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This study investigates the potential use of an active device to efficiently absorb water
waves propagating in a channel. The active device comprises a dipole source consisting
of two sources in quasi-opposition of phase. We explore the feasibility of this approach
to achieve perfect absorption of guided waves through interference phenomena. To
accomplish this, we establish the law governing the waves emitted by the dipole source
to optimize the absorption of specific incident waves. The validity of this law is
demonstrated through numerical simulations and laboratory experiments, encompassing
both the harmonic and transient regimes of the experimental set-up.
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1. Introduction

The efficient absorption of water waves energy is of prime importance in mitigating
their deleterious effects on coastal zones. Addressing and minimizing these impacts pose
significant challenges in preserving exposed communities, ecosystems and infrastructure.
In pursuit of this objective, passive systems have been proposed, falling into two
sub-categories. On the one hand, we find large structures such as artificial reefs, typically
constructed using concrete, rock or recycled tires (Sollitt & Cross 1972; van der Meer et
al. 2005; van den Brekel 2021; van Gent et al. 2023) or using porous type media, including
coastal vegetation, sand dunes or sedimentary layers (Zhu 2001; Silva, Salles & Palacio
2002; Barman & Bora 2021). While these structures can efficiently absorb wave energy,
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they come at the cost of significant dimensions, of the order of several wavelengths. On
the other hand, there are technologies designed for capturing and converting wave energy
that may be small in size relative to the wavelength (Salter 1974; Guo & Ringwood 2021;
Jin & Greaves 2021). However, they absorb only a small portion of the wave energy, as
their primary purpose is energy harvesting rather than the creation of a protected zone.

In contrast to passive absorbers, devices based on active absorption aim to completely
cancel outgoing waves from the device. In their classic form, developed over the last
sixty years, active absorbers operate by reflection only. They are commonly referred to
as ‘absorbing wavemakers’ or ‘reflection compensation systems’ and are employed to
generate waves while avoiding undesired reflections, and minimizing disturbances related
to artificial boundaries in wave testing facilities. The perfect absorption obtained is made
possible by a destructive interference mechanism between the incident wave, whose
reflection is to be cancelled, and the wave generated by the active source, i.e. the moving
wall hit by the incident wave (Milgram 1965, 1970; Schäffer & Klopman 2000).

In this study, we demonstrate theoretically, numerically and experimentally that a dipole
source device can be employed to achieve perfect active absorption of an incident wave
in a channel, simultaneously cancelling its reflection and transmission; see figure 1.
This device is inspired by the one investigated in Euvé et al. (2023), where perfect
passive absorption was achieved using two closely spaced, phase-shifted resonators,
whose geometry was carefully tuned for viscous losses and resonance frequency. Here,
by actively replicating the absorption conditions observed in that system, we achieve
perfect absorption adaptable to any low-frequency incident wave and any loss level. To
illustrate the principle of active absorption and its effectiveness, the sections of this paper
are structured as follows. The theoretical formulation and numerical validation of the
device principle are presented in § 2. The experimental implementation is detailed in § 3,
along with an examination of the fields generated solely by the dipole source and the
resulting efficient absorption in the harmonic and transient regimes. Brief conclusions are
eventually drawn in § 4.

2. Perfect absorption: modelling and numerical validation

We consider the propagation of water waves within a channel characterized by width d
and water depth h. The channel contains two extended sources positioned along one of
its vertical walls, forming a dipole source that induces inflows/outflows into the channel.
The two sources, rectangular and identical, have horizontal and vertical dimensions (a, b),
with their centres submerged at depth ho and spaced along the x-axis at a distance e.
Our modelling approach begins with the full three-dimensional (3-D) problem set in Ω =
{x ∈ (−∞,+∞), y ∈ (0, d), z ∈ (−h, 0)}, with the origin at the mean free surface, and z
directed vertically upwards. Assuming an inviscid, incompressible fluid and irrotational
motion, the velocity potential φ(r, t) and associated velocity u(r, t) satisfy

3-D problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = ∇φ, ∇ · u = 0, in Ω,

uz|z=0 = −1
g
∂2φ

∂t2 |z=0
, uz|z=−h = 0,

uy|Γ = 0, uy|Γi
= Ui, i = 1, 2,

(2.1)
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Figure 1. Perfect absorption by a dipole source. (a) Schematic view of the experimental set-up.
(b) Experimental realization of the dipole source producing asymmetric wave propagation in the guide. The
waves are visualized by a black line projected onto the free surface of the water, made diffusive by a white dye.

where g is the gravitational constant, t is time, and r = (x, y, z). We have defined the
surfaces Γi, i = 1, 2, and Γ as

Γ1 = {(x + e/2) ∈ (−a/2, a/2), y = d, (z − ho) ∈ (−b/2, b/2)},
Γ2 = {(x − e/2) ∈ (−a/2, a/2), y = d, (z − ho) ∈ (−b/2, b/2)},

Γ = {x ∈ (−∞,∞), y ∈ {0, d}, z ∈ (−h, 0)} \ (Γ1 ∪ Γ2),

⎫⎪⎬
⎪⎭ (2.2)

which correspond respectively to the regions of the vertical walls occupied by the two
sources and the rigid regions of the vertical walls.

2.1. Reduction of the model: the two-dimensional problem
In the harmonic regime with time dependence e−iωt, we go from the 3-D problem
to a two-dimensional (2-D) reduced problem. To achieve this, we employ the modal
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representation of the 3-D solution

φ(r, t) = e−iωt
∑
n≥0

ϕn(x, y) fn(z), (2.3)

where

fn(z) = cosh kn(z + h)
cosh knh

, kn tanh knh = ω2

g
, (2.4a,b)

such that ∫ 0

−h
fm(z) fn(z) dz = Nnδmn, Nn = sinh(2knh)+ 2knh

4kn cosh2(knh)
. (2.5a,b)

Rearranging (2.3) into (2.1) and projecting onto f0(z) results in a 2-D problem satisfied
by ϕ(x, y) = ϕ0(x, y) in Σ = {x ∈ (−∞,+∞), y ∈ (0, d)} (and we also note k = k0 as
the real-valued wavenumber of the propagating water waves) of the form

2-D problem

⎧⎪⎨
⎪⎩

ϕ + k2ϕ = 0, in Σ,

∂ϕ

∂y |γ
= 0,

∂ϕ

∂y |γi

= ui, i = 1, 2,
(2.6)

where

γ1 = {(x + e/2) ∈ (−a/2, a/2), y = d}, γ2 = {(x − e/2) ∈ (−a/2, a/2), y = d},
γ = {x ∈ (−∞,∞), y ∈ {0, d}} \ (γ1 ∪ γ2),

}
(2.7)

and

ui = αUi, α = 8 cosh(kh) cosh(k(h − ho)) sinh(kb/2)
sinh(2kh)+ 2kh

. (2.8a,b)

We consider an incident wave propagating to the right, characterized by a complex
amplitude ϕinc and sufficiently low frequency such that kd < 2π, implying that only one
mode, independent of y, is propagating in the 2-D guide. Accordingly, the solution of (2.6)
away from the dipole source takes the form

ϕ(x, y) � ϕinc eikx + ϕ− e−ikx, x → −∞,

ϕ(x, y) � ϕ+ eikx, x → +∞,

}
(2.9)

where ϕ− and ϕ+ represent the complex amplitudes of left and right outgoing waves,
respectively. The 2-D problem (2.6) can be solved explicitly. In particular, simple
expressions for (ϕ−, ϕ+) in (2.9) are obtained through Green’s identity, as elaborated in
Appendix A. They read

ϕ− = i sin(ka/2)
k2d

(
u1 e−ike/2 + u2 eike/2

)
,

ϕ+ = ϕinc + ϕ+
0 , ϕ+

0 = i sin(ka/2)
k2d

(
u1 eike/2 + u2 e−ike/2

)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

We will now establish the conditions on (u1, u2) necessary to achieve perfect absorption
of the incident wave, i.e. to ensure that ϕ− = ϕ+ = 0. We can already note a specific
scenario when ka = 2nπ, where n is an integer, and kd < π. In this case, ϕ− = ϕ+

0 = 0
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yϕ– e–ikx
ϕ+ e–ikx

ϕinc e
ikx

∂ϕ/∂y = u1 ∂ϕ/∂y = u2

d

ae

x
0

Figure 2. The two-dimensional reduced problem with extended sources considered in the numerics.

regardless of the value of ϕinc and the values of u1 and u2. These solutions satisfy ϕ → 0 as
x → ±∞ with ∂yϕ remaining constant along γi, where i = 1 or 2, and they are associated
with the superposition of two localized eigenmodes; see Appendix B. Note that this
particular scenario renders the sources inactive regarding the incident wave, with ϕ− = 0
and ϕ+ = ϕinc whatever the values of (u1, u2). Then for ka /= 2nπ, ϕ− = 0 is obtained
from (2.10) if (u1, u2) satisfy the relation

u2 = −u1 e−ike, (2.11)

which remains valid regardless of the presence or absence of an incoming wave in the
guide. Subsequently, in the presence of an incoming wave and when the above condition
is met, ϕ+ = 0 is possible if condition

u1 = k2d
2 sin(ka/2) sin(ke)

eike/2 ϕinc (2.12)

is also satisfied. Once again, we notice a specific scenario when ke = nπ, where n is an
integer. In these cases, the solutions satisfy ϕ → 0 as x → ±∞ and either (i) ∂yϕ = C
along γ1, and ∂yϕ = −C along γ2, or (ii) ∂yϕ = C along γ1 and γ2, where C is a constant.
Similar to the previous scenario, these solutions are associated with localized eigenmodes
(see Appendix B) and inactive sources with ϕ− = 0 and ϕ+ = ϕinc.

2.2. Numerical validation of the model
In this subsection, we inspect the validity of the model by comparisons with direct
numerics. The numerical computations are performed using the PDE tool in Matlab,
which employs the finite element method to solve partial differential equations. We
consider the geometry depicted in figure 2, and apply radiation conditions at the ends of
the guide x = ±xM , consistent with (2.9) for xM � (a + e)/2. Specifically, we impose
∂xϕ + ikϕ = 2ikϕinc eikxM at x = −xM , and ∂xϕ − ikϕ = 0 at x = xM , consistent with
(2.9).

To begin with, we consider the amplitudes (ϕ−, ϕ+
0 ) generated solely by the sources;

in the model, they are determined by (2.10) with ϕinc = 0. Figure 3 shows the variations
of these quantities, normalized to (au1), against the phase and amplitude of (u2/u1), from
direct numerics (figures 3a,b) and from the model, (2.10) (figures 3c,d). The agreement
between the two sets of results is excellent, showing a relative discrepancy of only 0.1 %
(we have considered kd = π/2, ka = π/4 and ke = π/4). Numerically, this representation
for ϕinc = 0 is sufficient to determine the couple (u1, u2) capable of achieving perfect
absorption ϕ− = ϕ+ = 0. We begin by determining ξ = u2/u1 that yields ϕ− = 0, since
this condition is independent of the value of ϕinc. In figure 3, ϕ− = 0 is obtained
for ξ = e2.36i (white cross), aligning well with (2.11). We then determine the value of
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Figure 3. Validation of the model – wave amplitudes of the outgoing waves (ϕ−, ϕ+) normalized to (au1)

as a function of the source amplitude ratio u2/u1 (modulus and phase) obtained numerically and theoretically
for ϕinc = 0. The white crosses indicate the theoretical prediction for ϕ− = 0 from (2.11). The parameters are
kd = π/2, ka = π/4 and ke = π/4.

χ = −ϕ+
0 /(au1) for u2/u1 = ξ . Eventually, in the presence of any incident wave ϕinc,

the condition ϕ+ = 0 is obtained simply by linearity when ϕinc/(au1) = χ . In the case
reported in figure 3, we obtain χ � 0.44 e−0.4i, demonstrating again good agreement
with the model; see (2.12). We notice that in practice, for any incident wave ϕinc, perfect
absorption is achieved by imposing

u1 = ϕinc

aχ
, u2 = ξu1. (2.13a,b)

The above relations involve (ξ, χ), which depend on the frequency and on the geometry
of the guide through (ka, ke, kd). Numerically, they are determined from the analysis of
representations as those of figure 3; theoretically, they are given by

ξ = −e−ike, χ = 2 sin(ka/2) sin(ke)
k2ad

e−ike/2. (2.14a,b)

Results in figure 4 showcase variations of (ξ, χ) determined numerically as a function
the non-dimensional distance between the two sources ke ∈ (0, 2π) (with kd = π/2 and
ka = π/4), the source extension ka ∈ (0, 2.5π) (with kd = π/2 and ke = 2.5π), and the
channel width kd ∈ (0,π) (with ka = π/4 and ke = π/4). The theoretical predictions
(2.13a,b) are represented by solid lines for comparison, showing excellent agreement
over large ranges of the parameters. It is noteworthy that for small ke, implying small ka
(figure 4a), the two sources producing perfect absorption are nearly in phase opposition,
hence they indeed behave as a dipole source. We also encounter the specific scenarios of
inactive sources ϕ− = ϕ+

0 = 0, hence ϕinc = 0, for ke = π or for ka = 2π.
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Figure 4. Numerical results – influence of the geometry on the conditions for perfect absorption. Source
amplitude ratio ξ = u2/u1 (modulus and phase) and relative incident wave amplitude χ = ϕinc/(au1) (modulus
and phase) against the geometrical parameters: (a,b) the distance between the sources ke (fixing kd = π/2 and
ka = π/4); (c,d) the source size ka (kd = π/2 and ke = 2.5π); and (e, f ) the channel width kd (ka = π/4 and
ke = π/4). The markers correspond to the numerical results, and the curves to the theoretical model.

3. Experimental realization of the active absorption

In our experiments, we use a channel with width d = 50 mm and length 1.2 m, maintaining
a fixed water depth h = 26 mm. The dipole source is implemented by drilling two
submerged openings on one of the vertical walls of the channel, each opening having
width a = 20 mm and height b = 10 mm. The two openings are separated by a distance
5 mm (hence e = 25 mm) and placed at depth ho = 16 mm (see figure 1). Each opening
is connected to a cavity producing a controlled flux through its horizontal surface Sp =
19 × 19 mm2, with the flux created by the vertical motions of a rectangular piston with the
same surface area, and controlled by a linear motor.

We measure the fields of the free surface elevation η̂(x, y, t) using an optical method
known as Fourier transform profilometry (Cobelli et al. 2009; Maurel et al. 2009). This
method relies on acquiring and analysing the fringe patterns projected onto the water
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surface, with the water rendered diffusive by the addition of a dye (Przadka et al. 2012).
Eventually, reflections at the free ends of the channel are minimized by using 5-degree
sloping beaches. In scenarios without an incident wave in the channel (ηinc = 0), two
beaches are positioned at the left and right ends of the channel. In the presence of an
incident wave generated by a wavemaker at the left end of the channel, a single beach is
used (at the right end of the channel).

3.1. Active absorption in the harmonic regime
In the harmonic regime, we proceed by controlling the two pistons independently at
frequency ω and amplitudes p1 and p2. The conservation of fluxes implies that the mean
velocities Un, where n = 1, 2, satisfy −iωpnSp = abUn. Consequently, from (2.8a,b) the
velocities un used in the 2-D model are given approximatively by

un = −iαω
Sp

ab
pn, n = 1, 2, (3.1)

with α defined in (2.8a,b). Next, the measured field of the free surface elevation η̂(x, y, t)
provides η(x, y) by Fourier transform, namely

η(x, y) = 1
T

∫ T

0
η̂(x, y, t) eiωt dt, (3.2)

with T covering several periods (typically 20), and we now seek solutions in the far field
of the form

η(x, y) � ηinc eikx + η− e−ikx, x → −∞,

η(x, y) � η+ eikx, x → +∞,

}
(3.3)

as in (2.9). With η̂(x, y, t) = −(1/g) ∂tφ(x, y, 0, t), and utilizing (2.3), (2.10) and (3.1), the
complex amplitudes (η−, η+) can be written as

η− = iβ
(

p1 e−ike/2 + p2 eike/2) ,
η+ = ηinc + η+

0 , η+
0 = iβ

(
p1 eike/2 + p2 e−ike/2) ,

}
(3.4)

with β a non-dimensional parameter defined by

β = ω2

g
Sp

ab
sin(ka/2)

k2d
α. (3.5)

Accordingly, the conditions for perfect absorption read

p1 = ηinc

χe
, p2 = ξp1, (3.6a,b)

which is the equivalent of (2.13a,b), with ξ = −e−ike and χe = 2β sin(ke) e−ike/2.
In our first experiments, we follow the same procedure as in our numerical simulations,

using ηinc = 0, and measure the waves η(x, y) generated by the dipole source in the
harmonic regime. Following (2.13a,b), we aim to find the condition p2 = ξp1 capable
of experimentally producing η− = 0 and characterize the corresponding values of χe =
−η+

0 /p1. To achieve this, we set the frequency to ω = 14.5 rad s−1, corresponding
to kd � π/2, and conduct a series of 11 × 21 experiments with varying ( p1, p2). The
typical amplitude of each piston is pn ∼ 5 mm. Specifically, we consider 11 values of
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Figure 5. Amplitudes of the outgoing waves (η−, η+
0 ) normalized to p1 as a function of the ratio p2/p1

(modulus and phase) obtained experimentally and theoretically (see (3.4)) for ηinc = 0. The white crosses
indicate the theoretical prediction for η− = 0. The frequency is ω = 14.5 rad s−1 (kd � π/2).

|p2/p1| ∈ (0, 2), and for each modulus ratio, we vary the relative phase of ( p2/p1) between
−π and π with a step of π/20. In each experiment, we measure the entire field η(x, y), and
by averaging it over y in the far field (sufficiently distant from the source), we determine the
constant complex amplitudes (η−, η+

0 ). The results, depicted in figure 5, demonstrate good
agreement with the theoretical model in (3.4). In particular, the agreement confirms (see
white crosses in figure 5) that for p2/p1 = ξ = −1.03 e−i0.75 � −e−ike, the left-outgoing
wave vanishes (η− � 0), and the corresponding value χe = −η+

0 /p1 = 0.13 e−i0.36 is
consistent with (3.4).

In the next step, we quantitatively characterize the condition for perfect absorption
across frequencies. Specifically, we vary the frequency within the range such that k ∈
(0.2, 0.7)π/d and conduct a coarse version of the analysis depicted in figure 5, employing
only 3 × 3 experiments centred on the theoretical value p2/p1 = −e−ike, resulting in η− =
0. This is done by selecting |p2/p1| from the set {0.9, 1, 1.1}, and the phase of ( p2/p1)

from −ke + π{0.96, 1, 1.04}; afterwards, linear interpolations are employed to determine
the optimal condition for achieving perfect absorption. By repeating this experimental
procedure four times, we obtained a refined mean prediction along with error bars derived
from standard deviations. The conditions for perfect absorption are depicted in figure 6,
illustrating ξ = p2/p1 (both modulus and phase), yielding η− = 0, and the corresponding
values of χe = ηinc/p1 = −η+

0 /p1 across various frequencies. To compare with the
model (3.6a,b) represented by solid lines in figure 6), ξ and χe were calculated using
complex wavenumbers k → k + ikim, where the small imaginary part kim = 2 × 10−2 k2d
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Figure 6. Experimental measurements – conditions for perfect absorption. Source amplitude ratio ξ = p2/p1
(modulus and phase) and relative incident wave amplitude χe = ηinc/p1 = −η+

0 /p1 (modulus and phase)
against the frequency by means of kd. The markers correspond to the experimental measurements, and
the curves to the theoretical model (3.4), in which complex wavenumbers with a small imaginary part
kim = 2 × 10−2 k2d were used to account for attenuation, due to viscous losses.

accounts for attenuation due to viscous losses. This function fits the losses observed
experimentally.

Eventually, figure 7 presents experimental evidence of perfect absorption when ηinc /= 0.
We generated ηinc at ω = 12.6 rad s−1 (kd = 0.42π) using a plunging-type wavemaker
placed at the left end of the waveguide and controlled by a linear motor. The complex
amplitude ηinc was characterized in a preliminary study (not reported), in the absence
of dipolar source ( p1 = p2 = 0). This allowed us to determine the complex amplitudes
( p1, p2) producing perfect absorption, according to (3.6a,b), which was validated in
figure 6. In practice, generating the incident waves and those emitted by the dipole source is
achieved by synchronizing the three linear motors. Figure 7(a) displays the corresponding
η(x, y) (real part) derived from the measured field η̂(x, y, t) using (3.2). For comparison,
figure 7(b) presents the result obtained via numerical computation in two dimensions
under the same conditions. The profile of η along x reported in figure 7(c) represents
an average of η(x, y) over y. It reveals weak outgoing waves, with η+ approaching zero for
x � 2a, and η without the characteristic beatings indicative of the superposition of left-
and right-going waves for x � −2a, hence η− ∼ 0. To further quantify the smallness of η−
and η+, fits of η were conducted for x in the ranges (−0.4,−0.05) cm and (0.05, 0.4) cm,
utilizing kim = 2 × 10−2 k2d as done previously. This procedure was repeated for 11
frequencies corresponding to kd in the range (0.2, 0.7)π. The results of this series of
experiments are presented in figure 7(d), confirming consistent absorption efficiency
with (|η−/ηinc|2 + |η+/ηinc|2) at approximately 10−3 over the entire frequency range,
signifying 99.9 % absorption.

3.2. Active absorption in the transient regime
To conclude our experimental demonstration of perfect absorption, we investigate an
incoming wave signal in the transient regime. This signal is generated based on its
Fourier transform ηinc(ω), randomly distributed in phase and modulus but constrained
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Figure 7. (a) Real part of η(x, y)measured experimentally, for ω = 12.6 rad s−1 (corresponding to an incident
wavenumber kd/π = 0.42). (b) Same results from direct numerics. (c) Average in y of η(x, y). (d) Left-going
and right-going energies, normalized to the incident one, against the incident wavenumber kd/π.

by a Gaussian profile, specifically

ηinc(ω) random with |ηinc(ω)| < η0 exp
(

−(ω − ω0)
2

σ 2

)
,

η̂inc(x, t) =
∫ ∞

0
ηinc(ω) exp(i(kx − ωt)) dω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

with parameters η0 = 0.08 mm, ω0 = 14.5 rad s−1 and σ = 4 rads−1 (see figure 8e). In
practice, we consider N = 100 discrete frequencies ωi ∈ (1, 30) rad s−1. Leveraging our
earlier study in the harmonic regime, where we identified ηinc(ω)/p1(ω) and p2(ω)/p1(ω)
for perfect absorption (figure 6 and (3.6a,b)), we generate p̂1(t) and p̂2(t) through Fourier
transforms.

The primary result is presented in figure 8(a), which illustrates a space–time diagram
of the signal η̂(x, t) averaged over y ∈ (0, d). The effective absorption attributable to the
dipole source centred at x = 0 is evident. Indeed, η̂(x, t) remains constant in shape over
time for any x � −2a up to slight attenuation during propagation, while it is nearly zero
for x � 2a. These characteristic shapes are illustrated for x = −0.2 m and x = 0.2 m in
figure 8(b). To evaluate absorption quantitatively, we analyse the amplitudes in Fourier
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Figure 8. (a) Space–time diagram η(x, t), average in y of η(x, y, t), reporting the propagation of an incident
wave generated following (3.6a,b) and its interaction with the dipole source tuned to achieve perfect absorption.
(b) Time signal before (at x = −0.2 m) and after (at x = 0.2 m) the dipolar source. (c,d) Space and time
Fourier transforms |η̂(k, ω)| calculated for x < 0 and x > 0, revealing vanishing outgoing waves, all the energy
corresponding to the incident wave ηinc in alignment with the theoretical dispersion (black line in c). (e) Wave
amplitude along the dispersion relation of the incident and outgoing waves.

space η(k, ω) in these two regions utilizing

η±(k, ω) =
∫ x±

2

x±
1

∫ T

0
η̂(x, t) exp(i(ωt − kx)) dx dt, (3.8)

with T = 20 s, (x−
1 , x−

2 ) = (−0.4 m, 0) and (x+
1 , x+

2 ) = (0, 0.4 m) (before and after the
dipole). Results in the (k, ω) plane are shown in figures 8(c) and 8(d), respectively. In
figure 8(c), it is notable that the spectral content of η−(k, ω) is almost zero for k < 0,
particularly along the dispersion line k = −k(ω) (solid red line), and lies predominantly
along the dispersion line k = k(ω) > 0 (solid black line), hence associated with the
right-going wave only. This confirms η− = 0. Similarly, figure 8(d) demonstrates that the
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spectral content of η+(k, ω) along the line k = k(ω) is nearly zero. The amplitude along
each dispersion line is shown in figure 8(e). These observations are further quantified by
deriving a measure of the energy of the incident, left-going and right-going waves by
calculating the energies along these lines, namely

Einc =
∫ 2ω0

0
|η−(+k(ω), ω)|2 dω, E− =

∫ 2ω0

0
|η−(−k(ω), ω)|2 dω,

E+ =
∫ 2ω0

0
|η+(+k(ω), ω)|2 dω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

resulting in an absorption (Einc − E− − E+)/Einc = 99.5 %.

4. Concluding remarks

The active absorption device that we have proposed is inspired by two absorption systems.
First, it takes up the concept of conventional active absorption, which traditionally works
only in reflection, and is extended here to encompass both reflection and transmission,
independently of viscous losses. Second, it is inspired by a passive device for which
we had demonstrated a relationship between the amplitudes of the resonators and that
of the incident wave leading to perfect absorption (Euvé et al. 2023). We have adopted
this relationship in the active system, thus avoiding dependence on the level of loss and
extending its range of frequency validity. This has been demonstrated for waves guided in a
channel. It should be noted, however, that following the developments proposed for active
absorbers in reflection in Schäffer & Klopman (2000), our absorber should be applicable
to unguided configurations and arbitrary incidences.
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Appendix A. Additional information on the derivation of (ϕ−, ϕ+)

We define ψ(x, y) as a test function satisfying


ψ + k2ψ = 0, in Σ,

∂ψ

∂y |γ
= ∂ψ

∂y |γi

= 0, i = 1, 2.

⎫⎪⎬
⎪⎭ (A1)

The derivation of the Green’s identity proceeds as follows. First, we define the finite
2-D domainΣm = {x ∈ (−xm, xm), y ∈ (0, d)} with xm > (e + a)/2. Then we subtract the
product of the first equation in (2.6) with ψ from the product of the first equation of (A1)
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with ϕ, integrating over Σm. Employing integration by parts yields∫
∂Σm

(
ψ
∂ϕ

∂n
− ϕ

∂ψ

∂n

)
ds = 0, (A2)

where ∂Σm = {x ∈ (−xm, xm), y ∈ {0, d}} ∪ γ+ ∪ γ− with γ± = {x = ±xm, y ∈ (0, d)}.
Further, taking into account the boundary conditions on γi, i = 1, 2 (along with Neumann
conditions on the rigid walls), we obtain

−
∫
γ−

(
ψ
∂ϕ

∂x
− ϕ

∂ψ

∂x

)
dy +

∫
γ+

(
ψ
∂ϕ

∂x
− ϕ

∂ψ

∂x

)
dy

+ u1

∫
γ1

ψ(x, d) dx + u2

∫
γ2

ψ(x, d) dx = 0. (A3)

Subsequently, setting ψ(x, y) = e−ikx and taking into account that ψ is orthogonal to the
evanescent field on γ+ and γ−, along with the far-field solution for ϕ in (2.9), we obtain

2ikd(−ϕinc + ϕ+)+ 2
sin ka/2

k

(
u1 eike/2 + u2 e−ike/2

)
= 0, (A4)

leading to the second relation in (2.10). Analogously, repeating the calculation with
ψ(x, y) = eikx yields the first relation in (2.10).

Appendix B. The cases of inactive sources: existence of localized eigenmodes

Here, we revisit the concept of what we previously termed ‘inactive sources’, which, from
(2.10), yield ϕ− = ϕ+

0 = 0 regardless of the value of ϕinc. First, we define the problem set
for ϕ1 that satisfies the Helmholtz equation with ∂yϕ1 = u1 on γ1, and Neumann boundary
conditions on γ and γ2. We seek solutions to this problem that decay exponentially to 0
when x → ±∞. Through integration of the Helmholtz equation over the domain Σ , and
application of the divergence theorem, we obtain

u1 = −k2

a

∫
Σ

ϕ1(x, y) dx dy. (B1)

Consequently, we can formulate the eigenvalue problem

(Δ+ k2)ϕ1 = 0, in Σ,

∂ϕ1

∂y |γ∪γ2

= 0,
∂ϕ1

∂y |γ1

= −k2

a

∫
Σ

ϕ1(x, y) dx dy,

⎫⎪⎬
⎪⎭ (B2)

whose eigenvalues belong to the set ka = 2nπ, where n is an integer satisfying n < d/(2a),
to satisfy kd < π (this condition ensures the presence of a single propagating mode in the
guide).

Next, we expand our investigation to include problem (2.6) with the condition that ϕ
decreases exponentially to 0 when x → ±∞. By integrating the Helmholtz equation over
Σ , and considering the boundary condition over γ , γ1 and γ2, along with the condition
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Figure 9. (a,b) Eigenmodes for e/d = 2 and a/d = 0.5 associated with the first two eigenvalues k2 of (B5)
found numerically at (kd)2 = 2.47 and 9.86, hence ke = π and 2π. (c) Eigenmode for e/d = 5 and a/d = 4
associated with the first eigenvalue k2 of (B2) found numerically at (kd)2 = 2.47, hence ka = 2π.

when x → ±∞, we obtain

u1 + u2 = −k2

a

∫
Σ

ϕ(x, y) dx dy. (B3)

Furthermore, by multiplying the Helmholtz equation by x and integrating over Σ , we
obtain

−u1 + u2 = −2k2

ea

∫
Σ

x ϕ(x, y) dx dy. (B4)

By combining (B3) and (B4), we formulate an eigenvalue problem defined by

(Δ+ k2) ϕ(x, y), in Σ,

∂ϕ

∂y |γ
= 0,

∂ϕ

∂y |γ1

= − k2

2a

∫
Σ

ϕ(x, y)
(

1 − 2x
e

)
dx dy,

∂ϕ

∂y |γ2

= − k2

2a

∫
Σ

ϕ(x, y)
(

1 + 2x
e

)
dx dy,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B5)

with ϕ decreasing exponentially to 0 when x → ±∞. Solving (B5) yields eigenvalues
ke = nπ (while ensuring kd < π), with symmetric eigenmodes when n is odd (and u1 −
u2 = 0 from (B4)), and antisymmetric eigenmodes when n is even (and u1 + u2 = 0 from
(B3)). Additionally, it provides eigenvalues for ka = 2nπ, associated with eigenmodes that
are the superposition of an eigenmode ϕ1 solution of (B2) and its counterpart ϕ2 when the
roles of γ1 and γ2 are exchanged.

Figures 9(a,b) depict typical eigenmodes calculated (using Comsol) by solving
the eigenvalue problem (B5) in the geometry corresponding to the results in figures 4(a,b),
wherein the first two eigenvalues are obtained numerically for ke � π and 2π.
Additionally, figure 9(c) presents the first eigenmode for ka � 2π in the geometry
corresponding to the results in figures 4(c,d). In these scenarios, perfect absorptions
(ϕ− = ϕ+

0 = 0) were achieved for ϕinc = 0, as the boundary conditions imposed by the
sources coincide with those satisfied by an eigenmode.
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