream Reynolds numbers of 180
and 250, are observed with longer and shorter spanwise wavelengths, respectively, and the
onset of three-dimensionality is triggered at a Reynolds number of 173. In the presence
of buoyancy, baroclinic vorticity production in the near-wake plays an important role for
streamwise vorticity generation. The chaotic wake of the Mode-A instability bifurcates
into periodic and quasiperiodic wakes at various heating levels, expressed by the overheat
ratio, ¢ = (T, — Too)/To, Where Ty, and T, are the temperature of the cylinder surface
and the ambient air, respectively. At low heating (¢ = 0.2), the 3-D Mode-A instability
is suppressed leading to a two-dimensional wake flow. Further increase in heating, again
brings back the three-dimensionality in the wake through Mode-E instability. The variation
of thermophysical properties and the effective Reynolds number with increase in heating
level around the cylinder is examined. It is shown that the effect of thermophysical
properties competes with the baroclinic streamwise vorticity generation at higher levels
of heating (¢ > 0.4) to control the 3-D modes and wake dynamics.
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1. Introduction

In recent decades, the wake dynamics behind bluff bodies has captured the interest
of fluid dynamicists. This growing attention is due to the enhanced availability of
computational resources and advanced experimental techniques, which enable a deeper
understanding of the two-dimensional (2-D) and three-dimensional (3-D) wake transition
flow behind a bluff body. Numerous studies have emerged in the literature examining wake
transitions in the flow around canonical bluff bodies, with significant emphasis on the
wake dynamics behind an unheated cylinder. However, investigating the wake dynamics
behind a heated bluff body is crucial for various industrial and engineering applications,
including electronic cooling, combustion chambers and compact heat exchangers (Zebib
& Wo 1989; Yang & Fu 2001; Patel, Sarkar & Saha 2018).

In the study of wake transition flow, the surface of a cylinder can be uniformly heated,
resulting in two distinct flow regimes: the small-scale heating regime (where SAT < 1,
with 8 representing the thermal expansion coefficient, typically denoted as 8 = 1/T
for air, and AT representing the temperature difference between the cylinder surface
and the free stream) and the large-scale heating regime, where BAT approaches the
order of unity. In previous research on both heating regimes, the majority of studies on
forced and mixed convection have concentrated on 2-D transitional flow in the wake
of a heated bluff body, such as a circular or square cylinder, at low Reynolds numbers
(Re = UsoD/veo). Here, Uy, and v, represent the free stream velocity and free stream
kinematic viscosity, respectively, while D is the side length of the square cylinder or the
diameter in the case of a circular cylinder. In 2-D transition flow studies, the small-scale
heating regime yielded precise outcomes through an incompressible model employing
the Boussinesq approximation (Dennis, Hudson & Smith 1968; Lee & Richardson 1974;
Lecordier, Hamma & Paranthoen 1991; Dumouchel, Lecordier & Paranthoén 1998; Kieft
et al. 2003; van Steenhoven & Rindt 2003; Sahu, Chhabra & Eswaran 2009; Hasan &
Ali 2013; Ali et al. 2024; Kumar, Murali & Sethuraman 2024), where density changes are
significant only under the influence of a body force. Conversely, in the large-scale heating
scenario, where significant variations occur in thermophysical and transport properties
alongside thermal straining in fluid particles, a non-Oberbeck—Boussinesq (NOB) model
is employed, utilizing compressible flow equations (Collis & Williams 1959; Wang,
Travnicek & Chia 2000; Darbandi & Hosseinizadeh 2006; Hasan & Saeed 2017; Arif
& Hasan 2019, 2020, 2021). For 3-D transition flow in mixed convection in the presence
of aiding and cross-buoyancy (the focus of the present study), there is limited literature
available.

In the presence of aiding buoyancy (where free stream cross-flow is aligned opposite
to gravity), Noto, Ishida & Matsumoto (1984) and Badr (1984) experimentally studied
the effects of heating on the vortex dynamics in the wake of a heated circular cylinder,
using air as the working fluid. These studies clarified that the shedding frequency,
i.e. Strouhal number, increases on increasing the value of the Richardson number, i.e.

Ri = gBATD/ Ugo, where g represents gravity. Above a critical Richardson number, the
vortex shedding is suppressed, with twin attached vortices with the cylinder, and the
Strouhal number becomes zero. These twin vortices disappear and turn into thermal
plumes as the Richardson number increases further. Furthermore, in the experimental
study of Noto & Matsushita (2001) and Noto & Fujimoto (2001), the vortex dynamics
above a triangular cylinder and a circular cylinder at Re ~ 103 are compared and it is
observed that the vortex dislocation above a circular cylinder wake is remarkable. The
effects of aiding buoyancy are further investigated numerically at Re = 300 and Ri = 0.3
(Noto & Fujimoto 2006, 2007). These studies discussed vortex dislocations in a heated
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wake above a circular cylinder and compared the computed results with those of an
isothermal wake. In conclusion, all research on 3-D transitional flows in the presence of
aiding buoyancy has observed the heating effect on vortex shedding, vortex dislocations
and the three-dimensionality near the cylinder wake. However, these investigations did not
report the shape and wavelength of the 3-D instability modes.

In the case of cross-buoyancy flow where the free stream is perpendicular to gravity, the
3-D transition flow around a heated circular cylinder immersed in water (Prandtl number
Pr =7) has been studied experimentally and numerically (Ren, Rindt & van Steenhoven
2006a,b, 2007). In these studies, it has been shown that the onset of three-dimensionality
occurs at a lower Re than for the unheated case. In the near-wake of the cylinder, their
investigation observes a difference in the strength of the upper and lower vortices with an
increase in Richardson number and finds that the discrepancy in strength of these vortices
is due to the production of baroclinic vorticity. Moreover, the Mode-E instability with
spanwise wavelength A,/D = 2 is observed for the Reynolds number range 75 < Re < 117
and the Richardson number range 0.35 < Ri < 2.5. In addition, A-shaped structures have
been observed in the near-wake and mushroom-type structures in the far-wake. The effect
of cross-buoyancy on the 3-D flow transition around a square cylinder in mixed convection
is further studied numerically by Mahir & Altag¢ (2019) for Re = 55-250 and Ri = 0-2. In
order to examine the wake dynamics and flow characteristics, this study uses air (Pr = 0.7)
and water (Pr = 7) as the working fluid. In this study, it is shown that the velocity and mass
flow rate of the fluid particles at the bottom of the cylinder rise as buoyancy increases.
Further, Kumar & Lal (2020) examined the influence of the Prandtl number on 3-D
coherent structures and observed Mode-E instability in the wake of a heated cylinder,
for the parameter ranges 75 < Re < 150, 0.5 < Ri < 2 and 0.25 < Pr < 10. Recently, the
3-D transition flow around a square cylinder (exposed to air) near a moving wall was
studied numerically (Tanweer, Dewan & Sanghi 2020, 2021). These studies report several
3-D instability modes that correspond to various Richardson numbers and gap ratios
(between the cylinder and the moving wall). Additionally, global flow parameters such
as the force coefficient, the Strouhal number and the Nusselt number are investigated in
these investigations. In summary, these investigations primarily centred on wake structures
and the overall flow characteristics within the small-scale heating regime, employing the
incompressible solver with the Boussinesq approximation.

For flow past an unheated cylinder, a sequence of 3-D transition regimes has been
reported using experimental, direct numerical simulation (DNS) and Floquet approaches.
These transition regimes are associated with a range of free stream Reynolds numbers.
The shape and spanwise wavelength of the vortical structure in the bluff-body wake serve
to identify the 3-D instability modes. In the case of an isolated square cylinder, three
distinct 3-D instability modes have been observed. The first instability mode, i.e. Mode-A,
a tongue-shaped streamwise vortical structure with longer wavelength (1,/D =~ 5-5.8), is
observed at Reynolds number between 150 and 200 (Robichaux, Balachandar & Vanka
1999; Sohankar, Norberg & Davidson 1999; Luo, Chew & Ng 2003; Sheard, Fitzgerald
& Ryan 2009; Choi, Jang & Yang 2012; Agbaglah & Mavriplis 2017; Jiang, Cheng & An
2018). For Re = 200-250, a second instability mode (denoted as Mode-B) that generates
a rib-like streamwise vortical structure with shorter wavelengths (1,/D ~ 1.2-1.5) is
detected (Robichaux et al. 1999; Luo, Tong & Khoo 2007; Sheard et al. 2009; Choi
et al. 2012; Agbaglah & Mavriplis 2017; Jiang & Cheng 2018; Jiang er al. 2018). A
third instability mode (denoted as Mode-QP) with an intermediate wavelength (1,/D =~
2.6-2.8) has been observed using the Floquet method in the Reynolds number range
200 < Re < 219 (Robichaux et al. 1999; Sheard et al. 2009).
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Based on the above discussion, it can be concluded that most research involving 3-D
wake transition focused on the flow past an unheated cylinder. In the mixed convective
flow regime, the 3-D flow transitions around a heated cylinder have mostly been studied
in the small-scale heating regime using the Boussinesq approximation. In the context of
large-scale heating influenced by cross-buoyancy, which is the focus of present study, the
investigation of 3-D transitional flow has been mostly overlooked. The exception is a recent
numerical study by Ali, Hasan & Sanghi (2023), where a non-Boussinesq compressible
model at low Mach number (M = 0.1) was utilized. This study mainly investigated
different instability modes at various heating levels, with a Reynolds number of 250. So far,
in previous research, the impact of thermophysical and transport properties on 3-D wake
transition flow remains unexplored. Additionally, in the large-scale heating regime, the
influence of cross-buoyancy on the strength of vortex shedding and three-dimensionality
has not been thoroughly investigated.

In the present numerical study, we aim to explore the 3-D flow transition around a heated
square cylinder immersed in air with cross-buoyancy in a large-scale heating regime. The
scenario and mechanism of wake transitions at Re = 180 (which corresponds to Mode-A
instability for the unheated case) as the heating levels increase will be presented and
analysed. The influence of baroclinic vorticity production on the wake dynamics behind
the heated cylinder will be investigated. Additionally, the flow behaviour and its correlation
with variations in thermophysical and transport properties around a heated square cylinder
will be highlighted.

2. Numerical model

For small-scale heating, accurate results can be obtained by employing the Boussinesq
approximation, where density variations are only significant with body forces. However,
in the large-scale heating scenario, there are significant effects of molecular transport
property variations and thermal straining in fluid particles (Hasan & Saeed 2017; Arif
& Hasan 2019, 2021). To capture these variations, an in-house solver based on the NOB
model has been developed. This NOB model employs the governing equations for a
compressible gas flow.

2.1. Governing equations

The non-dimensional governing equations for compressible gas flow, expressed in a
strong-conservative form in 3-D Cartesian coordinates, are given as

oU OF G O0H _, o
at | ox Ay 9z '

where U is a solution vector, F', G and H are the flux vectors, and J is the source vector.
These vectors are expressed as

ou
U=|pv |, (2.2)
ow
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The quantities Dr, Dg and Dp, corresponding to the energy components of the flux
vectors F, G and H are, respectively,

D 2 28u+8v+8w 8v+8u 8w+8u
= — — L — —_— —_— — v —_— —_— —_
F=15"\ "% Ty " oz ax | ay ox 9z

oo (Bt ) ) o ()
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Dy = [%w(a—u+a—v—2a—w)—u(a—w—i—a—u)—v(a—w—i-a—v)]
3 ox  dy 0z ox 0z ay 0z

2.7)

)]

(2.8)

(2.9)
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In the above equations, all variables are expressed in a dimensionless form, which
are non-dimensionalized by their respective free stream values. Here x, y, z are the
dimensionless Cartesian coordinates, and ¢ is the non-dimensional time. The components
of the dimensionless fluid velocity vector V' are represented by u, v and w along the x,
v, and z directions, respectively. The symbols p, T, p, u, k and E are representing the
density, temperature, thermodynamic pressure, dynamic viscosity, thermal conductivity
and total specific energy in non-dimensional form. The various scales employed for
non-dimensionalization of the governing equations are pPoo, Toos Poo Ugo, Hoos Koo
and C,Tx for density, temperature, gauge pressure (p — poo), dynamic viscosity,
thermal conductivity and total specific energy, respectively. The Cartesian coordinates are
non-dimensionalized using the cylinder side length (D). The free stream conditions are
indicated by the subscript ‘co’.

In the NOB model, the conversion of the governing equations from dimensional to
non-dimensional form gives dimensionless parameters such as Reynolds number Re =
PooUsoD/ 1hoo, Mach number M = Uy /as (Where ax is the free stream sound speed),
Prandtl number Pr = (100 Cp /Koo and Froude number Fr = Uxo/+/gD.

To close the above governing equations, the thermodynamic state relations expressed in
the non-dimensional form are

1+ yM?
_ My (2.10)
T
—1
E—c+ %Mz(uz—l-vz—l—wz). 2.11)

The quantity e = || IT Cy(T)dT + e is the dimensionless specific internal energy where
C, represents dimensionless constant volume-specific heat, and the value of e, (which
serves as a datum) is taken as unity. The specific heat ratio y is taken as 1.4.

A low Mach number (M = 0.1) is used to minimize pressure compressibility effects,
and the Froude number is fixed at Fr = 1.0. The molecular transport properties (such

as u, k and C,) vary only with temperature, assuming air to be a thermally perfect
gas. Sutherland’s law is used to compute the molecular viscosity, and it is stated in the

dimensionless form as
14+0
=732 —). 2.12
H (T +o ) ( )

Here, 0 = §/Ts, where S = 110 K is Sutherland’s constant, and 7o, = 300 K is the
free stream reference temperature. The dimensionless equations of state for thermal
conductivity, specific heat and specific internal energy are given as

k = A+ BT + CT?, (2.13)

Cy=14+Ci(T—1)+Co(T — 1)? + C3(T — 1)3, (2.14)
c C C

e=T+ TI(T—I)2+?2(T—1)3+T3(T—1)4, (2.15)

where A =2.811 x 1072, B=1.074, C = —-9.918 x 1072, C; =1.201 x 1072, C, =
6.528 x 1072, C3 = —1.576 x 1072 are the constants based on property data on taking
T~ as a reference (Ghoshdastidar 2012; Hasan & Saeed 2017; Arif & Hasan 2019).
Equation (2.15) is also used to generate (7, e) data over a wide range 1 < 7 < 3 in order
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(b)

-1.0 0.5 0 0.5 1.0
X

Figure 1. (a) A square cylinder subjected to horizontal free stream cross-flow, and (b) a magnified view of
the grid near the cylinder in the x—y plane.

to develop the inverse relation for (2.15) given as
T=14+Bi(e—1)+Bale—1)>+Bste— 1) +Bs(e — D*+Bs(e — 1)°, (2.16)

where By = 1.0, B, = 5.479 x 1073, B3 = 2.336 x 1072, B4 = 7.122 x 1073 and Bs =
6.897 x 10~* are the constants. This inverse relation is utilized to obtain temperature from
the knowledge of e obtained via the energy equation.

In the present computations, the governing equations for compressible flow in the
Cartesian coordinate system, given in (2.1), are transformed to the body-fitted coordinate
system (Appendix A) and solved using a variant of the PVU-M+ (particle-velocity
upwind) scheme (Appendix B). The PVU-M+ scheme (Hasan, Khan & Shameem
2015) has been shown to be a robust, accurate and efficient flux-based scheme for
Euler/Navier—Stokes equations over a wide range of Mach numbers (M = 0.1-10).

2.2. Computational domain and grid generation

Figure 1(a) shows an infinite-span square cylinder with a truncated spanwise periodic
domain having length ‘H;’ heated to a uniform temperature 7, and exposed to a uniform
horizontal free stream in cross-flow. The flow field is described in a Cartesian coordinate
system. The x, y and z coordinates are aligned in streamwise, transverse and spanwise
directions, respectively. The square cylinder is surrounded by a cylindrical surface, whose
axes is coincident with the axis of the square cylinder. The cylindrical surface radius
is fixed at Ry = 60D using a domain size independence test (Appendix C) to minimize
computing expense and yet produce accurate results.

The value of spanwise length is decided on the basis of previous numerical studies
reported by Sohankar et al. (1999), Saha, Biswas & Muralidhar (2003) and Agbaglah
& Mavriplis (2017). In these studies, it has been shown that H; = 6D is appropriate for
capturing the largest wavelength of the 3-D instability modes. Thus, H; = 6D is employed
in the current simulation to lower the computational cost and capture all spanwise
wavelengths of 3-D instability modes with various heating levels. As the spanwise length
extends infinitely, the 3-D modes can be effectively captured by confining the spanwise
domain using a periodic boundary condition.
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Types of waves Subsonic inflow (Vy > 0) Subsonic outflow (Vy < 0)
Acoustic waves Vi +¢ > 0; Ry, = (R oo Vn+c >0 R} = (Rf)oo
VN—C<0;R&=(R;/),‘ VN—C<0;R7=(R[;),'

Shear waves Vr = V7)o Vr = (Vr)i
w=Woo w= W)

Entropy waves p=0 Non-reflecting characteristic

boundary condition for
pressure (2.19)

Table 1. Boundary conditions for the various types of waves at inflow and outflow.

The present computations are carried out on an O-type body-fitted grid in the x—y plane
that is extruded in the z-direction (spanwise direction). In order to generate a 3-D grid,
an initial O-type, 2-D, body-fitted grid is created in the x—y plane. Then, this 2-D grid
is uniformly replicated for a spanwise length H, = 6D in the z-direction. The methods for
constructing an O-type grid are described in Thompson, Warsi & Mastin (1985). A suitable
grid size having 281, 355 and 61 grid points in the &, n and z directions, respectively,
is chosen using a grid independence test (Appendix C) in order to get accurate and
trustworthy data. A magnified view of a 2-D grid near a square cylinder with a minimum
dimensionless spacing of 1.7 x 1073 is shown in figure 1(b). For this grid size, a time
step of At = 10~* is employed for the simulation of flow around an unheated cylinder,

while a time step of At = 5 x 1073 is utilized for the simulation of flow around the heated
cylinder.

2.3. Initial and boundary conditions

In the present computations, the undisturbed free stream conditions that exist at an
infinitely large distance from the cylinder are employed in the entire flow field as initial
conditions. These initial conditions expressed in non-dimensional form are V' = i+ 0j +
0k, T=1,p=1,p=0.

At the surface of the cylinder, no-slip and no-penetration conditions are specified for
the velocity. The surface of the cylinder is uniformly heated to an elevated temperature
T,,. The normal momentum equation is used to determine the pressure, and the density is
obtained via the equation of state.

At the inflow and outflow region along the local normal direction of the artificial
boundary, the characteristic numerical boundary conditions based on wave speed have
been employed (Hirsch 2007). In the family of waves, two acoustic waves are employed
to determine the two non-dimensional Riemann invariants Rﬁ = VN £2JT/M(y — 1),
while one shear wave regulates local tangential velocity (V) and spanwise velocity (w),
and one entropy wave governs pressure, as listed in table 1. When waves enter the flow
domain, the associated characteristic variables are set to the free stream conditions, while
for waves exiting the flow domain, these variables are extrapolated from the interior
(table 1). The use of Riemann invariants is consistent with the local one-dimensional
inviscid approximation at the artificial boundary (Hirsch 2007).

The Riemann invariants at any boundary point are based on the normal acoustic wave
speeds Viy £ ¢ which determine the entering/leaving acoustic family of waves as shown
in table 1. Here Vyy and ¢ represent the local normal velocity component and the local
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sound speed, respectively, in non-dimensional form. In table 1, the subscript ‘i’ is for
the interpolated value from interior data. Once the Riemann invariants are fixed at the
boundary points, the values of the local normal velocity component and temperature are
determined as

Ry + Ry
Vy = % (2.17)
_ M (2.18)
Ay -1)? ‘
14

At the artificial boundary in a given spanwise plane, the tangential velocities w and V7 are
set to the free stream value at the inflow and interpolated from the interior at the outflow.
Once the values of Vi and V7 are determined, they are used to calculate the Cartesian
components (#, v) in a specific spanwise x—y plane.

At the inflow, pressure is set equal to the free stream value, temperature is calculated via
(2.18) and density is determined through the equation of state. While at the outflow, as for
pressure, the linearized characteristics boundary condition, as given by Bayliss & Turkel
(1982), is employed and expressed as

9 1\ av
P _()LN . (2.19)
ot M ot

For the temperature at the outflow, it is calculated using interior values, and the density
is determined using the equation of state based on the calculated values of pressure and
temperature.

In the present computational study, the 2-D von Karman instability leading to vortex
shedding originates naturally without imposing any external perturbation in the flow. This
instability occurs due to small perturbations introduced in the flow via truncation and
round-off errors. However, these errors lack sufficient strength to induce 3-D instabilities
in the wake of the cylinder. Therefore, a spanwise random perturbation with an order of
1077 is added to the density at the initial condition in the near wake of the cylinder for
triggering 3-D instabilities. In the study conducted by Agbaglah & Mavriplis (2017), a
similar order of perturbation (10~7) was also used to observe three-dimensionality in the
cylinder wake.

3. Model validation
3.1. The St—Re and Cp—Re characteristics

The in-house NOB compressible model solver is validated with the reported data for
the problem of cross-flow of an approaching uniform stream of air past an unheated
infinite-span square cylinder. In figure 2, the values from present computations of the
Strouhal number (St) and the time-averaged-drag coefficient (Cp) at ¢ = 0.0 have been
compared with the reported values from previous studies obtained using experimental,
DNS and the Floquet methods for Reynolds numbers ranging from 50 to 300. The present
numerical values of St and Cp at & = 0.0 are obtained using data from fully developed
flow between t = 1000 and ¢ = 3000. The lift coefficient (Cr) values are used to compute
the dominant frequency or the St value shown in figure 2(a). In the St—Re plot, the St
values of the 2-D time-periodic flow increases smoothly with Re and agrees well with the
values reported by Sheard et al. (2009) and Jiang et al. (2018) (figure 2a). Similarly, in
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Figure 2. The present values of 2-D and 3-D wake transitions at ¢ = 0.0 and M = 0.1 compared with the
reported values obtained using various methodologies showing in the plots of (a) St—Re and (b) Cp—Re.

the Cp—Re plot, the 2-D flow values of Cp obtained in the present computation at various
Re agree well with the numerical values reported by Sohankar ef al. (1999) and Jiang &
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Mode-A with vortex dislocation

Lod Okajima (1982) (exp.)
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o Jiang et al. (2018) (DNS)
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100 150 200 250 300
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Cheng (2018) (figure 2b).

In the case of 3-D transition flow (Re > Re.,), the present computed values deviate
slightly from other reported values. Figure 2(a) shows that the present St values are
close (around 4 % deviation) to the values obtained by DNS study of Jiang et al. (2018).
Similarly, the present Cp values agree well (with less than 3 % deviation) to the numerical
values reported by Jiang & Cheng (2018) as shown in figure 2(b). It can be seen from
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both the plots that the present DNS results are comparable to the DNS results that were
reported in the previous studies. As far as deviations are concerned, it is worth mentioning
that previous DNS studies on the unheated square cylinder utilized the incompressible
flow model, whereas the present computations involve a compressible flow model with
low but finite Mach number effects. This fact, in addition to differences in numerical
methodologies, accounts for the slight deviations observed in the results between the
current computations and those found in the existing literature. The values of St and Cp
obtained by the experimental and Floquet methods deviate more from the present DNS
values. This is due to the fact that in Floquet studies, three-dimensionality in the flow is
achieved using a 2-D base flow solver with 3-D perturbations, whereas in comparing with
the experimental studies, the greater deviations observed can be attributed to the finite
cylinder end-conditions. B

The sudden drop in the values of St and Cp (as shown in figure 2a,b) indicates the
presence of large-scale vortex dislocations in the flow field. These dislocations account
for the large intermittent velocity irregularities that Roshko (1954) and Bloor (1964) first
identified to define the transition. Williamson (1992) later noted that the development of
vortex dislocations in the flow is caused by primary von Karman vortices that are out of
phase with one another in the near wake and later descend into large-scale structures. The
discontinuity is not observed in the St—Re and Cp—Re plots in the data reported by the
experimental and DNS studies of Okajima (1982) and Sohankar et al. (1999), respectively,
due to the fact that their analysis utilized larger steps in Re values. In the present study,
the onset of three-dimensionality is triggered at a critical Reynolds number (Re,) of 173,
a value in close agreement with those reported in previous investigations using different
techniques (figure 2).

3.2. Tongue-shaped and rib-like vortical structure

In the wake of the cylinder, various shapes of vortical structures involving streamwise
vorticity (§2,), transverse vorticity (£2)) and spanwise vorticity (£2,) are observed. These
vorticities are defined as follows:

dw  dv
2y = — — —
dy 0z
u 0w
2y = — — — . 3.1
YT 9z ox ©-D
v du
2, =—— —
ax  Jy

The shape of the vortical structure and their spanwise wavelength in the wake of a square
cylinder characterize the 3-D modes A and B. The tongue-shaped vortical structure in
the cylinder wake with a large spanwise wavelength of streamwise vorticity shows the
Mode-A instability at Re = 180 and ¢ = 0.0 (figure 3a). While, at Re = 250 and ¢ = 0,
the rib-like vortical structure with a small wavelength indicates the Mode-B instability
(figure 3b). In figure 3(a), the tongue-shaped vortical structure of the regular Mode-A
pattern becomes visible at t = 400 when three-dimensionality initiates in the flow. For
longer time integration, this regular pattern of Mode-A instability is disrupted by the
presence of large-scale vortex dislocations in the flow field (see the vortical structure at
& = 0.0 in figure 4a). At Re = 250 in the Mode-B instability, the change in the wake
pattern with time integration is negligible as the dislocation appears with a smaller scale.
In the present DNS investigation, the spanwise wavelength is determined based on the
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Figure 3. Isocontours of §2, in the isothermal wake of a square cylinder at ¢ = 0.0 and M = 0.1, showing
(a) the tongue-shaped vortical structure with longer wavelength of Mode-A instability at t = 400 for Re =
180, 2, = £0.05 and (b) the rib-like vortical structure with shorter wavelength of the Mode-B instability at
t = 300 for Re = 250, §2, = %0.3. The blue and light-yellow colours represent positive and negative vortices,
respectively.

(a) (b)
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Figure 4. The vortical structure (Q-criterion) in a square cylinder wake coloured by §2, at Re = 180 and
t = 1300 for (@) ¢ = 0.0, () e =0.2,(c) e = 0.4, (d) ¢ = 0.6, (¢) e = 0.8 and (f) ¢ = 1.0.

vortex pair of £2, in the wake of the cylinder. The existing wavelengths of the Mode-A
and Mode-B wake instabilities in a fully developed flow are quite near to all previously
published values as listed in table 2. Furthermore, the current numerical value of Re.,
closely aligns with the reported values obtained using DNS and Floquet approaches (as
listed in table 2).
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Author(s) Method Re., A;/D for Mode-A  A,/D for Mode-B
Present computation DNS 173 ~5.5 1.2
Robichaux et al. (1999) Floquet 162 + 12 5.22 1.2
Sohankar et al. (1999) DNS 150-200 ~5 ~1
Blackburn & Lopez (2003) Floquet — 5.51 1.15

Luo et al. (2003) Experiment 160 5.2 1.2

Luo et al. (2007) Experiment 160 + 2 5.1 1.3
Sheard et al. (2009) Floquet 164 5.22 1.12
Agbaglah & Mavriplis (2017) DNS 170-180 ~5.8 ~1.5
Jiang et al. (2018) DNS 165.7 4.96 1.12

Table 2. Comparison of the present numerical values of Re., and A;/D (for Mode-A and Mode-B) at ¢ = 0.0
with the values reported in previous studies for flow past an unheated square cylinder.

4. Numerical results
4.1. Wake bifurcation to Mode-E instability

In the presence of a buoyant force, the wake dynamics of 3-D flow transitions is a
phenomenon of great interest to fluid dynamicists. The Q-criterion visualises the vortex
formations, which adds to the understanding of wake dynamics. The following expression
gives the Q values:

0= (121> = IS, 4.1)

where 2 = %(Vu —Vu') and S= %(Vu +vul) represent the skew-symmetric
vorticity tensor and symmetric strain rate tensor. The presence of a vortex is indicated
by O > 0.

Figure 4 shows the vortical structures (visualized using the Q-criterion) with positive
and negative values of streamwise vorticity in the wake of a square cylinder at Re = 180
and ¢ = 1300 for various heating levels. At ¢ = 0.0, a single streamwise vortex pair with
large-scale dislocations is observed across the whole spanwise domain, indicating the
Mode-A instability, as depicted in figure 4(a). When the surface of the cylinder is heated
to ¢ = 0.2, the vortex pair disappears even at §2, = £0.01 (figure 4b), which clearly
indicates that the three-dimensionality in the flow is suppressed. As the heating level is
raised to ¢ = 0.4, three-dimensionality reemerges, characterized by the presence of three
pairs of £2, vortices in the cylinder wake for x < 15. The number of these vortex pairs
is unaffected even in longer time integration and for an increase in the surface heating
up to ¢ = 1.0 (figure 4d—f). However, these vortex pairs can also be seen in the far-wake
(x > 15) during large-scale heating as depicted in figures 4(e) and 4(f). Based on these
vortex pairs (within the entire span length, H; = 6D), the value of 4,/D is estimated to be
~2 for ¢ = 0.4 — 1.0. In the earlier 3-D transition flow studies involving mixed convection
(Ren et al. 2006a,b; Kumar & Lal 2020), the vortical structure with 4,/D ~ 2 in a circular
cylinder wake is described as the Mode-E instability. These numerical investigations were
carried out using an incompressible model with the Boussinesq approximation. Therefore,
the present 3-D transition at Re = 180 for ¢ = 0.4 — 1.0 is also designated as the Mode-E
instability. Furthermore, it is worth noting that the vortex dislocation (which appears at
& = 0.0 in the Mode-A instability) is suppressed in the Mode-E instability (figure 4c—f).
The bifurcation in the wake of a square cylinder from Mode-A to Mode-E with an increase
in surface heating is due to the baroclinic vorticity production (see detailed explanation in
§4.3).
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Figure 5. Time history of spanwise velocity (w) in a square cylinder wake (x =2,y = 0,z = 3) at Re = 180
and M = 0.1 fore = 0.0 — 1.0.

4.2. Chaotic, periodic and quasiperiodic behaviour of wake

Three-dimensionality in the cylinder wake is indicated by the appearance of spanwise
velocity (w) in the cylinder wake, which results in the generation of £2, and £2, vortices.
Figure 5 shows the time history of w located in the near-wake (x =2,y =10,z =3) at
Re = 180 for heating level ¢ = 0.0 — 1.0. It is shown that the fluctuations in w of the
Mode-A instability have very small amplitude at ¢ = 0.0. At slight heating ¢ = 0.2, these
small amplitude fluctuations are suppressed which shows a 2-D flow field and can be seen
in figure 4(b) with the vanishing of §2, vortices. With further increase in heating level,
the amplitude of w increases with a nonlinear saturation value in large time limit except
at ¢ = 1.0. In large-scale heating at ¢ = 1.0, a strong buoyancy force is generated around
the square cylinder that disturbs the flow field and the amplitude of w appears to fluctuate
(figure 5). These fluctuations at ¢ = 1.0 are accompanied by a slight disorder in £2, pairs
in the cylinder wake, as depicted in figure 4(f). It is worth noting that with the increase
of heating (¢ > 0.4), the time taken for onset of the three-dimensionality () decreases
(figure 5). This indicates that the growth of 3-D perturbation is faster as ¢ is increased for
e > 04.

The temporal behaviour of the wake largely depends on the surface heating of the
square cylinder in mixed convection. In figure 6(a), the wake behaviour is analysed
using spanwise velocity data for various heating levels over a short period of time (t =
1400 — 1500). At e = 0.0, an irregular/chaotic 3-D wake appears behind an isolated square
cylinder (figure 6a). With increase of heating levels, this chaotic wake is first suppressed
in the 2-D wake (¢ = 0.2), then it appears as a 3-D periodic wake (¢ = 0.4 — 0.8),
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Figure 6. The wake behaviour of a square cylinder at Re = 180 and M = 0.1 for various heating levels
(¢ = 0.0 — 1.0) shown by (a) spanwise velocity (w) located at the near-wake (x =2,y =0,z = 3), and its
(b) frequency spectra, f.

and finally it transforms into a 3-D quasiperiodic wake (¢ = 1.0). The chaotic, periodic
and quasiperiodic wake behaviours can be better understood by the spectrum of w. In
figure 6(b), the frequency spectra of w is obtained using the fast Fourier transform (FFT)
algorithm from its fully developed data for + = 1000 — 1700. Distinct frequencies in the
spectra are denoted by the symbols f,, f1, /> and so on, as depicted in figure 6(b). At
¢ = 0.0, the presence of numerous large- and small-scale peaks at irregular intervals in
the spectrum suggests chaotic behaviour in the cylinder wake. For ¢ = 0.4 — 0.8, the
harmonic spectra indicate the periodic nature of the wake. Whereas, at ¢ = 1.0, the
presence of small-scale peaks with incommensurate frequencies in the spectrum indicates
a quasiperiodic state (figure 6b).
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A quantitative measure for characterizing the temporal states of the wake is the largest
Lyapunov exponent (LLE). The Lyapunov exponent is essential for understanding the
stability and chaos in dynamical systems (Wolf et al. 1985; Rosenstein, Collins & De Luca
1993). It characterizes the sensitivity of a system to its initial conditions and is used to
distinguish chaotic, periodic and quasiperiodic behaviours. In this study, the Rosenstein
algorithm is employed to calculate the LLE values using temporal data of spanwise
velocity across different heating levels. As illustrated in figure 6(a), the LLE values go
from a strongly positive value of 0.107 at ¢ = 0.0 to a nearly zero value of 0.001 for
& = 0.4 — 0.8, culminating in 0.053 at ¢ = 1.0. For periodic flow, LLE values are either
zero or negative. The difference between the LLE values for various ¢ is further correlated
to the spectra of the time series. The flow state for ¢ = 0.0 is clearly chaotic, as the LLE
is strongly positive and the spectra exhibit several large and small peaks. For flow states at
& = 0.4 — 0.8, the spectra reveal a periodic state with peaks observed at equal intervals,
indicating harmonics. The LLE values corresponding to these states are nearly zero (of

the order of 10™3). For & = 1.0, the LLE values increase again to 0.053, and the spectra
show large peaks along with some smaller peaks at slightly irregular intervals. These
two characteristics combined together are an indication of a quasiperiodic state. Hence,
it can be inferred that as the cylinder heating increases, it exerts a notable influence on the
wake behaviour of the cylinder, shifting the wake dynamics from chaotic to periodic or

quasiperiodic patterns.

4.3. Baroclinic vorticity production

The vorticity transport equation (VTE) is obtained by taking the curl of the momentum
equation given in (2.1). The non-dimensional VTE in vector form is expressed as

D2 1 1
— =R -V V- (V- V)2 + —=VpxVp——=Vpxfy
Dt ,02 p2

+ L+ Db+ %(V X fo). 42)

Here f;, = V-0 represents the viscous force per unit mass. The dimensionless viscous
stress tensor components oj; are given as

oy = 2|5y — L0k (4.3)
YT Re |7V Bax V|’

where Sj; is the strain rate tensor and §;; represents the Kronecker delta.

In (4.2), the operator D/Dt represents material derivative and $2 is the vorticity vector.
The expressions (£2-V)V and (V-V)$2 are the vortex stretching and production terms due
to volumetric straining, respectively. The term (1/p%)V p x Vp represents the baroclinic
production of vorticity due to the interaction of density gradients and pressure gradients.
Moreover, the term (1/p%)Vp x f;, represents the production of vorticity resulting from
stratification effects and their interaction with viscous forces. Lastly, the expression
(1/p)(V x fy) signifies the diffusion of vorticity through molecular viscous stresses or
forces.

The terms Iy = (1/Fr?)((1/p*)(3p/dz)) and I, = —(1/Fr?)((1/p*)(dp/dx)) in (4.2)
are the baroclinic streamwise and spanwise vorticity production rate due to presence
of buoyant force (stratification interacting with gravity). In the presence of buoyancy,
the density gradients (dp/dx, dp/dz) are significant in the near-wake of square cylinder.
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(b)

Figure 7. Isosurfaces at t = 1300 of positive (brown) and negative (light-yellow) streamwise baroclinic
vorticity Iy = £0.05 in a square cylinder wake at Re = 180 and M = 0.1 for (a) ¢ = 0.4, (b) ¢ = 0.6,
(c)e =0.8and (d) ¢ = 1.0.

Therefore, the quantities Iy, I; have a significant role in the production of baroclinic
vorticity in the near wake of the cylinder.

Figure 7 shows the vortical structures generated by I, in the near-wake of a heated
square cylinder at Re = 180 for ¢ = 0.4 — 1.0. At ¢ = 0.4, both positive and negative
vorticity generation via Iy appear in the cylinder wake for x < 10, as shown in figure 7(a).
The production due to I'y increases with a further increase of heating level (¢ = 0.6 — 1.0),
which results in vortical structures appearing farther downstream in the wake for x > 10
(figure 7). It is evident that as the heating rises, I, vortices are generated over larger
downstream distances in the wake. This explains why the 3-D mode (with a larger area
of £2, vortices in the cylinder wake) grows faster as the heating level is increased in the
range 0.4 < ¢ < 1.0. In the case of low heating (¢ = 0.2), the creation of Iy vortices
is limited by the weak effects of buoyancy. Therefore, the instability naturally triggered
by inertia effects overcoming viscous effects is suppressed by the influence of heating
on thermophysical and transport properties (see detailed discussion in § 4.6). From the
ongoing discussion, it can be concluded that in the mixed convection flow regime, the
generation of £2, vortices for ¢ > 0.4 is due to the baroclinic production term [7. This
conclusion agrees well with the experimental and numerical investigations of Ren et al.
(20065, 2007).

For the heating range ¢ = 0.4 — 1.0, the number of vortex pairs produced by I
(figure 7) is comparable to that of £2, vortices (as depicted in figure 4). In addition,
the production of Iy vortices in the near-wake is also responsible for the suppression of
the vortex dislocation that appears in the wake of an isolated square cylinder at ¢ = 0.0.
Therefore, it can be concluded that Iy plays a significant role in wake transition and wake
dynamics in the mixed convective flow regime.

4.4. Translational and rotational energy norms

The growth of the 3-D mode requires some energy that is either available in the 2-D
base flow or the energy is transformed from the thermal field by baroclinic effects as
represented by the streamwise vorticity production term [Iy. This picture of energy transfer
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Overheat ratio  Translation energy Rotational energy Baroclinic production rate
€ (EWw)) (E($2x))  (E(£2)) (E(I%))

0.0 0.392 5.005 1.897 0.0

0.2 0.0 0.0 0.0 0.0

0.4 0.136 6.999 4.382 0.031

0.6 0.196 10.217 6.775 0.095

0.8 0.239 12.719 7.673 0.193

1.0 0.316 14.650 8.420 0.296

Table 3. The transfer of time-averaged 3-D energy shown at Re = 180 in the form of translational and
rotational energy norms for ¢ = 0.0 — 1.0.

with increasing heating levels is quantitatively presented in table 3 containing the data
representing the various time-averaged energy norms. Specifically, it focuses on additional
energy modes for 3-D flow: E(w); E(§2x); E(§2y). In addition to these energy norms, the
time-averaged magnitudes of the I'y are also estimated using the norm E(¢). These energy
norms (per unit span), encompassing translational and rotational energy, are defined as

(E@) = — f / / ¢*(x,y,2,1)dV ds, 4.4)
TH,

where t represents the overall duration between ¢ = 1200 and ¢ = 1500, during which a

total of 61 snapshots are taken with an equal time interval of five units for the purpose of

time averaging. In (4.4), the symbol V is the volume of the near-wake region for x = 0 to

20, y = —5 to 5 and the entire spanwise length.

Table 3 reveals that the zero values of both the translational and rotational energy norms
(at ¢ = 0.2) indicate a complete transformation of the energy from the 3-D wake into a
2-D wake, leading to the suppression of three-dimensionality in the cylinder wake. For
the heating levels in the range of 0.4 < ¢ < 1.0, 3-D energy reappears and increases as
the heating levels rise (table 3). The results also reveal an increase in the strength of
Iy and £2, as heating levels rise from ¢ = 0.4 to ¢ = 1.0. Therefore, the role of energy
transformations from thermal mode via buoyancy in feeding the 3-D states (as listed in
table 3), with increasing heating levels, are evident in the form of generation of £2, through
I'y for ¢ = 0.4-1.0 over large downstream distances in the cylinder wake (figures 4 and 7).

4.5. Spanwise vorticity in the near wake

As discussed in § 4.3, with the increase in heating levels (¢ = 0.4 — 1.0), the baroclinic
vorticity production by I is strengthened and plays a significant role in wake dynamics
behind the heated cylinder, specifically in the generation and strengthening of the 2,
structures. In a similar vein, this section explores the impact of spanwise baroclinic
vorticity production by I on the dynamics of the near wake, with a specific focus on
the spanwise vortex (£2;). To elucidate, figure 8 displays the spatial distribution of £2, and
I; in the near wake at ¢ = 0.2, 0.6 and 1.0. It is observed that with an increase in heating
level, the magnitude of §2, decreases (figure 8a,c,e), even though the magnitude of I
increases (figure 8b.,d, f).

Furthermore, an increase in asymmetry is also observed in the magnitude of the upper
and lower §2, vortex with an increase in heating level (figure 8a,c,e). This asymmetry arises
from the production of I'; vorticity of opposite sense to that of £2,. From figure 8(b,d, f),
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Figure 8. Spatial distribution of §2; (a,c,e) and I'; (b,d,f) in the wake of the midspan of a heated square
cylinder at Re = 180 for ¢ = 0.2, 0.6 and 1.0.

it can be observed that the positive I, region is increasing over the top surface, while
the negative I region is increasing near the bottom surface around the right-hand corner.
As a result, I creates an asymmetric reduction in the magnitude of 2, near the top and
bottom surfaces of the cylinder. Kieft et al. (2003) and Ren ez al. (2006b) also revealed
that spanwise vorticity production by I plays a crucial role in the variations in strength
between the lower and upper spanwise vortices in the near wake of a heated circular
cylinder. Nonetheless, their research is confined to small-scale heating scenarios using
the Boussinesq model. In the current computations, the overall reduction in the magnitude
of £2, with an increase in heating level, accompanied by an increase in energy norms for
2, and £2,, suggests a transfer of rotational energy from spanwise vortices. Hence, I is
also indirectly responsible for the sustenance and growth of the 3-D modes in the wake of
the