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Abstract. In this paper the asymptotic behaviour of piecewise monotone functions
f:1- 1 with a finite number of discontinuities is studied (where I <R is a compact
interval). It is shown that there is a finite number of f-almost-invariant subsets
Cy,...,C,R,,..., R, where each C; is a disjoint union of closed intervals and
each R; is a Cantor-like subset of I, such that if x is a ‘typical’ point in I (in a
topological sense) then exactly one of the following three possibilities will happen:

(1) {f"(x)},=0 eventually ends up in some C,.

(2) {f"(x)}.=0 is attracted to some R;.

(3) {f"(x): n=0} is contained in an open, invariant set Z < I, which is such that
for each n=1 f" is monotone and continuous on each connected component of Z

Moreover, f acts topologically transitively on each C; and minimally on each R;.
Furthermore, it is shown how the sets C,,..., C,, R, ..., R, can be constructed.
Finally, our results are applied to some examples.

1. Introduction
In the last few years there has been considerable interest in the qualitative behaviour
of iterates of maps on an interval into itself (see, for instance, [2], [6], [9], [11],
[12],[14]). Although they are the simplest examples of non-linear (discrete) dynami-
cal systems their asymptotic behaviour can exhibit a surprisingly complex structure.
One-dimensional maps have been used as models for various systems (see, for
instance, the models of density dependent population growth studied in [10]). It is
known that in certain cases the asymptotic behaviour of higher-dimensional (discrete
as well as continuous) dynamical systems can be, at least partly, described by iterates
of maps on an interval into itself. For instance, in [19] the Lorenz attractor is
described as the inverse limit of a semi-flow on a two-dimensional branched mani-
fold. The Poincaré map of this semi-flow is a function on a bounded interval [a, b]
into itself which has a single discontinuity at ¢ = (a+ b)/2 and is strictly increasing
on [a, ¢) and (¢, b]. Interval exchange transformations, Newton’s method for deter-
mining the zeros of a polynomial (identifying R with the unit interval) and the
B-transformations discussed in [17] are some more examples for discrete dynamical
systems on a compact interval, having a finite number of discontinuities.

In [15] Preston studied the asymptotic behaviour of iterates of piecewise monotone
continuous functions on a compact interval I into itself, i.e. continuous functions
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f: 1~ I with only a finite number of points at which f is not strictly monotone (an
improved and much simplified version of [15] is contained in §§ 2, 3 and 4 of [16]).
The present work generalizes his main result in that a finite number of discontinuities
is allowed. More exactly, let a, b <R with a < b and let I be the closed interval with
endpoints a and b. For technical reasons we consider a point w not contained in
R and put I'=Iu{w}. We call a map f:I'> I' piecewise monotone on I if there
exist m=1 and a=d,<d,<---<d,=b such that f'({w})={d,, d,,...,d,, o}
and, for all 0=k=m—1, f is continuous and strictly monotone on each of the
intervals (d,, di.,). N (I) will denote the set of piecewise monotone maps on I. For
feN(I) put S()=f""{w})n I Now let fe ¥(I) be fixed. We define f"e ¥(]),
the nth. iterate of f, inductively by f°(x)=x and f"*'(x) =f(f"(x)) for all xeI'
and n=0. Unlike in [7] where the structure of the non-wandering set is studied
(using symbolic dynamics) our aim is to analyse the asymptotic behaviour of
{f"(x)}.=0 for a ‘typical’ point x of I (in a topological sense).

After some preliminaries in § 2 we study in § 3 some basic properties of sinks
and homtervals of f § 4 is concerned with some elementary properties of topologi-
cally transitive f-cycles and f-register-shifts. The main result is stated and proved
in § 5. It says that there are only a finite number of topologically transitive f-cycles
Cy, ..., C, and f-register-shifts R,, ..., R, and that for all points x lying in some
residual subset of I exactly one of the following three things will happen:

(1) {f"(x)}.=0 eventually ends up in some topologically transitive f-cycle C..

(2) {f"(x)}n=o is attracted to some f-register-shift R;.

(3) {f"(x)},=0 eventually ends up in some sink or some homterval of f (in

particular, {f"(x): n =0} is contained in an open, invariant set Z < I, which is such
that for each n=1, f" is monotone and continuous on each connected component
of Z).
In § 6 we study some more properties of f-register-shifts and topologically transitive
Jf-cycles. In particular, we show that each f-register-shift R is a Cantor-like set, that
R-Q< f(R-S(f))c R where Q is a finite subset of I and that for each xe R
either {f"(x): n=0} contains a singular point of f, i.e. an element of S(f), or
{f"(x): n=0} is dense in R. Moreover, we prove that each topologically transitive
f-cycle is in fact strongly transitive. Finally, in § 7 we apply our results to some
examples.

Acknowledgement. 1 would like to thank Professor Chris Preston for his helpful
suggestions and comments, and in particular for his improvements to the clarity of
the definition of register-shifts. I am also grateful to the referee for his remarks and
recommendations.

This paper is a shortened and revised version of the author’s Dissertation (Bielefeld
1985) with the same title.

2. Piecewise monotone functions

Let @, beR with a<b and let w be some point not contained in R. Put I =[a, b]
and I'=TuU{w}; we consider I' as a topological space by calling a subset A of I'
open if there exists an open subset U of R such that UnI=AnL
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A function f:I'> I' is called piecewise monotone on I if there exists m=1 and
a=d,<d,<---<d,=>b such that

(2.1) fis continuous and strictly monotone on each of the open intervals (d, di..),
k=0,1,...,m—1, and

(2.2) o) ={ds, d,,...,dn, w}.
N(I) will denote the set of piecewise monotone functions on I Throughout this
paper we assume that f is a fixed element of N (I).

For n=0 define f": I' > I’ inductively by f°(x) = x and /™' (x) = f(f"(x)) for all
x e I'. It is easy to check that the composition of two elements of A () is again an
element of N'(I); hence we have f" e ¥(I) for each n=1. Let S(f) denote the set
of singular points of f in I, i.e. S(f) =f '({w}) ~ I Put S(f°) =; it is not difficult
to show that for all n, k=0 and A< I we have

S(f"y={xel: f(x)e S(f) for some 0=j< n}
={xel: f"(x) = w},
SHUA=S(f"))=f"(A)n1
and

S A=SU) =S =" (A=S(f")).

Let n=1; note that f” is continuous and monotone on an open interval J< I if
and only if J ~ S(f") = and that J » S(f") = if and only if f"(J)< I Note also
that if f"(x)e I for some xe I then there exists £ >0 such that /" is continuous
and monotone on (x —¢, x+ ¢); in particular, f"(A—S(f")) and f "(A) are open
whenever A is an open subset of I (where f~"(A)={xe I: f"(x)e€ A}). Moreover,
if A is an open interval contained in [ then f"(A— S(f")) is a finite union of open
intervals.

A subset Ac [ is called f-almost-invariant if f(A— S(f)) < A. The union and the
intersection of any number of f-almost-invariant subsets of I are f-almost-invariant.
Furthermore, it is easy to show that if A< I is fralmost-invariant then int (A) and
A are both f-almost-invariant and that for each n=1, A is also f"-almost-invariant.

We call Ac I f-biinvariant if A is f-almost-invariant and f '(A)< A. Again
the union and the intersection of f-biinvariant subsets of I are f-biinvariant.

3. Sinks and homtervals
All results and proofs in this section are almost identical with the ones in [16]. For
the convenience of the reader we give the proofs below.

A non-empty, open interval J < I is calied a sink of f if there exists m =1 such
that f™(J)< J. Note that if J is a sink of f then f"(J)n S{f) = and hence
Jn S(f")= for all n=0; thus for each n=0, " is continuous and monotone on
J

LemMa 3.1 (cf. [16,lemma 4.1]). Let U < I be a non-empty open interval such that
SUYe I foreach n=0. If U~ fM(U) # & for some m=1 then U is contained in a
sink of f.
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Proof. Put J =\U-o f*™(U); then UcJ <1 and J is a non-empty open interval
with f™(J)c /L O

We call a non-empty open interval L= I a homterval of f if for each n =0 we have
f"(L)c I and f"(L) is not contained in any sink of f. Note that if L is a homterval
of fthen f"{L)nS(f)= and hence LN S(f")=O for all n=0; thus " is con-
tinuous and monotone on L for each n = 0. We emphasize that by proposition 3.3 (3)
our definition of a homterval is equivalent to the usual one (see for instance [5]).
For the construction of functions having homtervals see for example [5] or [16].

ProrosITION 3.2 (cf. [16, proposition 4.3]). (1) IfJ,, J, are sinks (resp. homtervals)
of fwith J,u J,# & then J, U J, is also a sink (resp. homterval) of f.

(2) If J is a sink (resp. homterval) of f then for each n=0, f"(J) is also a sink
(resp. homterval) of f.

(3) Each sink of f is contained in a maximal sink of f, if J, and J, are maximal
sinks of f then either J,=J, or J,n J,=.

(4) Each homterval of f is contained in a maximal homterval of f; if L, and L, are
maximal homtervals of f then either Ly =1L, or Ly~ L,=.

Proof. (1) and (2) are clear.

(3) Let J be a sink of f and let U be the largest open interval with Je U< 1
such that f"(U) < I for all n =0. The maximality of U and lemma 3.1 ensure that
U is the maximal sink of f containing J. If J, and J, are maximal sinks of f with
J,# J, then by (1) we have J;nJ,=.

(4) Let L be a homterval of f and let U be the largest open interval with Lc U< I
such that f"(U)< I for all n=0. U cannot be contained in a sink of f since L is
a homterval of f. Hence U is the maximal homterval of f containing L. If L, and
L, are maximal homtervals of f with L,# L, then by (1) we have L, " L.=. O

Put
Sink (f) ={xeI: f™(x)eJ for some sink J of f and some m =0}
and
Homt (f)={xeI: f"(x)e L for some homterval L of f and some m =0},
then Sink (f) and Homt (f) are both open and by proposition 3.2 (2) we have

f (Sink (f)) = Sink (f) and f (Homt (f)) < Homt (f). Moreover, it is easy to see that
Sink (f) and Homt (f) are both f-biinvariant.

ProposiTioN 3.3 (cf. [16, proposition 4.3]). (1) Sink (f) »Homt (f) = .
(2) If Lc Homt (f) is a non-empty open interval then L is a homterval of f.
(3) If L is a homterval of f then f"(L) n f*(L) =& whenever 0=k < n.
(4) If x Sink (f) then there exists q =1 such that lim, ., f"(x) exists.

Proof. (1) Suppose that Sink (f) » Homt (f) # &. Then there exist a sink J of f and
a homterval L of f such that L~J # J. Lemma 3.1 gives us then that Ju L, and
thus also L, is contained in a sink of f. But this is not possible since L is a homterval

of f.
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(2) Let L< Homt (f) be a non-empty open interval. Then for each n =0 we have
f"(LYye I and by (1) f"(L) is not contained in any sink of f. Hence L is a homterval
of f.

(3) Let 0< k=< n; applying lemma 3.1 with U =f*(L) and m = n— k shows that
if L is a homterval of f then f*(L)nf"(L) = .

(4) Suppose that x € Sink (f); then by proposition 3.2(2) there exist k=0, m=1
and a sink J of f such that f*"(x)eJ and f™(J)< J. Since f™ is continuous and
monotone on J this gives us that for each n=k, f""(x) e J and that the sequence
{f>"™(x)} =« is monotone. Hence lim,_ . f>""(x) exists. 0

Put M(f)={xeI: f"(x)=w for some m=0}. Note that M(f) and thus also M(f)
are f-almost-invariant and that I — M(f) is the largest open set U < I such that
f"(U)n S(f) = for all n=0.

ProposITION 3.4 (cf. [16, proposition 4.2]). I — M(f) = Sink (f) U Homt (f).

Proof. Suppose that x e Sink (f) U Homt (f); then there exists m=0 such that
fM(x)eJ where J is either a sink or a homterval of f. Thus f"((x—¢, x+¢))=J
for some £>0 and hence f"((x—¢,x+¢e))= I for each n=0. This shows that
x e I—M{f). On the other hand, let U< I — M(f) be a non-empty open interval.
Then f"(U) < I for all n=0. Thus either U is a homterval of f or there exists m =0
such that f™(U) is contained in some sink of f. Hence U < Sink (f)uw Homt (f). O

The following lemma will be useful later.

LEMMA 3.5. If U < M(f) is non-empty, open and f-almost-invariant then U n S(f) # &.

Proof. Suppose that U< M(f) is non-empty, open and f-almost-invariant. Since
UnM({f)#Dwehave o f"(U)=f"(U-S("))< U forsome ¢ € S(f) and n = 0.

i O
4. Topologically transitive cyclés and register-shifts

This section is concerned with the definitions and some elementary properties of
topologically transitive f-cycles and f-register-shifts.

We call C < I an f-cycle if C is f-almost-invariant and is the disjoint union of
non-trivial closed intervals B,,..., B,, (m=1) such that whenever 1<j=<m and
U c C is non-empty and open then f"(U) n B; # & for some n=1. B,, ..., B,, are
then called the components of C.

Clearly, I is an f-cycle. Note that C being an f-cycle does not necessarily mean
that f cyclically permutes or even permutes the components of C. But if f- is really
‘continuous’ in that there exists a continuous function g: C - C with g(x)=f(x)
for all xe I —S(f), then we can label the components B, ..., B,, of the f-cycle C
in such a way that f(B,—S(f))< By, fori=1,...,m—1and f(B, —S(f))< B,. In
general however, the situation is much more complicated since, for a component B
of C, f(B—S(f)) is not necessarily contained in a single component of C.

For an f-cycle C let A(C, f) denote the set of points in I which eventually ‘end
up’ in the interior of C, i.e.

A(C, fi={xelI: fM(x)eint (C) for some m=0}.
Clearly, A(C, f) is open and f-biinvariant.
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LEMMA 4.1. Let C and K be f-cycles. Then:

(1) If int (BN K) = for some component B of C then int (Cn K)=.

(2) A(CHNAK, NH= ifand only if int (CnK)=.
Proof. (1) Let B be a component of C. If int (C n K} # (& then by definition we
have J# f"(int (C~K))n B=f"(int(C~ K)—S(f"))n B for some n=1. But
since for each m=1, f™(int (C n K)—S(f™)) is an open subset of K it follows that
int(BNnK)#.

(2) Let xe A(C, /)~ A(K, f); then f"(x)eint (C) and f"(x)eint (K) for some
n, m=0. Putting k=max {n, m} we have f*(x)eint (C~ K). The proof of the
converse is trivial since & #int (K')< A(K', f) for each f-cycle K. O

In order to analyse the structure of M(f) we will be interested in f-cycles contained
in M(f). Looking for f-cycles which are ‘minimal’ leads us to the following definition.
We say that an f-cycle C is topologically transitive if whenever F is a closed,
f-almost-invariant subset of C then either F=C or int(F)={.

For xe I put O/(x)={f"(x): n=0}; Oy(x) is called the orbit of x (under f).

ProposiTion 4.2 (cf. [18, theorem 5.8]. Let C < I be an f-cycle. Then the following
are equivalent:
(1) C is a topologically transitive f-cycle.
(2) If U< C is non-empty, open and f-almost-invariant then U = C.
(3) If U, V< C are non-empty and open then f"(U)n V # & for some n=0.
(4) If U, V< C are non-empty and open then {~"(U)n V #(J for some n=0.
(5) {xe C: O;(x) # C} is of the first category.

(6) Of(x)=C for some x< C.

Proof. (1)=>(2) Suppose that U< C is non-empty, open and f-almost-invariant.
Then U < C is closed and f-almost-invariant; hence since C is topologically transi-
tive we have U = C.

(2)=(3) Suppose that U, V< C are non-empty and open. Put A=
Un=of"(U—=S(f")). Then A is a non-empty, open and f-almost-invariant subset of
C, and thus by (2) A= C. Hence f*(U)n V # & for some n=0.

(3)=(4) This is clear.

(4)=(5) Let U,, U,,...be a countable base for the relative topology on C and

let xe C. Then Of(x)# C if and only if O;(x)~ U, = for some n=1. Thus
{xeC:0,(x)#C}=CnlU M fm"U'-U,)

clJ (I—(U fm(Un)mint(C)>>mC.

Since \Um=of "(U,)nint (C) is open and by (4) dense in C the set of points
{xe C: O;(x)# C} is of the first category.

(5)=>(6) This is clear since C is a set of the second category.

(6)=(1) Letxe C with O,(x) = C and let F < C be closed and f-almost-invariant
with int (F) # . Then we have f*(x) e F for some k=0, and thus {f"(x): n=k}< F.

Since C has no isolated points it follows that C = O;(x) ={f"(x):n=k}=F. O
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ProrosiTiON 4.3 (cf. [16, proposition 2.11). Let C and K be topologically transitive
f-cycles. Then:

(1) A(C, f)~ (Sink (f) U Homt (f)) = &.

(2) c< M.

(3) int (C)n S(f)n(a, b) # .

(4) Either C=K or A(C, /)" A(K, f)=.
Proof. (1) Suppose that A(C, )~ Homt (f) # . Then there exists a homterval L
of f with L < C. By proposition 3.3(3) we would then have L f"(f(L)) = for all
n =0 which by proposition 4.2 is not possible.

Suppose next that A(C, )~ Sink (f) # . Then int (C)nSink (f) # < and by
proposition 3.3(4) we would have

int (C)nSink (f)c {xe C: O,(x) # C}.

Again this contradicts proposition 4.2.

(2) By (1) and proposition 3.4 we have

A(C, f) = I —(Sink (f) u Homt (f)) = M(f).
Hence C < M(f).
(3) Sinceint (C)n(a, b) is an f-almost-invariant subset of M(f), lemma 3.5 gives
us that int (C)n S(f)n(a, b) # .
(4) Suppose that A(C, f)nA(K,f)#. Then by lemma 4.1(2) we have
int (Cn K)# . Since Cn K is closed and f-almost-invariant it follows from the

topological transitivity of C and K that C=Cn K =K. [

Examples of piecewise monotone functions having topologically transitive cycles
are easily found. For instance, let ge N (I) be given by g(x)=2x—-a if a<x<
(a+b)/2 and g(x)=2x—-b if (a+b)/2<x < b. As it is shown in corollary 7.2, T is
then a topologically transitive g-cycle. In general we cannot describe the asymptotic
behaviour of elements of /(1) in terms of sinks, homtervals and topologically cycles
alone. For pue(0,4) let f, € ([0, 1]) be given by f,(x)=pux(1—x) for all xe¢
(0,1)—{3}. Then for a certain value of w (u=~3.56994) we have Sink fu)=
Homt (f,) =& and there is no topologically transitive f,-cycle. (See for instance
[6] and [3, theorem 2.6]). In [16, § 7] a function ge N(I) is explicitly constructed
having neither sinks, homtervals nor topologically transitive g-cycles. In both cases
there exists a decreasing sequence of cycles {K,},-, such that int ()., K,,) =<.
This suggests the following definition.

We call R< I an f-register-shift if int (R) = and if there exists a decreasing
sequence {K,},.,; of f-cycles K, contained in M(f) such that R=(),., K,
({K,}n=1 is said to be decreasing if K,.,< K, for each n=1); we then say
that {K,},., is a generator for the f-register-shift R.

ProrosiTioN 44. Let {K,},., be a generator for some f-register-shift R and let
{K}.- be a generator for some f-register-shift R'. Then:

(1) If C is a topologically transitive f-cycle then A(C, f)n A(K,,, )= for some
m=1.

(2) S(Hn(a, b)yn{Ne=int (K,) # .

(3) R#R' ifand only if A(K,,, )" A(K,,, f)=O for some m=1.
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Proof. (1) Suppose that C is a topologically transitive f-cycle and assume
that A(C, f)n A(K,, f)# & for all n=1. Then by lemma 4.1(2) we would have
int(CnK,)# and thus C< K, for all n=1(because C is topologically
transitive). But this is not possible since int ((),-, K,)=.

(2) Since int (K,) (a, b) is an f-almost-invariant subset of M(f) we have by
lemma 3.5, int (K,) n S(f) n(a, b) # & for each n=1. Hence

SHn(a,b)n ) int(K,) =D

(because S(f) is finite).

(3) Let xe R—R’; then xe R~ K] for some j= 1. For n=1 let B, be the unique
component of K, with xe& B,. Since int (R) = we have {x}={ ).~ B,; hence
B,, n K= for some m=j. Now lemma 4.1 gives that

int(K,nK,)cint(K,nK])=,

and thus A(K,,, f)n A(K.,,, f)=. Conversely, if A(K,,, f)nA(K,,, )= for
some m=1 then int (K,,,) nint (K},) =, and thus by (2) R# R". O
Let R be an f-register-shift; put A(R, f) =( \ccwer) A(C, f) where €(R) is the set
of f-cycles C with R< C. Let {K,},~, be a generator for R. One can show that in
general A(R, f)={ )=, A(K,, f) is not true. However, we will prove in § 5 (theorem
5.9(2)) that there exists a generator {K, },,.., for R such that A(R, f) =( =1 A(K,, ).
In particular, this shows that A(R, f) is a Gs-set (i.e. A(R, f) can be written as a
countable intersection of open sets).

In § 6 we will study some more properties of f-register-shifts. We will show that
each f-register-shift R is a Cantor-like set, that R— Q< f(R~S(f))< R where Q
is a finite set of points in I, that the orbit of each point in R — M(f) is dense in R
and that each element of A(R, f) is attracted to R.

5. The main result
We now come to the main result.

THEOREM 5.1. Let C,, ..., C, be the topologically transitive f-cycles, let R, ..., R,

be the f-register-shifts and for 1< i=<s let {K'"},., be a generator for R,. Then
r+s=<card (S(f)n (a, b)),

and there exists m=1 such that for each n=m the open and f-biinvariant sets

A(CL ), ..., A(C, N, A(KP ), ..., A(KY, f), Sink (f), Homt (f) are disjoint
and their union is dense in L

Proof. The proof of theorem 5.1, which is based on a couple of lemmas and
propositions, can be found at the end of this section.

Let C,,..., C, be the topologically transitive f-cycles and let R,,..., R; be the
[f-register-shifts. Put
G()=A(C,,HHu...uA(C, VAR, fHu...uA(R,, f)uSink (f) U Homt ( f).

Theorem 5.9(2) will show that for each 1=<i=s there exists a generator {K '},
for R; such that A(R;, f) ={n=1 A(KY, ). Hence by theorem 5.1 and the Baire
category theorem the Gs-set G(f) is dense in L
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The following example shows that I — G(f) (which is f-biinvariant) can have a
quite complicated structure. Consider Newton’s Method for determining the zeros
of a polynomial p. By identifying R with I we obtain a discrete dynamical system
on I represented by some ge N (I). If p is an n-th degree polynomial with n=4
having real roots, then it follows from a result by Barna [1] that Sink (g) is dense
in I (and thus there are neither homtervals of g, topologically transitive g-cycles
nor g-register-shifts) and that I — G(g) contains a Cantor-like set. Furthermore, it
should be noted that the action of f restricted to I — G(f) can be very complex. In
the continuous case (i.e. if there exists a continuous function g on I into itself
with g(x) = f(x) for all x€ I — S(f)) the asymptotic behaviour of f on I — G(f) is
analysed in [16] by using certain factors of f which essentially ‘kill off’ G(f).

For ¢ € S(f) and n=1 put

1 1
In(¢)=<<p——, cp+—) NI
n n

and

L(e)= U f"(L(¢)=SU™).

Then L, (¢) is non-empty, open and f-almost-invariant and we have L, ,(¢) < L,(¢)
for all n=1. Furthermore, for ¢ € S(f) put

A(p)={xel: f"(x)=¢ for some m=0};
note that A(¢) and thus also A(¢) and int (A(¢)) are f-almost-invariant.

The proof of theorem 5.1 will consist in showing that for each ¢ € S(f) with
int (A(¢)) # & there exists m =1 such that either L,,(¢) is a topologically transitive
f-cycle or {L,(¢)}n=m is a generator for some f-register-shift R. In order to prove
that (for sufficiently large n) L,(¢) is an f-cycle we will first study some properties
of certain (connected) components of open, f-almost-invariant subsets of L

Let U c I be open; a component J of U is called regular if there exists a component
L of U with L~ S(f) # & such that f*(L) nJ # & for some k =0. Let ¢ € S(f) and
n=1; note that each component of L,(¢) is regular.

LEMMA 5.2. Let U < I be non-empty, apen and f-almost-invariant and let J be a regular
component of U. Then there exists a component K of U — S(f) and m=0 such that
SKYc T KnS(f")= and K < L for some component L of U with L~ S(f) # .
Proof. Let
m=min {k=0: f*(L) ~J # & for some component L of U with L~ S(f)# &}.
Choose a component L of U with L~ S(f) # & such that f™(L)nJ # . Since U
is f-almost-invariant there exists a component K of L— S(f) such that f"(K)< J.
Then K is a component of U — S(f) and by the choice of m we have K ~n S(f™) = .
O

LEMMA 5.3. Let U< M(f) be non-empty, open and f-almost-invariant. Then the set
of the regular components of U is non-empty and finite.

Proof. By Lemma 3.5 we have U n S(f) # J; hence we can find at least one regular
component of U. Let ¥ be the set of the components K of U —S(f) which are
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contained in some component L of U with L~ S(f)# . ¥ is finite because we
have for all K € % and ¢ € S(f), K n S(f) # & and card ({K € ¥: ¢ € K}) =2. Since
U< M(f) we can find N =1 such that for all K € % there exists 0=<n=< N with
SK)YNS(f)# . Now let J be a regular component of U. By lemma 5.2 there
exist K€ % and m=0 such that f"(K)c J, K S(f™)= and m < N. Since J is
the unique component of U with f™(K)< J, this shows that there are at most
N - card (%) regular components of U. O

LEMMA 5.4. Let U, U’ be open and f-almost-invariant subsets of 1 with U'c U and
Un S(f)= U n S(f). Then each regular component of U contains at least one regular
component of U'.

Proof. Let J be a regular component of U. By lemma 5.2 there exist a component
K of U—-S(f) and m=0 such that f"(K)c J, KnS(f")=C and K < L for some
component L of U with L~ S(f)# . Since Un S(f)=U'~ S(f) we can find a
component L' of U' with L'~ S(f) # J such that L'c L and L'~ K # (J. Then since
U’ is f-almost-invariant f™(L'~ K) is a non-empty open interval which is contained
in U'nJ. Let J' be the unique component of U’ with f"(L'~K)<J'. Then J'cJ
and J' is regular. 0

Next we want to show that if ¢ € S(f) with int (A(¢)) # & and n is sufficiently large

then L,(¢) is an f-cycle. For this we need the following lemma.

LEMMA 5.5. Let ¢ € S(f) with int (A(g)) # . Then:

(1) If U< A(¢) is non-empty, open and f-almost-invariant, then L,(¢)< U for
some n=1.

(2) There exists m=1 such that L,(¢) < A(¢) and

L(e)nS(f)=L.(¢)nS() foralln=m.

Proof. (1) Suppose that U < A(¢) is non-empty, open and f-almost-invariant. Since
Alp)n U # P we have ¢ € (U — 8(f)) < U for some j = 0. Hence there exists n =1
such that I,(¢) < U. Again using that U is f-almost-invariant gives us that L,(¢) < U.

(2) Since int (A(g)) is f-almost-invariant and S(f) is finite there exists by (1)
m=1 such that L,(¢)<A(¢) and L,(¢)nS()=L,.(¢)nS(f) foralln=m. O

PrROPOSITION 5.6. Let ¢ € S(f) with int (A(¢)) # . Then for all sufficiently largen =1
the number of components of L,(¢) is finite and L,(¢) is an f-cycle contained in A(p).

Proof. By lemma 5.5(2) there exists m=1suchthat L,(¢) = A(¢) and L,(¢)n S(f) =
L,.(¢) S(f) for all n = m. Now let n = m. Since each component of L,(¢) is regular
lemma 5.3 immediately gives us that the number of components of L,(¢) is finite.
Hence L,(¢) can be written as a disjoint union of non-trivial closed intervals
Bi,...,B,(with p=1). Let U< L,(¢) be open and non-empty. In order to prove
that L,(¢) is an f-cycle it remains to show that foreach 1 =i =< p we have B, n f*(U) #
@ for some k=1. Let 1=i=<p and put V=, fS(U-S(f*)). Then V is open
and (since V and L,(¢) are both f-almost-invariant) we have V< L,(¢)< A(p).
Hence by lemma 5.5(1) there exists j=n with L,(¢)< V. B; contains at least one
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component J of L,(¢), which is regular. By lemma 5.4 there exists a component J'
of L,(¢) with J'< J < B;. Hence J'c B;n V and therefore B; N fX(U)# & for some
k=1. O

PROPOSITION 5.7. Let L. =( =, L,.(¢) for some ¢ € S(f) with int (A(g)) # . Then:
(1) If int (L) # & then L, is a topologically transitive f-cycle and L= L,,(¢) for
some m=1.
(2) If int(Ly)=O then L. is an f-register-shift and for all sufficiently large m,
{L,(¢)}nom is a generator for L, with A(Ly, f)={nsm A(L,(0), f).

Proof. (1) Put V=int(L,) and suppose that V is non-empty. By lemma 5.5(2) we
have Vo L, (¢)< A(p) for some k=1 and by lemma 5.5(1) we can find m =1 with
L,.(¢)< V. Thus L(¢)=L,.(¢) = L. for all n=m, and so by proposition 5.6 L,,(¢)
is an f-cycle contained in A(¢). Now let U< L, (¢) be non-empty, open and
f-almost-invariant. Again by lemma 5.5(1) we have L;(¢)< U for some j=m and
hence L,(¢) = U =L, (¢). Therefore by proposition 4.2, L,.(¢) is a topologically
transitive f-cycle.

(2) Suppose that int (L) = . By proposition 5.6 there exists m =1 such that for
each n=m L,(¢) is an fcycle contained in A(p)< M(f). Hence L. is an
f-register-shift and {L,(¢)},~» is a generator for L.. In order to show that
A(Lw, f) =MNu=m A(L.(¢), f), consider an f-cycle K with L.cK; put U=
int (K)nint (A(¢)). Then U is non-empty because ¢ € L.nint(A(g))< K n
int (A(p)). Moreover, U is open and f-almost-invariant; hence by lemma 5.5(1) we
have L,(¢)c U< K and thus int(L,(¢))<int(K) for some n=m. Therefore
A(L,(¢), f) < A(K, f) which shows that A(L.., f) = \wem AL, (@), f).

LEMMA 5.8. Let U< M(f) be non-empty, open and f-almost-invariant. Then there
exists ¢ € S(f) with int (A(¢)) # & such that L,(¢)< U for some n=1.

Proof. | J,.s(s int (A(e)) is dense in M(f) since
M- U int{A(e))= U Ale)- U int(Ale))s U a(A(e)).

¢eS(U) eeS() eeSUH eeS)
Hence there exists ¢ € S(f) with int (A(¢)) » U # &, and thus by lemma 5.5(1) we
have L,(¢)< U for some n=1. O

Proof of Theorem 5.1. By propositions 4.3 and 4.4 there exists m =1 such that for
all n=m the open and fbiinvariant sets A(C,,[),...,A(C,f),
AKY N, ..., A(KY, f), Sink (f), Homt (f) are disjoint and each of them apart
from Sink (f) and Homt (f) contains at least one element of S(f)~(aq, b). Thus
r+s=card (S(f)n(a, b)). For n=m put

G,=1-(A(C,,f)u...UA(C, HUAKY Hu...uAK?, fuSink k, (f)
v Homt (f)).

Then G, and thus int(G,) are f-almost-invariant, and by proposition 3.4
we have G,< M(f). Lemma 5.8 and proposition 5.7 immediately give us that
int (G,)=0. o
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The next theorem shows how each topologically transitive f-cycle and how for a
given f-register-shift R a generator {K,,},., for R with A(R, f) =( ),=1 A(K,, f) can
be constructed; in particular, this implies that A(R, f) is a G;-set.

THEOREM 5.9. Let C be a topologically transitive f-cycle and let R be an f-register-shift.
Then:

(1) C=p=1 Li(@)=1L,.(¢) for some ¢ € S(f) with int A(p) # O.

(2) R=p=1 L.(¢) and {L,(¢)}n=n is a generator for R with A(R,f)=
(Mn=m A(L(@), f) for some ¢ € S(f) with int (A(e)) # & and all large enough m.

Proof. (1) By proposition 4.3(2) we have C < M(f). Hence by lemma 5.8 there
exists ¢ € S(f) with int (A(¢)) # & such that L,.(¢) < C for some m = 1. Since C is
topologically transitive we have C=1L,,(¢)={ )= L.(¢).

(2) Let {K,},~, be a generator for R. Since S(f) is finite there exists, by lemma
5.8, @ € S(f) with int (A(p)) # @ such that for each n=1 we have Li(¢)<c K, for
some j = n. Hence propositions 4.4(3) and 5.7(2) give us that R={"),.., L.(¢) and

that for sufficiently large m, {L,(¢)},~n iS a generator for R with A(R,f)=
(Mn=m A(La(@), f)-

6. More on register-shifts and topologically transitive cycles

In this section we will first study some more properties of f-register-shifts. In
particular, we will show that each f-register-shift R is a Cantor-like set, that
R—- Q< f(R-S5(f))< R where Q is a finite set of points in I and that the orbit of
each point in R— M(f) is dense in R. In the second part of this section we will
prove that each topologically transitive f-cycie C is in fact strongly transitive, i.e.
for each open and non-empty subset U of C, |i-o f"(U—S(f™)) is dense in C for
some m =0.

For the sequel it will be convenient to consider a new dynamical system associated
with f. For xe I and e>01let B.(x,1)=(x,x+&)n I and B.(x,—1)=(x—¢,x)n L
For Ac I put

A*={(x,a)eIx{1,-1}: B.(x,a)nA# for each £>0}.

Let K be an f-cycle; note that (x, a)e K* if and only if B.(x, a)< K for some
€>0. Let (x,@)e I'* and n=0; put f*(x, @) =lim,,, f"(y) if =1 and f"(x, a) =
lim;, f"(y) if @ = —1. This is well defined and clearly we have f"(x, &) € I. Moreover,
there exists €>0 such that f" is continuous and monotone on B.(x, a); put
M"(x, @)=« if f7 is increasing on B.(x, a) and II"(x, )= —a if f" is decreasing
on B.(x, a). In the following we will write f(x, @) (resp. [1(x, «)) instead of f'(x, a)
(resp. IT'(x, @)). Clearly (f(x, ), H(x, a))e I'* for each (x, a)e I*.

Finally, let F:I*- I* be the mapping given by F(x, a)=(f(x, @), [I(x, a)) and
define the mapping F":I*- I'* inductively by F(x, @)=(x, ) and F"(x, a)=
F(F" '(x, a)) for all n = 1. It is not difficult to see that for all (x, «)e I*and n, m=0
we have:

7 @) =M (x, @), T (x, a)),
™" (x, @) =I1"(f"(x, @), II"(x, a))
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and hence

F'(x, a)=(f"(x, ), II"(x, a)).
Furthermore, it is easily checked that for each f-cycle K we have F(K*)c K*.

In order to show that each f-register-shift is a Cantor-like set we need the next
two lemmas which will also be useful later. For (x, a)e I'* put
Of(x’ a) :{f"(x, a): n 20}9
for Bc I'* let
Os(B)={f"(x, @): (x,a)e B and n=0}

and for an f-cycle K put

S, K)={(x,a)e K*: xe S(f)}.
Note that if (x, «) € K* for some f-cycle K then O/(x, a) = K.

LemMma 6.1. Let K be an f-cycle and let ¢, d € K with ¢ <d and (¢, d)< K. Then for
each n=0,

3(f"((c, d))) < Oi(S(f, K)) u{f"(c, 1), f"(d, —1)}.
Proof. Let n=0. If ue (c,d)n S(f") then there exists 0=j<n with f/(u)e S(f)n
int (K) and hence f"(u, ) € O,(S(f, K)) forall « € {1, -1}, Now let (¢, d) n S(f") =
{uy, ..., u,} with u; <u,<-:-<u,. Put uo=—c and u,,,, = d. Then f" is continuous
and monotone on each of the intervals (u;, u;4,),i=0,1,..., m. Thus

3" (e, d)))=a(f"((c,d)=S(U™)))
< U (" ((ui, uiry)))

S O[S, K)uif'(e 1), f1(d, -1)}. O

LeEMMA 6.2. Let {K,},~, be a generator for some f-register-shift R and let (x, a)e I'*
with (x, a) € (K,)* for each n=1. Then card (Oy(x, a))=+c.

Proof. Assume that card (Oy(x, a)) <+0c0. Then also card ({F"(x, a): n=0}) <+00,
and hence there exist g=0 and p=1 such that F?(y, 8)=(y, B) where (y, B)=
Fi(x, a). We have (x, a) € (K,,)* and thus (y, B8)€(K,)* for each n=1. Since by
proposition 3.4, K, n Sink (f) = & there exists £ > 0 such that f* is continuous and
increasing on B,.(y, 8) and

ﬁ'fp(2)>B'Z for allZEBze(y,B)-

Hence for all >0 there exists m=0 such that B, (y, B)= f™(Bs(y, B)—S(/™));
thus B.(y, 8) < K, for each n =1 which is not possible. Therefore, card (O/(x, a)) =
+00. 0

Let € ={C,},- be a decreasing sequence of f~cycles and m = 1; we call a component
B of C,, 6-splitting if for some k> m B contains at least two (distinct) components
of C,. € is said to be splitting if for all n=1 each component of C, is $-splitting.

PrROPOSITION 6.3. Let { K}, be a generator for some f-register-shift R. Then {K,},-,
is splitting.

Proof. Assume that {K,},.~ is not splitting. Then there exists m =1 and a component
B of K,, such that for all n=m, B contains exactly one component of K, (since
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by lemma 4.1(1) B contains at least one component of K,,). For n=m let B, be the
unique component of K, with B,< B. Then B,.,< B, and card (,=n B,)=1.
Without loss of generality we can assume that S(f, K,,) = S(f, K,,) for all n=m. By
proposition 4.4(2) we have S(f, K,,) #<J, and thus there exists (x, a)e I'* with
(x, ) e S(f, K.} = {K,)* for all n=1. Lemma 6.2 shows that card (O;(x, a)) = +;
hence there exist ¢, d € O;(x, a) < O(S(f, K,,)) with c<d such that (¢, d)c K,,.
We can find p=0 such that f7((¢,d)) n B# . By lemma 6.1 we have

3(f7((¢, d))) < O/(S(f, Kn)) U {ff(c, 1), f7(d, —1)}
<€ O(S(f, Kn));
thus there exist u, ve O,(S(f, K.,)) with (u, v) = B. But since O;(S(f, K,.)) < K, for

all n=1 and B is not {K,},=-splitting, it follows that (u, v)< B, for all n=m
which is not possible. O

Note that by the above proposition each point of an f-register-shift R is a limit
point of R. Since in addition R is non-empty, closed and nowhere dense, R is a
Cantor-like set. In particular, for each x € R there exists a € {1, —1} with (x, a) € R*.
The next proposition shows that f acts minimally on each f-register-shift.

PROPOSITION 6.4. Let R be an f-register-shift. Then O,(x, o) = R for each (x, «) € R*.

Proof. Let (x,a)e R*, {K,},-, be a generator for R and for each n=1 and
(¢, B)e S(f, K,,) let K, (¢, B) denote the unique component of int (K,) — S(f) with
(¢, B)e (K, (@, B))*. We can find m =1 such that for each (¢, B)€ S(f, K,,,) either

Of(xa a)m(Km(¢s B)—{‘p})=®

or
Of(x, a)m K"((P, B)?ﬁ @
for all n=m. Now let ze R and for n=m let B, denote the unique component of
K, with ze B,. Then {z}=(),=. B,. Since (x, @) e (K,)* we have O/(x, a) = K,
for each n=1 and thus O(x,a)< R. Hence it is sufficient to show that
Os(x, a) " B, # & for all n=m. So let n=m. Since (x, «)€ R*< (K;)* forall j=1,
lemma 6.2 shows that there exist ¢, d € Oy(x, a) with ¢ <d and (¢, d) € K,,. Moreover,
we can find p =0 such that
£((e,d)=SU™) N B, # .

Hence Oy (x, a) n B, # < follows if we can show that 3(f* (¢, d) — S(f*))) € Os(x, «).
Let u, ve Of(x, a) with (u, v) = K, and let wea(f((u, v) — S(f))). Then either w =
f(u), w=f(v) or w=f(g, B) for some (¢, b)e S(f, K,,). If w=f(u) or w=f(v) then
clearly we O/(x, a). If w=f(¢, B) for some (¢, B) € S(f, K,) then by the choice of
m we have K¢, B)nOp(x,a)#* for all j=m; hence we Ofx, a)(since
(j=m K;(¢, B) ={¢}). Repeating this argument shows that a(f ((u, v) =S <
Os(x, a) for all k=0; in particular, we have

3("((¢, d) = S(7))) € Oy(x, ). O
Let R be an f-register-shift; the above result gives us that O/(x) is dense in R for
all xe R—M(f) (note that since M(f) is countable and R is a Cantor-like set,
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R~ M(f) is uncountable). Next we will show that R is the union of f(R—S(f))
and a finite set. For this we need the following lemma which will also be useful later.

LeEmMMA 6.5. Let A< I be closed and let (y, B)e (f(A—S(f))*. Then there exists
(x, a)e A* with F(x, a)=(y, B).

Proof. For each n=1 there exists y, € f(A—S(f))n By,.(y, B). For n=1let x,c A
with f(x,) =y, and let x be a point of accumulation of {x,},.,. Then there exists
ae{l, -1} such that B.(x, a)n{x,: n=1}# & for each £>0, and so (x, a)ec A*
and F(x, a)=(y, B). 0

PrROPOSITION 6.6. Let R be an f-register-shift. Then:

(1) f(R-S())=R.

(2) fIR=-S(MNu{fix,a): (x,a)e R* and xe S(f)}=R.

(3) F(R*)=R*.

Proof. (1) Let {K,},-, be a generator for R. Then

fIR=-S(N<f(K,—S(f) <K, for each n=1;
hence f(R — S(f)) < R. Let xe R— M(f); then O,(f(x))< f(R — S(f)) < R and thus
by proposition 6.4 we have f(R—-S(f))=R.

(2) Clearly by (1) we have

F(R=S(MNHu{f(x,a): (x,a)e R* and xe S(/)} = f(R—-S(f/)=R.
Now let ye R —f(R—S(f)); then (y, B) e R*=(f(R-S(/)))* for some Be{l, -1},
and so by lemma 6.5 there exists (x, @) € R* with f(x, @) = y. Since y £ f(R - S(f))
we must have x € S(f).

(3) Let (x,a)e R*; then f(x,a)eR and for all >0 we have
B.(f(x, a),H(x, a)) n R # . Hence F(x, a)< R*. Onthe other hand, let (y, 8) € R*.
Then by (1) (», B) € (f(R— S(f)))* and so by lemma 6.5 there exists (x, @) € R* with
F(x,a)=(y, B). O

Let A< I be non-empty; for xe I put d(x, A) =inf {|x—y|: y € A}.
Let R be an f-register-shift; the next result shows that each element of A(R, f)
is attracted to R.

PrROPOSITION 6.7. Let R be an f-register-shift and {K,},., be a generator for R. Then:

(1) For each £ > 0 there exists m =1 such that if x ¢ A(K,,,, f) and a € {1, —1} then
limsup,.. d(f"(x, @), R)<e&.

(2) If xe A(R,f) and a €{1, —1} then lim, . d(f"(x, a), R)=0.
Proof. (1) Let £ >0, there exists m =1 such that the length of each component of
K, is smaller than £ and

int (K,,) 0 S(f) =int (K,,) n S(f) for all n=m.

Let xe A(K,,, f) and a € {1, —1}. If x € A(K,,,, f) » M(f) then there exists p =0 such
that f7(x) eint (K,,) n S(f) = R; thus f"(x, «) e R for all n=p.

If xe A(K,,, /) — M(f) then there exists p=0 such that f"(x)e K,, for all n=p.
Hence in any case lim sup,.. d(f"(x, a), R)=<e.

(2) This follows immediately from (1). A
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Let R be an f-register-shift; one can show that if xel-M(f) with
lim,.. d(f"(x), R) =0 then it does not necessarily follow that x € A(R, f).

Let C be an f-cycle; we call C strongly transitive if for each non-empty open
subset U of C we have U,_, f"(U —S(f")) = C for some m =0.

In order to prove that each topologically transitive f-cycle is strongly transitive
we need the following result.

PrROPOSITION 6.8. Let ¢ € S(f) and suppose that L, (¢) is a topologically transitive
f-cycle for some m=1. Then there exists n =0 such that

Ln() = U f*(In() = SU*).

Proof. By proposition 4.3 we have L,.(¢)< M(f); hence by lemma 5.3, L,.(¢)=
(ci,dy)u-+-u(c, d,) can be written as a disjoint and finite union of non-empty
open intervals. Put B(1)={¢,,..., ¢} and B(-1)={d,,...,d,}. For n=0 let
E,= U S U (0) = S(F));
then L, (¢)=J,=0 E,, E.< E,+, and f(E,—S(f')) < E,4, for all n,j=0. For a €
{1,—-1} put
R(a)={ze B(a): (z, a) & (E,)* for all n=0}.

Now let us assume that L,,(¢)# E, forall n=0. Then R(1)UR(—1)# . Let ¢ >0,
forae{l,—-1}anduc Bla)putu(e)=u+a-ecifuc R(a)andu(e)=uifug R(a).
Furthermore, let D(e) =1 ;=4 (c:(¢), di(g)). By compactness there exists k=0
such that {_J,<,-, (¢;+¢, d; — e) < E,. Hence there exists j =0 such that D(¢) < E,.

We will first show that for each u € R(a) there exists j=1 such that F/(u, a) =
(u, ). Let ue R(a) for some a {1, —1}. Since L, (¢) is a topologically transitive
f-cycle we have

f(Ln(@)=S() =Ln(¢);

hence by lemma 6.5 there exists (u,, a,) € (L,,(¢))* with F(u,, a;)=(u, a). Then
(uy, a) £ (E,)* for all n=0 and thus u, € R(«a,). Therefore, we can inductively find
a sequence {(u,, @,)},-0 of elements of (L, (¢))* such that (ug, ay)=(y, @),
u,€ R(a,) and F(u,.y, @nsy)=(u,,a,) for each n=0. Since card
(R(1)U R(~1)) < +oo there exist n=0 and j=1 such that (4,,, &jin) = (U, a,).
Hence (u;, o;) =(uo, ag) and thus FY(u,a)=(u, a) for each 1=0. Since by
proposition 4.3(1) int (L,.(¢)) » Sink (f) = & there exist N =1 and &> 0 such that

(i) for each veR(B),Be{l,-1}, f~ is continuous and increasing on
B.(v,B), FN(v,8)=(v,8) and B- fN(z)> B z for all z€ B.(v, B)

(ii) In(@)u (Lm(¢)n S(F™)) < D(¢).
Furthermore, there exist p, k=1 and 0< 8 < ¢ such that

D(e)c Eyc E,.nc D(8) S E,.

If fN(D(8)-S(fN))< D(8) then (since I,(¢)< D(8)) we would have L,(¢)<

o' f{(D(8) - S(f")) < E,.n-, which contradicts our assumption. Hence there
exists x € D(8) with f~(x) e L,.(¢)— D(8). Without loss of generality let us assume
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that fV is increasing in x and that f™(x) e (c, ¢+ 8] for some ce R(1). Put
y=max{z=x:ze S(fN)u B(1)};

so y<x and fN((y, x))<(c,c+8). If ye S(fN) or ye B(1)—R(1) then we would
have (y, x) n E, # & and thus £~ ((y, x)) » Ex.n # &; but this is not possible since
Eionn{c, ct+8)=0. Hence y e R(1). Since x € D(8) we have Bs(y, 1) = (y, x) and
so fN(Bs(y,1)) < (¢, c+ 8). But again this is not possible since by (i) the length of
the interval f™(Bs(y, 1)) is strictly larger than 8. Therefore, L,,(¢)= E, for some
n=0. D

ProposITION 6.9. C is a topologically transitive f-cycle if and only if C is a strongly
transitive f-cycle.

Proof. 1If C is a strongly transitive f-cycle then clearly, by proposition 4.2, C is
topologically transitive. Conversely, suppose that C is a topologically transitive
f-cycle. By theorem 5.9 there exist ¢ € S(f) with int (A(¢)) # & and m =1 such that
C =1L1,(¢)forall n=m. Nowlet U < C be non-empty and open. Since U < C < A(¢)
we have L(¢)< f*(U - S(f?)) for some ¢ =0 and j = m. Hence by proposition 6.8

there exists p = q such that
Py ok K
Lg)s \J f(U-5()).

Since L;(¢) = C this shows that C is strongly transitive. [

Remark. We call (x, a) € I'* periodic if F"(x, a)=(x, a) for some n= 1. We say that
g € N(I) is uniformly piecewise linear with slope 7 >0 if on each component U of
I—S(f) g is linear with slope 1 or —7. Suppose that I is a strongly transitive f~cycle,
and assume further that either f(U) nf( V) # & for some components U and V of
I—S(f) with U # V or that I'* contains no periodic element. As in [13, Theorem
5] it can be shown that f is then conjugate to a uniformiy piecewise linear mapping
g€ N(I) (with slope n=1), i.e. there exists a homeomorphism ¢ of I’ such that
¥f = gy

Let C be an f-cycle and assume that there exists a continuous function g: C > C
such that f(x)=g(x) for all xe C - S(f). Then we can label the components
B,,..., B, of C in such a way that g(B;)< B,;,, for 1=i=m—1 and g(B,,) < B,.
For n=0 define inductively g°x)=x and g"*'(x)=g(g"(x)) for all xe C. Let
1=i=m,then g"(B;) < B, and if in addition C is strongly transitive then for each
non-empty open subset U< B; there exists p=0 such that | J2_,g™(U)=B,.
The next result shows that in this situation proposition 6.9 can be improved.

ProposiTION 6.10. Let C be a topologically transitive f-cycle with m components, let
B be a component of C and suppose that there exists a continuous function g: C > C
such that g(x) = f(x) for all xe C — S(f). Then exactly one of the following statements
holds:

(1) For each non-trivial interval J < B there exists k =0 with g*™(J) = B.

(2) There exists a closed interval D with D L g™ (D)= B, int (D) nint (g™ (D))=
and g*™ (D)= D such that for each non-trivial interval J < D there exists k=0 with
g“"(J)=D.
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Proof. Put B=[c,d] and h=g™ By Proposition 6.9, C is strongly transitive; in
particular, we have h(B)= B and h{(u)=u for some u € (¢, d). Suppose that there
exists a non-trivial interval J < B such that h"(J)# B for all n=0. Since C is
strongly transitive there exists j =0 such that ue h"(J) for all n=j; hence [¢, u]c
h¥(J) for some p=j. Since h"(J) # B for all n =0 we have c¢ h([c, u]), and thus
c€ h([u, d]). The same argument shows that d € h([c, u]). Therefore, for all n=0

we have

[cule h* ([ u]l)c h"*"(J) s [c, d)
and

[u,dls B> [c,ul) c h*"(J) < (¢, d].
For n=0 put

D, = hp+2n(J)m hp+2n+1(J).

Then D, is an interval with u € D, and h(D,)< D,+, < (¢, d) for each n=0. Hence
D, ={u} for all n=0 because C is strongly transitive. Therefore, putting D =[c, u]
we have h(D)=[u, d] and h*(D) = D. Now let J'< D be a non-trivial interval; as
above we have [¢, u]< h*(J') for some k=0, and thus [¢, u]c h*(J' )< h*(D) =
[c, u]. Finally, it is clear that (1) and (2) cannot both hold.

7. Some examples
In this section we want to apply our results to some examples. We will make use
of the following fact.

ProposITION 7.1. Suppose that Sink (f) = Homt (f) = & and that I is the only f-cycle
K with int (K)nS(f)n(a, b) # . Then I is strongly transitive.

Proof. By proposition 4.4(2) there are no f-register-shifts. Thus by theorem 5.1
there exists a topologically transitive f-cycle K. We have K =1 since by
proposition 4.3(3) int (K)~ S(f)n (a, b) # <, and by proposition 6.9 I is strongly
transitive. (i

Suppose that ge #([0, 1]) is given by g(x) = Bx mod 1 for all x€(0, 1) with BxeN
and some B>1 (such transformations were discussed in [17]). Then [ is a
strongly transitive g-cycle; this follows immediately from the next corollary.

For an interval J < I let |J| denote the length of J.

CoRrOLLARY 7.2. Suppose that f(a,1)=a, f(¢,1)=a and f(¢,—1)=b for all
e€S(fYn(a,b) and that |f(J)>|J| for each interval J< I with JnS(f)=.
Then I is a strongly transitive f-cycle.

Proof. Since |f(J)|>|J]| for each interval J< I with Jn S(f) = we clearly have
Sink (f) = Homt (f) = . Let K be an f-cycle with int (K} S(f) n(a, b) # &. Then
fle,1)=aforeach ¢ € S(f) ~(a, b) implies that a € K. Since f(a, 1})=a, f(¢, —1)=b
for each ¢ € S(f)n(a, b) and Sink, (f) = it follows that K = I Therefore, by
proposition 7.1, I is strongly transitive. O

The next class of function we consider contains the Poincaré map of the geometric
Lorentz attractor already mentioned in the Introduction.
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CoRoOLLARY 7.3. Suppose that f is continuous and strictly increasing on (a, ¢) and
(@, b) for some a< ¢ < b, that f(¢, 1) = a and f(¢, —1) = b and that |f(J)|>V2|J| for
each interval J < I with J ~ S(f)= . Then I is a strongly transitive f-cycle.

Proof. Since |f(J)| > V2|J| for each interval J < I with J n S(f) = & we have Sink (f) =
Homt (f) = . Let K be an f-cycle with ¢ €int (K) ~ S(f)~(a, b) and let B=[c, d]
be the component of K with ¢ € B. Put U, =(c, ¢) and U, = (¢, d). Without loss
of generality we can assume that |U,|=|U,| (otherwise ‘turn f upside down’). Put
n=min{k=1: f*(U,)n B# &}. Then f*(U,) < B, and we have

|B|>(2)" |Ui|=3(v2)" - | B];

hence n=1and d = b (because f(¢, —1) = b). Moreover, we have vV2(¢ —a) <b—a;
thus

[Us|>b—(3V2(b—a)+a)=(1-3V2)(b-a)
and

F(U)I> (V2=1)(b~a).

Therefore, | B|+ |f(U,)| > b — a which gives us that f(U,) n B # @ and thus f(U,) < B.
Hence B is the only component of K. Since f(¢, 1) = a we have ¢ = a and therefore
K =1 Thus, by proposition 7.1, I is strongly transitive. O

Finally we will apply our results to interval exchange transformations (see for
instance [4] or [8]).

Let S(f)={d,,,,,.dns1} With a=dy<d,<---<d,.,=b. f is said to be an
interval exchange transformation (on I) if f ‘exchanges’ the open intervals

(di, dis1), k=0, ..., m according to a permutation of {0, 1,..., m}, i.e. if
(7.1) fislinear with slope 1 on each of the open intervals (d, di.,), k=0,..., m;
and

(7.2) fldx, dis)) 0 f((d}, dis)) =D if O=k=j=m.
Now suppose that f is an interval exchange transformation. Then
F'(x,1)=("(x,1),1) forall n=1, xe[aq, b), F: I* > I'* is bijective and

JU=S(N)u{le,1): e S()—{b}}=[a, b).

Moreover, f” is also an interval exchange transformation for each n=1, and it is
not difficult to see that for each f-cycle K we have f '(K) < K; in particular, this
gives us that A(K, f)c K

ProPOSITION 7.4. Suppose that f is an interval exchange transformation. Then:
(1) If xe I with f"(x)=x for some n=1 then x is contained in some sink of f.
(2) Sink (f)={xe I: there exists n=1 and u,ve S(f") with u<x <v such that
f(z)=1z for all ze (u, v)}.
(3) Homt () =@.

Proof. (1) Suppose that xeI with f"(x)=x for some n=1. Then there exist
u,ve S(f") with u<x<wv and (u, v) N SY")=J. Since " is linear on (u, v) with
slope 1 we have f"(z) =z for all z€ (u, v). Hence (u, v) is a sink of f with x € (y, v).
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(2) Clearly, if u,ve S(f") with n=1, u<v and f"(z) =z for all ze (u, v) then
(u, v) is a sink of f and thus (u, v) < Sink (f). Conversely, let J be a sink of f and
let n=1 with f"(J)<J. Then there exist uw,veS(f") with J<(u, v) and
(u, V)~ S(f")=. Since f" is linear on (u, v) with slope 1 we have f"(z)=z for
all z e (u, v). Moreover, since f"(J)=J it follows that

{xeI:f"(x)eJ for some n=0}=Ji_of*(J),
and thus each element of Sink (f) is already contained in a sink of f.

(3) This follows immediately from Proposition 3.3(3) and from the fact that if
J< I is an interval with J n S(f) =& then [J]| = [f(J). O

CoroLLARY 7.5. Suppose that f is an interval exchange transformation and let
Cy, ..., C, be the topologically transitive f-cycles. Then:

(1) There are no f-register-shifts.

(2) Sink(f/)u Cyu---UC,isdensein I

Proof. (1) Let R be an f-register-shift. By theorem 5.9 and proposition 5.6 there
exists ¢ € S(f) with int A(@) # & and m=1such that R=(),., L,(¢) and L,(¢) <
A(@) for all n=m. But since ' (L,(¢))< L,(¢) we have A(¢)< L,(¢) and thus
L.(¢)=A(p) for each n= m. This is not possible since int (R) = .

(2) Since A(K, f)c K for each f-cycle K and since by proposition 7.4(3),
Homt (f) = J this follows immediately from theorem 5.1. O

Finally, we show that if the orbits O;(¢, 1) of the singular points ¢ in (a, b) are
infinite and disjoint then I is a strongly transitive f-cycle.

CoROLLARY 7.6 (cf. [8].) Suppose that f is an interval exchange transformation with
S(f)n(a, b) # < and assume that card (O;(¢p, 1)) =+ and f" (¢, 1) S(f)n(a, b)
Jorallpe S(f)~{(a, b) and n=1. Then I is a topologically transitive f-cycle. Moreover,
we have O;(x, 1) is dense in I for each x€[a, b).

Proof. We will first show that Sink (f) = . Assume that Sink (f) # . By proposition
7.4(2) thereexist n=1and u, ve S(f") with u < v such that f"(z) = z forall z € (u, v);
then f“(u) e S(f) for some 0=k < n, Put ¢ = f*(u); so ¢ <b and f"(¢, 1) = ¢. Thus
by assumption we have ¢ = a. Since a = f(n, 1) for some unique ne S(f)~[a, b) it
follows that f"(n, 1) = . But again this is only possible if = a; hence f(a, 1) = q,
and thus f(z) = z for all z€ (a, €) where ¢ =min (S(f) ~ (a, b)). But then there exists
YeS(f)n[& b) with f(g,1)=¢ which contradicts our assumption. Therefore,
Sink (f) = &.

Let Cy, ..., C, be the topologically transitive f-cycles. Then by corollary 7.5(2) I =
Ciu--uC. Assumethat r=2.Then C,n C;# Jforsomel=i<j=r Letze Cin
C;. Suppose first that z¢ M(f). Then f"(z)e C;n C; for all n=0, and thus there
would exist p=1 and m =0 such that f7(f"(z)) =f"(z); by proposition 7.4(1) this
is not possible. Suppose next that ze M(f); then f™(z)e S(f)n(a, b) for some
m =0 and there exists (x,1)e I'* with f(x,1) =z Since f"(¢, 1) S(f)~(a, b) for
allpeS(f)n[a,b)and n=1(f"(a,1)2 S(f)(a, b) forall n=1because a = f(£ 1)
for some ¢ € S(f) ~(a, b)) it follows that x £ S(f). Thus xef (C;n C)c C;n C;.
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Repeating this argument shows that there exists p=1 with fP(x)=x which by
proposition 7.4(1) is not possible. Hence r=1.

Let xe[a, b) and let J< I be a non-trivial closed interval. By proposition 6.9 I
is strongly transitive; thus we have I=\Jy_, f(J—S8(f")) for some m=0. Let
z=f"(x, 1). It follows from lemma 6.5 that there exist y € J and 0 < k=< m such that
f*(y,1) = z. But this immediately gives us that f™ *(x, 1) = y € J. Therefore, Or(x, 1)
is dense in L O
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