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Abstract. There exist two notions of equivalence of behavior between states of a Labelled
Markov Process (LMP): state bisimilarity and event bisimilarity. The first one can be considered
as an appropriate generalization to continuous spaces of Larsen and Skou’s probabilistic
bisimilarity, whereas the second one is characterized by a natural logic. C. Zhou expressed
state bisimilarity as the greatest fixed point of an operator O, and thus introduced an ordinal
measure of the discrepancy between it and event bisimilarity. We call this ordinal the Zhou
ordinal of S, Z(S). When Z(S) = 0, S satisfies the Hennessy–Milner property. The second author
proved the existence of an LMP S with Z(S) ≥ 1 and Zhou showed that there are LMPs having
an infinite Zhou ordinal. In this paper we show that there are LMPs S over separable metrizable
spaces having arbitrary large countable Z(S) and that it is consistent with the axioms of ZFC
that there is such a process with an uncountable Zhou ordinal.

§1. Introduction. Equivalence of behavior, or bisimilarity in any of its flavors, is
a fundamental concept in the study of processes, logic, and many other areas of
Computer Science and Mathematics. In the case of discrete (countable) processes,
many formalizations of the concept result to be equivalent and it can be completely
described by using some form of modal logic—the well-known Hennessy–Milner
property.

As soon as one leaves the realm of discrete processes, the question of defining and
characterizing behavior turns into a problem with various (sometimes unexpected)
mathematical edges. For the case of labelled Markov processes (LMP) [3], the first
issue to be taken care of is that the concept of probability and measure cannot be
defined for all subsets of the state space. Hence the complexity of state spaces (in the
sense of Descriptive Set Theory [7]) plays an important role.

A notable consequence is that an LMP admits two generally different notions of
equivalence of behavior between its states: state bisimilarity and event bisimilarity. The
first one can be considered as an appropriate generalization to continuous spaces of
Larsen and Skou’s probabilistic bisimilarity. On the other hand, event bisimilarity can
be characterized by a very simple and natural modal logic L defined by the following
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grammar:

φ := � | φ1 ∧ φ2 | 〈a〉>qφ,

where a ranges over possible actions of the interpreting LMP and q over rationals
between 0 and 1; the formula 〈a〉>qφ holds on states at which the probability of
reaching another state satisfying φ after an a transition is greater than q.

Despite its simplicity, this logic also characterizes state bisimilarity for wide classes
of LMPs (thus, the two types of bisimilarities coincide). Desharnais, Edalat and
Panangaden [4] showed (building on Edalat’s categorical result [6]) that the category
of generalized LMP over analytic state spaces has the Hennessy–Milner property with
respect to L. This result was later strengthened by Doberkat [5] in that it applies to the
original category of LMP. Recently, Pachl and the second author extended the result
to LMP over universally measurable state spaces [9].

But if regularity assumptions on the state spaces are omitted, the Hennessy–Milner
property is lost (see [10] by the second author). It is therefore of interest to understand
how state bisimilarity differs from the event one for LMP over general measurable
spaces. Zhou proposed in [12] one way to quantify this difference, by expressing state
bisimilarity as the greatest fixed point of an operator O and pointed out an LMP for
which more than � iterates of O are needed to reach it.

In this paper, we study the operator O in a general setting, a dual version G of it, and
the hierarchy of relations and �-algebras respectively induced by them. We then define
the Zhou ordinal Z(S) of an LMP S to be the number of iterates needed to reach state
bisimilarity when one starts from the event one. After reviewing some basic material
in Section 2, we develop the general theory of the operators O and G in Section 3. In
Section 4 we focus on the class S of LMP over separable metrizable spaces, “separable
LMP” for short, and the supremum of the Zhou ordinals of such processes, Z(S).
One of our main results is that Z(S) is a limit ordinal of uncountable cofinality (and
hence at least�1). In Section 5, we construct a family of LMPs {S(�) | � ≤ �1} having
Z(S(�)) = � when � is a limit ordinal; these processes are separable for countable � .
We also discuss the consistency with the axioms of set theory that the bound �1 is
actually attained by a separable LMP. Finally, some further directions are pointed out
in Section 6.

§2. Preliminaries. An algebra over a set S is a nonempty family of subsets of S
closed under finite unions and complementation. It is a �-algebra if it is also closed
under countable unions. Given an arbitrary family U of subsets of S, we use �(U) to
denote the least �-algebra over S containing U . Let (S,Σ) be a measurable space, i.e., a
set S with a �-algebra Σ over S. We say that (S,Σ) (or Σ) is countably generated if there
is some countable family U ⊆ Σ such that Σ = �(U). A subspace of the measurable
space (S,Σ) consists of a subset Y ⊆ S with the relative �-algebra Σ � Y := {A ∩ Y |
A ∈ Σ}. Notice that if Σ = �(U), then Σ � Y = �(U � Y ). If (S1,Σ1), (S2,Σ2) are two
measurable spaces, we say that f : S1 → S2 is (Σ1,Σ2)-measurable if f–1(A) ∈ Σ1 for
all A ∈ Σ2.

Assume now thatV ⊆ S. We will use ΣV to denote �(Σ ∪ {V }), the extension of Σ by
the set V. It is immediate that ΣV = {(B1 ∩ V ) ∪ (B2 ∩ V c) | B1, B2 ∈ Σ}. It is obvious
that if Σ is countably generated so is ΣV . The sum of two measurable spaces (S1,Σ1)
and (S2,Σ2) is (S1 ⊕ S2,Σ1 ⊕ Σ2), with the following abuse of notation: S1 ⊕ S2 is the
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disjoint union (direct sum qua sets) and Σ1 ⊕ Σ2 := {Q1 ⊕Q2 | Qi ∈ Σi}. If Y is a
topological space, B(Y ) will denote the �-algebra generated by the open sets in Y ;
hence (Y,B(Y )) is a measurable space, the Borel space of Y. We say that a family of
sets F ⊆ P(S) separates points if for every pair of distinct points x, y in S, there is
some A ∈ F with x ∈ A and y /∈ A. We have the following proposition.

Proposition 1. [7, Proposition 12.1] Let (S,Σ) be a measurable space. The following
are equivalent:

1. (S,Σ) is isomorphic to some (Y,B(Y )), where Y is separable metrizable.
2. (S,Σ) is isomorphic to some (Y,B(Y )) for Y ⊆ [0, 1].
3. (S,Σ) is countably generated and separates points.

A classM of subsets of S is monotone if it is closed under the formation of monotone
unions and intersections. Halmos’ Monotone Class Theorem will be frequently used
in this work.

Theorem 2. [1, Theorem 3.4] If F is an algebra of sets and M is a monotone class, then
F ⊆ M implies �(F) ⊆ M.

Given a measurable space (S,Σ), a subprobability measure on S is a [0, 1]-valued
set function � defined on Σ such that �(0) = 0 and for any pairwise disjoint
collection {An | n ∈ �} ⊆ Σ, we have �(

⋃
n∈� An) =

∑
n∈� �(An). In addition, for

probability measures we require �(S) = 1. If Σ ⊆ Σ′ and �, �′ are measures defined on
(S,Σ), (S,Σ′) respectively, we say that �′ extends � to (S,Σ′) when �′ � Σ = �. A key
idea in the construction of examples is the possibility of extending a measure in the
following particular way:

Theorem 3. Let � be a finite measure defined in (S,Σ) and let V ⊆ S be a non-�-
measurable set. Then there are extensions�0 and�1 of� to ΣV such that�0(V ) 
= �1(V ).

Definition 4. A Markov kernel on (S,Σ) is a function � : S × Σ → [0, 1] such that for
each fixed s ∈ S, �(s, ·) : Σ → [0, 1] is a subprobability measure, and for each fixed set
X ∈ Σ, �(·, X ) : S → [0, 1] is (Σ,B[0, 1])-measurable.

These kernels will play the role of transition functions in the processes we define
next. Let L be a countable set.

Definition 5. A labelled Markov process(LMP) with label set L is a triple S =
(S,Σ, {�a | a ∈ L}), where S is a set of states, Σ is a �-algebra over S, and for each
a ∈ L, �a : S × Σ → [0, 1] is a Markov kernel. An LMP is said to be separable if its
state space is countably generated and separates points.

By Proposition 1, the restriction to separable LMP is equivalent to studying processes
whose state space is a subset of Euclidean space.

Example 6. We will now present the LMPU, which was introduced (under the name S3)
in [10]. This will be an important example throughout this paper to illustrate concepts and
motivate constructions. From this point onwards, I will denote the open interval (0, 1), m
will be the Lebesgue measure on I and BV will be the �-algebra �(B(I ) ∪ {V }), where V
is a Lebesgue non-measurable subset of I . By Theorem 3 we have two extensions m0 and
m1 of m such that m0(V ) 
= m1(V ). Also, let {qn}n∈� be an enumeration of the rationals
in I and define Bn := (0, qn); hence {Bn | n ∈ �} is a countable generating family of
B(I ).
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Figure 1. The LMP U.

Let s, t, x /∈ I be mutually distinct; we may view m0 and m1 as measures defined on
the sum I ⊕ {s, t, x}, supported on I . The label set will be L := � ∪ {∞}. Now define
U = (U,Υ, {�n | n ∈ L}) such that

(U,Υ) := (I ⊕ {s, t, x},BV ⊕ P({s, t, x})),

�n(r, A) := �Bn (r) · 	x(A),

�∞(r, A) := �{s}(r) ·m0(A) + �{t}(r) ·m1(A),

when n ∈ � and A ∈ Υ. This defines an LMP since for all r, 0 ≤ �Ba (r) ≤ 1 and
0 ≤ �{s}(r) + �{t}(r) ≤ 1 and we infer measurability because �l (·, A) is always a linear
combination of measurable functions.

The dynamics of this process goes intuitively as follows: The states s and t can only
make an∞-labelled transition to a “uniformly distributed” state in I , but they disagree on
the probability of reaching V ⊆ I . Then, each point of Bn ⊆ I can make an n-transition
to x. Finally, x can make no transition at all (see Figure 1).

For R a symmetric relation over S, we say that A ⊆ S is R-closed if {s ∈ S | ∃x ∈
A x R s} ⊆ A. If Γ ⊆ P(S), we denote by Γ(R) the family of all R-closed sets in Γ.
Note that if Γ is a �-algebra, then Γ(R) is a sub-�-algebra of Γ. We also define a new
relation R(Γ) consisting of all pairs (s, t) such that ∀A ∈ Γ (s ∈ A↔ t ∈ A).

Definition 7. Fix an LMP S = (S,Σ, {�a | a ∈ L}). A state bisimulation R on S is
a symmetric relation on S such that ∀a ∈ L �a(s, C ) = �a(t, C ) whenever s R t and
C ∈ Σ(R). We say that s and t are state bisimilar, denoted by s ∼s t, if there exists some
state bisimulation R such that s R t. The relation ∼s is called state bisimilarity.

Definition 8. Let S = (S,Σ, {�a | a ∈ L}) be an LMP and Λ ⊆ Σ. Λ is stable with
respect to S if for all A ∈ Λ, r ∈ [0, 1] ∩Q and a ∈ L, we have {s : �a(s, A) > r} ∈ Λ.

Note that for a sub-�-algebra Λ ⊆ Σ, Λ is stable if and only if (S,Λ, {�a � S × Λ |
a ∈ L}) is an LMP.

Definition 9. Let S = (S,Σ, {�a | a ∈ L}) be an LMP. A relation R on S will be called
an event bisimulation if there exists a stable sub-�-algebra Λ ⊆ Σ such that R = R(Λ).

Two states s and t of an LMP are event bisimilar, denoted by s ∼e t, if there exists
some event bisimulation R such that s R t. The relation ∼e is called event bisimilarity.
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To illustrate these concepts with the LMP U, one can show that Ξ := �(B(I ) ∪
{{s, t}, {x}}) is a stable �-algebra; hence s and t are event bisimilar. However they are
not state bisimilar as V is R(∼s)-closed and �∞(s, V ) 
= �∞(t, V ). See [10] for details.

Recall the modal logic L presented in the Introduction. We spell out the formal
interpretation of the modalities: s |= 〈a〉>qφ on the LMP (S,Σ, {�a | a ∈ L}) if and
only if there exists A ∈ Σ such that for all s ′ ∈ A, s ′ |= φ and �a(s, A) > q. Given a
formula φ we write �φ� to denote the set of states satisfying φ. It can be proved by
induction that each of these sets is measurable. We write �L� for the collection of sets
�φ�; we have the following logical characterization of event bisimilarity.

Theorem 10. [2, Proposition 5.5 and Corollary 5.6] For an LMP (S,Σ, {�a | a ∈ L}),
�(�L�) is the smallest stable �-algebra included in Σ. Therefore the logic L characterizes
event bisimilarity, in symbols ∼e = R(�L�) = R(�(�L�)).

The last equality follows easily from the fact that R(�(F)) = R(F) holds for any
family of sets F .

Regarding U, the �-algebra Ξ turns out to be �(�L�); therefore ∼e = idU ∪
{(s, t), (t, s)}. This further implies that ∼s = idU given that it can be proved that
∼s ⊆ ∼e is always the case and, as noted before, s and t are not state-bisimilar.
Consequently, this is an example where state bisimilarity is properly contained in event
bisimilarity. In fact, the LMP U was introduced in [10] to show that event bisimilarity
and state bisimilarity differ in LMP over general measurable spaces. In this work it will
serve as a seed for several constructions to be performed in Section 4.

§3. The operators O and G. Fix a Markov process S = (S,Σ, {�a | a ∈ L}). We will
work with the operators defined in [12], and we introduce a new one, G:

Definition 11. Let Λ ⊆ Σ and R ⊆ S × S.

• The relation RT (Λ) is given by

(s, t) ∈ RT (Λ) ⇐⇒ ∀a ∈ L ∀E ∈ Λ �a(s, E) = �a(t, E).

• O(R) := RT (Σ(R)).
• G(Λ) := Σ(RT (Λ)).

Note that O(R) is always an equivalence relation for any R and if Λ is a �-algebra,
then G(Λ) is too. The motivating idea behind the definition of RT is to relate states
that are probabilistically indistinguishable with respect to a fixed set of “tests,” here
given by the family Λ of events. An equivalence relation R on the set of states induces
naturally Σ(R), the R-closed sets in Σ, as a family of tests. It follows that R is a state
bisimulation if and only if R ⊆ RT (Σ(R)) = O(R).

Example 12. Let us do some simple calculations with the operator O concerning the
LMP U. If ∇ denotes the total relation U ×U ,

O(∇) = RT (Υ(∇)) = RT ({∅, U}) = idU ∪ {(s, t), (t, s)} = ∼e .
Also, because V ∈ Υ(∼e),

O(∼e) = RT (Υ(∼e)) = idU = ∼s .
We highlight the fact that a single application of O from the event bisimilarity ∼e leads
to state bisimilarity ∼s .
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In the next proposition we collect some basic facts on the operators defined up to
this point; most of them appear in [12].

Proposition 13. Let Λ,Λ′ ⊆ Σ be sub-�-algebras and R,R′ ⊆ S × S.

1. Λ ⊆ Σ(R(Λ)).
2. R ⊆ R(Σ(R)).
3. If Λ ⊆ Λ′, then R(Λ) ⊇ R(Λ′) and RT (Λ) ⊇ RT (Λ′).
4. If R ⊆ R′, then Σ(R) ⊇ Σ(R′).
5. R(Σ(R(Λ))) = R(Λ).
6. O and G are monotone operators.
7. R is a state bisimulation iff (S,Σ(R), {�a | a ∈ L}) is an LMP.
8. If Λ is stable, then R(Λ) ⊆ RT (Λ).

We will also need some basic material on fixpoint theory. We work with von Neumann
ordinals, viz. α = {� : � < α}. If F : A→ A is a function on a complete lattice A, we
define the iterates of F by F 0(x) := x, F α+1(x) := F (F α(x)), F �(x) :=

∧
α<� F

α(x)
if � is a limit ordinal, and F∞(x) =

∧
� F
�(x). We say that x is a pre-fixpoint (resp.

post-fixpoint) of F if F (x) ≤ x (resp. x ≤ F (x)).

Proposition 14. [11, Exercise 2.8.10] Let F : A→ A be a monotone function on a
complete lattice A. If x is a pre-fixpoint of F, then F∞(x) is the greatest fixpoint of F
below x. Furthermore, this fixed point is reached at an ordinal α such that |α| ≤ |A|.

As in Zhou’s work [12] we will construct chains of relations and of �-algebras using
the operators O and G. The next result will be an aid in showing that �(�L�) (resp.
∼e = R(�(�L�))) is a post(pre)-fixpoint of G (O).

Lemma 15. RT (�(�L�)) = R(�(�L�)).

Proof. Since �(�L�) is stable, we have R(�(�L�)) ⊆ RT (�(�L�)) by Proposition
13(8). We prove the other inclusion by structural induction on formulas. Suppose that
(s, t) ∈ RT (�(�L�)). If A := ��� = S, then s ∈ A⇔ t ∈ A. The case A = �φ ∧ 
� =
�φ� ∩ �
� is also trivial from the IH. For the case A = �〈a〉>qφ�, observe that
the hypothesis (s, t) ∈ RT (�(�L�)) implies s ∈ A⇔ �a(s, �φ�) > q ⇔ �a(t, �φ�) >
q ⇔ t ∈ A. Then, the �-algebra As,t := {A ∈ Σ | s ∈ A⇔ t ∈ A} includes �L�. We
conclude that �(�L�) ⊆ As,t , i.e., (s, t) ∈ R(�(�L�)).

Corollary 16. �(�L�) ⊆ G(�(�L�)) and O(∼e) ⊆ ∼e .

Proof. Since Σ ◦ R is expansive by Proposition 13(1), the previous lemma
implies that �(�L�) ⊆ Σ(R(�(�L�))) = Σ(RT (�(�L�))) = G(�(�L�)). Moreover, by
antimonotonicity of RT we obtain the result for O:

O(∼e) = RT (Σ(R(�(�L�)))) ⊆ RT (�(�L�)) = R(�(�L�)) = ∼e .
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The inclusions O(R) ⊆ R and Λ ⊆ G(Λ) do not hold in general for arbitrary R and
Λ. For example, if � is null for all arguments, O(R) = S × S for any relation R and
analogously for G.

Given a relation R we define a transfinite sequence of equivalence relations using the
operator O:

• O0(R) := R.
• Oα+1(R) := O(Oα(R)).
• O�(R) :=

⋂
α<�Oα(R) if � is a limit.

Similarly, if Λ ⊆ Σ is a �-algebra, G generates a family of �-algebras given by:

• G0(Λ) := Λ.
• Gα+1(Λ) := G(Gα(Λ)).
• G�(Λ) := �(

⋃
α<� Gα(Λ)) if � is a limit ordinal.

Note that in the limit case of this last definition we must take the generated �-algebra
since the union of a countable chain of �-algebras is not in general a �-algebra.

Let Σ0 ⊆ Σ be a sub-�-algebra and R0 ⊆ S × S a relation. From the iterates of O
and G we define new �-algebras and relations.

Definition 17. For every ordinal α let Σα := Gα(Σ0) and Rα := Oα(R0).

It is clear that if α < �, then R� ⊆ Rα since R� = O�(R0) =
⋂
�<�O�(R0) =⋂

�<� R� ⊆ Rα . It is also easy to verify from the definitions that Σα ⊆ Σ�. We are
interested in determining what other relationships hold among these relations and �-
algebras. We are mainly concerned in the case in which Σ0 = �(�L�) and when R0 is
the relation of event bisimilarity; then by Lemma 15 we have R0 = RT (Σ0).

Proposition 18. If R0 = RT (Σ0), then for all α, Rα = RT (Σα).

Proof. By induction onα. The caseα = 0 is included in the hypothesis. Now assume
that it holds forα. We calculate as follows:Rα+1 =Oα+1(R0) =O(Oα(R0)) =O(Rα) =
RT (Σ(Rα)) = RT (Σ(RT (Σα))) = RT (G(Σα)) = RT (G(Gα(Σ0)) = RT (Gα+1(Σ0))=
RT (Σα+1). Then it holds for α + 1.

Suppose now that the result holds for all α < �, with � a limit ordinal. We haveR� =
O�(R0) =

⋂
α<�Oα(R0) =

⋂
α<� Rα =

⋂
α<�RT (Σα). We will prove that the last term

equals RT (
⋃
α<� Σα). Let s, t ∈ S. Then

(s, t) ∈
⋂
α<�RT (Σα) ⇔ ∀α < �∀a ∈ L∀Q (Q ∈ Σα ⇒ �a(s,Q) = �a(t, Q))

⇔ ∀a ∈ L∀Q ∀α < � (Q ∈ Σα ⇒ �a(s,Q) = �a(t, Q))

⇔ ∀a ∈ L∀Q (∃α < �Q ∈ Σα ⇒ �a(s,Q) = �a(t, Q))

⇔ ∀a ∈ L∀Q (Q ∈
⋃
α<� Σα ⇒ �a(s,Q) = �a(t, Q))

⇔ (s, t) ∈ RT (
⋃
α<� Σα).

Claim. RT (
⋃
α<� Σα) = RT (�(

⋃
α<� Σα)).

With this we can conclude since

RT (�(
⋃
α<� Σα)) = RT (�(

⋃
α<� Gα(Σ0))) = RT (G�(Σ0)) = RT (Σ�).

Now we prove the claim. Let s, t ∈ S such that (s, t) ∈ RT (
⋃
α<� Σα). We define

Ds,t := {A ∈ Σ | ∀a ∈ L, �a(s, A) = �a(t, A)}. We check that Ds,t is a monotone class
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on S. If {Ai}i∈� is an increasing family of subsets S such that Ai ∈ Ds,t , upper
continuity of the measures �a(s, ·) and �a(t, ·) implies

�a(s,
⋃
i∈� Ai) = limi �a(s, Ai) = limi �a(t, Ai) = �a(t,

⋃
i∈� Ai).

We argue similarly for an intersection of a decreasing family in Ds,t by using lower
continuity of the (finite) measures involved. Since, by hypothesis,

⋃
α<� Σα ⊆ Ds,t and

moreover, the family
⋃
α<� Σα is an algebra of subsets of S, the Monotone Class

Theorem yields �(
⋃
α<� Σα) ⊆ Ds,t .

Since the reverse inclusion RT (
⋃
α<� Σα) ⊇ RT (�(

⋃
α<� Σα)) is trivial, we have the

result.

Corollary 19. If R0 = RT (Σ0), then for all α, Σ(Rα) = Σα+1.

Proof. Unfolding definitions,

Σ(Rα) = Σ(RT (Σα)) = Σ(RT (Gα(Σ0))) = G(Gα(Σ0)) = Gα+1(Σ0) = Σα+1.

Proposition 20. If R0 = R(Σ0) = RT (Σ0), then for all α, Rα+1 ⊆ Rα .

Proof. We work by induction on α. By using the antimonotonicity of RT and
Σ(R(Σ0)) ⊇ Σ0 we have

R1 = O(R0) = RT (Σ(R0)) = RT (Σ(R(Σ0))) ⊆ RT (Σ0) = R0.

This shows the base case. Assume the result for α, then by applying the monotonicity
of O to the IH, we have Rα+2 = O(Rα+1) ⊆ O(Rα) = Rα+1.

For limit � we observe that for all α < � monotonicity of O and IH ensure
R�+1 = O(R�) ⊆ O(Rα) = Rα+1 ⊆ Rα . Then, R�+1 ⊆

⋂
α<� Rα = R�.

Corollary 21. If R0 = R(Σ0) = RT (Σ0), then for all α, Σα ⊆ Σα+1.

Proof. For α = 0 we observe that Σ0 ⊆ Σ(R(Σ0)) = Σ(RT (Σ0)) = G(Σ0) = Σ1. For
successor ordinals, we use Propositions 18 and 20 to obtain

Σα+1 = G(Σα) = Σ(RT (Σα)) = Σ(Rα) ⊆ Σ(Rα+1) = Σα+2.

Finally, for the limit case, observe that for all α < �, Σα ⊆ Σ�; then by IH and
monotonicity of G we have Σα ⊆ Σα+1 = G(Σα) ⊆ G(Σ�) = Σ�+1. Therefore Σ� =
�(

⋃
α<� Σα) ⊆ Σ�+1.

In the following, for any Q ∈ Σ, 〈a〉≤qQ will denote the set {s ∈ S | �a(s,Q) ≤ q}.
Similarly for the other order relations.

Note 22. If Θ is a �-algebra, a relationRT (Θ) is of the formR(F) for some subfamily
F of Σ: If Γ is any algebra such that �(Γ) = Θ, then

s RT (Θ) t ⇐⇒ (s, t) ∈ R({〈a〉≤qQ | a ∈ L, q ∈ Q, Q ∈ Γ}).

Let F the family on the right-hand side, namely {〈a〉≤qQ | a ∈ L, q ∈ Q, Q ∈ Γ}. If
(s, t) ∈ RT (Θ), then for anya ∈ L, q ∈ Q andQ ∈ Θ, we have s ∈ 〈a〉≤qQ iff �a(s,Q) ≤
q iff �a(t, Q) ≤ q iff t ∈ 〈a〉≤qQ. Conversely, suppose that (s, t) ∈ R(F). Since Ds,t =
{Q ∈ Θ | ∀a ∈ L, �a(s,Q) = �a(t, Q)} is a monotone class and Γ is a generating algebra
for Θ such that Γ ⊆ Ds,t , the Monotone Class Theorem yields Θ = �(Γ) ⊆ Ds,t for every
a ∈ L.
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R0 ⊇ ··· ⊇ R� �

Σ

���
��

��
��

��
��

��
��

� O �� R�+1�

Σ

���
��

��
��

��
��

��
��

��
� O �� R�+2 ⊇ ···

Σ0 ⊆ ··· ⊆
�

R=RT

��

Σ�
�

G
��

�

R=RT

��

Σ�+1
�

R

������������������

RT

��

�
G

�� Σ�+2 ⊆ ···�

R

������������������� �

RT

��

Figure 2. Chains of relations and �-algebras induced by O and G (� limit).

Proposition 23. If R0 = R(Σ0) = RT (Σ0), then for all limit ordinals �, R(Σ�) =
RT (Σ�).

Proof. By Note 22 there is some Λ ⊆ Σ such thatRT (Σα) = R(Λ). From Proposition
13(5) it follows that

RT (Σα) = R(Σ(RT (Σα))) = R(G(Σα)) = R(Σα+1) ⊆ R(Σα).

If � is a limit ordinal, Σα+1 ⊆ Σ� holds for all α < � and hence R(Σ�) ⊆ R(Σα+1) =
RT (Σα) = Rα . Then,R(Σ�) ⊆

⋂
α<� Rα = R� = RT (Σ�) = R(Σ�+1) ⊆ R(Σ�) and the

result follows.

In Section 5 we will construct an LMP for which R(Σα+1) � RT (Σα+1), and hence
the previous equality does not hold for successor ordinals in general.

In the case R0 = R(Σ0) = RT (Σ0), we may summarize the results up to this point
in Figure 2:

Corollary 24. For a limit ordinal �, if Σ(R(Σ�)) = Σ�, then R(Σ�) is a state
bisimulation.

Proof. RT (Σ(R(Σ�))) = RT (Σ�) = R(Σ�). Therefore R(Σ�) is a state
bisimulation.

We add an observation about Figure 2: If G(Γ) = Γ, then O(RT (Γ)) =
RTΣ(RT (Γ)) = RT (G(Γ)) = RT (Γ). This means that a fixpoint in the lower part
forces a fixpoint in the upper part. By using the example in [10] it can be seen that the
converse does not hold.

Lemma 25. Let Λ be a sub-�-algebra of Σ such that Σ(R(Λ)) = Λ. The following are
equivalent:

1. Λ is stable.
2. R(Λ) ⊆ RT (Λ).
3. R(Λ) is a state bisimulation.

Proof. 1 implies 2 by Proposition 13(8). For 2⇒3, observe that R(Λ) ⊆ RT (Λ) =
RT (Σ(R(Λ))) and this means that R(Λ) is a state bisimulation.

By virtue of Proposition 13, Item 7 implies (S,Σ(R(Λ)), �) is an LMP, but then
Σ(R(Λ)) = Λ is stable.

Example. The hypothesis is necessary: On [0, 1], take Σ = B([0, 1]), Λ to be the
countable-cocountable �-algebra and �(x,A) := 	x(A) for x ∈ [0, 1

2 ] and �(x,A) :=
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1
2	x(A) if x ∈ ( 1

2 , 1]. Then Σ(R(Λ)) = Σ 
= Λ, R(Λ) = id[0,1] = RT (Λ) and Λ is not
stable since, e.g., {x | �(x, [0, 1]) > 1

2} = [0, 1
2 ] /∈ Λ. This example shows that 2 does not

imply 1 in general. Since the identity relation is a state bisimulation, we also conclude
that 3 does not imply 1 in general.

The �-algebra Σ� corresponding to the LMP to be presented in Section 5, satisfies
RT (Σ�) = R(Σ�) but R(Σ�) is not a state bisimulation. Hence 2 does not imply 3 in
general. This example has a stable Σ0 but R0 = R(Σ0) is not state bisimulation; hence
1 does not imply 3.

We now aim to prove that Σ� is stable for limit �. With the notation introduced before
Note 22, we observe that Γ is stable if and only if ∀a ∈ L ∀q ∈ Q ∀Q ∈ Γ 〈a〉≤qQ ∈ Γ.
Given a label a, we define the following set:

Aa := {Q ∈ Σ | ∀q ∈ Q (〈a〉≤qQ ∈ Σ� ∧ 〈a〉<qQ ∈ Σ�)}.

Then, to show that Σ� is stable it is enough to prove Σ� ⊆ Aa for all a ∈ L.

Lemma 26. If � is a limit ordinal, then ∀a ∈ L∀α < � Σα ⊆ Aa .

Proof. Let α < � and Q ∈ Σα . We will show that for every label a ∈ L and for all
q ∈ Q the sets 〈a〉≤qQ and 〈a〉<qQ are in Σα+1 = Σ(RT (Σα)) ⊆ Σ�. Since �a(·, Q) is
measurable, 〈a〉≤qQ = �a(·, Q)–1((0, q]) ∈ Σ. To check that 〈a〉≤qQ is RT (Σα)-closed,
note that

s RT (Σα) t ⇐⇒ ∀a ∈ L∀A ∈ Σα �a(s, A) = �a(t, A)

⇐⇒ ∀a ∈ L∀A ∈ Σα ∀q ∈ Q (�a(s, A) ≤ q iff �a(t, A) ≤ q)
⇐⇒ ∀a ∈ L∀A ∈ Σα ∀q ∈ Q (s ∈ 〈a〉≤qA iff t ∈ 〈a〉≤qA).

The proof for 〈a〉<qQ is similar.

Lemma 27. 1. If {An}n∈� is a non-decreasing sequence of measurable sets, then
for all a ∈ L and for all q ∈ Q, 〈a〉≤q

⋃
n∈� An =

⋂
n∈�〈a〉≤qAn.

2. If {Bn}n∈� is a non-increasing sequence of measurable sets, then for all a ∈ L and
for all q ∈ Q, 〈a〉<q

⋂
n∈� Bn =

⋃
n∈�〈a〉<qBn.

3. Aa is a monotone class.

Proof. 1. In general, if A ⊆ B , then 〈a〉≤qB ⊆ 〈a〉≤qA by monotonicity of
measures. Thus we have (⊆). For (⊇), if s ∈ S satisfies ∀n ∈ � �a(s, An) ≤ q,
the continuity of the measure �a(s, ·) yields �a(s,

⋃
n∈� An) = lim �a(s, An) ≤ q.

2. Similarly to 1,
⋂
n∈� Bn ⊆ Bm =⇒ 〈a〉<q

⋂
n∈�
Bn ⊇ 〈a〉<qBm

=⇒ 〈a〉<q
⋂
n∈�
Bn ⊇

⋃
m∈�

〈a〉<qBm.

For the other inclusion, if s ∈ 〈a〉<q
⋂
n∈� Bn, continuity of the measure �a(s, ·)

implies q > �a(s,
⋂
n∈� Bn) = lim �(s, Bn). Then, there exists n ∈ � such that

�a(s, Bn) < q and hence s ∈ 〈a〉<qBn.
3. Let {An}n∈� ⊆ Aa be a non-decreasing sequence of sets. Let q ∈ Q; part 1

allows us to conclude 〈a〉≤q
⋃
n∈� An =

⋂
n∈�〈a〉≤qAn ∈ Σ� and also
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〈a〉<q
⋃
n∈� An=

⋃
m∈�〈a〉≤q–1/m(

⋃
n∈� An)=

⋃
m∈�

⋂
n∈�(〈a〉≤q–1/mAn)∈Σ�.

Then,
⋃
n∈� An ∈ Aa .

Now let {Bn}n∈� ⊆ Aa be non-increasing and let q ∈ Q. The second part yields
〈a〉<q

⋂
n∈� Bn =

⋃
n∈�〈a〉<qBn ∈ Σ� and also

〈a〉≤q
⋂
n∈� Bn=

⋂
m∈�〈a〉<q+1/m(

⋂
n∈� Bn)=

⋂
m∈�

⋃
n∈�(〈a〉<q+1/mBn)∈Σ�.

Then,
⋂
n∈� Bn ∈ Aa .

Theorem 28. Σ� is a stable �-algebra for any limit ordinal �.

Proof. Since
⋃
α<� Σα is an algebra of sets, Lemma 26, Lemma 27(3) and the

Monotone Class Theorem yield Σ� = �(
⋃
α<� Σα) ⊆ Aa for any a ∈ L.

§4. The Zhou Ordinal. Zhou expressed state bisimilarity as a fixpoint:

Theorem 29. [12, Theorem 3.4] State bisimilarity ∼s is the greatest fixpoint of O.

By direct application of Proposition 14 we get the following:

Theorem 30. Let R be an equivalence relation on S such that ∼s ⊆ R and O(R) ⊆ R,
then there exists an ordinal α such that |α| ≤ |S| and Oα(R) = ∼s .

Corollary 31. [12, Theorem 4.1] State bisimilarity ∼s can be obtained by iterating
O from the total relation or from event bisimilarity ∼e .

Proof. Apply Theorem 30 and Corollary 16.

Thanks to this result we may define the following concept.

Definition 32. The Zhou ordinal of an LMP S, denoted Z(S), is the minimum α such
that Oα(∼e) = ∼s . The Zhou ordinal of a class A of processes, denoted Z(A), is the
supremum of the class {Z(S) | S ∈ A} if it is bounded or ∞ otherwise.

We will focus on the study of the Zhou ordinal of the class S of separable LMPs. It
is immediate that it is bounded by the cardinal successor of |R|.

Lemma 33. Z(S) ≤ (2ℵ0 )+.

Proof. Every separable metrizable space S satisfies |S| ≤ 2ℵ0 , and hence the bound
follows from Theorem 30.

Next we provide the last technical ingredient for the constructions to be performed
for our main Theorems 37 and 38. It a simple though essential device to enlarge a given
LMP in such a way that the original structure is “isolated” and it does not produce
any side effect on the enlargement.

Suppose that T = (T,Σ, {�a | a ∈ L}) is an LMP with label set L. Let e /∈ T be a
new state and let L′ = L ∪ {�, †} be an expansion of the label set by two new actions.
Over the measurable space (T ∗,Σ∗) := (T ⊕ {e},Σ ⊕ {{e},∅}), we define a new LMP
T∗ with kernels {�∗a | a ∈ L} ∪ {��, �†} given by

�∗a (r, Q) := �T (r) · �a(r, Q ∩ T ),

��(r, Q) := �T (r) · 	e(Q),

�†(r, Q) := �{e}(r) · 	e(Q).

(1)
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It is clear that T∗ is an LMP. The kernel �� allows, with probability 1, a transition to e
from each state t ∈ T , and �† only loops around e.

The use of a new state and two extra kernels (instead of just a single new kernel)
stems from the fact that in this way it is immediate that RT (as a set operator) is the
same, modulo e, for T and T∗. This has the following consequence, which will be used
in the sequel.

Lemma 34. The Zhou ordinal is invariant under the map T �→ T∗, namely: Z(T∗) =
Z(T).

The T �→ T∗ construction will be used in conjunction with the next lemma, where S̄
is the intended enlargement that we referred to above.

Lemma 35. Let S = (S,Σ, {�a | a ∈ L}) be an LMP and let S′ = (S ′,Σ′, {�′a | a ∈
L}) be an LMP over a direct sum (S ′,Σ′) = (S ⊕ S̄,Σ ⊕ Σ̄) such that:

• For all r ∈ S and a ∈ L, �′a(r,Q) = �a(r,Q ∩ S).
• Σ′

0 = �(�L�
S′) and Σ0 = �(�L�

S
).

• S ∈ Σ′
0.

Then Σ′
α�S = Σα ⊆ Σ′

α (equivalently, Σ′
α = Σα ⊕ Σ′

α�S̄) and R′
α = Rα ∪R′

α�S̄ hold for
every α ≥ 0.

Regarding the equation that involvesR′
α , it says that to know such relation it is enough

to determine it in each direct summand separately. One interpretation of this is that
whenever S ∈ Σ′

0, no relevant information about S is lost in the direct sum.
The proofs of the main results of this section are based on further analysis of the

LMP U from Example 6, which was the first example of a process with positive Zhou
ordinal. Actually, Z(U) = 1 as highlighted in Example 12.

A key idea behind the definition of U is that the non-measurable set V is essentially
the only set that distinguishes m0 from m1 and hence s from t. This V can become
“available” when all the rational intervals can be used to separate points in I = (0, 1).
From this approach one can control the unveiling of V using Bn = (0, qn) to become
“available as tests” simultaneously or in parallel, and this is the reason why state
bisimilarity is reached in one step in U. The same pattern will be used in Theorem
37. On the other hand a serial approach to the uncovering of the family {Bn} will be
followed in the proof of Theorem 38.

We will prove our first important result about Z(S), namely, that it is a limit ordinal.
In order to do this we first give the construction of an LMP that will play an essential
role in the aforementioned result. Since we will be exclusively concerned with the Zhou
ordinal from now on, Σ0 will always be the least stable �-algebra �(�L�) of the LMP
in consideration and R0 := R(Σ0).

Start with any T such that Z(T) = α + 1. Consider the LMP T∗ constructed in (1),
that for simplicity we will denote by S = (S,Σ, {�m | m ∈ �} ∪ {��, �†}). By Lemma
34, Z(S) = α + 1. Let z, y ∈ S \ {e} be such that z Rα y but z���Rα+1 y. Then there
exist A0 ∈ Σα+1 \ Σα and n ∈ � such that �n(z, A0) 
= �n(y,A0). We now define a new
process: Let

S′ =
(
S ⊕ I ⊕ {s, t}, Σ ⊕ BV ⊕ P({s, t}), {�′m}m∈� ∪ {�′�, �′†, �′∞}

)
,
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where

�′m(r, Q) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�m(r, Q ∩ S), if r ∈ S,

�n(z,Q ∩ S), if r ∈ I, r < qm,

�n(y,Q ∩ S), if r ∈ I, r ≥ qm,
0, if r ∈ {s, t},

�′�(r, Q) := �S(r) · ��(r, Q ∩ S) for � ∈ {�, †},
�′∞(r, Q) := �{s}(r) ·m0(Q ∩ I ) + �{t}(r) ·m1(Q ∩ I ).

We will call Σ′ the �-algebra of S′ and anything referred to this LMP will be primed:
Σ′
α,R

′
α,∼′

s .
This new process will act as an amalgam of S and U with x replaced by S: Each state

in I behaves either as z or y according to the label m ∈ �, and the process continues
inside S afterwards. Labels � and † allow to separate the LMP S from the rest in such a
way that its behavior is independent of the enlargement. If that were not the case, event
bisimilarity could identify states of S and I ∪ {s, t}, and therefore restrict the sets that
appear in Σ′

α�S. Observe that S′ will end up with infinitely many different kernels, even
though S had only finitely many. Also note that for r ∈ I , there are only three possible
values of �′(r, Q): �n(z,Q ∩ S), �n(y,Q ∩ S) or 0; this is very similar to U, where there
were only two possible values of �n(r, Q).

Lemma 36. S′ is an LMP. Moreover, ∀� Σ′
��S = Σ� ⊆ Σ′

� and R′
� = R� ∪R′

��I ∪
{s, t}.

Proof. To show that S′ is an LMP, we only need to check that �′a is a Markov kernel
for every a ∈ � ∪ {∞,�, †}.

If Q ∈ Σ′, measurability of �′m(·, Q) follows from the fact that �m(·, Q ∩ S) is
measurable for all m ∈ � and from the measurability of the sets (0, qm) and {s, t}.
Measurability of �′�(·, Q) for � ∈ {�, †,∞} only depends on the measurability of the
characteristic functions involved. Finally, for fixed r ∈ S ′, all maps �′a(r, ·) are clearly
subprobability measures.

For the second statement, consider the LMP obtained by adding the zero kernel with
∞ label to S. This operation does not modify Rα nor Σα . Moreover, it is immediate
that for all r ∈ S and labels a, �′a(r, Q) = �a(r, Q ∩ S) holds. Note that also S ∈ Σ′

0,
since �〈†〉>0��

S′ ∪ �〈�〉>0��
S′ = S. In this way, we may apply Lemma 35 to S and the

measurable space (I ⊕ {s, t},BV ⊕ P({s, t})) to obtain the result.

We are now ready to prove the previously announced result.

Theorem 37. Z(S) is a limit ordinal.

Proof. First observe thatZ(S) > 0 as shown in [10]. Suppose by way of contradiction
that Z(S) = α + 1 for some α ≥ 0. Then there must exist a separable LMP T such that
Z(T) = α + 1. Now consider the LMP S′ as in the previous construction. We show
that Z(S′) ≥ α + 2. To see this it is enough to prove that s R′

α+1 t but s���R′
α+2 t. For

the first condition, let us show that Σ′
α+1 � I = {∅, I }. Let Q ∈ Σ′

α+1 = Σ′(RT (Σ′
α))

and assume Q ∩ I 
= ∅; we show that Q ∩ I = I . Let r0 ∈ Q ∩ I and r ∈ I . Suppose
that r0 ����RT (Σ′

α) r; then there exist m ∈ � and B ∈ Σ′
α such that �′m(r0, B) 
= �′m(r, B),

i.e., �m(z, B ∩ S) 
= �m(y, B ∩ S). By Lemma 36, B ∩ S ∈ Σα , then z����RT (Σα) y; but
this is absurd since we chose z, y in such a way they are indeed related. It follows that
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r0 RT (Σ′
α) r and since Q is RT (Σ′

α)-closed, r ∈ Q ∩ I . Note that this yields R′
α � I =

I × I . To show (s, t) ∈ R′
α+1 = RT (Σ′

α+1), consider ∅ 
= Q ∈ Σ′
α+1. By the previous

calculation, Q ∩ I = I ; therefore �′∞(s,Q) = 1 = �′∞(t, Q). For the remaining labels
a ∈ � ∪ {�, †} we have �′a(s,Q) = 0 = �′a(t, Q).

We now show that s���R′
α+2 t. Recall that we had chosen z, y and A0 ∈ Σα+1 \ Σα

such that �n(z, A0) 
= �n(y,A0) for some n ∈ �. By Lemma 36, A0 ∈ Σ′
α+1 and from

this we conclude R′
α+1 � I = RT (Σ′

α+1) � I = idI . We also observe that I = S ′ \ (S ∪
�〈∞〉>0��) ∈ Σ′

0; therefore Σ′
α+2 � I = {A ⊆ I | A ∈ Σ′(R′

α+1)} = Σ′ � I = BV . Then
we have V ∈ Σ′

α+2 and using that set with the transition labelled by ∞ we obtain
s���R′

α+2 t.

It can be deduced from the proof of the previous theorem that from every separable
process with Zhou ordinal α + 1 another one can be constructed with ordinal equal
to α + 2. In spite of this, this construction does not allow to construct a process with
positive Zhou ordinal from one having null Zhou ordinal (i.e., having the Hennessy–
Milner property).

In the next theorem, the cofinality cf(�) of a limit ordinal � is the least order type
(equivalently, the least cardinal) of an unbounded subset of �.

Theorem 38. cf(Z(S)) > �.

Proof. Towards a contradiction, suppose that for every m ∈ � we have a separable
Sm = (Sm,Σm, {�mn }n∈�) with label set {(m, n) | n ∈ �} such that �m := Z(Sm) satisfy
supm∈� �m = Z(S). We will assume that these LMPs have gone through the construc-
tion given in (1); this way each process now has two distinguished labels, which for
ease of reference we call (m,�) and (m, †), that allow them to be differentiated from
each other with formulas.

We can assume �0 > 0 and also that {�m}m∈� is a strictly increasing sequence;
for convenience, we set �–1 := 0. In this way �m–1 < �m for all m ≥ 0, and hence we
can choose xm, ym ∈ Sm such that xm Rm�m–1

ym but xm�
�Rm�m ym. Then there is a set

Am ∈ Σm�m \ Σm�m–1
such that for some i ∈ � we have �mi (xm,Am) 
= �mi (ym,Am). By

reordering the labels of the Markov kernels, we can assume that i ∈ � is exactly m.
Let us define a new LMP with label set L := {(m, n) | m, n ∈ �} ∪ {∞}:

S :=
((⊕

m∈� S
m
)
⊕ I ⊕ {s, t},

(⊕
m∈� Σm

)
⊕ BV ⊕ P({s, t}), {�̃mn }m,n∈� ∪ {�̃∞}

)
,

where the kernels are given by

�̃mn (r, Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�mn (r, Q ∩ Sm), if r ∈ Sm,

�mm (xm,Q ∩ Sm), if r ∈ (0, qm) and m = n,

�mm (ym,Q ∩ Sm), if r ∈ [qm, 1) and m = n,

0, otherwise,

�̃∞(r, Q) = �{s}(r) ·m0(Q ∩ I ) + �{t}(r) ·m1(Q ∩ I ).
In this case the LMP S is an amalgam of the sum of all of the Sm and U. The sets

(0, qn) = Bn will become available successively, using a serial approach to uncovering
the non-measurable set V. In this way we can surpass the limit of the Zhou ordinals of
the Sm.

We will call (S,Σ) the measurable space of S. It is easy to see that this indeed defines
an LMP and the separability of the base space follows from the separability of each of
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the countably many summands that make it up. We will show that Z(S) ≥ Z(S) + 1,
reaching a contradiction. For this, it is enough to verify that (s, t) ∈ RZ(S) \RZ(S)+1.
This will be implied by the facts ∀� ≤ Z(S) Σ��I ⊆ B(I ) and V ∈ ΣZ(S)+1 \ ΣZ(S)
which in turn are a consequence of the equality

Σ��
(⊕

m∈� S
m
)
⊕ I =

(⊕
m∈� Σm�

)
⊕ Θ�, (2)

for all � ≤ Z(S), where Θ� is the �-algebra on I generated by the intervals {(0, qm) |
�m < �}.

Before proving this, we notice that for each m ∈ �, we can add to Sm zero kernels
�m∞, �

j
n (j 
= m) and get the property ∀r ∈ S ∀a ∈ L �̃a(r, Q) = �a(r, Q ∩ S), while

not changing Σm� nor Rm� . Also, thanks to the distinguished labels (m,�) and (m, †)
(which cannot correspond to the label (m,m) in Sm), we have Sm = �〈(m, †)〉>0�� ∪
�〈(m,�)〉>0�� ∈ Σ0. This way, all the hypotheses of Lemma 35 are satisfied. Then,
for each m ∈ � and � we have Σ� = Σm� ⊕ Σ��(S \ Sm) and R� = Rm� ∪R��(S \ Sm).
Using the fact that there are countably many summands and also that I, {s, t} ∈ Σ0 ⊆
Σ� (because {s, t} = �〈∞〉>0��), for all � we can conclude

Σ� =
⊕
m∈� Σm� ⊕ Σ��I ⊕ Σ��{s, t}.

So all we have to do now is to show by induction on � that Σ��I = Θ�. If � = 0, then
obviously Θ0 = {∅, I }, so we have to show that Σ0�I = �(�L�)�I is trivial. In order
to do this, it is enough to show that {Q ∈ Σ0 | Q ∩ I ∈ {∅, I }} is stable. Assume that
Q ∈ Σ0 satisfies Q ∩ I ∈ {∅, I } and (〈a〉>qQ) ∩ I 
= ∅; hence a = (m, n) for some
m, n ∈ � (since it is obvious from the definition of �̃∞ that a 
= ∞). Then there is r ∈ I
such that �̃mn (r, Q) > q. It follows that m = n; otherwise the kernel would equal zero.

From Q ∈ Σ0 we have Q ∩ Sm ∈ Σm0 ⊆ Σm�m–1
and considering xm R�m–1 ym, we

conclude that �̃mm (·, Q) is constant on I. This yields r′ ∈ 〈a〉>qQ for every r′ ∈ I .
This shows that {Q ∈ Σ0 | Q ∩ I ∈ {∅, I }} is stable. As this class is easily seen to be a
�-algebra, we have �(�L�) = Σ0 ⊆ {Q ∈ Σ0 | Q ∩ I ∈ {∅, I }} and therefore the result
holds for � = 0.

Assume now that Σ��I = Θ�. Notice that the kernels in S only depend on one, and
only one, of the restrictions to Sm and I , and use this together with the IH to obtain

RT (Σ�) = RT (Σ��
⊕
m∈�
Sm ⊕ I ) = RT (

⊕
m∈�

Σm� ⊕ Θ�)

= RT
(⊕
m∈�

Σm�
)
∩RT (Θ�).

As RT (Θ�) = (S \ {s, t} × S \ {s, t}) ∪ {(s, t), (t, s)}, then R� is the disjoint union
R� =

(⋃
m∈� R

m
�

)
∪ (RT

(⊕
m∈� Σm�

)
)�I ∪ {(s, t), (t, s)}. Therefore, A ⊆ I is R�-

closed iff it is RT (
⊕
m∈� Σm� )-closed. Also, from the choice of xm, ym we deduce

that RT (
⊕
m∈� Σm� )�I = R({(0, qn) | �n ≤ �})�I . From this we have

Σ�+1�I = {A ∈ Σ�+1 | A ⊆ I } = {A ∈ Σ | A ⊆ I ∧ is R�-closed}
= {A ∈ BV | A is RT (

⊕
m∈� Σm� )-closed}

= �({(0, qn) | �n ≤ �}) = Θ�+1.
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For the limit case, assume Σ��I = Θ� for all � < �. Then we have the following
calculation:

Σ��I = �
(⋃
�<� Σ�

)
�I = �

(⋃
�<�(Σ��I )

)
= �

(⋃
�<�Θ�

)
= Θ�.

This concludes the proof by induction of Equation (2) and thus ends the proof of the
theorem.

Corollary 39. Z(S) ≥ �1.

§5. The example. In this section we construct, for each ordinal � ≤ �1, an LMP
S(�) such that for � limit, Z(S(�)) = � . For this, we take the set I × � together with
the product �-algebra Σ := BV ⊗ P(�) where V denotes a Lebesgue non-measurable
set.

Let {Cn}n≥2 be the family of open rational intervals included in I and set C0 := V
and C1 := V c ; we have that {Cn}n∈� generates BV . We now define a hierarchy of sets
ΣV� (I ) totally analogous to the Borel hierarchy. ΣV1 (I ) is the family of (countable)
unions of sets in {Cn}n∈� . The members of ΠV� (I ) are the complements of sets in
ΣV� (I ) and ΣV� (I ) :=

{⋃
n∈� An | An ∈ ΠV�n (I ), �n < �

}
, for � > 1. Note that ΣV1 (I )

includes all the open subsets of I and their unions with V.
GivenQ ⊆ I × � , the sections of Q are the setsQα := {r | (r, α) ∈ Q} for α < � (to

avoid confusion we will only use greek subindices for sections). Sometimes we will call
Qα “α-section” to make the ordinal explicit. The sets I × {α} will be called fibers. For
Q in BV ⊗ P(�), each section Qα lies in ΣV� (I ) for some �. We say that the complexity
of Q at α is comp(Q,α) := min

{
� | Qα ∈ ΣV� (I )

}
, and the (total) complexity of Q is

comp(Q) := supα<� comp(Q,α). Sets in BV ⊗ P(�) can be characterized in terms of
this complexity measure.

Lemma 40. Q ∈ BV ⊗ P(�) if and only if comp(Q) < �1.

Proof. (⇒) Let us verify that A = {A ⊆ I × � | comp(A) < �1} is a �-algebra.
AssumeA ∈ A. Since comp(Ac, α) ≤ comp(A,α) + 1 thenAc ∈ A. Now assume that
{An}n∈� ⊆ A. Then αn := comp(An) < �1 for all n ∈ �. From this it follows that
comp(

⋃
n∈� An) ≤ supn∈�(αn + 1) < �1, and therefore A is a �-algebra. Since A

includes all the measurable rectangles, we have BV ⊗ P(�) ⊆ A.
(⇐) We show by induction on � that comp(Q) = � < �1 =⇒ Q ∈ BV ⊗ P(�).

If comp(Q) = 1, then for all α < � , Qα =
⋃
{Cn | Cn ⊆ Qα} and therefore Q =⋃

n∈�(Cn × {α | Cn ⊆ Qα}) ∈ BV ⊗ P(�). Assume the result for all �with � < � < �1

and, moreover, assume comp(Q) = �. Then ∀α < � , Qα ∈ ΣV� (I ). Hence Qα =⋃
n<� A

α
n for some Aαn ∈ ΠV�n(α)(I ) ⊆ ΣV�n(α)+1(I ) and �n(α) < � is non-decreasing.

Let {�n}n∈� such that �n + 1 is a non-decreasing sequence with limit �. If we set Ãαn =⋃
m≤n{Aαm | Aαm ∈ ΣV�n (I )}, then we have ∀α Ãαn ∈ ΣV�n (I ) and Qα =

⋃
n∈� Ã

α
n . By the

IH, for every n ∈ �, BV ⊗ P(�) contains the sets Cn =
⋃
α<�(Ãαn × {α}) whose α-

section is Ãαn , with complexity �n < �. It follows thatQ =
⋃
n∈� Cn ∈ BV ⊗ P(�).

We now define a denumerable family of Markov kernels. As before, fix an
enumeration {qn}n∈� of the rational numbers in I . Define αn(0) := 0 (n ∈ �); and
for each successor ordinal � + 1, let αn(� + 1) := � (n ∈ �). For limit � we choose
{αn(�)}n∈� to be a strictly increasing cofinal sequence in � – {0} of order type �.
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Recall that Theorem 3 gives us two extensions m0 and m1 of the Lebesgue measure m
such that m0(V ) 
= m1(V ). For each n ∈ � define �n : (I × �) × (BV ⊗ P(�)) → [0, 1]
as follows:

�n((x, �), A) =

⎧⎪⎨
⎪⎩

x ·m0(A0), � = 0,
m0(Aαn(�)), � > 0, x ∈ (0, qn),
m1(Aαn(�)), � > 0, x ∈ [qn, 1).

Here Aαn(�) is the αn(�)-section of A defined before Lemma 40. As in the previous
results, the definition of the kernels is motivated by the process U. The two “behaviors”
that we described, in parallel and serial, are mimicked (by virtue of the definition of
αn(�)) at successor and limit ordinals �, respectively.

Lemma 41. For each n ∈ �, �n is a Markov kernel.

Proof. It is clear that for fixed (x, �), the map �n((x, �), ·) : BV ⊗ P(�) → [0, 1]
is a subprobability measure. Let A ∈ BV ⊗ P(�); we want to show that �n(·, A)
is measurable. For this, fix q ∈ Q ∩ [0, 1] and consider the set {(x, α) ∈ I × � |
�n((x, α), A) < q}. By inspection of the definition of �n in each fiber, we obtain that
this set is the union of the following ones:

{(x, 0) | x ·m0(A0) < q},
⋃
�<�

{(0, qn) × {� + 1} | m0(A�) < q},

⋃
�<�

{[qn, 1) × {� + 1} | m1(A�) < q},
⋃
�<�

{(0, qn) × {�} | m0(Aαn(�)) < q},

⋃
�<�

{[qn, 1) × {�} | m1(Aαn(�)) < q}.

Observe that each section of this union is either open or closed. Then it is measurable
in the product space by Lemma 40.

Hence we have an LMP

S(�) :=
(
I × �, BV ⊗ P(�), {�n}n∈�

)

for each � ≤ �1.

Lemma 42. State bisimilarity ∼s on S(�) is the identity.

Proof. We will show by induction that for all 1 ≤ � ≤ � , ∼s� (I × �) is the identity.
For the case � = 1, we observe that if (x, 0) 
= (x′, 0), then for any n ∈ �

�n((x, 0), I × �) = x 
= x′ = �n((x′, 0), I × �)

holds. Assume now that the result holds for � and that � + 1 ≤ � . By inductive
hypothesis ∼s� (I × �) is the identity. It is enough to consider states (x, α) 
= (x′, �)
for some α ≤ �. We analyze the case α < � first. The IH guarantees that every (r, �)
is only ∼s -related to itself when � < �; since αn(�) < �, it follows that the measurable
set A(n) := (I × {αn(�)}) ∪ (I × {� | � ≤ � < �}) is an element of Σ(∼s) for every
n ∈ �. If � = 1, then α = 0, and in such case �n((x, �), A(n)) = �n((x, �), I × �) =
1 > x′ = �n((x′, 0), A(n)) holds for any n ∈ �. For � > 1, there exists n ∈ � such that
αn(�) 
= αn(α) and we have

�n((x, �), A(n)) = mi(A(n)αn(�)) = mi(I ) = 1 
= 0 = �n((x′, α), A(n)).
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1028 MARTÍN SANTIAGO MORONI AND PEDRO SÁNCHEZ TERRAF

Suppose now that � = α and x 
= x′; without loss of generality we can choose n ∈ �
such that x < qn < x′. Again, since αn(�) = αn(α) < �, the inductive hypothesis
guarantees that the set A := (V × {αn(�)}) ∪ (I × {� | � ≤ � < �}) is in Σ(∼s). But
then

�n((x, �), A) = m0(Aαn(�)) = m0(V ) 
= m1(V ) = m1(Aαn(α)) = �n((x′, α), A).

This shows that the claim is also true for � + 1. Finally, assume � is a limit ordinal.
Since ∼s� (I × �) =

⋃
�<� ∼s� (I × �), the result follows easily from the IH.

We now calculate a bound for the event bisimilarity, ∼e = R(�(�L�)). We define

Λ := {A ⊆ I × � | A0 ∈ B(I ) ∧ ∀α > 0 (Aα ∈ {∅, I })}.
Lemma 43. �(�L�) ⊆ Λ.

Proof. It is clear that Λ is a �-algebra, and now we verify that it is stable. Let A ∈ Λ
and q ∈ Q ∩ I . By the same reasoning as in the proof of Lemma 41, {(x, α) ∈ I × � |
�n((x, α), A) < q} ∈ Λ since it is Borel in the 0-fiber and, since m0(A�) = m1(A�) for
all � > 0, the remaining sections are either ∅ or I. From this it follows that Λ is stable.
Since �(�L�) is the least stable �-algebra by Theorem 10, then �(�L�) ⊆ Λ.

This bound is rather close to �(�L�), as the following result shows.

Lemma 44. For all α < � , I × {α} ∈ �(�L�).

Proof. For the case α = 0 we observe that for any n ∈ � {(x, �) | �n((x, �), I × �) <
q} = (0, q) × {0}, and this set is in �(�L�) because this �-algebra is stable. If we choose
q = 1 we obtain the first case.

Now assume that for a given � < � , I × {α} ∈ �(�L�) for all α < �. For a fixed n ∈
�, since αn(�) < �, the following set is in �(�L�): {(x, �) | �n((x, �), I × {αn(�)}) <
q} =

⋃
α<�{I × {α} | αn(α) 
= αn(�)} = I × ({�} ∪ {α < � | αn(α) = αn(�)})c . By

taking complements in the right-hand side we obtain A(n) := I × ({�} ∪ {α < � |
αn(α) = αn(�)}) ∈ �(�L�). But I × {�} =

⋂
n∈� A(n) ∈ �(�L�) since for α 
= � there

exists n ∈ � such that αn(α) 
= αn(�). This completes the inductive step.

The next lemma gives some information about the �-algebra G�(Λ). Given � < �
and a �-algebra A, we will denote by A|� the restriction A � I × {�}, i.e., the �-algebra
of �-sections of elements of A.

Lemma 45. If � satisfies � > � ≥ �, then G�(Λ)|� ⊆ B(I ). Also, G�(Λ)|�+1 is trivial
whenever � < � + 1 < � .

Proof. By induction on �. If � = 0, then G0(Λ) = Λ and by its definition,
Λ|� ⊆ B(I ). Now suppose that the result holds for � ≥ 0 and take � ≥ � + 1. Let
A ∈ G�+1(Λ) = G(G�(Λ)) = Σ(RT (G�(Λ))), i.e.,A ∈ BV ⊗ P(�) isRT (G�(Λ))-closed
and therefore it is closed under this relation in each fiber. We aim to prove that A�
is Borel. We distinguish two cases: If � is � + 1 for some � , then � ≥ � and by the
IH G�(Λ)|� consists of Borel sets. Hence, for any set D ∈ G�(Λ), any n ∈ �, and any
x ∈ I , �n((x, �), D) = m(D�–1). In consequence, if A� 
= ∅, then it must be the case
that A� = I because this set is RT (G�(Λ))-closed. Moreover, the second claim in the
statement of the lemma follows.

If � is a limit ordinal, we cannot argue as before because to determine the relation
RT (G�(Λ)) we need to know the sectionsDαn(�) of the elements in G�(Λ), and it might
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be the case that αn(�) < �. Nevertheless, {n ∈ � | αn(�) < �} is finite and for the
rest of the naturals m, �m does not distinguish points in A� since by the IH Dαn(�) is
Borel. Now, if αn(�) < �, �n can only distinguish points between [0, qn) and [qn, 1]; in
consequence, G�+1(Λ)|� is the �-algebra generated by such intervals, which is clearly
included in the Borel �-algebra. This finishes the case � + 1.

For case of � limit, the IH ensures that for all � < � and � ≥ �, G�(Λ)|� ⊆
B(I ). Hence, if � ≥ �, then � > � and this yields G�(Λ)|� = �

(⋃
�<� G�(Λ)

)
|� =

�(
⋃
�<� G�(Λ)|�) ⊆ B(I ).

Corollary 46. If � > � + 1 ≥ �, then O�(∼e) � I × {� + 1} is the total relation. In
consequence Z(S(�)) ≥ � if � is limit, and Z(S(� + 1)) ≥ � for all � .

Proof. Combining the inclusion in Lemma 43 with the monotonicity of G, we see
that Σ� = G�(�(�L�)) ⊆ G�(Λ) and by Lemma 45 Σ� |� also consists of Borel sets if
� ≥ �. As a consequence, O�(∼e) = R� ⊇ RT (Σ�) restricted to I × {� + 1} is the
total relation because the measures mi cannot distinguish points if the allowed sets
are Borel. For the last assertion, take � = � + 1 for any � < � in the limit case. For
the second case, take � = � = � – 1 if � is not limit. Otherwise, suppose by way of a
contradiction that Z(S(� + 1)) < � and choose any � such that Z(S(� + 1)) < � < �,
then ∼s� I × {� + 1} = OZ(S(�+1))(∼e) � I × {� + 1} is the total relation. This is a
contradiction because ∼s is the identity.

The following lemma will provide a more detailed analysis of the relations Rα .

Lemma 47. For all α < � , Rα � I × (α + 1) is the identity and V × {α} is in Σ(Rα).

Proof. For the case α = 0, we note that I × � ∈ �(�L�); hence, for any q ∈ Q,
{(x, �) | �n((x, �), I × �) < q} ∈ �(�L�). Given that �n((s, 0), I × �) = s ·m0(I ) =
s < 1, if s < t, then for any q ∈ Q between s and t we have (s, 0) ∈ {(x, �) |
�n((x, �), I × �) < q}�� (t, 0). Then, ((s, 0), (t, 0)) /∈ ∼e = R(�(�L�)). This shows
that R0 = ∼e is the identity on I × {0}. Moreover, if � > 0 and x ∈ I , then for
any n, �n((x, �), I × �) = 1 and hence ((s, 0), (x, �)) /∈ ∼e . As a consequence, the set
V × {0} ∈ BV ⊗ P(�) is ∼e-closed. Note that, since ∼e ⊇ Rα for any α, the previous
sentence shows that the Rα-class of a point (s, 0) is the singleton {(s, 0)}.

Assume now that α + 1 < � and the result holds for α. Thanks to the inclusion
Rα+1 ⊆ Rα , the IH ensures that Rα+1 � I × (α + 1) is the identity relation and the
set V × {α} is in Σ(Rα). If s < t, we choose n ∈ � such that s < qn < t and thus
�n((s, α + 1), V × {α}) = m0(V ) 
= m1(V ) = �n((t, α + 1), V × {α}). Moreover, the
same set V × {α} serves as a test to distinguish points in the (α + 1)-section and
the previous ones: �n((s, α + 1), V × {α}) > 0 = �((t, �), V × {α}) for any � < α + 1.
ThereforeRα+1 = RTΣ(Rα) � I × (α + 2) is also the identity. To show thatV × {α +
1} ∈ Σ(Rα+1) it is enough to prove that ((s, α + 1), (t, �)) /∈ Rα+1 if α + 1 < �. For
this we use the same V × {α} provided by the IH. If � is a successor ordinal, for any
n �n((t, �), V × {α}) = 0 holds and if � is limit, we choose n ∈ � such that αn(�) 
= α
and again we obtain �n((t, �), V × {α}) = 0.

It remains to check the limit case. Assume that � < � is a limit ordinal and the result
holds for every α < �. Since R� =

⋂
α<� Rα ⊆ Rα , R� � I × (α + 1) ⊆ Rα � I × (α +

1) must be the identity by the IH. From this we conclude thatR� � I × � is the identity
relation. If s < t, let qn ∈ Q such that s < qn < t. By IH, V × {αn(�)} ∈ Σ(Rαn(�))
and therefore the inequality �n((s, �), V × {αn(�)}) 
= �n((t, �), V × {αn(�)}) allows
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us to conclude that ((s, �), (t, �)) /∈ Rαn(�)+1 ⊇ R�. Now, if � 
= �, we choose n such that
αn(�) 
= αn(�) and we have �n((s, �), V × {αn(�)}) > 0 = �n((t, �), V × {αn(�)}). As
before ((s, �), (t, �)) /∈ Rαn(�)+1 ⊇ R�. It follows that R� � I × (�+ 1) is the identity
and V × {�} is in Σ(R�).

Corollary 48. Z(S(� + 1)) ≤ � . If � is a limit ordinal, then Z(S(�)) ≤ � .

Proof. The first statement follows directly from Lemma 47 by taking α = � . For the
second one, if � is a limit ordinal ∀α < � Rα ⊇ R� , then if Rα � I × (α + 1) equals
the identity, R� � I × (α + 1) is also the identity. Therefore R� � I × � is the identity
and Z(S(�)) ≤ � .

Theorem 49. For a limit � ≤ �1, Z(S(�)) = � , and if � < �1, Z(S(� + 1)) = � .

From this we have another proof of Corollary 39, since it is elementary to check that
for countable � , S(�) is separable.

We close this section by studying the possible dependency of the value of Z(S)
under different set-theoretical hypotheses (consistent relative to Zermelo–Fraenkel set
theory).

Assuming the Continuum Hypothesis (CH) we have 2ℵ0 = ℵ1 < 2ℵ1 and in
consequence the space (I × �1,BV ⊗ P(�1)) is not separable. Indeed, there are
2ℵ1 = |P(�1)| subsets of �1 and each of them defines a different measurable set in the
product �-algebra, but the cardinal of a countably generated �-algebra is at most 2ℵ0 .

On the other hand, if we assume Martin’s Axiom (MA) and the negation of CH, any
uncountable subset X ⊆ R with cardinality less than 2ℵ0 is a Q-set (see, e.g., [8]), viz.
one such that all of its subsets are relative G	 . If we choose X such that |X | = ℵ1, the
relative topology has a countable base (the relativization of such a base for R) and it
generates P(X ) as a �-algebra since X is a Q-set. Then, P(X ) ∼= P(�1) is separable
and in consequence (I × �1,BV ⊗ P(�1)), the state space of S(�1), also is. In this
context the bound in Corollary 39 is attained.

§6. Conclusion. The Zhou ordinal provides a measure of the failure of the
Hennessy–Milner property on labelled Markov processes over general measurable
spaces. The general study of this ordinal on processes over separable metrizable spaces
has opened several questions.

The proof of Theorem 37 shows in particular that given a process S with Z(S) ≥ α,
we can construct a second one S′ withZ(S′) = α + 1, wheneverα is a successor ordinal.
But we actually do not know how to obtain this result for generalα. This is even clearer
for α = 0: The construction of the initial counterexample from [10] does not follow
the pattern of what we do in the passage from α + 1 to α + 2. The same happens with
the proof of the Theorem 38. Given {Sα}α<� with � limit, the second general question
is to construct in a natural way some S� such that Z(S�) = supα<� Z(Sα). For the case
of countable � , we obtain a process T with Z(T) ≥ supα<� Z(Sα) (actually, strictly
greater).

It is to be noted that the last inequality can be upgraded to an equality by passing to
an appropriate quotient. We know how to perform this construction to get a process
with Zhou ordinal a limit � from one with a larger ordinal, but this needs further study
in general. Another avenue to pursue is the characterization of event bisimilarity on
the processes S(α). It can be proved that our proposed bound Λ is indeed equal to

https://doi.org/10.1017/S1755020322000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000375


ZHOU ORDINAL OF SEPARABLE LABELLED MARKOV PROCESSES 1031

�(�L�) for countable α; also �(�L�) is always countably generated. But consistently, Λ
on S(�1) is not.

As the main open question, we did not settle if Z(S) is actually a (regular)
cardinal. An early conjecture was that Z(S) = �1 (unconditionally), but this is now
counterintuitive in view of the existence of a separable LMP with such ordinal under
MA + ¬CH. It is also to be noted that if we were able to pass from any process with
ordinal α to one with ordinal α + 1, the same set-theoretical assumptions would let
us conclude Z(S) ≥ �1 · 2 by Theorem 38. To put it in focus, (consistently) finding a
separable S with Z(S) ≥ �1 + 1 is the next question to address.
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