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Abstract

Every bounded linear operator that maps H1 to L1 and L2 to L2 is bounded from Lp to Lp for each
p ∈ (1, 2), by a famous interpolation result of Fefferman and Stein. We prove Lp-norm bounds that grow
like O(1/(p − 1)) as p ↓ 1. This growth rate is optimal, and improves significantly on the previously
known exponential bound O(21/(p−1)). For p ∈ (2,∞), we prove explicit Lp estimates on each bounded
linear operator mapping L∞ to bounded mean oscillation (BMO) and L2 to L2. This BMO interpolation
result implies the H1 result above, by duality. In addition, we obtain stronger results by working with
dyadic H1 and dyadic BMO. The proofs proceed by complex interpolation, after we develop an optimal
dyadic ‘good lambda’ inequality for the dyadic ]-maximal operator.
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1. Introduction

A central interpolation result in harmonic analysis says a linear operator that is
bounded on L2 and on the Hardy space H1 must extend to a bounded operator on
Lp, whenever 1 < p < 2. The size of the Lp-norm of the operator can matter a great
deal. For example, a linear operator T is invertible on Lp if it lies within distance 1
of the identity map, meaning ‖I − T‖Lp→Lp < 1. Thus if we had explicit interpolation
bounds on I − T , then we would know how close T must lie to the identity on H1 and
L2 in order to ensure that the Neumann series for (I − T )−1 converges on Lp. Such
questions arose recently in our work on wavelet frame operators [1].

We begin by interpolating between the dual spaces, which are L2 and bounded mean
oscillation (BMO). The fundamental result of Fefferman and Stein [3] assumes T :
L2→ L2 and T : L∞→ BMO, and deduces explicit Lp bounds for 2 < p <∞. We will
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[2] Interpolation between Hardy space and L2 159

prove a version of this interpolation theorem in which the space BMO is replaced by
the dyadic space dBMO (defined in Section 2), with explicit constants that improve
considerably on those known previously. The constant appearing in the theorem is

K(p) = [(1 + 1/p)p+2(p + 1)1/p]p.

Write Lp = Lp(Rn), n ≥ 1.

T 1 (L2 and dBMO interpolation). Suppose T is a linear operator defined on
L2 + L∞ that takes values in the space of complex valued measurable functions on Rn.

If T is strong type (L2, L2) and strong type (L∞, dBMO), then T is strong type
(Lp, Lp) whenever 2 ≤ p <∞, with

‖T‖Lp→Lp ≤ 2n+4/pK(p)‖T‖2/p
L2→L2‖T‖

1−2/p
L∞→dBMO.

The analogous result holds (of course) when dBMO is replaced by the smaller space
BMO.

We have found in the literature three distinct lines of proof for the BMO version
of this theorem. First, Fefferman and Stein use complex interpolation along with the
]-maximal operator and, in essence, a good lambda inequality [3, Corollary 2]. Their
work yields a constant of order 2(n+1)p. Second, the approach presented in Stein’s
monograph uses complex interpolation along with estimates of the Lp-norm in terms
of the ]-maximal norm, via the grand maximal function [8, pages 148, 175–177]. This
approach does not appear capable of providing an explicit constant. Third, Grafakos
uses real interpolation along with the dyadic ]-maximal operator and a good lambda
inequality [5, Theorem 7.4.7]. This approach gives a constant of order 2p.

Thus 2p or not 2p, that is the question. We resolve it by modifying the first line
of proof: we use complex interpolation with the dyadic ]-maximal operator and an
optimized application of a good lambda inequality (see Proposition 9). The constant
then improves dramatically. Rather than growing like 2p it grows only linearly. Indeed,
K(p) = O(p) with

81
√

3
16

≥
K(p)

p
≥ e for 2 ≤ p <∞,

because K(p)/p is decreasing (by elementary estimates).
Linear growth of the constant is the best possible rate, since the Lp-norm of the

Hilbert transform equals cot(π/2p) ∼ (2/π)p as p→∞, as Pichorides showed [7], and
similarly for the Riesz transform in higher dimensions [6, Theorem 1.9.1].

We do not know whether the exponential growth 2n of the constant in Theorem 1
is best possible with respect to dimension. The factor of 2n arises in the proof of
Lemma 8, when the sides of a cube are doubled; perhaps an alternative approach could
be found?

R 2. Fefferman and Stein proved a more general interpolation theorem, for an
analytic family of operators rather than the fixed operator T . Our methods improve the
constant there too.
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160 H.-Q. Bui and R. S. Laugesen [3]

Interpolation between H1 and L2. Theorem 1 and the duality relation (H1)∗ = BMO
together yield interpolation between L2 and the Hardy space H1(Rn). On the Hardy
space we use the atomic norm in terms of L∞-atoms, in order to respect duality with
the BMO-norm.

C 3 (H1 and L2 interpolation). Suppose T is a linear operator defined on
H1 + L2 that takes values in the space of complex-valued measurable functions on
Rn.

If T is strong type (H1, L1) and strong type (L2, L2), then T is strong type (Lp, Lp)
whenever 1 < p ≤ 2, with

‖T‖Lp→Lp ≤ 2n+3−2/pK
( p

p − 1

)
‖T‖(2/p)−1

H1→L1 ‖T‖
2−(2/p)
L2→L2 .

Note that the constant K
(
p/(p − 1)

)
has order of growth O

(
1/(p − 1)

)
as p ↓ 1. This

rate is best possible, by the example of the Hilbert transform.

Interpolation between dyadic H1 and L2. Write H1
d(Rn) for the dyadic Hardy

space, which is defined in terms of L∞-atoms supported in dyadic cubes. The dual
space (H1

d)∗ is known to be identified with dBMO. Using this duality, one may easily
adapt the proof of Corollary 3 to obtain an analogue of the corollary with H1 replaced
by the smaller space H1

d .
The next two sections develop properties of the dyadic ]-maximal operator. Then

in Section 4 we prove Theorem 1 and Corollary 3.

2. Pointwise properties of the dyadic ]-maximal operator

For f ∈ L1
loc we recall the dyadic maximal operator

(Md f )(x) = sup
{ 1
|Q|

∫
Q
| f (y)| dy : Q is a dyadic cube in Rn containing x

}
,

and the dyadic ]-maximal operator of Fefferman and Stein

(M]
d f )(x) = sup

{ 1
|Q|

∫
Q
| f (y) − fQ| dy : Q is a dyadic cube in Rn containing x

}
,

where

fQ =
1
|Q|

∫
Q

f (y) dy

denotes the average value of f over Q. The usual maximal operator M and ]-maximal
operator M] are defined similarly, using all cubes instead of just dyadic cubes.

Define the BMO and dBMO seminorms by

‖ f ‖BMO = ‖M] f ‖L∞ , ‖ f ‖dBMO = ‖M]
d f ‖L∞ .
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The Banach space BMO consists of functions (modulo additive constants) for which
the BMO seminorm is finite, while dBMO consists of functions (modulo additive
constants in each quadrant of Rn) for which the dBMO seminorm is finite. Clearly
the dBMO norm is smaller in general, and so

BMO ↪→ dBMO.

For more information on dyadic BMO, see, for example, the paper of Garnett and
Jones [4].

The dyadic ]-maximal operator is dominated pointwise by the dyadic maximal
operator, with M]

d f ≤ 2Md f . Further pointwise properties are developed in what
follows.

L 4 (Measurability). If f ∈ L1
loc then M]

d f is measurable.

P. Fix the function f and rewrite the definition of the dyadic ]-maximal operator
as

M]
d f (x) = sup{OQ(x) : Q is a dyadic cube in Rn},

where

OQ(x) = 1Q(x)
1
|Q|

∫
Q
| f (y) − fQ| dy.

(Here O indicates ‘oscillation’.) This formula expresses M]
d f as the supremum of a

countable family of measurable functions. �

L 5 (Supremum attained). If f ∈ Lp, 1 ≤ p <∞, and x is a Lebesgue point for f ,
then there exists a dyadic cube Q(x) containing x such that

M]
d f (x) =

1
|Q(x)|

∫
Q(x)
| f (y) − fQ(x)| dy.

Thus the supremum in the definition of the dyadic ]-maximal operator is attained, for
almost every x.

P. If M]
d f (x) = 0 then any dyadic cube containing x will do. For definiteness, we

choose Q(x) to be the unit dyadic cube containing x.
Assume that M]

d f (x) > 0. First we show that we need not consider cubes with large
volume. Indeed,

1
|Q|

∫
Q
| f (y) − fQ| dy ≤ 2

1
|Q|

∫
Q
| f (y)| dy

≤ 2
( 1
|Q|

∫
Q
| f (y)|p dy

)1/p

≤ 2
1
|Q|1/p

‖ f ‖Lp → 0

(1)

as |Q| → ∞ (using here that p <∞).
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Second, we need not consider cubes with small volume, since if Q contains x then

lim
|Q|→0

1
|Q|

∫
Q
| f (y) − fQ| dy = 0

because x is a Lebesgue point.
Combining these two observations, we see that only finitely many dyadic cubes

need to be considered when evaluating the supremum for M]
d f (x). Thus the supremum

is attained for some cube, which we call Q(x). �

The proof above leads to a locally uniform upper bound on the size of the cube
Q(x).

L 6 (Upper bound on cube size). Suppose f ∈ Lp, 1 ≤ p <∞, and let Q̃ be a
dyadic cube. Then |Q(x)| is bounded, as a function on Lebesgue points x ∈ Q̃.

P. Suppose that
∫

Q
| f (y) − fQ| dy > 0 for some dyadic cube Q containing Q̃. Then

for each Lebesgue point x ∈ Q̃,

0 <
1
|Q|

∫
Q
| f (y) − fQ| dy ≤ M]

d f (x) =
1
|Q(x)|

∫
Q(x)
| f (y) − fQ(x)| dy

≤ 2
1

|Q(x)|1/p
‖ f ‖Lp

by estimate (1) applied to Q(x). Rearranging this inequality gives a uniform upper
bound on Q(x).

Suppose on the other hand that
∫

Q
| f (y) − fQ| dy = 0 for each dyadic cube Q

containing Q̃. Then in particular f is constant almost everywhere on Q̃, and so∫
Q
| f (y) − fQ| dy = 0 for each dyadic cube Q contained in Q̃. We have supposed that

the same equality holds when Q contains Q̃, and so necessarily M]
d f (x) = 0 for each

x ∈ Q̃. Hence each Q(x) is a unit cube by construction as above, and so |Q(x)| = 1,
which completes the proof. �

Next we evaluate the dyadic ]-maximal operator at f in terms of a linear integral
operator that depends on f . This representation is a dyadic version of one due to
Fefferman and Stein [3], and is central to the proof of Theorem 1.

We will treat the issue of measurability carefully, in the next result, since it seems
not to be addressed in the literature. Fortunately, measurability is easier to establish
for the dyadic case than for the original ]-maximal operator that uses all cubes.

Write Qd for the collection of all dyadic cubes.

P 7 (Linearization and measurability). If f ∈ Lp, 1 ≤ p <∞, then there
exist functions Q : Rn→Qd and κ : Rn × Rn→ C such that the set {(x, y) : y ∈ Q(x)}
is measurable, κ is measurable, |κ| ≤ 1, and

M]
d f (x) =

1
|Q(x)|

∫
Q(x)

( f (y) − fQ(x))κ(x, y) dy a.e. (2)
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[6] Interpolation between Hardy space and L2 163

The right side of (2) is related to the ‘U’ operator of Fefferman and Stein [3],
although they choose Q(x) from the collection of all cubes, whereas we restrict to
dyadic cubes. One may interpret (2) as representing M]

d as a linear integral operator
acting on f , although that is incorrect in practice, because the family of cubes Q and
the kernel κ in (2) depend upon the function f .

P. Begin by listing the family of dyadic cubes in some order, as {Q j}
∞
j=1.

Let x ∈ Rn. If M]
d f (x) = 0 then f is constant (and hence zero) on the entire quadrant

of Rn containing x. Choose j(x) ≥ 1 to be the j-value such that Q j is the unit dyadic
cube containing x. Do likewise for each point x in the quadrant.

In quadrants where f is not constant we proceed as follows. Suppose x is a
Lebesgue point for f . Note that M]

d f (x) > 0 because f is not constant on the quadrant.

Let j(x) ≥ 1 be the smallest j-value such that OQ j (x) = M]
d f (x); such a j-value exists

by Lemma 5, with x ∈ Q j(x). The integer-valued function j(x) is measurable, since
the functions M]

d and OQ1 , OQ2 , OQ3 , . . . are measurable. For example, the level set

{x : j(x) = 2} is measurable because it equals {x : M]
d , OQ1 and M]

d = OQ2}.
Now define the family of cubes by Q(x) = Q j(x). Let

κ(x, y) =
f (y) − fQ(x)

| f (y) − fQ(x)|
, x, y ∈ Rn,

with the convention that if the denominator equals 0 then κ(x, y) = 0. Clearly |κ| ≤ 1,
and the representation (2) holds.

For the measurability claims in the proposition, the first observation is that the set

P
def
= {(x, y) : y ∈ Q(x)} =

∞⋃
k=1

({x : j(x) = k} × Qk)

can be expressed as a union of measurable products. Some care is needed to prove
measurability of x 7→ fQ(x) and hence measurability of κ, as we now explain. Start with

fQ(x) =
1
|Q(x)|

∫
Rn

1P(x, y) f (y) dy. (3)

Observe |Q(x)| =
∫
Rn 1P(x, y) dy, which is a measurable function of x by Tonelli’s

theorem since 1P is a nonnegative jointly measurable function. Next, for any dyadic
cube Q̃ we have∫

Q̃

∫
Rn

1P(x, y)| f (y)| dy dx ≤
∫

Q̃
|Q(x)|1−1/p‖ f ‖Lp dx <∞

by Hölder’s inequality and the locally uniform upper bound on |Q(x)| in Lemma 6.
Hence the integrand 1P(x, y) f (y) is a jointly integrable function of (x, y) ∈ Q̃ × Rn, and
so

∫
Rn 1P(x, y) f (y) dy is a measurable function of x ∈ Q̃ by Fubini’s theorem. Thus

by (3) we see that fQ(x) is measurable for x ∈ Q̃. Since the cube Q̃ was arbitrary,
measurability follows on all of Rn. �
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3. Norm inequalities for the dyadic ]-maximal operator

Measure and norm estimates will be needed on the maximal operators.

L 8 (Dyadic good lambda). If f is locally integrable then

|{x ∈ Rn : Md f (x) > α(1 + β), M]
d f (x) ≤ αγ}| ≤ 2n γ

β
|{x ∈ Rn : Md f (x) > α}| (4)

whenever α, β, γ > 0.

P. See Stein [8, page 153], and make there the substitutions α 7→ α(1 + β), b 7→
1/(1 + β) and c 7→ γ/(1 + β). �

P 9 (Maximal norm dominated by ]-maximal norm). If 1 ≤ q < p <∞ and
f ∈ Lq, then

‖ f ‖Lp ≤ ‖Md f ‖Lp ≤ 2nK(p)‖M]
d f ‖Lp ,

where K(p) was defined in the Introduction.

The previous best constant in the literature is 2n+2+1/p 2p, appearing in the text
of Stein [8, pages 153–154] and also treated by Grafakos [5, Theorem 7.4.5]. (For
the nondyadic maximal and ]-maximal operators, Fefferman and Stein got a larger
constant, of order 2(n+1)p [3, Theorem 5].)

Our constant 2nK(p) grows only linearly with p. The improvement comes from
optimizing our choice of parameters when using the good lambda inequality. For
example, Stein chose β = 1, whereas we will identify an optimal β that depends on p.

P. For the first inequality in Proposition 9, recall | f | ≤ Md f a.e. by the Lebesgue
differentiation theorem.

We use the good lambda inequality (4) to prove the second inequality. Let

I(A, f ) =

∫ A

0
pαp−1|{x ∈ Rn : | f (x)| > α}| dα

so that ‖ f ‖pLp = limA→∞ I(A, f ). Note that I(A, Md f ) is finite for each A > 0, using here
that p > q and calling on the weak (Lq, Lq) estimate on the dyadic maximal operator.
Let

δ = 1 + β,

so that δ > 1. Changing variable with α 7→ αδ in the integral shows that

I(A, Md f ) = δp
∫ A/δ

0
pαp−1|{x ∈ Rn : Md f (x) > αδ}| dα

= δp
∫ A/δ

0
pαp−1|{x ∈ Rn : Md f (x) > αδ, M]

d f (x) ≤ αγ}| dα

+ δp
∫ A/δ

0
pαp−1|{x ∈ Rn : Md f (x) > αδ, M]

d f (x) > αγ}| dα

https://doi.org/10.1017/S1446788713000244 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000244


[8] Interpolation between Hardy space and L2 165

≤ 2nγβ−1δp
∫ A/δ

0
pαp−1|{x ∈ Rn : Md f (x) > α}| dα by Lemma 8

+ δp
∫ A/δ

0
pαp−1|{x ∈ Rn : M]

d f (x) > αγ}| dα

≤ 2nγβ−1δp I(A, Md f ) + δpγ−pI(Aγ/δ, M]
d f ).

If β and γ are restricted to satisfy 2nγβ−1(1 + β)p < 1, then by letting A→∞ in the
preceding inequality and recalling that δ = 1 + β we see

‖Md f ‖pLp ≤
(1 + β)pγ−p

1 − 2nγβ−1(1 + β)p
‖M]

d f ‖pLp .

Rescaling the parameter γ to 2−nβ(1 + β)−pγ gives that

‖Md f ‖pLp ≤

(
2n(1 + β)p+1/β

)p

γp(1 − γ)
‖M]

d f ‖pLp ,

where the earlier restriction on β and γ rescales to say simply that γ < 1. We minimize
the numerator by choosing β = 1/p and maximize the denominator by choosing
γ = p/(p + 1) < 1. With these choices we evaluate the constants and take the pth root
to find that

‖Md f ‖Lp ≤ 2n(1 + 1/p)p+2(p + 1)1/p p ‖M]
d f ‖Lp = 2nK(p)‖M]

d f ‖Lp .

This estimate concludes the proof. �

4. Proof of Theorem 1

We modify the proof of Fefferman–Stein [3, pages 156–157] by using dyadic cubes
when defining both the ]-maximal operator and their U-operator. Note that their U f is
the right side of (2) applied to T f instead of f , for an arbitrary family of cubes {Q(·)}
and an arbitrary kernel κ with |κ| ≤ 1.

The last part of Fefferman and Stein’s argument relies on representing M](T f ) as
the supremum of U f over all families of cubes and over all kernels. For our dyadic
version of the argument, it is easy to show that equality is attained in this supremum,
assuming f is simple. Indeed, f ∈ L2 and hence T f ∈ L2, and so we may apply
Proposition 7 to T f with p = 2 to obtain a measurable choice of Q(·) and κ such that
M]

d(T f ) = U f as desired.
From these dyadic modifications of Fefferman and Stein’s complex interpolation

arguments we obtain Lp-boundedness of the dyadic ]-maximal operator composed
with T ; more precisely, we get for all simple f that

‖M]
d(T f )‖Lp ≤ A(p)‖ f ‖Lp , 2 < p <∞, (5)
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where the constant is

A(p) = (4‖T‖L2→L2 )2/p ‖T‖1−2/p
L∞→dBMO.

The factor of 4 arises in the derivation of A(p) because M]
d f ≤ 2Md f by the triangle

inequality and ‖Md‖L2→L2 ≤ 2.
To obtain Lp-boundedness of T itself acting on simple functions, we argue that

‖T f ‖Lp ≤ ‖Md(T f )‖Lp

≤ 2nK(p)‖M]
d(T f )‖Lp

by Proposition 9 applied to T f with q = 2

≤ 2nK(p)A(p)‖ f ‖Lp

by (5) above. Finally we extend the inequality to all f ∈ Lp, by density.

Note. Compared with Fefferman and Stein’s proof, and others in the literature, the
improvement in the constant in our theorem comes mostly from Proposition 9, which
optimally applies the good lambda inequality.

P  C 3. The adjoint T ∗ is strong type (L2, L2), and strong type
(L∞, BMO) with

‖T ∗‖L∞→(H1)∗ = ‖T‖H1→L1 .

The norm on the left uses the dual norm on (H1)∗, which does not equal the BMO
norm. The norms are equivalent, fortunately, and Lemma 10 below implies that

‖T ∗‖L∞→BMO ≤ 2‖T ∗‖L∞→(H1)∗ = 2‖T‖H1→L1 . (6)

Then Theorem 1 together with inequality (6) gives that

‖T ∗‖Lp′→Lp′ ≤ 2n+4/p′K(p′)‖T‖2/p′

L2→L2 (2‖T‖H1→L1 )1−2/p′ ,

where p′ = p/(p − 1) is the dual exponent to p. The corollary now follows by duality.
Equivalence of the H1-dual norm and the BMO norm, as stated in the next lemma,

is well known. We provide a proof in order to get explicit constants independent of
the dimension. The proof is based on the treatment by Coifman and Weiss [2, pages
632–633]. �

L 10 (Norm equivalence on BMO). If L is a linear functional in (H1)∗ that acts
by integration against the function b ∈ BMO, then

‖L‖(H1)∗ ≤ ‖b‖BMO ≤ 2‖L‖(H1)∗ .

P. If f ∈ H1 has atomic decomposition f =
∑

k ckak (where the ak are atoms with
mean zero, supported on cubes Qk and with ‖ak‖L∞ ≤ |Qk|

−1), then

L f =
∑

k

ck

∫
Qk

akb dx =
∑

k

ck

∫
Qk

ak(b − bQk ) dx.
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[10] Interpolation between Hardy space and L2 167

Hence |L f | ≤
∑

k |ck||Qk|
−1

∫
Qk
|b − bQk | dx ≤ ‖b‖BMO

∑
k |ck|. Taking the infimum over

all atomic decompositions gives that |L f | ≤ ‖b‖BMO‖ f ‖H1 and so ‖L‖(H1)∗ ≤ ‖b‖BMO.
For the other direction, fix a cube Q and choose f ∈ L∞(Q) with | f | = 1 a.e. such

that (b − bQ) f = |b − bQ|. Define a new function on Q by a = ( f − fQ)/2|Q|, and notice
this function a is an atom because it has mean zero and ‖a‖L∞ ≤ 1. Then

La =

∫
Q

ab dx =
1

2|Q|

∫
Q

( f − fQ)b dx

=
1

2|Q|

∫
Q

f (b − bQ) dx =
1

2|Q|

∫
Q
|b − bQ| dx.

Therefore,
1
|Q|

∫
Q
|b − bQ| dx = 2La ≤ 2‖L‖(H1)∗ ,

since ‖a‖H1 ≤ 1 by definition of the atomic norm. Taking the supremum over all cubes
now shows that ‖b‖BMO ≤ 2‖L‖(H1)∗ . �
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