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Abstract

Emerging wildlife pathogens often display geographic variability due to landscape heterogeneity. Modeling
approaches capable of learning complex, non-linear spatial dynamics of diseases are needed to rigorously assess
and mitigate the effects of pathogens on wildlife health and biodiversity.We propose a novel machine learning (ML)-
guided approach that leverages prior physical knowledge of ecological systems, using partial differential equations.
We present our approach, taking advantage of the universal function approximation property of neural networks for
flexible representation of the underlying dynamics of the geographic spread and growth of wildlife diseases. We
demonstrate the benefits of our approach by comparing its forecasting power with commonly used methods and
highlighting the obtained insights on disease dynamics. Additionally, we show the theoretical guarantees for the
approximation error of our model. We illustrate the implementation of our ML-guided approach using data from
white-nose syndrome (WNS) outbreaks in bat populations across the US. WNS is an infectious fungal disease
responsible for significant declines in bat populations. Our results onWNS are useful for disease surveillance and bat
conservation efforts. Our methods can be broadly used to assess the effects of environmental and anthropogenic
drivers impacting wildlife health and biodiversity.

Impact Statement

This article presents a modern solution to a critical problem in wildlife ecology using scientific machine learning
(ML). We developed an ML-guided partial differential equation (PDE) method to learn pathogen dynamics.
Theoretical guarantees are derived from PDEs and ML approximation theory. This method is applied to white-
nose syndrome, an infectious fungal disease caused by Pseudogymnoascus destructans, which is responsible for
significant declines in several bat species in North America. The presented results are relevant for disease
surveillance and conservation efforts.
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1. Introduction

Different anthropogenic activities are linked to an increased frequency of the emergence of wildlife
infectious diseases (Daszak et al., 2000). These diseases can spread rapidly and usually affect hosts that
lack adequate response mechanisms, contributing to the decline and extinction of important species
(Woodroffe, 1999; Daszak et al., 2000;McCallum, 2012; García-March et al., 2020; Plewnia et al., 2023).
Moreover, emerging pathogens exhibit a variety of spatial spread and growth patterns due to landscape
heterogeneity and geographic host distribution (Meentemeyer et al., 2011; Lilley et al., 2018). There is a
continued need to forecast prevalence and unravel complex spatial disease dynamics (Hefley et al.,
2017b). Mathematical ecological models can mechanistically describe disease spread and growth
mediated by landscape characteristics (Cosner, 2008). Machine learning (ML) models provide a flexible
approach to approximating functions learning from data (Hastie et al., 2009). The integration of scientific
concepts from mathematical ecology with the flexibility of ML has the potential to accurately forecast
disease prevalence while learning the complex spatial dynamics of disease.

The utilization of scientific knowledge for enhancing the generalization properties of ML has gained
relevance in the last years. This paradigm has been presented with different names, such as theory-guided
data science (Karpatne et al., 2017) or scientific ML (Dandekar et al., 2020). Hereafter, we adopt the term
scientific machine learning (SciML). Recent research in SciML has shown the benefits of integrating non-
linear ML algorithms with mechanistic models framed as differential equations (Baker et al., 2019;
Dandekar et al., 2020; Rackauckas et al., 2020). The incorporation of prior knowledge of the underlying
problem’s structure, through differential equations, yields an interpretable model with robust prediction
and forecasting (Dandekar et al., 2020; Rackauckas et al., 2020). However, when using external
covariates to inform predictions, the functional forms of covariate impact are usually unknown. The
objective of this article is to present a novel method for the flexible incorporation of external covariates
into differential equations using ML algorithms. Our approach has the potential to support ongoing
research in wildlife disease modeling. For illustration, we apply our method to model white-nose
syndrome (WNS) in bats.

Bats have a vital role in ecosystems as pollinators, pest controllers, and nutrient recyclers (Ramírez-
Fráncel et al., 2022). Since its emergence in 2006, WNS, an infectious fungal disease caused by
Pseudogymnoascus destructans (Pd), has been responsible for a significant reduction of populations of
several bat species across NorthAmerica (Blehert et al., 2009; Cheng et al., 2021). RecentWNSmodeling
approaches use mechanistic models, based on reaction–diffusion partial differential equations (PDEs),
known as ecological diffusion equations (EDEs), to incorporate prior knowledge in statistical models,
which helps to understand the role of habitat variation in WNS spread (Oh et al., 2023). EDEs describe
pathogen spread mediated by heterogeneous landscapes, allowing spatial covariates to affect PDE
coefficients (Garlick et al., 2011, 2014; Hefley et al., 2017a,b). These EDEs mechanistically characterize
spatio-temporal processes, which have benefits in forecasting compared to more classical statistical
approaches for modeling spatio-temporal processes (Hefley et al., 2017a,b). Nevertheless, all attempts to
include spatial variation in EDEs have been limited to additive linear effects, which may not capture the
real dynamics of these ecological processes.

In this work, we propose a novelmethod that leverages prior physical knowledge of ecological systems
through PDEs, with flexible representations of underlying dynamics using ML algorithms. By incorp-
orating ML algorithms, we augment EDEs. To demonstrate our approach, we use neural networks (NNs)
as universal function approximators, to learn underlying unknown dynamic patterns of spreading wildlife
diseases, specifically applying it to Pd in the contiguous U.S. We remark that, while in this article we use
NNs, our developed approach easily allows the use of other ML algorithms, such as k-nearest neighbors,
regression trees, or random forests. Finally, we derive theoretical results on the approximation error of our
method that apply to any supervised ML model embedded in our EDE system.

The rest of this article is organized as follows. In Section 2, we provide some background on EDEs and
define notation essential to the presentation of our ML-guided diffusion model. Section 3 describes the
case study that motivated this article and presents the modeling details of the proposed method. In

e28-2 Juan Francisco Mandujano Reyes et al.

https://doi.org/10.1017/eds.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.3


Section 4 we summarize and interpret the results of theWNS application. Finally, in Section 5 we discuss
the results and present a conclusion. The theoretical results derived in this work can be found in Appendix
B. Appendix C provides pseudocode for the derived equations in the background section. Appendix D
presents pseudocode for the main method of this article.

2. Background: ecological diffusion equations

This section will serve as background material for understanding the EDEs, which have been used in
multiple previous studies for wildlife diseases (Garlick et al., 2011; Hefley et al., 2017b; Oh et al., 2023,
2024). We use such an equation to characterize the spread and growth of wildlife diseases over space and
time, influenced by local conditions in varying landscapes. EDEs canmerge two important epidemiological
processes. First, we have a term that describes the spatial spread (diffusion) of themodeled pathogen density,
which contains a spatially varying coefficient that is inversely related to aggregation (high diffusion means
little pathogen aggregation, while low diffusion means high aggregation). Second, we have a growth
component that characterizes population dynamicswith amodulation coefficient (growth rate) that depends
on local spatial information. Understanding the growth and spread of pathogens, particularly potential
drivers of these processes, is critical for developing effective control strategies.

Let S = x,yð Þ∈ℝ2j0≤ x≤L1,0≤ y≤ L2
� �

be a spatial domain of interest, and T = 0,Tð �⊂ℝ + be a
temporal domain. We are interested in the reaction–diffusion PDE system:

∂

∂t
u x,y, tð Þ=∇2 μ x,yð Þu x,y, tð Þ½ �+ λ x,yð Þu x,y, tð Þ, (2.1)

u x,y,0ð Þ= η, if x,yð Þ=ω
0, if x,yð Þ ≠ω,

�
(2.2)

u x,yð Þ∈ ∂S, tð Þ, = 0 ∀t > 0, (2.3)

where u x,y, tð Þ represents the density of a dispersing pathogen at location x,yð Þ∈S and time t∈ T , ∂S
represents the boundary of the spatial domain, and ω represents the location of the initial introduction of
the pathogen with initial density η: Spatial spread is captured by the Laplacian operator∇2 = ∂

2

∂x2 +
∂
2

∂y2. The
function μ x,yð Þ is the spatially dependent diffusion coefficient such that 0 < μ<∞, and the function λ x,yð Þ
is a spatially varying growth rate. Inmany cases, the spatial variation of both μ and λ is at amuch finer scale
than the scale of variation for the population, u. Particularly, in the case of wildlife diseases, the population
scale is hundreds of kilometers, and the scale of habitat variation, μ and λ, is meters. This mismatch creates
a computational difficulty resolved by homogenization.

2.1. Homogenization and analytic approximation

In this subsection, we describe the process of homogenization and its application to the EDEs in equations
(2.1)–(2.3). Then, we provide an approximate analytical solution that offers an advantage in computation
time and memory requirements compared to numerical solvers (Oh et al., 2024).

Homogenization is an asymptoticmethod (Holmes, 2012) that leverages the two different scales of interest
to simplify the EDE system, (2.1)–(2.3). This multi-scale method frames the PDE on the large scale by locally
averaging the fine-scale variation, producing locally constant coefficients in a PDE system with known
solutions. After solving this homogenized PDE system, the solution is adjusted by the fine-scale variation.

Following known homogenization procedures (Garlick et al., 2011, 2014), we derive a homogenized
EDE system:

∂

∂t
c x,y, tð Þ= μ x,yð Þ∇2c x,y, tð Þ+ λ x,yð Þc x,y, tð Þ, (2.4)
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c x,y,0ð Þ= η ̄μ x,yð Þ, if x,yð Þ=ω,
0, if x,yð Þ ≠ω,

�
(2.5)

c x,yð Þ∈ ∂S, tð Þ= 0, ∀t > 0, (2.6)

where c x,y, tð Þ is the homogenized approximated solution, related to the original PDE solution, u x,y, tð Þ,
by

u x,y, tð Þ≈ c x,y, tð Þ
μ x,yð Þ :

The new homogenized coefficients are locally constant averages taken over the large scale. The
homogenized diffusion coefficient, μ x,yð Þ, is defined as

μ x,yð Þ=

Z
A
1dxdyZ

A

1
μ x,yð Þdxdy

, (2.7)

and the homogenized growth rate, λ x,yð Þ, is

λ x,yð Þ= μ x,yð Þ
∣A∣

Z
A

λ x,yð Þ
μ x,yð Þdxdy: (2.8)

The homogenization regionA⊂ℝ2, with area ∣A∣, over which we calculate the homogenized parameters,
is defined at an intermediate scale between the large and the small scale. Using separation of variables and
the Fourier series expansion, Oh et al. (2024) derive the following approximate solution to the system
(2.4)–(2.6). Then, for sufficiently large positive integers M and N, a truncated series solution to the
homogenized system is

~cM,N x,y, tð Þ=
XM
m= 1

XN
n= 1

cm,n x,y, tð Þ, (2.9)

where

cm,n x,y, tð Þ= 4ημ ωð Þ
L1L2

sin ~mω1ð Þsin ~nω2ð Þsin ~mxð Þsin ~nyð Þexp λ x,yð Þt�μ x,yð Þt ~m2 + ~n2
� �� �

, (2.10)

with ~m =mπ=L1, ~n= nπ=L2, and ω= ω1,ω2ð Þ. Finally, the analytical approximated solution to u x,y, tð Þ,
the solution of the EDE system (2.1)–(2.3), is

~uM,N x,y, tð Þ= ~cM,N x,y, tð Þ
μ x,yð Þ : (2.11)

Refer to Oh et al. (2024) for a comparison of the analytical approximate solution with the commonly used
Forward Time Centered Space solver method (finite differences), showing the computational benefits
provided by the analytical approximate solution. Appendix C presents pseudocode for this section.

3. Methodology

In this section of this article, we will present the WNS surveillance data. Then, we introduce the
ML-guided PDE method for ecological diffusion, which is the main contribution of the presented work.
Finally, we specify the model and describe its fitting process.

3.1. White-nose syndrome data

The dataset used in this article has geo-referenced samples collected across the contiguous U.S. by state
and federal agencies and tested for the presence of Pd at the U.S. Geological Survey National Wildlife
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Health Center (Madison, WI) between April 2007 and April 2020 (Ballmann et al., 2021). Samples were
taken from bat carcasses, bat wing punch biopsies, forearm or muzzle skin, wing swabs, guano, roost
substrate swabs, cave (wall/ceiling) swabs, and soil, all of them tested for Pd infection using a quantitative
PCR (Muller et al., 2013).We use bat samples and environmental samples, as Pd is known to persist in the
environment (Lorch et al., 2013), to model the presence or absence of Pd rather than the disease (WNS)
that this pathogen causes.

Two outbreaks of the disease have been reported: one in NewYork in 2006 and another inWashington
in 2016. However, we only model the data from the NewYork outbreak by excluding all positive samples
inWashington state.We have the spatial coordinates (latitude and longitude) of 18,515 negative and 1,557
positive observations (Figure 1). Additionally, we consider five spatial covariates that are believed to
influence Pd dynamics (Oh et al., 2023): percentage of tree canopy cover (canopy), linear hydrography
including streams/rivers, braided streams, canals, ditches, artificial paths, and aqueducts (waterways),
topographic ruggedness index which is related to the magnitude of elevation (TRI), number of coal mines
per 10 km × 10 km grid cell (mines), and percentage of karst geomorphology (karst). See Additional
Figure A1 in Appendix A.We transformed these covariates to lie in the interval 0,1½ �. The covariates were
selected following recommendations from bat biologists on the Strategic Pd Surveillance Advisory Team
and have been used in previous modeling efforts (Oh et al., 2023).

3.2. Machine learning-guided partial differential equations

Using the notation from Section 2, the analytical approximated solution ~uM,N x,y, tð Þ in (2.11) to the PDE
system (2.1)–(2.3) depends on the two functions μ x,yð Þ and λ x,yð Þ, which are the unknown spatial

Figure 1. White-nose syndrome (WNS) is an infectious fungal disease in bats caused by
Pseudogymnoascus destructans. Presented here are the geographic locations where WNS samples were
collected by the USGS WNS surveillance team between 2006 and 2016. There were 1,557 positive tests,
represented by the colored dots, with lighter colors corresponding to more recently taken samples and
darker colors corresponding to earlier samples. There were 18,515 negative samples, represented with
small black dots.
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coefficients. Recent research has shown that NNs can be used as function approximators to learn
components of differential equation systems (Dandekar et al., 2020; Rackauckas et al., 2020). Following
this principle, we propose the use of ML algorithms to learn unknown dynamic patterns related to the
diffusion (μ) and growth (λ) in our system. Let NN θ1 z x,yð Þð Þ and NN θ2 z x,yð Þð Þ be two supervised ML
algorithms with trainable parameters θ1 and θ2 respectively, taking an input vector z x,yð Þ∈ℝp of spatial
covariates.We considerNNθ1 to approximate logμ (instead of μ directly to ensure positivity), andNN θ2 to
approximate λ. Additionally, considering that we have a set of observed values udata = xi,yi, ti,uif gni that
will be modeled using (2.1)–(2.3), let ℓ ~uM,N ,udatajθð Þ be a loss function depending on θ = θ1,θ2ð Þ through
~uM,N , that measures how well the approximated solution matches WNS surveillance data. We are
interested in finding the set of parameters that minimize our loss function, i.e.,

θ̂ = arg min
θ

ℓ ~uM,N ,udatajθð Þ:

Hereafter, we assume that NNθ1 and NNθ2 are two feedforward artificial NNs with trainable weights and
biases θ1 and θ2, respectively. However, we remark that any twoML algorithms can be used, and they do
not need to be the same. See Appendix B for the theoretical guarantees for the approximation error for
u x,y, tð Þ under the proposed procedure. We showed that the approximation error will be small as long as:
(1) homogenization assumptions are satisfied; (2) the truncation bounds M and N on the approximate
solution are sufficiently large; and (3) the ML algorithms are properly trained. Finally, note that the
function ℓ can be the mean squared error or the negative log-likelihood associated with an assumed
distribution in our data (e.g., binomial distribution for binary observations), in which case we would need
to perform a post-processing transformation on ~uM,N using a link function.

3.3. Model specification and fitting

Herein, we describe our statistical model for wildlife diseases, which will be applied to the WNS data.
Note that, previously, we assumed data were direct observations of u x,y, tð Þ however, in theWNS data, we
observe a function of u x,y, tð Þ, namely, the binary observations of tests for the presence of a pathogen.
Thus, we connect the observed binary response to the solution of our PDE by the logit link function
defined as g�1 að Þ= exp að Þ= 1+ exp að Þð Þ. Let vi represent the binary response variable (1 for infected,
0 otherwise) sampled at location xi,yið Þ and time ti for i= 1,…,n. We denote udata = xi,yi, ti,vif gni and
consider the model:

vi�Bernoulli pið Þ, (3.1)

pi = g
�1 u xi,yi, tið Þð Þ, (3.2)

∂

∂t
u x,y, tð Þ=∇2 μ x,yð Þu x,y, tð Þ½ �+ λ x,yð Þu x,y, tð Þ, (3.3)

u x,y,0ð Þ= η, if x,yð Þ=ω,
0, if x,yð Þ ≠ω,

�
(3.4)

u x,yð Þ∈ ∂S, tð Þ, = 0 ∀t > 0, (3.5)

logμ x,yð Þ=NNθ1 z x,yð Þð Þ, (3.6)

λ x,yð Þ=NNθ2 z x,yð Þð Þ, (3.7)

where pi =P vi = 1ð Þ is the probability of observing a positive outcome, g is the logit link function, and u is
the solution to the PDE system (3.3)–(3.5) with μ x,yð Þ representing the spatially varying diffusion
coefficient, and λ x,yð Þ the spatially varying growth rate. NN θ1 and NN θ2 represent two ML algorithms
with trainable parameters θ1 and θ2, respectively, and z x,yð Þ is the 5-dimensional input vector of spatial
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covariates described at the beginning of this section. The location of the introduction point, ω, and the
initial density, η, in equations (2.1)–(2.3) were assumed to be known, using estimates from a recent study
(Oh et al., 2023). Assuming ~uM,N approximates u and denoting p̂i = g

�1 ~uM,N xi,yi, tið Þð Þ, we minimize the
negative log-likelihood

ℓ ~uM,N ,udatajθð Þ= �1
n

Xn
i = 1

vi log p̂ið Þ+ 1� við Þ log 1� p̂ið Þ:

In Figure 2, we illustrate how NN predictions inform our PDE model during model fitting. The two NNs
NN θ1 and NNθ2 have the same architecture with 2 hidden layers, 512 neurons in each hidden layer, and
ReLU as the activation functions. The NNs were defined using the Tensorflow (TF) environment in
Python. Regarding optimization, we useAdamoptimizer with a scheduled learning rate starting at 0:0005,
with a decay rate of 0:96 per epoch. We observed a challenging optimization problem when the weights
and biases are randomly initialized, specifically for the NN NNθ2 dedicated to predicting log μð Þ.
Therefore, we suggest a careful initialization of the bias of the output layer following the estimation of
the wavefront speed heuristic presented in Shigesada and Kawasaki (1997). To do this, we letP represent

Figure 2. Diagram of neural networks (NNs) informing the partial differential equation (PDE) to model
pathogen spread and growth. The covariates, tree canopy cover (canopy), linear hydrography
(waterways), topographic ruggedness index (TRI), number of coal mines (mines), and karst
geomorphology (karst) are used as input. The NNs (red and blue boxes) take these covariates and predict
the unknown spatially varying log-diffusion logμð Þ and growth λð Þ coefficients which characterize the
PDE. The solution of the PDE, given the predicted coefficients, is post-processed and contrasted with the
observed data using a loss function. The loss guides the training process to refine the NN’s predictions.
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the collection of the P indexes corresponding to the positive samples in the training dataset, then the bias
initialization in the output layer of NN θ2 is

log
1
P

X
i∈P

d xi,yið Þ, ω1,ω2ð Þð Þ
πti

 !
≈ 22:2,

where ω1,ω2ð Þ is the coordinate pair for the introduction point, xi,yið Þ is the coordinate pair for the i�th
positive sample, ti is the time the i�th positive sample was taken, and d �, �ð Þ represents the Euclidean
distance. See Appendix D for implementation details of model fitting.

3.4. Validation and comparison with PDE with spatial additive linear effects

For model evaluation in a forecasting task, we left the last 12 months of samples as test data. Thus, we
evaluated our model’s ability to detect the Pd pathogen by measuring the area under the Receiver
OperatingCharacteristics curve (ROC-AUC) and the area under the Precision/Recall curve (PR-AUC)metrics
in both training and testing datasets. We chose these metrics according to Saito and Rehmsmeier (2015)
recommendations for imbalanced classification problems. The baseline for ROC-AUC is 0:5, meaning that a
random classifier would obtain 0:5 in this metric. For PR-AUC, the baseline depends on the positive/negative
ratio: baseline = (number of positives)/(number of positives + number of negatives). Therefore, for the training
dataset, the baseline was 0:084, while for the testing dataset, the baseline was 0:044.

To contrast our proposed method with the existing efforts on EDE for WNS modeling, we considered
an alternative version of the model that uses the PDE with spatial additive linear effects. We assumed
linear functional forms for the diffusion coefficient

logμ x,yð Þ= α0 + α⊤z x,yð Þ,
and growth rate

λ x,yð Þ= γ0 + γ⊤z x,yð Þ:
where α0 and γ0 are intercepts, and α and γ are vector coefficients are associated with the spatial covariate
vector z x,yð Þ. This approach is similar to the ones presented in Oh et al. (2023) and Oh et al. (2024).
Hereafter, this model will be called the EDE with spatial additive linear effects model.

4. Results

After fitting the model, we obtained a characterization of the prevalence of Pd, i.e., we can obtain
p̂i = g

�1 ~uM,N x,y, tð Þð Þ at any time t and space point x,yð Þ. Additionally, we learned two functions

log μ̂ x,yð Þ=NN θ̂1
z x,yð Þð Þ and λ̂ x,yð Þ=NN θ̂2

z x,yð Þð Þ that can help agencies target management actions

by allowing them to understand where the disease can spread faster (μ) and where it is expected to grow
more readily (λ). Figure 3 shows the probability of infection maps for April 2010 and April 2020. We
observe a heterogeneous diffusive behavior, which is important for differentiating the impact of Pd
reaching different zones. Additionally, the upper maps of Figure 3 depict a process with a defined
boundary between high and low probabilities of infection, which may enable management agencies to
allocate testing resources based on the likelihood of detecting the pathogen (Oh et al., 2023).

The training dataset (samples up to April 2019, Pd imbalanced ratio = 0:084) obtained a PR-AUC
= 0:359 ± 0:088 and ROC-AUC = 0:849 ± 0:070, for testing data (samples after April 2019, Pd imbal-
anced ratio = 0:044), we obtained PR-AUC = 0:085 ± 0:010 and ROC-AUC = 0:729 ± 0:024. The ROC-
AUC value represents the probability of correctly predicting a random positive and negative example.
Thus, the expected ROC-AUC of a random classifer is 0.5. The higher the ROC-AUC, the better the
model’s ability to distinguish between positive and negative samples. The Pd imbalanced ratio is the
PR-AUC baseline, which can be interpreted as the expected performance of a random classifier for each
dataset. Therefore, considering the average PR-AUC, we perform about 4 times better than a random
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classifier for the training dataset (PR-AUC = 4×Pdimbalanced ratio in training data), and 2 times better
than a random classifier for the testing dataset (PR-AUC = 2×Pdimbalanced ratio in testing data).
Table 1 summarizes the validationmetric results of 30 runs of our model with median, mean, and standard
deviation compared with the linear model. In all metrics, our ML-guided PDE method outperformed the
PDE with a spatial additive linear effects model.

Although improving computation time was not an objective of this development, we report the
computation time of our experiments. The PDE model with spatial additive linear effects was completed

Figure 3. Machine learning-guided partial differential equation approximations of the probability of
presence of Pseudogymnoascus destructans (Pd) (upper) vs. observed data (lower) for April 2010 (left)
and April 2020 (right). The observed data color represents time (earlier times have a darker color). We
observe a heterogeneous diffusive behavior, which is important for differentiating the impact of Pd
reaching different zones.

Table 1. Validation metrics on Pseudogymnoascus destructans (Pd) detection for our machine
learning-guided partial differential equation (PDE) method (machine leaning [ML]-guided) and the

PDE with spatial additive linear effects model (linear) for the train and test datasets

Dataset Metric

ML-guided Linear

Median Mean SD Median Mean SD

Train ROC-AUCa 0.849 0.821 0.070 0.831 0.803 0.062
PR-AUCb 0.359 0.319 0.088 0.316 0.282 0.085

Test ROC-AUCa 0.729 0.730 0.024 0.721 0.719 0.014
PR-AUCb 0.085 0.082 0.010 0.079 0.081 0.012

aArea under the receiver operating characteristics curve.
bArea under the precision/recall curve.

Environmental Data Science e28-9

https://doi.org/10.1017/eds.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.3


in an average 19:76 ± 6:63 minutes, whereas the ML-guided PDE method completed 14:16 ± 4:33
minutes. Both approaches were trained using the same computational characteristics (Google Colab,
RAM 12.7 GB, Disk 78.2 GB, and 2 CPU cores). Additionally, we note that the average loss function

Figure 4. Left: loss function value for test dataset in our machine learning-guided partial differential
equation (PDE) method (machine learning [ML]-guided) vs. the PDE with spatial additive linear effects
model (linear). Right: training computation time (in seconds) for ML-guided vs. linear model.

Figure 5.Maps with approximated log-diffusion coefficient logμ and growth coefficient λ from neural
networks (upper) and linear function (lower). Color scales are different to allow easier visualization of
details in each figure. Approximated diffusion and growth values are only interpretable within the
boundaries of the continental USA. Predicted values are not interpretable for large water bodies (e.g.,
the ocean and the Great Lakes).
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Figure 6. Functional relationship between each variable versus the log-diffusion coefficient logμ (upper) and growth coefficient λ (lower) from neural
networks (NNs) (right) and a linear model (left). Each covariate is varied while the remaining covariates are fixed at 0.5. Note the different values on the
y-axis between linear and NN models.
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value (negative log-likelihood) in the test dataset for ourML-guided PDEmethod was 0:705 ± 0:015, and
for PDE with spatial additive linear effects model was 0:720 ± 0:034 (Figure 4).

Furthermore, we did a literature review to externally validate our outcomes with the reported spread
and growth of WNS in previous studies. Our NN predictions (upper left, Figure 5) presented a high
diffusion and low growth in the karst landscapes which aligns with reported findings about the spread of
Pd in the karst regions of Appalachian Mountains (Maher et al., 2012; Hoyt et al., 2021) (arrow 1 in
zoomed states in Figure A2 in Appendix A). Similar behavior can be observed with the linear prediction
(lower left, Figure 5), but with higher values. In the NN predictions (upper panels in Figure 5), we
observed a color pattern characterizing an area with relatively high diffusion and low growth in northern
Florida, across Georgia and South Carolina states (arrow 2 in zoomed states in Figure A2 in Appendix A).
Such a pattern may indicate a predicted natural barrier because the combination of high diffusion (low
pathogen residence time) and low growth rates would result in no aggregation of pathogens in this area.
This finding supports the hypothesis of this area being the southern limit of Pd distribution (Hoyt et al.,

Figure 7. Bee swarm plots of SHapley Additive exPlanations (SHAP) values from 5,000 randomly
sampled locations for log-diffusion (upper) and growth (lower) neural network models. SHAP values
explain the covariate contributions to the predictions of each observation. Covariates are ranked from top
to bottom by their mean absolute SHAP value (shown in parentheses beside the name). For each
covariate, each location has a point distributed along the horizontal axis by its SHAP value. SHAP values
with high density are represented by stacking the points vertically. Color represents covariate raw values.
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2021). The linear predictor (lower panels in Figure 5) does not match with this hypothesis, as it shows a
low growth area with a relatively low diffusion. Conversely, Pd is known to grow best at low temperatures
(12.5–15.8∘C) (Verant et al., 2012), and our approximated growth coefficient (in both models) presents
high values in the north-central region, which matches zones of low monthly average temperatures.

Figure 6 was created to explore the non-linear relationships present in the diffusion and growth
coefficients learned by the NNs and compare them with the linear models. We plotted log-diffusion and
growth as a function of each covariate, keeping the remaining covariates fixed. We let one covariate vary
at a time and fixed the other covariates at the 0.5 level. In general, we observed that the functional forms
for all covariates in diffusion and growth were close to a second-degree polynomial, and in a few cases, a
third-degree polynomial for the NN. The growth coefficient showed a more complex behavior compared
with the diffusion one. Nevertheless, we remark that these relationships should not be over-interpreted.

Finally, to provide interpretation from our results, we leveraged the SHAP (SHapley Additive
exPlanations) values technique (Lundberg and Lee, 2017). SHAP values are used to explain the covariate
contributions to the predictions of each observation. In particular, we used the Deep SHAP approach,
which gives a high-speed approximation for SHAP values in deep learning models. Figure 7 displays bee
swarm plots of SHAP values for 5,000 randomly sampled locations for log-diffusion and growth NN
models. In these figures, covariates are ranked from top to bottom by theirmean absolute SHAP value. For
each covariate, each of the randomly sampled locations has a point distributed along the horizontal axis by
its SHAP value. SHAP values with high density are represented by stacking the points vertically. For each
point, the color represents its raw value. Therefore, in Figure 7, we observe that canopy cover is the most
influential covariate for log-diffusion and growth. Higher values of canopy are associated with lower
values of diffusion, while lower values of canopy are associatedwith higher values of diffusion. Similarly,
large values of karst have a negative association with diffusion, and lower values of karst are associated
with higher diffusion rates. For Pd growth, higher values of karst have a positive association, while lower
values have a negative association. Lastly, large values of canopy are associated with low growth rates,
and lower canopy values have a positive association with growth.

5. Conclusions and discussion

We developed and implemented a modern solution to a critical problem in wildlife ecology, using
ML-guided PDEs. Our approach exploits prior physical knowledge of ecological systems, encoded
through PDEs, using ML algorithms for a flexible representation of interpretable coefficients. Moreover,
we provided the theoretical guarantees derived from the analytical approximation for our PDE and the
universal approximation theorem B.4. Additionally, we demonstrated the benefits of our method by
comparing its forecasting powerwith the commonly used PDEwith a spatial additive linear effectsmodel.
However, while our validation metrics outperformed existing methods, there is room for improvement
regarding the pathogen detection power of the presented model.

Some of our practical findings are compatible and support hypotheses from existing WNS literature,
which gives us confidence that our methods have the potential to be broadly applied to other wildlife
diseases or other ecological processes that exhibit growth and spread. Some of the areas that can benefit
from our methods are plant and animal population growth and dispersal, modeling the expansion of
invasive species, and studying wildlife migration. Furthermore, the proposed method is a general
approach that can be adapted to different PDE system structures, including other initial and boundary
conditions, with different diffusion and growth mechanisms.

An important upside of the presented method is the modeling flexibility for the diffusion and growth
coefficients associated with the EDEs. Unlike using additive linear effects or other hard parametric
assumed relationships, our approach does not require users to know or specify a functional form of the
impact of covariates on the processes of interest. Thus, the incorporation of the effect of several different
covariates is much easier to do with the embedded ML algorithms. Our method showcased the value
of SciML in wildlife epidemiology, providing a powerful framework for modeling complex ecological
processes. This article may inspire forthcoming research focused on modeling wildlife diseases

Environmental Data Science e28-13

https://doi.org/10.1017/eds.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.3


considering a wide range of covariates related to important environmental processes, such as climate
change, and anthropogenic activities, such as pollutant emissions. Finally, we believe that exploring and
comparing differentML algorithms, includingmore complex NN architectures, is a promising future path
of investigation with the potential of capturing intricate non-linear relationships that simpler models
might miss.
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A. Additional figures

Figure A1. Covariates used as explanatory variables for the coefficients in the ecological diffusion
equation modeling the probability of the presence of Pseudogymnoascus destructans (Pd). We use the
percentage of tree canopy cover (canopy), linear hydrography including streams/rivers, braided streams,
canals, ditches, artificial paths, and aqueducts (waterways), topographic ruggedness index, which is
related to themagnitude of elevation (TRI), number of coal mines per 10 km × 10 km grid cell (mines), and
percentage of karst geomorphology (karst). Covariates are transformed to lie in the interval 0,1½ � and
were selected following recommendations from bat biologists on the Strategic Pd Surveillance
Advisory Team.
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B. Theory
In this section, we present the theoretical results that support ourmethod. In particular, following the notation in themain body of this
article, we provide a derivation of a bound for the approximation error.

Assumption B.1. LetNN θ1 andNN θ2 be twoML algorithms, with learnable vector parameters θ1 and θ2, approximating log μð Þ
and λ respectively.We assume that for arbitrarily small ε0,1,ε0,2 > 0, there exist vector parameters θ1 and θ2, such thatNN θ1 andNN θ2

∣ log μð Þ�NN θ1 ∣< ε0,1,

and

∣λ�NN θ2 ∣< ε0,2:

Assumption B.1 ensures that we can properly train our ML algorithms. Note that whenNN θ1 andNN θ2 are two NNs, and θ1 and
θ2 are the collection of their weights and biases in a vector format, this assumption is a consequence of the universal approximation
theorem (Hornik et al., 1989; Hornik, 1991).

Lemma B.2. Let u x,y, tð Þ be the solution of the PDE system (2.1)–(2.3) and c x,y, tð Þ be the solution of its homogenized version
(2.4)–(2.6). We denote uh x,y, tð Þ = c x,y, tð Þ=μ x,yð Þ the homogenized solution of the original system (2.1)–(2.3). Then for a given
ε4 > 0,

∣u x,y, tð Þ�uh x,y, tð Þ∣< ε4:
A proof of Lemma B.2 can be found in Garlick et al. (2011).

Lemma B.3. For x,yð Þ∈S and t∈ T , let c x,y, tð Þ =P∞
m= 1

P∞
n = 1cm,n x,y, tð Þ, be the infinite series solution of the homogenized

PDE system (2.4)–(2.6), and let ~cM,N x,y, tð Þ =PM
m= 1

PN
n = 1cm,n x,y, tð Þ be the truncated series solution of (2.4)–(2.6), where the

cm,n x,y, tð Þ terms are defined as in (2.10. Then, for any ε > 0, there are large enough N and M such that

c x,y, tð Þ�~cM,N x,y, tð Þj j < ε: (B.1)

Lemma B.3 represents the truncation error of the truncated series solution of the homogenized PDE system (2.4)–(2.6) and was
proved by Oh et al. (2024).

Figure A2. Approximated log-diffusion coefficient logμ and growth coefficient λ from neural networks
for the Southeastern United States. Black arrows: (1) color pattern for high diffusion and low growth in
the karst landscapes of the Appalachian Mountains; and (2) color pattern characterizing relatively high
diffusion and low growth in northern Florida, across Georgia, and South Carolina. The region circled
(arrow 2) along the Florida/Georgia border exhibits a slightly higher density of red pixels for μ than in
Florida, indicating a higher average diffusion rate in that region. Additionally, it exhibits a lower λ,
indicating a lower average growth rate than in Florida. We interpret this to mean that the region acts as a
natural barrier to establishment.
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Theorem B.4. For x,yð Þ∈S and t∈ T , let u x,y, tð Þ be the solution of the PDE system (2.1)–(2.3), and let ~cM,N x,y, tð Þ be the
truncated series solution to the homogenized PDE system (2.4)–(2.6), defined in (2.9). Let NN θ1 and NN θ2 be two ML algorithms,
with learnable parameters θ1 and θ2, approximating the unknown function log μð Þ and λ respectively, such that Assumption B.1
holds. Let ~cNNM,N x,y, tð Þ denote ~cM,N x,y, tð Þ evaluated when replacing μ and λ by NN θ1 and NN θ2 , respectively. Then, for any ε > 0,
x,yð Þ∈S and t∈ T , there exist θ1, θ2 and large enough N and M such that

u x,y, tð Þ� ~cNNM,N x,y, tð Þ
exp NN θ1 x,yð Þð Þ

�����
����� < ε:

Proof.LetNN θ1 andNN θ2 denote the approximated homogenized coefficients μ and λ, defined by replacing μ and λ byNN θ1 and
NN θ2 in their definitions (2.7) and (2.8) respectively. Then, we have

NN1 x,yð Þ =

Z
A
1dxdyZ

A

1
exp NN θ1 x,yð Þð Þdxdy

,

and

NN2 x,yð Þ= NN θ1 x,yð Þ
∣A∣

Z
A

NN θ2 x,yð Þ
exp NN θ1 x,yð Þð Þdxdy,

whereNN θ1 approximates log μð Þ andNN θ2 approximates λ. ByAssumptionB.1, we have that for arbitrarily small ε0,1,ε0,2 > 0, there
exist parameters θ1 and θ2 such that

∣ log μð Þ�NN θ1 ∣< ε0,1,

and

∣λ�NN θ2 ∣< ε0,2:

Then, for small ε1,1,ε1,2 > 0, we notice that by Lebesgue’s dominated convergence theorem and continuity (Rudin, 1976, Theorem
11.32), we have

μ x,yð Þ�NN θ1 xð ,yÞ�� �� =
Z
A
1dxdyZ

A

1
μ x,yð Þdxdy

�

Z
A
1dxdyZ

A

1
exp NN θ1 x,yð Þð Þdxdy

��������

��������
< ε1,1,

and

λ x,yð Þ�NN θ2 xð ,yÞ�� �� = μ x,yð Þ
∣A∣

Z
A

λ x,yð Þ
μ x,yð Þdxdy�

NN θ1 x,yð Þ
∣A∣

Z
A

NN θ2 x,yð Þ
exp NN θ1 x,yð Þð Þdxdy

����
����< ε1,2:

On the other hand, if we consider

h μ,λ
� �

= cm,n x,y, tð Þ = 4ημ ωð Þ
L1L2

sin ~mω1ð Þsin ~nω2ð Þsin ~mxð Þsin ~nyð Þexp λ x,yð Þt�μ xð ,yÞt ~m2 + ~n2
� �� �

as a function of μ,λ
� �

, then by continuity, for a small ε2 > 0, we have that

~cM,N x,y, tð Þ�~cNNM,N xð ,y, tÞ�� ��< ε2: (B.2)

Letting c x,y, tð Þ=P∞
m= 1

P∞
n= 1cm,n x,y, tð Þ be the infinite series solution of the homogenized PDE system (2.4)–(2.6), Lemma B.3

ensures that given a small ε3 > 0, there are large enough N and M such that

c x,y, tð Þ�~cM,N xð ,y, tÞj j < ε3, (B.3)

which represents the truncation error of the truncated series solution. Denoting uh x,y, tð Þ = c x,y, tð Þ=μ x,yð Þ, the homogenized
solution of the original PDE system (2.1)–(2.3), according to Lemma B.2, we have that for a given ε4 > 0,

u x,y, tð Þ�uh xð ,y, tÞj j < ε4: (B.4)
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Then we have the final result following the triangle inequality:

u x,y, tð Þ� ~cNNM,N x,y, tð Þ
exp NNθ1 x,yð Þð Þ

�����
�����≤ u x,y, tð Þ� c x,y, tð Þ

μ x,yð Þ
����

���� + c x,y, tð Þ
μ x,yð Þ �

~cM,N x,y, tð Þ
μ x,yð Þ

����
����

+
~cM,N x,y, tð Þ

μ x,yð Þ �
~cM,N x,y, tð Þ

exp NNθ1 x,yð Þð Þ
����

����
+

~cM,N x,y, tð Þ
exp NNθ1 x,yð Þð Þ�

~cNNM,N x,y, tð Þ
exp NNθ1 x,yð Þð Þ

�����
�����

≤ u x,y, tð Þ�uh xð ,y, tÞj j+ 1
μ x,yð Þ
����

���� c x,y, tð Þ�~cM,N xð ,y, tÞj j

+ ~cM,N x,y, tð Þj j 1
μ x,yð Þ�

1
exp NNθ1 x,yð Þð Þ

����
����

+
1

exp NNθ1 x,yð Þð Þ
����

���� ~cM,N x,y, tð Þ�~cNNM,N xð ,y, tÞ�� ��
≤ ε4 +

1
μ x,yð Þ
����

����ε3 + ~cM,N x,y, tð Þj jε5 + 1
exp NNθ1 x,yð Þð Þ
����

����ε2,
where the first term is bounded by the homogenization approximation (B.4), the second one is the truncation error of the series

expansion (B.3), the third term, 1
μ x,yð Þ� 1

exp NN θ1 x,yð Þð Þ
����

����, is bounded by ε5 due to continuity and Assumption B.1, and the last term is

bounded again by a consequence of Assumption B.1 and the continuity of h μ,λ
� �

(B.2). Finally, the right-hand side of the previous
inequality is a sum of epsilons and the product of epsilons with finite value quantities. Thus, for any ε, there exist ε2,ε3,ε4,ε5 with
corresponding NN θ1 ,NN θ2 , such that

u x,y, tð Þ� ~cNNM,N x,y, tð Þ
exp NN θ1 x,yð Þð Þ

�����
����� < ε:

Therefore, we conclude that the approximation error will be small as long as: (1) the homogenization assumptions are satisfied
(Garlick et al., 2011); (2) we choose large enough N andM integers (Oh et al., 2024); and (3) we have proper optimization methods
and enough data to train our ML algorithms.

C. Ecological diffusion equation: analytic approximation by homogenization

Algorithm C.1. Aggregation functions for homogenization.

1: function μx, factor ⊳ This function is defined according to (2.7) in the main body of the paper. In this function x is a two-
dimensional array.

2: patch_size ðfactor, factorÞ.
3: nx tf :shape xð Þ 0½ �==patch_size 0½ �.
4: ny tf :shape xð Þ 1½ �==patch_size 1½ �.
5: x_reshaped tf :reshape x : nx × patch_size 0½ �, : ny × patch_size 1½ �

� 	
,

�
.

6: nx,patch_size 0½ �,ny,patch_size 1½ �
� �Þ.

7: x_reciprocal 1
x_reshaped.

8: x_mean 1
tf :reduce_mean x_reciprocal,axis= 1,3ð Þð Þ.

9: return x_mean.

10: end function.

11: function λx, factor ⊳ This function is defined according to (2.8) in the main body of the paper. In this function x is a two-
dimensional array.

12: patch_size factor, factorð Þ.
13: nx tf :shape xð Þ 0½ �==patch_size 0½ �.
14: ny tf :shape xð Þ 1½ �==patch_size 1½ �.
15: x_reshaped tf :reshape x : nx × patch_size 0½ �,½ð .

16: : ny × patch_size 1½ ��, nx,patch_size 0½ �,ny,patch_size 1½ �
� �Þ.
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17: x_mean tf :reduce_mean x_reshaped,axis = 1,3ð Þð Þ.
18: return x_mean.

19: end function.

Algorithm C.2. Truncated series solution to the homogenized ecological diffusion equation system.

1: function ~cMNM,N,x,y, t,ω1,ω2,λ,μ,L1,L2,θ ⊳ This function is defined according to (2.9) and (2.10) and represents the
truncated series solution to the homogenized ecological diffusion equation system.

2: m_values tf :cast tf :linspace 1,M,Mð Þ,dtype = tf :float32ð Þ.
3: n_values tf :cast tf :linspace 1,N,Nð Þ,dtype = tf :float32ð Þ.
4: m_grid,n_grid tf :meshgrid m_values,n_valuesð Þ.
5: Amn_values θ × tf :sin m_grid × π ×ω1=L1ð Þ× tf :sin n_grid × π ×ω2=L2ð Þ × 4= L1 ×L2ð Þ.
6: exp_terms tf :exp �μ× t × m_grid × π=L1ð Þ2 + n_grid × π=L2ð Þ2


 �
 �
.

7: sin_terms_x tf :sin m_grid × π × x=L1ð Þ.
8: sin_terms_y tf :sin n_grid × π × y=L2ð Þ.
9: cmn_values Amn_values× tf :exp λ× t

� �
× exp_terms × sin_terms_x × sin_terms_y.

10: sol tf :reduce_sum cmn_valuesð Þ.
11: return sol.

12: end function.

Algorithm C.3. Approximated solution to the ecological diffusion equation by homogenization.

1: function S 1(X,Y ,T ,M,N,ω1,ω2,λ,μ,L1,L2,θ) ⊳ This function is defined according to (2.9) and collects the truncated
series solution to the homogenized system for all the observed locations and times.

2: n length Xð Þ.
3: output zeros nð Þ.
4: for i 0 to n�1 do.

5: output i½ � cMN M,N,X i½ �,Y i½ �,T i½ �,ω1,ω2,λ i½ �,μ i½ �,L1,L2,θ
� �

.

6: end for.

7: return tf :cast output, tf :float32ð Þ.
8: end function.

9: function S EDEX,Y ,T ,nn_output,θ0, t0,ω,domain, factor,L1,L2,M,N ⊳ In this function, we assume that df
contains the data associated with our problem. The dataset df should be a pandas data frame with columns ‘X_loc’ and
‘Y_loc’ with columns and rows, respectively, corresponding to the cells in the domain.

10: θ θ0.

11: μ tf :exp nn_output 0½ �ð Þ.
12: λ nn_output 1½ �.
13: fs_cells_mu μ.

14: fs_cells_lambda λ=μ.

15: mu_bar custom_aggregation ðfs_cells_mu, factorÞ.
16: λ aggregation ðfs_cells_lambda, factorÞ.
17: λ μ× λ.

18: num_squares_x domain:shape 0½ �==factor.
19: num_squares_y domain:shape 1½ �==factor.
20: mu_bar_tiled tf :tile mu_bar : , tf :newaxis, : , tf :newaxis½ �ð Þ, ½1, factor, 1, factor�Þ.
21: λ_tiled tf :tile λ : , tf :newaxis, : , tf :newaxis½ �� �

, ½1, factor, 1, factor�.
22: mu_bar_reshaped tf :reshape mu_bar_tiled, ½ð .

23: num_squares_x × factor,num_squares_y× factor½ �Þ.
24: λ_reshaped tf :reshape λ_tiled, ½�

.
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25: num_squares_x × factor,num_squares_y× factor½ �Þ.
26: X_loc df 0X_loc0½ �.
27: Y_loc df 0Y_loc0½ �.
28: positions list map lambdax,y : y,x½ �,Y_loc,X_locð Þð Þ.
29: mu_list μ_reshaped pos½ �forposinpositions½ �.
30: λ_list λ_reshaped pos½ �forposinpositions� 	

.

31: mu_omega_scaled μ_reshaped coords_omega 0½ �,coords_omega 1½ �½ �.
32: scaled_theta θ × μ_omega_scaled.

33: sol Solver1 X =X,Y = Y ,T = T + t0�1ð Þ,ð .

34: M =M,N =N,ω1 =ω 0½ �,ω2 =ω 1½ �, .
35: λ = λ_list,μ= μ_list, .

36: L1 =L1,L2 =L2,θ = scaled_thetaÞ.
37: sol sol= μ pos½ �forposinpositions½ �.
38: sol tf :where sol < 1e�10,1e�10,solð Þ ⊳ To avoid taking log of zero

39: return sol.

40: end function.

D. Pseudocode for machine learning-guided partial differential equations

Algorithm D.1. Utils functions.

function P-(y_pred).

⊳In this function, we post-process the outcome of the neural network to use it as logμ and λwithin the approximate solution
of the ecological diffusion equation. Specific values are indicated for our problem, but can be changed by the user to accommodate
specific problems.

y_pred_reshaped tf :reshape y_pred : ,0½ �,y_pred : ,1½ �½ �, 2,300,480ð Þð Þ
postprocessed SolutionEDEð
X,Y ,T ,y_pred_reshaped,

θ0 = 1:5× 1012, ⊳ initial population from the literature

t0 = 42, ⊳ initial time from the literature

ω = 4235000,2175000½ �, ⊳ initial location from the literature

domain = domain, ⊳ the domain is a data frame that contains the covariates

factor = 10, ⊳ factor for homogenization

L1 = 4:8× 106, ⊳ limits of the domain

L2 = 3× 106,

M = 20, ⊳ M for the truncated series solution to the homogenized system

N = 20Þ ⊳ N for the truncated series solution to the homogenized system

return postprocessed.

end function.

Algorithm D.2. Neural Network functions.

function C M(input_shape).

⊳In this function, we follow the same architecture used in the paper. However, it can be changed by the user for other problems.

input_layer tf :keras:layers:Input shape = input_shapeð Þ
common_base_1 tf :keras:layers:Dense units = 512,activation = ’relu’ð Þ input_layerð Þ
common_base_2 tf :keras:layers:Dense units = 512,activation = ’relu’ð Þ input_layerð Þ
no_common_base_1 tf :keras:layers:Dense units = 512,activation = ’relu’ð Þ common_base_1ð Þ

Environmental Data Science e28-21

https://doi.org/10.1017/eds.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.3


no_common_base_2 tf :keras:layers:Dense units = 512,activation = ’relu’ð Þ common_base_2ð Þ
output_mu tf :keras:layers:Denseð

units= 1,

bias_initializer = tf :keras:initializers:Constant 22:2ð Þ,
name= ’ log_mu’Þð
no_common_base_1Þ

output_lambda tf :keras:layers:Denseð
units= 1,

name= 0lambda0Þ no_common_base_2ð Þ
model tf :keras:models:Modelð

inputs = input_layer,

outputs = tf :keras:layers:concatenate output_mu,output_lambda½ �ð ÞÞ
return model.

end function.

function C L(y_true, y_pred, bce = tf.keras.losses.BinaryCrossentropy(from_logits = True)).

⊳ In this function, we assume that df contains the data associated with our problem. The dataset df should be a pandas data
frame with columns ‘y’ for the binary outcome, ‘nums’ for the number of observations in a given location.

p Post�processing y_predð Þ
y_obs tf :cast df 0y0½ �:to_numpyðÞ, tf :float32ð Þ
counts tf :cast df 0nums0½ �:to_numpyðÞ, tf :float32ð Þ
y_real tf :repeat y_obs, tf :cast counts, tf :int32ð Þð Þ
y_predicted tf :repeat p, tf :cast counts, tf :int32ð Þð Þ
loss bce y_real,y_predictedð Þ
return loss.

end function.

Algorithm D.3. Training Pipeline.

Step 1: Prepare the domain that contains the input data for the neural network. The sample size is the number of cells in
the domain.

sample_size 300 × 480

domain_transposed np:transpose domain, 1,2,0ð Þð Þ
domain_reshaped np:reshape domain_transposed, sample_size,5ð Þð Þ
x_train domain_reshaped

y_train np:array 0½ �× sample_sizeð Þ
⊳ We do not use y_train in the fitting process, but it is required by Tensorflow. This is just a placeholder.

⊳ Step 2: Create the model specifying the input size (number of covariates).

input_shape 5,ð Þ
model CreateModel input_shapeð Þ
Step 3: Prepare learning schedule and optimizer, and define callbacks and history to compile the model.

tf :config:run_functions_eagerly Trueð Þ ⊳ We can run in eager mode for debugging.

lr_schedule keras:optimizers:schedules:ExponentialDecayð
initial_learning_rate = 0:0005,

decay_steps = 1,

decay_rate = 0:96Þ
opt keras:optimizers:Adam learning_rate = lr_scheduleð Þ
callback tf :keras:callbacks:EarlyStopping monitor = 0loss0,patience = 10, restore_best_weights = Trueð Þ
callback2 tf :keras:callbacks:TerminateOnNaNðÞ
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history HistoryðÞ
model:compile optimizer = opt, loss =CustomLossð Þ
Step 4: Train the model, collect history, and measure computation time.

st time:timeðÞ
model:fit x_train,y_train,ð
epochs= 200,

batch_size= 2× 300× 480,

verbose= 1,

callbacks = callback,callback2,history½ �Þ
et time:timeðÞ
elapsed_time et� st
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