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Ice-crystal icing (ICI) in aircraft engines is a major threat to flight safety. Due to the
complex thermodynamic and phase-change conditions involved in ICI, rigorous modelling
of the accretion process remains limited. The present study proposes a novel modelling
approach based on the physically observed mixed-phase nature of the accretion layers.
The mathematical model, which is derived from the enthalpy change after accretion (the
enthalpy model), is compared with an existing pure-phase layer model (the three-layer
model). Scaling laws and asymptotic solutions are developed for both models. The onset
of ice accretion, the icing layer thickness and solid ice fraction within the layer are
determined by a set of non-dimensional parameters including the Péclet number, the
Stefan number, the Biot number, the melt ratio and the evaporative rate. Thresholds for
freezing and non-freezing conditions are developed. The asymptotic solutions present
good agreement with numerical solutions at low Péclet numbers. Both the asymptotic
and numerical solutions show that, when compared with the three-layer model, the
enthalpy model presents a thicker icing layer and a thicker water layer above the substrate
due to mixed-phased features and modified Stefan conditions. Modelling in terms of
the enthalpy poses significant advantages in the development of numerical methods to
complex three-dimensional geometrical and flow configurations. These results improve
understanding of the accretion process and provide a novel, rigorous mathematical
framework for accurate modelling of ICI.
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1. Introduction

Previously, research on aircraft icing was focused on the freezing of supercooled water
droplets on the exterior of aircraft or on a sub-freezing engine surface. Since the
mid-1990s, more than 200 engine power loss events were documented at altitudes of
more than 7000 m where there is hardly any supercooled water content. In 2006, Mason
et al. attributed these events to the ingestion of ice crystals generated by thunderstorms
or convective storms (Mason, Strapp & Chow 2006). Under subfreezing conditions, ice
crystals normally bounce off cold surfaces, and are relatively unproblematic; however,
within an aeroengine compressor, the air temperature increases to above freezing. After
ingestion into the compressor, ice crystals can melt, stick and accrete on the interior warm
metal surfaces, leading eventually to flow blockage and subsequent engine power loss, stall
and surge. Shedding of accumulated ice further damages engine components, promoting
engine failure (Mason et al. 2006). Therefore, it has been recognised within the aeroengine
industry that a deep understanding of the mechanisms and consequences of ice-crystal
icing (ICI), including the accretion processes, is vital to ensure flight safety (Yamazaki,
Jemcov & Sakaue 2021). Such an understanding is crucial for the implementation of safety
protocols, the provision of pilot guidance and aircraft certification requirements and in
underpinning the development of new technologies that can mitigate ice accretion and
subsequent engine damage.

Experimental work performed in e.g. the NASA Glenn Research Center (Currie et al.
2012; Currie, Fuleki & Mahallati 2014), RATFac Canada (Bucknell et al. 2019b) and Icing
Wind Tunnel Braunschweig (Baumert et al. 2018) has improved the understanding of the
physical mechanisms of the ICI. It was shown that the accretion of mixed-phase water
content was dependent on the ice fraction of the impinging water content, the ambient
temperature and humidity conditions.

Numerous models have been adapted in order to account for ice-crystal accretion,
including by Kintea et al. (2014), Kintea, Roisman & Tropea (2016), Tsao, Struk & Oliver
(2016), Bartkus, Struk & Tsao (2018), Bartkus, Tsao & Struk (2019), Villedieu, Trontin &
Chauvin (2014), Trontin & Villedieu (2018), Bucknell et al. (2019a) and Ayan & Özgen
(2018); these are often an extension of the model proposed by Messinger (1953). More
recent models that are based on the extended Messinger model (EMM) are by Ayan
& Özgen (2018), who allowed for mixed-phase and glaciated conditions but only for
sub-freezing temperatures, as well as Bucknell et al. (2019a), who adapted the EMM for
above freezing temperatures. A summary of previous works on ICI can be found in table 1.

Bucknell et al. (2019a) developed a three-layer thermodynamic model for ice accretion,
which accounts for warm surfaces and mixed-phase conditions. In the case of a warm
substrate, the model is split into two regimes: (i) running wet conditions where there
exists only a water film and all impinging ice is melted; (ii) if the water layer surface
temperature reaches freezing, an ice layer forms over the water film and is in turn below
a small surface-water film. However, the model is based on the assumption that all the
impinging ice in the second regime accumulates into a pure solid ice layer. This is not a
representation of the ice accretion physics observed by Malik et al. (2024), who showed
that the accretion layer is a mixed-phase combination of water and ice. Therefore, this
paper is to present a novel one-dimensional (1-D) model of ICI with a warm substrate and
a mixed-phase icing layer.

At the melting point, the liquid water and ice have the same temperature but different
enthalpies. This enthalpy difference is referred to as the latent heat of fusion. The enthalpy
level of the mixture can be used to quantify the ice fraction. In addition, the interface
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Type Reference Model Comments Substr.

MM Villedieu et al.
(2014)

2-D with thin film
for water runback

Adaptation of previous icing
codes to allow for ice crystals

FT

Tsao, Struk &
Oliver (2014)

1-D at stagnation
point

Generate early estimates for ice
accretion

FT

Bartkus et al. (2019) 1-D at stagnation
point

Introduced thermal coupling
between accretion and
substrate. Examine losses
between prediction and
experiment

C

Nilamdeen et al.
(2019)

3-D with thin film
for water runback

Examines the effect of vapour and
the evaporative mass flux

U

EMM Ayan & Özgen
(2018)

2-D with no water
runback

Adapting EMM to allow for ice
crystals

FT

Bucknell et al.
(2019a)

2-D with panel
method for water
runback

Adapting EMM to allow for ice
crystals and surfaces above
freezing

P

Connolly (2021) 2-D with bulk
solution of thin
film for runback

Improving on the model by
Bucknell et al. (2019a).
Adaption of water runback and
treatment of substratum

C

Gallia et al. (2023) 2-D with thin film
for water runback

Adapting Myers & Hammond
(1999) to consider the effect of
a heated surface and thus
shedding effects

U

Porous Kintea et al. (2014) 3-D finite volume
with no runback

Examination of substratum
cooling and shedding
thresholds

P

Trontin & Villedieu
(2018)

2-D MM with
porous accretion.
Empirical
relations for water
runback

Updated version of Villedieu et al.
(2014) allowing porosity and
inclusion of other effects

FT

Roychowdhury et al.
(2023)

2-D thin-film model
of water/ice
mixture

Model based off of Malik et al.
(2022)

P

Zhang et al. (2023) 2-D ice/mixture
with surface thin
film for runback

Allows a total void space in the
porous medium and employs a
wicking rate between the water
and mixture

P

Malik et al. (2023) 2-D thin-film model
of water/ice
mixture

Considers an ice/water mixture
and examines two-way
coupling between accretion and
substratum

C

Other Currie (2020) 2-D with bulk
solution of thin
film for runback

Examines how and where ice
melts after being trapped in
water. Considers the cooling
down of the 2-D substratum

C

Experiments Currie et al. (2011, 2012, 2013, 2014), Struk et al. (2015, 2017, 2018, 2019), Baumert et al.
(2018), Bucknell et al. (2018, 2019b), Malik et al. (2022)

Table 1. A selection of different formulations used for modelling ICI in engines. We introduce the following
notation to refer to the substratum (SUBSTR.): FT (freezing temperature), C (coupling between the accretion
and substratum), P (prescribed heat flux or temperature) and U (unspecified).
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between the pure water layer and the mixed-phase layer can be determined from the
enthalpy distribution, which, as discussed by Crank (1984), simplifies the simulation
of moving boundary problems. Further advances in numerical schemes for enthalpy
such as the flag scheme developed by Bridge & Wetton (2007) ensure accuracy with
reduced computation cost. Therefore, we study the enthalpy formulation of the problem.
In addition, the formulation of the model used by Bucknell et al. (2019a) is also studied
for comparison. The main differences between the two models are:

(i) The three-layer model of Bucknell et al. (2019a), outlined in § 2, serves as an
extension to the EMM (Myers 2001) for substrate temperatures above freezing. The
model initially contains one water layer. When the water surface reaches freezing
temperature, it transitions to a three-layer configuration, consisting of water, ice
and water layers. The partially melted ice particles lead to surface accretion. In the
presence of just one water layer, it is assumed that this ice immediately melts. When
all three layers are present, the surface accretion contributes to both the ice layer
and the top water layer. It is important to note that the quasi-steady model used in
Bucknell et al. (2019a) ignores the contribution of the transient terms when solving
heat transfer within accretion layers; in this work, we show that this effect may be
significant under certain engine representative conditions.

(ii) The new enthalpy model, developed in § 3, ultimately leads to a two-layer
configuration consisting of a water phase and a mixed water/ice phase (mush), as
illustrated in figure 1. This is a partial differential equation (PDE) with a single free
boundary at the surface. Since the enthalpy is defined as the sum of sensible and
latent heats, it is capable of capturing multiple layers, and phase changes, without
the specification of interfacial equations. After freezing temperature is reached,
the model effectively contains a lower water layer, and an upper mushy layer with
mixed-phase properties of ice and water.

The governing equations are non-dimensionalised, showing that the icing problem is
controlled by a substantial group of non-dimensional parameters, including the Péclet
number Pe, Stefan number St, melt ratio Mr, Biot number Bi, non-dimensional evaporative
mass flux ṁev , ratio of latent heats L and the kinetic ratio D. In addition, we shall develop
asymptotic approximations in the limit of Pe → 0; these provide simple expressions for
water and ice growth rates for both the three-layer and enthalpy models. The leading-order
approximation is equivalent to the solution if the heat transfer within the accretion layers
is assumed to be quasi-steady (the transient term in heat equations are ignored, which,
in fact, is the assumption used by Bucknell et al. (2019a) to solve the temperature
distribution within the accretion layers). The asymptotic approximations are compared
with numerical simulations of the transient equations for both models. The difference
between the accretion characteristics of both models are compared and discussed, and
parametric studies are conducted to show the effects of non-dimensional parameters. Our
analysis, including the asymptotic approximations, allows clear identification of the role
of different parameters in the dynamics of the ICI problem. Prior works of the general ICI
problem have not performed asymptotic analysis to this level of detail; as the complexity of
the problem increases (to include, e.g. three-dimensional dynamics) the asymptotic growth
laws developed in this work is useful for benchmarking and validation purposes.

1.1. Outline of the paper
The transient, three-layer formulation of water–ice–water is derived in § 2. We develop
our enthalpy model in § 3; this captures mixed-phase regions of water and ice. The key
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Mushy layer

Incoming flux

Substrate

Figure 1. Schematic of the accretion composition for incoming mass flux on a warm substrate as described
by the enthalpy model in § 3. This consists of a thin water layer on the substrate, with a mixed-phase water/ice
(mush) composition on top.

dimensional and non-dimensional parameters are given in § 4, in which the values used
in our models are provided. Asymptotic solutions for small Péclet number are developed
in § 5, for both phases of the three-layer model and for our enthalpy model. Comparisons
with numerical solutions are presented in § 6. Section 7 summarises the key conclusions,
and further discussion occurs in § 8.

2. Mathematical formulation of a three-layer model

Previously, ICI models which implemented the supercooled droplet model of Messinger
(1953) or the EMM (Myers 2001) have assumed a substrate temperature that is below or
equal to freezing temperature (Ayan & Özgen 2018). In such models, ice is the first layer
present on the solid surface. This incorrectly models the formation of ice within engines, in
which the first layer must be water due to the presence of a warm substrate (Bucknell et al.
2019c). The three-layer water–ice–water model, developed by Bucknell et al. (2019a), was
designed as a further extension to the EMM, primarily to allow for substrate temperatures
above freezing. In this section, we review this latter model; however, instead of assuming
quasi-steady heat transfer we solve the transient equations using a fixed front method in
which the interface between the water and ice layers is tracked and must be determined
as part of the solution. The EMM is formulated in § 2.1, the modifications required to
include a warm substrate are detailed in the water layer formulation of § 2.2 and the
water–ice–water layer formulation of § 2.3. We non-dimensionalise the governing system
in § 2.4, and discuss its connection with the enthalpy model of ICI, developed later in § 3.

2.1. A review of the extended Messinger model
We now introduce the dimensional formulation of the EMM, for which a typical solution
is shown in figure 2. Solutions of this formulation will depend on the coordinates z and t,
where z is the spatial coordinate orthogonal to the lower substrate, and t is time. We denote
the thickness of the lower ice layer by hice(t), and the thickness of the upper water layer by
hwater(t), both of which will be solved for as part of the solution. The total height of the
domain is then given by z = hice(t) + hwater(t). The ice temperature, Tice(z, t), will then
be solved for across 0 ≤ z ≤ hice(t), and the water temperature, Twater(z, t), will be solved
for across hice(t) ≤ z ≤ hice(t) + hwater(t).

The governing equations consist of mass conservation for the total growth of the system

ρw
dhwater

dt
+ ρi

dhice

dt
= ṁimp − ṁev,sub, (2.1a)

where ṁimp is the impinging mass flux which can be broken into water and ice
contributions; this contribution crucially depends on the melt ratio, which is the ratio
of liquid water content to total (ice + water) water content in the incoming ice particles
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z = 0

z = hice

z = hice + hwater

hice(t)

hwater(t)

IceIce

SubstrateSubstrate T subs( t )Tsubs(t)

WaterWater TTwater(z, t)

Tice(z, t)

Figure 2. Form of icing captured in the original Messinger model, as depicted in Myers (2001).

Name Unit Magnitude Reference

ρ Water (both solid and liquid) density kg m−3 1000 Myers (2001)
cw Heat capacity of fluid J (kg K)−1 4218 Myers (2001)
ci Heat capacity of ice J (kg K)−1 2050 Myers (2001)
ca Heat capacity of air J (kg K)−1 1014 Myers (2001)
htc Heat transfer coefficient J (s m2 K)−1 50–650 Villedieu et al. (2014),

Currie (2020)
kw Fluid thermal conductivity J (s m K)−1 0.571 Myers (2001)
ki Ice thermal conductivity J (s m K)−1 2.18 Myers (2001)
Lf Latent heat of fusion kJ kg−1 334 Myers (2001)
Lv Latent heat of vaporisation kJ kg−1 2200–2500 Myers (2001), Currie

(2020)
Ma Molar mass of air g mol−1 29 Meija et al. (2016)
Mw Molar mass of water g mol−1 18 Meija et al. (2016)
Tsubs Substrate temperature ◦C 0–20 Bucknell (2018), Malik

et al. (2024)
Trec Recovery temperature ◦C 0–20 Struk et al. (2015),

Bucknell (2018)
ṁimp Impingement flux kg (s m2)−1 0.15–1.08 Currie et al. (2011),

Bucknell et al. (2018)
Ū Velocity m s−1 40-225 Struk et al. (2015),

Bucknell (2018)
Le Lewis number [–] 0.8–1.2 Currie et al. (2012)
Mr Melt ratio [–] 0.05–0.25 Struk et al. (2015);

Bucknell (2018)
b Lewis number exponent [–] 0.33 or 0.65 Bucknell et al. (2019a)

Table 2. Typical values of dimensional quantities under engine representative conditions, as used in the
existing literature. Note that some estimates given in the references are more specified and single valued.
Others are variable under variable engine or flow conditions.

(Currie et al. 2013). Note that we assume the temperature of the incoming liquid water and
ice content stays at the freezing temperature (Tfrz = 0 ◦C). We also have mass transfer via
the evaporative/sublimative flux, ṁev,sub; dependent on the surrounding conditions, this
evaporative/sublimative flux can then model the gain or loss of mass (cf. Appendix B).
Above, ρw and ρi correspond to the densities of water and ice, respectively. Typical values
of these parameters are listed later in table 2.
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The temperatures in the ice and water layers are given by 1-D heat equations

ρici
∂Tice

∂t
= ki

∂2Tice

∂z2 for 0 ≤ z ≤ hice(t), (2.1b)

ρwcw
∂Twater

∂t
= kw

∂2Twater

∂z2 for hice(t) ≤ z ≤ hice(t) + hwater(t), (2.1c)

where cw, kw, ci, ki denote the heat capacity and thermal conductivity of water and ice,
and typical values can be found in table 2.

In the original model by Messinger (1953) (and also discussed in the extended model by
Myers (2001)), only supercooled water droplets are assumed, and the substrate, at z = 0, is
considered to be held at a temperature below the point of freezing. As a result, all incoming
water is assumed to freeze, leading to the instantaneous formation of an ice layer with
Tice < 0 – this is the situation of rime ice. As it concerns (2.1a), only the growth of the ice
layer needs to be considered (hwater = 0), and we only need to consider the temperature
profile in the ice given by (2.1b).

As noted by Myers (2001), in certain situations and under suitable flux conditions, the
surface temperature of the ice layer, i.e. Tice(hice(t), t), can reach the freezing temperature,
thus allowing formation of a water layer on top; this leads to the setup known as glaze ice.
In this case, we also need to consider the temperature of the water given by (2.1c), as well
as an additional energy balance on the ice-water interface given by the Stefan condition

ρiLf
dhice

dt
= −kw

∂Twater

∂z
+ ki

∂Tice

∂z
at z = hice(t), (2.1d)

where we have introduced the latent heat of fusion given by Lf . Note that
non-dimensionalising (2.1c) leads to the Péclet number

Pe = ρwcw[H]2

kw[t]
, (2.2)

where [H] and [t] correspond to typical length and temporal scales. Then Pe governs the
balance between advective and diffusive effects, and is often assumed to be small. When
Pe � 1, the problem becomes quasi-steady as the time derivative components in each heat
equation become subdominant. Indeed this assumption was used by a number of authors
including Bucknell et al. (2019a) and Gallia et al. (2023).

Finally, there are a number of assumptions that underpin the above model. These
include: (i) lateral conduction is neglected; (ii) there is perfect thermal contact between the
accretion and the substrate; (iii) the ice–water interfaces are at the freezing temperature;
(iv) conduction within the substrate is not considered and the substrate temperature is
prescribed.

The model developed by Bucknell et al. (2019a), denoted by the three-layer model,
builds on the EMM discussed above, but considers two stages for the situation of a
warm substrate and partially melted impinging water content. The original dimensional
quasi-steady form of the model was presented in Bucknell et al. (2019a). Our goal in
the next two subsections is to re-interpret the fully transient formulation of the model
rigorously and to derive a non-dimensional form.

2.2. Stage 1 of Bucknell’s model for ice-crystal icing (water only)
In stage 1, all the ice in the impinging water content melts, and leads to the formation
of a water layer on the solid substrate. The formation of the initial water layer serves
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hhice(t)

hsurf (t)

hwater(t)hwater(t)

z = 0

z = hwater

z = hwater + hice

z = hwater + hice + hsurf

(a)

(b)

Tsubs(t) Tsubs(t)

Ice Tice(z, t)

WaterWater Twater(z, t) Twater(z, t)Water

Water Tsurf (z, t)

Substrate Substrate

Figure 3. Schematic of the two stages in the three-layer model of ICI as developed in Bucknell et al. (2019a).
Initially, (a) in stage 1, there is only a water film; then in (b) stage 2, an water–ice–water layer is used.

to trap more incoming particles, and thus leads to additional build-up of water. If the
energy from melting is not balanced from other contributions, such as via convective and
kinetic transport, this leads to a reduction in the water surface temperature. Then, if the
temperature at the water surface drops to the freezing temperature, this then brings the
model to stage 2, which permits the modelling of both an ice layer and a surface-water
layer. These two stages are shown in figure 3.

We begin by considering the water-only state, as shown in figure 3(a). In this first stage,
we are interested in the height and temperature of the water. Note that, in contrast to the
EMM, the water layer, hwater(t), is now resting on the substrate. We seek to solve

ρcw
∂Twater

∂t
= kw

∂2Twater

∂z2 for 0 ≤ z ≤ hwater(t), (2.3a)

ρ
dhwater

dt
= ṁimp − ṁev(Twater) at z = hwater(t). (2.3b)

The growth of the water layer is given by the continuity equation (2.3b). Our system starts
from a clean substrate, and thus we have the following initial condition for the water layer:

hwater(0) = 0. (2.3c)

We then impose boundary conditions for the temperature

Twater = Tsubs at z = 0, (2.3d)

−kw
∂Twater

∂z
= ΦI(Twater) at z = hwater(t), (2.3e)

where the water adopts the positive substrate temperature, Tsubs > 0, on the substrate,
and there is a heat flux ΦI on the exposed water surface. The function ΦI can be broken
down into components that are dependent on the surface temperature Twater(hwater(t), t),
such as evaporation, convection and sensible heat fluxes; it should also be considered as
functions of components that are independent of Tsurf , such as the melting/freezing and
kinetic energies. For the sensible heat flux, we assume that impinging water and ice are
at the freezing temperature, Tfrz. Thus, following Bucknell et al. (2019a), we have the
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0 1 2 3

0

0.5

1.0

1.5

2.0

2.5

ΦI(T )

ΦII(0)

T

Φi

Figure 4. Plot of T vs Φi(T) for i = I (§ 2.2), II (§ 2.3).

following makeup of the flux term:

ΦI(Twater) = [htc(Twater − Trec)︸ ︷︷ ︸
convection

] + [Lvṁev(Twater)︸ ︷︷ ︸
evaporation

] + [Lf ṁimp,i︸ ︷︷ ︸
melt/freeze

]

+ [cwṁimp(Twater − Tfrz)︸ ︷︷ ︸
sensible

] − [ 1
2 ṁimpŪ2︸ ︷︷ ︸

kinetic

]. (2.4)

Here, we have introduced the recovery temperature Trec and velocity of the incoming
particles Ū. We shall later provide typical parameter ranges of the contributions above
in § 2.4. While complicated, the functional form of ΦI(T) in (2.4) is linear in T for all
terms with the exception of the evaporation, ṁev(T), which is a nonlinear function. Later,
it will be further non-dimensionalised. A typical non-dimensional shape for ΦI is shown
in figure 4. Note that at Twater(hwater(t), t) = 0, we observe a jump to ΦII as the system
enters stage two, described in § 2.3.

Under the appropriate conditions (i.e. an incoming flux of ice and water),
the above system is evolved until the surface temperature reaches freezing, i.e.
Twater(hwater(t∗), t∗) = Tfrz = 0 ◦C. Here, t∗ denotes the critical time at which point
freezing occurs at the corresponding water thickness, h∗

water = hwater(t∗). Dependent on
initial and boundary conditions, such a finite-time freezing event may not occur; in this
work, we focus on situations where it does.

2.3. Stage 2 of the three-layer model for ice-crystal icing
Once a freezing event occurs at a critical time, t = t∗, and height, hwater = h∗

water, in
the single-layer formulation of § 2.2, we proceed to the second stage in which three
distinct water–ice–water layers are modelled. As is shown in figure 3(b), the domain
is now bounded by 0 ≤ z ≤ hwater(t) + hice(t) + hsurf (t). This corresponds to internal
water height hwater, middle ice layer hice, and top surface-water layer hsurf . We therefore
introduce the following notation for the absolute heights:

zw(t) ≡ hwater(t),
zwi(t) ≡ hwater(t) + hice(t),

ztop(t) ≡ hwater(t) + hice(t) + hsurf (t),

⎫⎬
⎭ (2.5)
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in addition to the corresponding domain for each layer

Ωb. water (bottom water region) = {z : z ∈ [0, zw(t)]},
Ωice (middle ice region) = {z : z ∈ [zw(t), zwi(t)]},

Ωt. water (top water region) = {z : z ∈ [zwi(t), ztop(t)]}.

⎫⎬
⎭ (2.6)

We also need to solve for the temperatures within each of the three different layers,
which are given by Twater(z, t) for z ∈ Ωb. water; Tice(z, t) for z ∈ Ωice; and Tsurf (z, t) for
z ∈ Ωt. water.

Only the temperatures of the internal water and ice layers will be solved for in this
model. These are

ρcw
∂Twater

∂t
= kw

∂2Twater

∂z2 for z ∈ Ωb. water, (2.7a)

ρci
∂Tice

∂t
= ki

∂2Tice

∂z2 for z ∈ Ωice. (2.7b)

As noted in § 2.1, the above heat equations are typically solved under the quasi-steady
assumption (cf. Myers (2001) for supercooled water and by Bucknell et al. (2019a) for
ICI). Thus, the time-dependent left-hand sides are often neglected in implementations
within the literature.

On the bottom substrate, we have

Twater(z, t) = Tsubs at z = 0. (2.7c)

In order to model the top water film, and in consideration of the fact that there is a
complicated exchange of ice and water from the incoming flux, an additional assumption
is made over the original Messinger model of § 2.1. Since the surface water film is typically
very thin, (Bucknell et al. 2019c, p. 5) assumes that the temperature gradient can be
ignored and (since Tsurf (zwi(t), t) = 0), the top water film can be considered homogeneous
in temperature

Tsurf (z, t) ≡ 0 for z ∈ Ωt. water. (2.7d)

We also provide the interfacial boundary conditions for the internal water and ice layers,
which by assumption from § 2.1 are all at the freezing temperature

Twater(zw(t), t) = Tice(zw(t), t) = Tice(zwi(t), t) = 0. (2.7e)

The temperature gradient across the surface-water layer is related to the heat flux on the
exposed surface, hence by (2.7d) the net heat flux is zero. Then on the exposed surface

ΦII(ṁf ) = 0 at z = ztop(t), (2.7f )

where the flux, ΦII(ṁf ), takes a similar form to that of ΦI presented previously for the
water-only case in (2.4)

ΦII(ṁf ) = htc(Tsurf − Trec)︸ ︷︷ ︸
convection

+ Lvṁev(Tsurf )︸ ︷︷ ︸
evaporation

− Lf ṁf︸︷︷︸
melting/freezing

+ cwṁimp(Tsurf − Tfrz)︸ ︷︷ ︸
sensible

− 1
2 ṁimpŪ2︸ ︷︷ ︸

kinetic

, (2.7g)

where, from (2.7d), Tsurf = 0, and as before Tfrz = 0 is the freezing temperature.
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Studying (2.7g), we see that ΦII has the same convection, evaporation, sensible and
kinetic terms as the water-only case with ΦI , but now the surface temperature Tsurf has
replaced the former Twater(hwater(t), t). Another difference is that the freezing/melting
contributions on the right hand-side take a different form as we have entered stage 2,
and we no longer require that all particles melt. The melting contribution (Lf ṁimp,i) from
ΦI (2.4) is then replaced with a freezing contribution, −Lf ṁf , in ΦII .

In the end, (2.7f ) and (2.7g) provide an equation which is solved for the mass flux
between the ice and surface-water layer which is freezing, denoted by ṁf .

For the internal water growth of hwater(t), a Stefan condition drives the water–ice
interface, similar to the original EMM

ρwLf
dhwater

dt
= −kw

∂Twater

∂z
+ ki

∂Tice

∂z
at z = zw(t). (2.7h)

From (2.7e), the temperature within the ice layer should be invariant at the freezing
temperature and the temperature gradient should be zero, hence Tice = 0 and ∂Tice/∂z = 0.
The ice layer, hice(t), must consider the evolution of both interfaces, at z = zw(t) and
z = zwi(t). It is modelled by

ρi
dhice

dt
= −ρw

dhwater

dt
+ (ṁimp,i + ṁf ). (2.7i)

Above, the first term on the right-hand side is from the Stefan condition, as any growth
from the internal water layer corresponds to melting from the ice layer. The second term
on the right-hand side, ṁimp,i, is from the impingement of penetrating ice particles. The
last term on the right-hand side, ṁf , is the melting/freezing mass flux which is a solution
of the boundary condition (2.7c).

The surface-water film, hsurf (t), grows according to

ρ
dhsurf

dt
= ṁimp,w − ṁf − ṁev(Tsurf ) at z = ztop(t), (2.7j)

where ṁimp,w is the liquid portion of the incoming mass, and ṁf is the melting/freezing
contribution between the surface-water layer and the ice layer, as solved above from (2.7c).

To close the system, we provide initial conditions for the heights of the different layers,
which are given by

hwater(t∗) = h∗
water, hice(t∗) = 0. (2.7k)

We note that Bucknell et al. (2019a) uses a quasi-steady assumption, in which time
dependence is neglected in each of the heat equations for the water and ice. This includes
(2.3a) for the water in stage 1, and (2.7a,b) for the lower water and middle ice layers,
respectively, in stage 2. Time dependence only appeared in their model through the
evolution equations for each interface. The model that we have presented in §§ 2.2 and
2.3 contains fully transient behaviour.

2.3.1. A remark on the instantaneous passage of ice to the ice layer
We mention one key remark with how the above governing equations are developed from
Bucknell et al. (2019a). When considering the surface-water film and ice layer, the authors
allow the ice contributions from incoming particles to (instantaneously) penetrate through
the water layer, so that ice is added directly to the ice layer below. This behaviour is
implemented via a split of the impinging mass flux, ṁimp, into the water (ṁimp,w) and
ice (ṁimp,i) contributions. Thus, water is added to the top water layer directly via a source
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term (cf. (2.7j)) while ice is added directly to the ice layer (cf. (2.7i)). Although unphysical,
this modelling assumption has the advantage that the constituent makeup of the top-most
layer (i.e. whether it is water, ice, or a mixture) does not have to be considered.

2.4. Non-dimensionalisation of the three-layer model
We begin by examining the different mass fluxes appearing in (2.7i) and (2.7j). We can
split our impinging mass flux into water and ice contributions which is determined by the
melt ratio, Mr. Thus, we introduce this parameter to distinguish between water and ice
impingement, setting

ṁimp,w = Mrṁimp and ṁimp,i = (1 − Mr)ṁimp. (2.8a,b)

We now scale our different mass flux by the total impingement, using the notation of hats
to denote non-dimensional quantities

ˆ̇mimp,w = ṁimp,w

ṁimp
= Mr, ˆ̇mimp,i = ṁimp,i

ṁimp
= 1 − Mr,

ˆ̇mf = ṁf

ṁimp
, ˆ̇mev = ṁev

ṁimp
.

⎫⎪⎪⎬
⎪⎪⎭ (2.9)

2.4.1. Stage 1 (water only)
We now non-dimensionalise the water-only system of (2.3). The following non-dimensional
scalings are introduced for the spatial and temporal variables:

ẑ = z
[H]

, ĥwater = hwater

[H]
, t̂ = t

[t]
= ṁimpt

ρw[H]
,

T̂water = Twater

Trec
, T̂subs = Tsubs

Trec
.

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

The time scale has been chosen to correspond to the rate at which mass enters the system
via ṁimp. Note that we relabel the temperature T̂water 	→ T̂ on the assumption that it is
clear where the temperature is measured.

This yields the following non-dimensional governing equations:

Pe
∂T̂
∂ t̂

= ∂2T̂

∂ ẑ2 , for ẑ ∈ Ωb. water, (2.11a)

dĥwater

dt̂
= 1 − ˆ̇mev, at ẑ = ĥwater(t̂). (2.11b)

The temperature conditions (2.7f ) and (2.7c) at the solid substrate and free surface,
respectively, satisfy

T̂ = T̂subs, at ẑ = 0, (2.11c)

−∂T̂
∂ ẑ

= ΦI(T̂(ẑ, t̂)), at ẑ = ĥwater(t̂). (2.11d)

Above, and from (2.4) we have the flux, ΦI defined as

Φ̂I ≡ Bi(T̂ − 1) + St L ˆ̇mev(T̂) + St(1 − Mr) + Pe T̂ − St D. (2.11e)
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We have also introduced the following non-dimensional parameters:

Pe = ṁimpcw[H]
kw

, Bi = htc[H]
kw

, St = ṁimpLf [H]
kwTrec

,

D = Ū2

2Lf
, L = Lv

Lf
, H = ci

cw
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.12)

respectively corresponding to the Péclet number, Biot number, Stefan number, a ratio of
kinetic to freezing energy and the ratio of latent heats. We will discuss typical parameter
ranges in § 4. For the water height, a reasonable estimate is [H] ≈ 10−4 m (Bucknell 2018).

2.4.2. Stage 2 (three-layer configuration)
In addition to the above, we non-dimensionalise hice(t) and hsurf (t) with respect to [H],
as well as temperature with respect to Trec. This yields the additional non-dimensional
quantities

ĥice = hice

[H]
, ĥsurf = hwater

[H]
, T̂ice = Tice

Trec
. (2.13a–c)

It should be noted that, in the three-layer model, the ice and top surface-water layer are
always assumed to be at T̂ice ≡ 0 and T̂surf ≡ 0. Therefore, only the temperature of the
lower water layer must be solved

Pew
∂T̂
∂ t̂

= ∂2T̂
∂ ẑ2 , for ẑ ∈ Ωb. water, (2.14a)

with T̂ = T̂water above.
The layer growths are rewritten from (2.7h), (2.7i) and (2.7j) as

dĥwater

dt̂
= 1

St

(
−∂T̂

∂ ẑ

)
at ẑ = ĥwater(t̂), (2.14b)

dĥice

dt̂
= 1

R

[
−dĥwater

dt̂
+ (1 − Mr) + ˆ̇mf

]
, (2.14c)

dĥsurf

dt̂
= Mr − ˆ̇mf − ˆ̇mev(T̂ = 0). (2.14d)

Again, since T̂ice ≡ 0, the ice temperature disappears in the Stefan condition of (2.14b),
and because T̂surf ≡ 0, the surface-water temperature is set to zero within the evaporative
term of (2.14d).

Above, we have introduced the additional conductivity and density ratios

K = ki

kw
and R = ρi

ρw
. (2.15a,b)

It remains to specify the boundary conditions on the temperature of the lower water layer.
We have

T̂ = T̂subs at ẑ = 0, (2.16a)

T̂ = 0 at ẑ = ĥwater(t̂), (2.16b)

0 = Φ̂II(T̂ = 0; ˆ̇mf ) at ẑ = ĥsurf (t̂). (2.16c)

1001 A12-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1054


T. Peters, J. Shelton, H. Tang and P.H. Trinh

The substrate boundary condition (2.16a) remains the same as the water-only case
presented in § 2.4.1. At the surface, the temperature is assumed to be zero according to
(2.7d). Therefore, we consider the adjusted flux given previously by (2.7g). As before, by
setting this flux to zero, the melting/freezing contribution, ˆ̇mf , is obtained as a solution
from (2.16c).

It follows that in non-dimensional form

Φ̂II(T̂ = 0, ˆ̇mf ) ≡ −Bi + St L ˆ̇mev(T̂ = 0) − St D − St ṁf = 0. (2.17)

Hence, solving for ˆ̇mf yields

ˆ̇mf ≡ L ˆ̇mev(0) − Bi
St

− D. (2.18)

If ˆ̇mf < 0, this implies that melting rather than freezing occurs. The above expression can
now be substituted into (2.14c) and (2.14d).

We remind the reader that the above set of equations is non-dimensional. In order
to retrieve the dimensional forms, each quantity should be multiplied by its respective
scaling, e.g. ẑ 	→ [H]z.

In summary, the solution of the three-layer model consists of solving: (i) three unknown
heights, ĥwater, ĥice and ĥsurf using (2.14b)–(2.14d); (ii) a temperature, T̂(ẑ, t̂), for the water
layer using (2.14a); and (iii) a mass flux value ˆ̇mf for the melting/freezing between the top
water and ice layer using the surface boundary condition (2.18). In denoting t̂ = t̂∗ as the
time at which ice first forms and we transition to the three-layer model presented in this
section, the initial conditions for T̂(ẑ, t̂∗) and ĥwater(t̂∗) are those obtained from stage 1 in
§ 2.4.1, and additionally ĥice(t̂∗) = 0 and ĥsurf (t̂∗) = 0. Many parameters are required in
this model, and these will be summarised and discussed in § 4.

3. Formulation of the enthalpy model

The enthalpy model that we formulate in this section captures different physical
phenomena to that of the three-layer model previously outlined in § 2. Rather than
assuming that each of the water–ice–water phases are distinct layers separated by
interfaces, we allow for the top ice and water layers to mix, forming a mixed-phase layer
(denoted later by hmush). At high altitudes, the internal accretion can consist of partly
melted ice particles (Currie et al. 2012, 2013, 2014), and mixed-phase accretion has also
been observed in experiments on ICI (Malik et al. 2024). Therefore, mixed-phase models
may better reflect the physical conditions encountered in ICI. Below, we refer to this
mixed-phase layer as a mushy region. Another advantage of the enthalpy formulation is its
ability to capture phase changes; for instance, the transition between an initial water phase
and a mixed-phase solution due to surface ice accretion.

We begin by formulating the 1-D model with respect to dimensional quantities. The
domain we consider is given by 0 ≤ t < ∞, and 0 ≤ z ≤ htotal(t). Here, z is the spatial
coordinate orthogonal to the lower substrate, which lies at z = 0. The unknown surface,
denoted by z = htotal(t), will form part of our solution.
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Following Crank (1984), the enthalpy, E(z, t), and Kirchoff transform on temperature,
v(z, t), are introduced according to

E(z, t) =
⎧⎨
⎩

ρcwT + ρLf for T > 0, (water)
∈ [0, ρLf ] for T = 0, (mixed-phase)
ρciT for T < 0, ( pure ice)

(3.1a)

v(z, t) =
{

kwT for T ≥ 0,

kiT for T < 0,
(3.1b)

where T(z, t) is the usual temperature. We have assumed that the density of ice and water
is the same, and given by the constant ρ. Further, cw is heat capacity of the fluid, Lf is the
latent heat of fusion, and kw is the thermal conductivity of the fluid. These constants are
specified later in table 2, in which typical parameter values are given.

We note that the relations in (3.1a) and (3.1b) for the case of T < 0 (Crank 1984), which
describe pure ice, will not be used in the remainder of this work as our temperature field
takes only non-negative values due to the positive wet bulb temperature considered. This
assumption is consistent with experimental results reported by Bartkus et al. (2018), Struk
et al. (2018) and Bucknell et al. (2019c). However, this relation must be included when
examining all the different configurations of aircraft icing, as some can involve engine
conditions or substrates which are below freezing temperature.

The enthalpy in (3.1a) is evolved according to the heat equation

∂E
∂t

= ∂2v

∂z2 for 0 ≤ z ≤ htotal(t). (3.2a)

On the solid substrate, we impose

T(0, t) = Tsubs, (3.2b)

for the specified temperature Tsubs. On the surface, z = htotal, we also have a comparable
flux condition to (2.4) that comprises convection, kinetic, evaporation and melting
contributions

−kw
∂T
∂z

= [htc(T − Trec)] + [Lvṁev(T)] + [Lf ṁimp,i]

+ [cwṁimp(T − Tfrz)] − [ 1
2 ṁimpŪ2]. (3.2c)

We wish to use an alternative form of the sensible and melting heat fluxes (third and
fourth square brackets), which is more convenient for the enthalpy formulation. Recalling
the definition of enthalpy for temperatures above freezing (3.2a), and evaluating our
temperature at the accretion surface, we have E(h, t) = ρcwT(h, t) + ρLf . In addition,
we define our impinging enthalpy by Eimp = MrρLf . Thus, we can write the difference
between our enthalpy at the surface and impinging enthalpy as

ṁimp

ρ
(E(h, t) − Eimp) = ṁimpcwT(h, t) + ṁimp,iLf . (3.2d)

Above, we have used the fact that 1 − Mr = ṁimp,i/ṁimp, which follows from (2.8). The
right hand-side includes the sensible and melting heat contributions, as written in (2.4),
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while the left hand-side expresses the enthalpy-specific version. Substituting the above
into (3.2c) we have our enthalpic surface boundary condition given by

−kw
∂T
∂z

= [htc(T − Trec)]︸ ︷︷ ︸
convection

+ [Lvṁev(T)]︸ ︷︷ ︸
evaporation

+
[

ṁimp

ρ
(E − Eimp)

]
︸ ︷︷ ︸

freeze/melt+sensible

−
[

1
2

ṁimpŪ2
]

︸ ︷︷ ︸
kinetic

, (3.2e)

at z = htotal(t).
Additionally, the unknown total height, htotal(t), evolves according to

ρ
dhtotal

dt
= ṁimp − ṁev(T|z=htotal(t)), (3.2f )

where ṁimp is the constant impingement flux, and ṁev(T) is the evaporation rate. As
reviewed in Appendix B, the evaporation must be temperature-dependent, and by using
the model proposed by Wexler, Hyland & Stewart (1983) it is assumed to take the form

ṁev(T) = A[ec1T−1+c2+c3T+c4T2+c5T3+c6 log(T) − Pvap,sat,∞]. (3.3)

Here, A, Pvap,sat,∞ and ci are dimensional constants specified in Appendix B. We define
the constant A in (B1), and experimentally determined values for ci, from Wexler et al.
(1983), are given in table 5.

3.1. Non-dimensionalisation
We now non-dimensionalise the boundary-value problem (3.2) for the enthalpy
formulation, in which E and v are related to the temperature, T , by (3.1a) and
(3.1b), respectively. We non-dimensionalise z and htotal with respect to the length scale
[H], and t with the time scale [t] = ρ[H]/ṁimp. Additionally, the temperature, T , is
non-dimensionalised with respect to the recovery temperature, Trec, v with respect to
kwTrec and the enthalpy, E, by ρcwTrec. Combined, this yields the relations

ẑ = z
[H]

, ĥtotal = htotal

[H]
, t̂ = tṁimp

ρ[H]
,

T̂ = T
Trec

, v̂ = v

kwTrec
, Ê = E

ρcwTrec
,

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

in which non-dimensional quantities are denoted with hats. The equations governing these
non-dimensional quantities are now derived.

Firstly, we consider the equations relating E(z, t) and v(z, t) to the temperature, T(z, t),
from (3.1a) and (3.1b), which yields in non-dimensional form

Ê(ẑ, t̂) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T̂ + St
Pe

for T̂ > 0,

∈
(

0,
St
Pe

]
for T̂ = 0,

and v̂(ẑ, t̂) = T̂ for T̂ ≥ 0. (3.5a,b)

Here, Pe is the Péclet number, and St is the Stefan number, both defined previously in
(2.12). Next, the non-dimensional heat equation for the enthalpy is found by substituting
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Figure 5. Plot of E vs ΦE as described in § 3.1. Note that these quantities are non-dimensional, and the
parameter values are taken from table 3 (St = 1.618, Pe = 0.185, Tsubs = 10, Bi = 0.070, L = 6.711, Mr = 0.2
and D = 0.028).

relations (3.4) into (3.2a), which yields

Pe
∂Ê
∂ t̂

= ∂2v̂

∂ ẑ2 for 0 ≤ ẑ ≤ ĥtotal(t̂). (3.5c)

The two boundary conditions for the temperature are found from (3.2b) and (3.2e) to be

T̂(0, t̂) = T̂subs, (3.5d)

−∂T̂
∂ ẑ

= Φ̂E ≡ Bi(T̂ − 1) + St L ˆ̇mev(T̂) + Pe(Ê − Êimp) − St D at ẑ = ĥtotal(t̂), (3.5e)

where we show the variation of Φ̂E(Ê) with regards to Ê in the right side of figure 5. In
figure 5 we note the value that the heat flux is zero, denoted by E∗, which we will discuss
later in § 3.2. Note also that in (3.5e), we have defined Êimp = Mr St/Pe.

The evolution equation for the interface is given by

dĥtotal

dt̂
= 1 − ˆ̇mev(T̂|ẑ=ĥtotal(t̂)

). (3.5f )

In the above, ˆ̇mev(T̂) is the non-dimensional evaporative mass flux. Our expression for
this, given later in (B2), is found by substituting for the non-dimensional relations (2.9)
and (3.4) into the dimensional evaporative mass flux in (3.3). This expression contains
several experimental fitted constants, which we specify in Appendix B.

Our non-dimensional parameters are the same as those defined in (2.12) of § 2.4, in
which the three-layer formulation was presented. Note that in the lower boundary condition
(3.5d), we have defined T̂subs = Tsubs/Trec, which is non-dimensional.

In summary, the solution of the enthalpy model consists of solving for the height,
ĥtotal(t̂), and the enthalpy, Ê(ẑ, t̂). These solutions are coupled via the boundary
condition (3.5e) and evolution equation (3.5f ). As an initial condition, at t̂ = 0 we will
specify ĥtotal(0) = 0 and T̂(0, 0) = T̂subs. Only the non-dimensional formulations of the
three-layer and enthalpy models are considered from this point onward in our work.
We therefore abuse notation by removing the notation of hats, e.g. T̂(ẑ, t̂) 	→ T(z, t), for
non-dimensional quantities in the following sections.
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3.2. Interpretation and prediction of hwater and hmush from the enthalpy solution
The three-layer model from § 2 provides explicit solutions for the height of each layer
corresponding to the lower water layer, hwater(t), the middle ice layer, hice(t), and the top
water layer, hsurf (t). However, the enthalpy method only yields the total height

htotal(t) = hwater(t) + hmush(t), (3.6)

and does not explicitly provide insight on the lower water layer, hwater, and upper
mixed-phase layer, hmush. In this section, we discuss how these components can be
extracted from a computed solution, and how to measure the proportion of ice in
the mixed-phase layer. This then facilitates comparison with the traditional three-layer
model.

(i) We first anticipate the numerical computations shown in § 6 and show a typical
solution, E(z, t), in figure 6(a) corresponding to t = 0.8. The simulation begins
with the initial condition of htotal = 0 and T = Tsubs > 0, and therefore the entire
domain will initially consist of water only. This remains the case as long as
E(htotal, t) > St/Pe across the spatial domain, which by relation (3.5a) is equivalent
to T > 0. In this case, we have that all the accumulation is water, and therefore
hwater(t) = htotal(t) and hmush(t) = 0. This stage lasts until a mixed-phase region
forms with T(z, t) = 0.

(ii) After the inception of the mixed-phase layer induced by ice accretion, the domain
consists of a lower water layer, within which E(z, t) ≥ St/Pe, and the mixed-phase
layer with St/Pe > E(z, t) > 0. The boundary, z = hwater(t), between these two
regions is defined by E(hwater(t), t) = St/Pe. Then the mixed-phase layer height is
subsequently given by hmush(t) = htotal(t) − hwater(t). An example solution in this
regime is shown in figure 6(b), corresponding to t = 5.

(iii) Note that the enthalpy of the mixed-phase layer may be further restricted to the range
St/Pe > E(z, t) ≥ E∗, where E∗ is the ‘balancing enthalpy’. The constant E∗ may
be found analytically by equating the right-hand side of (3.5e) to zero. It is further
assumed that T = 0, and subbing in for the impinging enthalpy discussed earlier in
§ 3, we find

E∗ ≡ (Mr St − St Lṁev + Bi + St D)/Pe. (3.7)

As we are currently not considering the sub-freezing regime, E∗ ∈ (0, St/Pe] and its
value depends on each of the non-dimensional constants in (3.7). For instance, for
those parameters given in figure 6, E∗ ≈ 2.2.

Through examination of the enthalpy within the mixed-phase layer, we can also extricate
the ice contribution. Dividing by the enthalpy jump, St/Pe, gives the mushy phase enthalpy
fraction

β = E∗

St/Pe
= Mr + (Bi/St + D − Lṁev), (3.8)

which is analogous to the melt ratio, Mr, but relates to the accretion instead of the
impingement. Similarly to dividing the total impingement into water and ice contributions,
via the melt ratio as in (2.9), we can estimate the total water and ice contributions by

water component = βhmush, ice component = (1 − β)hmush. (3.9a,b)

Note that the enthalpy fraction β can be related to the freezing contribution of the
three-layer model, calculated earlier in (2.18) via

β = Mr − ṁf . (3.10)
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Figure 6. A typical solution profile for the enthalpy, E(z, t), is shown at t = 0.8 in (a) and t = 5 in (b). The
solution in (a), with E > St/Pe corresponds to a pure water layer. The solution in (b) contains both a pure
water layer for 0 ≤ z < 2.7, and a mixed-phase region for 2.7 ≤ z ≤ htotal. In (b), there is a thin transition
region about z = 2.7 in which the proportion of ice particles in the mixed-phase layer varies from 0 % to
75 %. This numerical simulation used the method outlined in Appendix A, with parameter values St = 1.618,
Pe = 0.185, Tsubs = 10, Bi = 0.070, L = 6.711, Mr = 0.2 and D = 0.028. A value of N = 400 grid points was
used for simulations.

It is useful to compare our definitions of Mr and β with parameters introduced in
the melt/freeze-dominated regime model of Bartkus et al. (2018, 2019). With m0 and n0
defined in their (7) and (10) of Bartkus et al. (2018), we have m0 = (β − Mr)/(1 − Mr)
and n0 = (Mr − β)/Mr, which correspond to the fraction of ice that melts and fraction of
water that freezes, respectively. In the situation of β = 1, we have running wet conditions
m0 = 1, as the balancing enthalpy is at the pure water enthalpy value and all impinging
ice is melting. If β = 0, there is no water contribution in the enthalpy as n0 = 1, and all
impinging water is freezing.

4. Parameters of the model

One of the many challenges in the study of ICI is the number of parameters involved, and
the identification of the different icing stages in the system (Mason, Chow & Riley 2020).
Although we focus primarily on the accretion dynamics in this work, full models may also
consider the effects of e.g. ice-particle tracking, and resultant impact and shedding on the
surfaces. Consideration of these extra effects will introduce additional parameters.

We consider parameters as roughly categorised into four categories.
The first group of parameters corresponds to well-established physical properties, such

as the properties of water, ice and air (Myers 2001).
The second group of parameters is related to icing conditions in aircraft engines, and are

documented in various experiments. These include quantities such as Mach number, wet
bulb temperature, total temperature, substrate temperature, substrate heat flux, melt ratio
of particles, total pressure, particle diameter distribution size and so on (Currie et al. 2012;
Hauk et al. 2016; Baumert et al. 2018; Bucknell et al. 2018; Malik et al. 2024). Note that
some of these are known in the context of experiments and do not necessarily translate
fully to realistic engine conditions.

The third group of parameters correspond to the physical set-up; these are often
associated with calculation of the airflow via computational fluid dynamics. This relates to
the particle tracking and heat transfer, and parameters such as the heat transfer coefficient
are needed to then relate to other quantities such as the mass transfer coefficient. These are
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Symbol Meaning Form Value used

Pe Péclet number ṁimpcw[H]/kw 0.185
St Stefan number ṁimpLf [H]/kwTrec 1.618
Bi Biot number htc[H]/kw 0.070
D Ratio of kinetic to phase-change energies Ū2/2Lf 0.028
Mr Melt ratio ṁimp,w/ṁimp 0.2
H Ratio of heat capacities ci/cw 0.486
L Ratio of latent heats Lv/Lf 6.711
K Ratio of thermal conductivity ki/kw 3.680
R Ratio of densities ρi/ρw 0.917
RH Relative humidity [–] 0.45
β Enthalpy fraction E∗/(St/Pe) 0.252*

Table 3. Non-dimensional parameters in the ICI models and their typical values used in this work. *Note that
β is found as a solution based on the other parameter values according to (3.8).

correlated by the non-dimensional parameters such as the Sherwood, Nusselt, Prandtl
numbers, etc. (Bucknell 2018). In the full system, parameters such as the pressure and
shear stresses will be critical in determining the effects of water runback and break-off
(Mason et al. 2020).

Finally, consider parameters which are used in most modern codes, which may be
empirical or phenomenological, and that may be employed to fill a gap in existing
physics-based understanding. These include parameters such as the collection/sticking
efficiency (Currie et al. 2013) or parameters related to other physical effects such as
erosion or shedding, which have either been taken from experiments (Bartkus et al. 2018)
or relate to numerous other parameters such as the erosion efficiency in Trontin, Blanchard
& Villedieu (2016) and Bucknell et al. (2019c).

A complete listing of dimensional parameters used in this work are summarised in
table 2. In table 3, we list the resultant non-dimensional parameters, derived using values
from table 2. The non-dimensional values in this table establish the ‘baseline values’ which
are referred to in the rest of the paper.

4.1. Thresholds for freezing
Earlier, at the end of § 2.2 we mentioned that a finite time freezing event might not occur
if the surface temperature never reaches freezing. Here, we obtain critical thresholds in
parameters whereby we would not expect ice growth in either the three-layer or enthalpy
models. By examining (2.11e) (or (3.5e)), we set ΦI = 0 and identify the non-dimensional
temperature at which this occurs

T = Bi − St(Lṁev(T) + 1 − Mr − D)

Bi + Pe
. (4.1)

Note that, above, ṁev(T) is a nonlinear function of temperature. We are typically
interested in the case of T > 0 and T → 0+ for the critical temperature. Thus we can
develop an approximate threshold

Bi = Bicrit(St, L, ṁev, Mr, D) ≡ St(Lṁev(0) + 1 − Mr − D), (4.2)

with freezing expected for Bi < Bicrit. Therefore we observe an approximate linear
relationship between the Biot and Stefan numbers which categorises the region of freezing.
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Figure 7. The critical curve separating freezing from non-freezing conditions as measured via (4.2). The solid
line corresponds to the baseline conditions given in table 3 discussed in § 4. The upper dashed line modifies
Mr = 0.1 from baseline, thus decreasing the melt ratio. The lower dashed line modifies RH = 0.65 from
baseline, thus increasing the relative humidity, and decreasing the evaporative flux. The critical lines rotate
anticlockwise for increasing evaporative flux, decreasing melt ratio or decreasing kinetic ratio. The black and
white circles denote parameter values used in figure 11, which consist of our baseline Stefan number, along
with two other values, denoted St1 and St2, respectively.

Note that, as either the evaporation increases, the melt ratio decreases or the kinetic ratio
is reduced, the gradient of the critical curve increases, thus increasing the potential for
freezing. Conversely, with increasing melt ratio or kinetic ratio or decreasing evaporative
flux, this reduces the slope, resulting in a higher threshold for freezing. These relationships
are visualised in figure 7.

5. Asymptotic analysis for small Péclet number

The Péclet number, Pe, is important in determining the governing form of heat transfer.
In the case that the Péclet number is small, we have the effect of diffusion dominating
over advection in the transfer of heat. From examining the definition of the Péclet number
given in table 3, Pe = ṁimpcw[H]/kw, we can determine characteristic values of the Péclet
number. In our baseline case, we consider ṁimp = 0.25 kg (m2 s)−1 and [H] = 10−4 m
(cf. Bucknell (2018), Currie (2020) and Villedieu et al. (2014)); these we combine with the
typical values of cw and kw given in table 2 to calculate a Péclet value of 0.185. In different
conditions, such as those where the impinging mass flux is smaller, we can have Pe ≈
10−2. Conversely, if dealing with a larger mass flux, or hotter engine surface temperatures
which produce a thicker water layer, we could have Pe ≈ 10.

The situation of small Péclet number leads to many simplifications when studying the
system. The heat equation becomes quasi-static which means that the temperature will
have a linear profile and thus, easier implementation in icing code. In this section, we shall
develop leading-order asymptotics of the enthalpy model in the limit of Pe → 0 and the
first-order corrections.

5.1. Water-only state (0 ≤ t < t∗)
In this section we provide leading- and first-order asymptotic solutions for the running wet
conditions, in the limit of Pe → 0. We first present this for the enthalpy formulation, but
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it can be verified that the analysis of the water-only regime in § 2.4.1 follows identically,
which we expand on later in this section.

We expand the temperature, T , and water height, h, as asymptotic expansions in powers
of small Péclet number as

T(z, t) ∼ T0(z, t) + PeT1(z, t) + · · · and h(t) ∼ h0(t) + Pe h1(t) + · · · . (5.1a,b)

Note that, from the enthalpy relations (3.5), we have v(z, t) ∼ T0 + PeT1 + · · · and
PeE(z, t) ∼ St + PeT0 + Pe2T1 + · · · . The governing equations for the leading- and
first-order components of each expansion (5.1) are now derived. We begin by expanding
the heat equation (3.5c), which yields at O(Pe0) and O(Pe) the equations

∂2T0

∂z2 = 0 and
∂2T1

∂z2 = ∂T0

∂t
, (5.2a,b)

respectively. These are second-order PDEs, for which one boundary condition arises from
the fixed substrate temperature (3.5d), which when expanded yields the conditions

T0(0, t) = Tsubs and T1(0, t) = 0. (5.3a,b)

The second boundary condition for temperature comes from the surface flux condition
(3.5e), which we now expand as Pe → 0. Note that this boundary condition contains
components evaluated at the surface z = h(t), which itself is expanded asymptotically in
powers of Pe by (5.1b). Taylor expanding each of these components then allows for the
isolation of terms of O(Pe0) and O(Pe), which yields

−∂T0

∂z
= Bi[T0 − 1] + St Lṁev(T0) + St(1 − Mr − D), (5.4a)

−∂T1

∂z
− h1

∂2T0

∂z2 =
(

Bi + St L
dṁev

dT
(T0)

)(
T1 + h1

∂T0

∂z

)
+ T0, (5.4b)

both of which hold at z = h0(t). The sensible components of the heat flux are not retained
at leading order, which is consistent with Roychowdhury et al. (2023) who observed that
the sensible heat from the particle temperature was negligible compared with other heat
sources. Note the dependence on h0 and h1 in conditions (5.4) above. The equations
governing these may be derived from the evolution equation (3.5f ). As before, we
use expansions (5.1) to Taylor expand T(h, t) ∼ T0(h0, t) + Pe[T1(h0, t) + h1T0z(h0, t)] +
· · · , and collect terms at each order of Pe in (3.5f ). This yields at z = h0(t) the evolution
equations

dh0

dt
= 1 − ṁev(T0) and

dh1

dt
= −

(
h1

∂T0

∂z
+ T1

)
dṁev

dT
(T0), (5.5a,b)

with initial conditions h0(0) = 0 and h1(0) = 0.
These equations form a closed system for T0, h0, T1 and h1. For instance, T0 satisfies

the PDE (5.2a), with boundary conditions (5.3a) and (5.4a). The evolution equation (5.5a)
and initial condition h0(0) = 0 then govern h0. Note, however, the coupling between these;
the equations for T0 involve h0 and vice versa. Similar equations are found for the O(Pe)
solutions of each expansion, but with additional forcing terms involving leading-order
solutions.
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The solutions of PDEs (5.2) that satisfy boundary conditions (5.3) at z = 0 are given by

T0(z, t) = a0(t)z + Tsubs and T1(z, t) = a1(t)z + a′
0(t)z

3

6
, (5.6a,b)

where a0(t) and a1(t) are to be determined and prime (′) denotes differentiation.
Substitution of solutions (5.6) into (5.4) and (5.5) then yields the four equations

dh0

dt
= 1 − ṁev(a0h0 + Tsubs), (5.7a)

dh1

dt
= −

(
a0h1 + a1h0 + a′

0h3
0

6

)
dṁev

dT
(a0h0 + Tsubs), (5.7b)

a0(t) = Bi[1 − a0h0 − Tsubs] − St Lṁev(a0h0 + Tsubs) + St(D + Mr − 1), (5.7c)

a1(t) = −a′
0h2

0
2

−
(

Bi + St L
dṁev

dT
(a0h0 + Tsubs)

)(
a0h1 + a1h0 + a′

0h3
0

6

)

− (a0h0 + Tsubs), (5.7d)

with solutions given by h0(t), h1(t), a0(t) and a1(t). The difficulty now in solving system
(5.7) above is the form of the function ṁev(T). For our numerical solutions calculated
later in § 6, we use the nonlinear model (3.3) from Wexler et al. (1983) in which
ṁev(T) = A exp (c1/T + c2 + c3T + c4T2 + c5T3 + c6 log (T)) − APvap,sat,∞. In § 5.1.1,
we assume this evaporation rate is constant to make analytical progress.

Note that an equivalent asymptotic analysis of the three-layer model from § 2.4.1 leads
to the same results as those presented in this section. This is because when only the initial
water layer is present, the difference between this and the enthalpy formulation is in the
form of the surface flux boundary conditions, (2.11d) and (3.5e). However, by the definition
of Eimp = MrSt/Pe, we have that these two conditions are equivalent.

5.1.1. An approximation for the evaporation, ṁev
We now simplify the form of ṁev(T) in order to make analytical progress in finding the
solution of (5.7). Simplifications used in numerical work by previous authors include linear
and piecewise linear approximations for this function (Myers 2001; Bucknell et al. 2019a).
However, if we take ṁev(T) = α1 + α2T for instance, the exact solutions of (5.7) are given
in terms of special functions which are difficult to evaluate directly.

In the remainder of this section, we consider a constant approximation for this function
in order to obtain more explicit solutions. Our approximation here, ṁev(T) = ṁev(0),
assumes that the evaporation rate is unaffected by temperature. Under this assumption,
(5.7) have the solutions

h0(t) = [1 − ṁev(0)]t, a0(t) = Bi[1 − Tsubs] + St[D + Mr − 1 − Lṁev(0)]
1 + Bih0

,

h1(t) = 0, a1(t) = −a0h0 + Tsubs

1 + Bih0
− a′

0h2
0[3 + Bi h0]

6[1 + Bi h0]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.8)

We will now use these solutions to calculate the time, and height of the water layer, when
freezing first occurs.
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5.2. The freezing point, t = t∗

The time, t∗, at which freezing temperature is reached at the water surface, z = h(t), may
be found by solving the equation T(h(t∗), t∗) = 0. In expanding both T(z, t) and h(t) as
Pe → 0 as in (5.1), and also expanding

t∗ ∼ t∗0 + Pe t∗1 + · · · , (5.9)

we have that t∗0 is a solution of the equation T0(h0(t∗0), t∗0) = 0, and t∗1 is a solution of
T1(h0(t∗0), t∗0) + t∗1∂tT0(h0(t∗0), t∗0) + [h1(t∗0) + t∗1h′

0(t
∗
0)]∂zT0(h0(t∗0), t∗0) = 0. Substitution

of the solutions for T0 and T1 given in (5.6) then yields

a0(t∗0)h0(t∗0) + Tsubs = 0, (5.10)

from which t∗0 is a solution, and an explicit solution for t∗1 given by

t∗1 = −a1(t∗0)h0(t∗0) + a0(t∗0)h1(t∗0) + a′
0(t

∗
0)h

3
0(t

∗
0)/6

a′
0(t

∗
0)h0(t∗0) + a0(t∗0)h

′
0(t

∗
0)

. (5.11)

We may now calculate t∗0 by substituting solutions (5.8) for h0 and a0 into (5.10).
The height of the leading-order water layer at this critical time may then also be found.
Combined, these yield the solutions

t∗0 = Tsubs

(1 − ṁev(0))(St[1 + Lṁev(0) − D − Mr] − Bi)
, (5.12a)

h0(t∗0) = Tsubs

St[1 + Lṁev(0) − D − Mr] − Bi
. (5.12b)

Note that these are the leading-order approximations as Pe → 0 for the freezing time and
water height. The fact that we have found the first-order correction to h(t) to be identically
zero in (5.8) is a consequence of assumption of constant evaporative flux made only in this
section. The first-order correction, t∗1, to the freezing time can be calculated from (5.11).
This leads to

t∗1 = −a1(t∗0)t
∗
0 + a′

0(t
∗
0)[1 − ṁev(0)]2(t∗0)

3/6
a′

0(t
∗
0)t

∗
0 + a0(t∗0)

. (5.13)

Later in § 6, we use the first two orders calculated in this section, t∗ ∼ t∗0 + Pe t∗1, to
compare with values obtained numerically.

5.3. Three-layer state for t > t∗

As noted in § 2.3, a key assumption of the three-layer model is that the ice layer and the
top water layer are fixed at freezing temperature. Thus, we previously set Tice(z, t) = 0 and
Tsurf (z, t) = 0 in their respective regions.

We begin by expanding the heat (2.14a), which yields at O(Pe0) and O(Pe) the equations

∂2T0

∂z2 = 0 and
∂2T1

∂z2 = ∂T0

∂t
, (5.14a,b)

respectively. These are second-order PDEs, for which one boundary condition arises from
the fixed substrate temperature (2.16a), for which expansion yields

T0(0, t) = Tsubs and T1(0, t) = 0. (5.15a,b)

The other boundary condition for temperature arises from fixing the water–ice interface
to be at freezing temperature, T(hwater(t), t) = 0. Expanding both T and hwater as Pe → 0
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yields

T0(h0, t) = 0 and T1(h0, t) + h1(t)T0z(h0, t) = 0. (5.16a,b)

Next, we consider the evolution equations for the widths of the lower water layer, hwater(t),
ice layer, hice(t), and top water layer, hsurf (t). Beginning with equation (2.14b) for hwater ∼
h0 + Pe h1 + · · · yields

dh0

dt
= − 1

St
∂T0

∂z
and

dh1

dt
= − 1

St

(
∂T1

∂z
+ h1

∂2T0

∂z2

)
, (5.17a,b)

at z = h0(t). Expanding as well the ice layer height, hice ∼ h(0)
ice + Pe h(1)

ice + · · · , and top
water layer hsurf ∼ h(0)

surf + Pe h(1)
surf , we have from (2.14c) and (2.14d)

dh(0)
ice

dt
= 1

R

[
−dh0

dt
+ (1 − Mr) + ṁf

]
,

dh(1)
ice

dt
= − 1

R
dh1

dt
,

dh(0)
surf

dt
= Mr − ṁf − ṁev(0),

dh(1)
surf

dt
= 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.18)

The initial conditions for the three-layer model are given at t = t∗. Those for the ice
and top water layer are hice(t∗) = 0 and hsurf (t∗) = 0. For the lower water height and
temperature, we have hwater(t∗) = h̃water(t∗) and T(z, t∗) = T̃(z, t∗), where h̃water(t∗) and
T̃(z, t∗) are the functions obtained at the onset of freezing in the single-layer model.
Expanding each of these as Pe → 0, along with t∗ ∼ t∗0 + Pe t∗1 + · · · yields the initial
conditions

T0(z, t∗0) = T̃0(z, t∗0), T1(z, t∗0) = T̃1(z, t∗0) + t∗1[∂tT̃0(z, t∗0) − ∂tT0(z, t∗0)],
h0(t∗0) = h̃0(t∗0) ≡ h∗

0, h1(t∗0) = h̃1(t∗0) + t∗1[h̃′
0(t

∗
0) − h′

0(t
∗
0)],

h(0)
ice(t

∗
0) = 0, h(1)

ice(t
∗
0) = −t∗1h(0)′

ice (t∗0),

h(0)
surf (t

∗
0) = 0, h(1)

surf (t
∗
0) = −t∗1h(0)′

surf (t
∗
0).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.19)

5.3.1. Leading-order solutions
We begin by solving PDE (5.14a) for the leading-order temperature, T0, which with
boundary conditions (5.15a) and (5.16a) yields

T0(z, t) = Tsubs

(
1 − z

h0(t)

)
. (5.20)

The leading-order temperature profile (5.20) can then be substituted into (5.17a), which
yields a nonlinear ordinary differential equation (ODE) for h0(t). By integrating this and
applying the initial condition from (5.19), we obtain the solution

h0(t) =
√

(h∗
0)

2 + 2Tsubs

St
(t − t∗0). (5.21)
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The leading-order solutions for the ice and surface-water layer, h(0)
ice and h(0)

surf , can be found
by integrating (5.18) with initial conditions from (5.19), yielding

h(0)
ice(t) = 1

R

[
h∗

0 −
√

(h∗
0)

2 + 2Tsubs

St
(t − t∗0) + (1 − Mr + ṁf )(t − t∗0)

]
, (5.22)

h(0)
surf (t) = (Mr − ṁf − ṁev(0))(t − t∗0), (5.23)

respectively.

5.3.2. First-order correction
We begin by solving for the first-order temperature profile, T1. Substitution of T0 from
(5.20) into the governing PDE (5.14b) yields a second-order problem with a forcing term,
which we integrate along with boundary conditions (5.15b) and (5.16b) to find

T1(z, t) = Tsubs

[
z3

6h2
0

dh0

dt
+
(

h1

h2
0

− 1
6

dh0

dt

)
z

]
. (5.24)

The ODE for h1(t) is found by substituting (5.24) into (5.17b), which gives

dh1

dt
+ Tsubs

St h2
0

h1 = −Tsubs

3St
dh0

dt
. (5.25)

This linear first-order ODE may be solved using an integrating factor, with the initial
condition from (5.19), to find

h1(t) = −T2
subs

3St2
t − t∗0
h0(t)

+
(

1 − ṁev(0) − Tsubs

St h∗
0

)
t∗1h∗

0
h0(t)

. (5.26)

To solve for h(1)
ice and h(1)

surf , we integrate the respective equation from (5.18) and enforce the
initial conditions from (5.19). This yields

h(1)
ice(t) = 1

R

[
T2

subs

3St2
t − t∗0
h0(t)

−
(

1 − ṁev(0) − Tsubs

St h∗
0

)
t∗1h∗

0
h0(t)

+ (Mr − ṁev(0) − ṁf )t∗1

]
,

(5.27)

h(1)
surf = −t∗1(Mr − ṁf − ṁev(0)). (5.28)

5.3.3. Summary of asymptotic results for t > t∗
We summarise the leading- and first-order results. The temperature profiles are given by

T0(z, t) = Tsubs

(
1 − z

h0(t)

)
, (5.29a)

T1(z, t) = T2
subs

z3

h3
0(t)

+
(

Tsubsh1(t)
h0(t)

− T2
subs
6St

)
z

h0(t)
. (5.29b)
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The height is the water film is given by

h0(t) =
√

(h∗
0)

2 + 2Tsubs

St
(t − t∗0), (5.29c)

h1(t) = −T2
subs

3St2
t − t∗0
h0(t)

+
(

1 − ṁev(0) − Tsubs

St h∗
0

)
t∗1h∗

0
h0(t)

. (5.29d)

The ice thickness was solved to yield

h(0)
ice(t) = 1

R

[
h∗

0 −
√

(h∗
0)

2 + 2Tsubs

St
(t − t∗0) + (1 − Mr + ṁf )(t − t∗0)

]
, (5.29e)

h(1)
ice(t) = 1

R

[
T2

subs

3St2
t − t∗0
h0(t)

−
(

1 − ṁev(0) − Tsubs

St h∗
0

)
t∗1h∗

0
h0(t)

+ (Mr − ṁev(0) − ṁf )t∗1

]
.

(5.29f )

Finally, the surface-water film evolves as

h(0)
surf = (Mr − ṁf − ṁev(0))(t − t∗0), (5.29g)

h(1)
surf = −t∗1(Mr − ṁf − ṁev(0)). (5.29h)

5.4. Enthalpy mixed-phase layer for t > t∗

As discussed in § 3, for t > t∗, a mush layer appears above the water layer, and there is a
sudden drop of enthalpy from St/Pe to a value between 0 and St/Pe. Again we examine
the Pe → 0 limit and conclude that in the region z ∈ [0, hwater], ∂zzv = 0, and therefore
v(0)(z) = a(t)z + b(t). Note in addition that we can verify that the temperature in the
mushy region is everywhere zero, hence v = 0 for z ∈ [hwater, htotal]. it follows

v(0)(z, t) =
{

a1(t)z + b1(t), for 0 ≤ z ≤ hwater,

0, for hwater < z ≤ htotal.
(5.30)

Note as well that b1(t) = Tsubs by the wall condition. We also require a matching condition
imposing continuity of temperature at hwater. This yields v(0) = 0 at z = hwater and in
turn a1(t) = −Tsubs/hwater. Note that the water layer height hwater will be different with
the value in the three-layer model at t > t∗ as the Stefan condition is changed, which is
discussed below. There is a change in gradient ∂zv at z = hwater because v ≡ 0 for z >

hwater.
In order to close the system, it remains to determine the water-line position hwater. For

our enthalpy model, we do not have a full phase transition between water and ice, but
rather a transition between water and a mush. This idea was shown earlier in figure 6,
where the mush will settle at some intermediate enthalpy 0 ≤ E∗ ≤ St/Pe. This reduces
the latent heat jump required for phase change, where now it is now the difference between
the enthalpy value of water, St/Pe, and the enthalpy of the mush, E∗. Thus, the effective
enthalpy jump is given by St/Pe(1 − β) where β, as in (3.8), is the fraction of water in the
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mushy region. The change of water layer height can be determined using

dhwater

dt
= − 1

Steff

∂v

∂z

∣∣∣∣
z=h−

water

, (5.31)

where we have defined an effective Stefan number by

Steff ≡ St(1 − β). (5.32)

The mush layer can be determined by the difference between the total growth and the water
layer. We can now write the governing equations similar to § 5.3. Beginning with (5.31)
for hwater ∼ h0 + Pe h1 + · · · we can write

dh0

dt
= − 1

Steff

∂T0

∂z
and

dh1

dt
= − 1

Steff

(
∂T1

∂z
+ h1

∂2T0

∂z2

)
, (5.33a,b)

at z = h0(t). Expanding the mush layer hmush ∼ h(0)
mush + Pe h(1)

mush we get

dh(0)
mush
dt

= dhtotal

dt
− dh0

dt
and

dh(1)
mush
dt

= −dh1

dt
. (5.34a,b)

Similar to the previous section, we can write the initial conditions of both layers as

h0(t∗0) = h̃0(t∗0) ≡ h∗
0, h1(t∗0) = h̃1(t∗0) + t∗1[h̃′

0(t
∗
0) − h′

0(t
∗
0)],

h(0)
mush(t

∗
0) = 0, h(1)

mush(t
∗
0) = −t∗1h(0)′

mush(t
∗
0).

}
(5.35)

The enthalpy system can be solved nearly identically to § 5.3 to obtain the following
results. The temperature profile is given by

T0(z, t) = Tsubs

(
1 − z

h0(t)

)
, (5.36a)

T1(z, t) = T2
subs

z3

h0(t)3 +
(

Tsubsh1(t)
h0(t)

− T2
subs

6Steff

)
z

h0(t)
. (5.36b)

The internal water grows as

h0(t) =
√

(h∗
0)

2 + 2Tsubs

Steff
(t − t∗0), (5.36c)

h1(t) = − T2
subs

3St2eff

t − t∗0
h0(t)

+
(

1 − ṁev(0) − Tsubs

Steff h∗
0

)
t∗1h∗

0
h0(t)

, (5.36d)

and the mixed-phase region is solved to give

h(0)
mush(t) = h∗

0 −
√

(h∗
0)

2 + 2Tsubs

Steff
(t − t∗0) + (1 − ṁev)(t − t∗0), (5.36e)

h(1)
mush(t) = T2

subs

3St2eff

t − t∗0
h0(t)

−
(

1 − ṁev(0) − Tsubs

Steff h∗
0

)
t∗1h∗

0
h0(t)

, (5.36f )

which are solutions valid for t > t∗.
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Figure 8. Typical evolution of the different heights for the two models using the baseline parameters as in
table 3. Solid lines are the full numerical prediction, dotted and dashed are the O(Pe0) and O(Pe1) solutions
respectively for the (a) three-layer model (5.29); and (b) enthalpy model (5.36).

6. Numerical simulations

In this section, we present typical numerical simulations showing comparisons between
the three-layer formulation and the new enthalpy-based formulation.

6.1. Numerical details for the three-layer formulation
The simulation is initiated in stage 1 (§ 2.4.1) with only the water film present. A change
of variables, with ξ = z/hwater ∈ [0, 1], is used to account for the growing domain. The
profile height, hwater(t), is evolved using a forward Euler scheme applied to (2.11b), while
the temperature, given by (2.11a), is solved using an implicit finite difference scheme.
Typically, it is sufficient to discretise the spatial domain using N = 100 points, and the
temporal domain is discretised with a time step equal to 0.0025.

Once the temperature reaches freezing, we enter stage 2 (§ 2.4.2). We then solve for the
additional two profile heights, hice(t) and hsurf (t). The bottom water temperature is solved
via (2.14a), but now with a top condition setting the temperature to zero (2.7e). Once the
surface temperature is at freezing, the evaporation mass flux will remain constant, and thus
ṁf from (2.18) will also constant. The three heights are all solved using explicit Euler time
stepping applied to (2.14b)–(2.14d). For the simulations presented in this section, we use
time steps of 	t = 0.01 for figures 8 and 9, and 	t = 0.0001 for figures 10 and 11.

6.2. Numerical details for the enthalpy formulation
We now detail our numerical implementation for solving the enthalpy formulation
presented in § 3.1. This system comprises the four unknowns E(z, t), v(z, t), T(z, t) and
htotal(t), which are specified by PDE (3.5c), relations (3.5a,b) and the ODE (3.5f ). The
boundary conditions are given by (3.5d) at z = 0 and (3.5e) at z = htotal(t), and the initial
conditions are T(0, t) = Tsubs and htotal(0) = 0.

A review of methods to deal with implicit enthalpy schemes is presented in Prakash
et al. (2021). Similar to Voller (1985), our numerical implementation solves for both the
latent and sensible heat contributions. This means that both the temperature, T , and the
enthalpy jump, S (defined by S = E − T), form our desired solution. We will rescale to a
fixed spatial domain, and then implement an implicit time-evolution scheme in conjunction
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Figure 9. The same numerical experiment as in figure 8 but now with the Péclet number 20 times the baseline
value, Pe = 3.69. We show (a) the three-layer model; and (b) the enthalpy model. The two-term asymptotic
approximation, valid as Pe → 0, is shown dashed, while the leading order is shown dotted.
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Figure 10. Plot of the numerical (solid lines), leading order (dot-dash lines) and two-term approximation
(dashed lines) for various heights at t = 5 vs the Péclet number, using the baseline parameters. The heights
depicted are the (a) Three-layer inner water; (b) three-layer ice; (c) enthalpy inner water; (d) enthalpy mush.

with a ‘flag-update’ method. Due to the implicit time evolution, the solution must be solved
for at each time step. Note that as currently posed, the enthalpy formulation is nonlinear
due to the piecewise definition of E(T) in (3.5a). The flag-update scheme allows us to
circumvent this difficulty; in solving for both the temperature T and enthalpy jump S, the
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Figure 11. (a) Log–log plot of Pe vs t∗. Solid lines give full numerical solutions while dashed lines is the
leading-order asymptotic prediction from setting T0 = 0 where we have T0 from (5.10), and we solve for h∗

0
(5.12b) and t∗0 (5.12a) The scaling is also confirmed to be t∗ = O(1/Pe) for large Pe which is shown by the
dash-dotted line. (b) Log–log plot of Pe vs t∗ − t∗0. Solid lines give full numerical solutions, while dashed lines
are the first-order correction t∗1. We calculate t∗1 from (5.11). Both use the baseline parameters found in table 3
but adjust the Péclet and Stefan numbers. We sweep the Péclet number over three values of the Stefan number:
our baseline value of St = 1.68 along with St1 = 0.5 and St2 = 5, which were used previously in figure 7.

equations obtained at each time step may be formulated as a linear system which we invert
directly. This method is analogous to that implemented by Bridge & Wetton (2007).

6.2.1. Change of variables
We begin by performing a change of variables from (z, t) to (ξ, τ ). In defining

ξ = z
htotal(t)

and τ = t, (6.1a,b)

the spatial domain z ∈ [0, htotal(t)] becomes ξ ∈ [0, 1]. In the following, we abuse notation
when considering each solution to be a function of ξ and τ , for example by writing T(ξ, τ )

and htotal(τ ). By using the chain rule for partial derivatives, we can write down our system
of equations in the new coordinate system. These become

Pe
[
∂E
∂τ

− ξ

htotal

dhtotal

dτ

∂E
∂ξ

]
= 1

h2
total

∂2v

∂ξ2 ,
dhtotal

dτ
= 1 − ṁev(T(1, τ )),

T(0, τ ) = Tsubs at ξ = 0, − 1
htotal

∂T
∂ξ

= ΦE at ξ = 1,

⎫⎪⎪⎬
⎪⎪⎭ (6.2)

with initial conditions T(0, 0) = Tsubs and htotal(0) = 0. Note that, for the PDE in (6.2)
above, there are four unknowns (E, v, T and htotal) and two equations. However, v = T
and T can be related to E through (3.5a).

In the following, we detail the discretisation of our ‘flag-update’ formulation, in which
both the temperature T(ξ, τ ) and enthalpy jump S(ξ, τ ) := E − T form the unknowns
instead of T and E. Since we are dealing with a warm substrate, the initial condition and
boundary condition for S are given as S(0, 0) = St/Pe and S(0, τ ) = St/Pe.
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6.2.2. Discretisation
The spatial domain is discretised with N points, yielding the stepsize 	ξ = 1/(N − 1).
We also introduce the time step 	τ . Combined, these yield the mesh points

ξi = (i − 1)	ξ, τj = ( j − 1)	τ, (6.3a,b)

for i = 1, . . . , N, and j ∈ N. We introduce the notation h j
total := htotal(τj), T j

i := T(ξi, τj)

and S j
i := S(ξi, τj) for solution values at each mesh point. The unknowns at the next time

step are therefore given by

hj+1
total and e = [Tj+1

1 , . . . , Tj+1
N , Sj+1

1 , . . . , Sj+1
N ]T, (6.4a,b)

where e is the solution vector and T denotes transpose. With this notation, the initial
conditions are written as h1

total = 0, T1
i = Tsubs, and S1

i = St/Pe.
We begin by using an explicit forward Euler scheme to discretise the ODE for htotal(τ ),

yielding

hj+1
total = h j

total + [1 − ṁev(T
j

N)]	τ. (6.5a)

Given values for h j
total and T j

N , we use (6.5a) to find hj+1
total. Next, we discretise the enthalpy

PDE. We use an implicit backward Euler method to discretise ∂E/∂τ , a first-order one
sided approximation for ∂E/∂ξ , and a second-order centred approximation for ∂2v/∂ξ2.
In the coefficients of this PDE, we treat htotal(τ ) implicitly, and the nonlinear function
ṁev(T(ξ, τ )) explicitly. This yields[

Pe

(
1 + ξi	τ

hj+1
total	ξ

[1 − ṁ j
ev]

)
+ 2	τ

(hj+1
total	ξ)2

]
Tj+1

i −
[

	τ

(hj+1
total	ξ)2

]
Tj+1

i−1

−
[

Pe

(
ξi	τ

hj+1
total	ξ

[1 − ṁ j
ev]

)
+ 	τ

(hj+1
total	ξ)2

]
Tj+1

i+1

+
[

Pe

(
1 + ξi	τ

hj+1
total	ξ

[1 − ṁ j
ev]

)]
Sj+1

i − Pe

[
ξi	τ

hj+1
total	ξ

[1 − ṁ j
ev]

]
Sj+1

i+1

= Pe(T j
i + S j

i ), (6.5b)

where we have denoted ṁ j
ev := ṁev(T

j
N). This expression holds for 2 ≤ i ≤ N − 1 and

j ≥ 1. We also discretise the boundary conditions at ξ = 0 and ξ = 1 from (6.2), which
gives

Tj+1
1 = Tsubs, Sj+1

1 = St/Pe, (6.5c)

− Tj+1
N − Tj+1

N−1

hj+1
total	ξ

− Bi Tj+1
N − Pe Tj+1

N − Pe Sj+1
N

= −Bi + St Lṁ j
ev + −Pe Eimp − St D. (6.5d)

Note once more that all terms are treated implicitly, except for the nonlinear function
ṁev(T), which is treated explicitly. This concludes our discretisation.
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6.2.3. The linear system of equations
We then seek to solve the linear system

Me = f , (6.6)

where the 2N × 2N matrix M and 2N × 1 vector f are known, and the 2N × 1 solution
vector e defined in (6.4) contains the unknown values Tj+1

i and Sj+1
i . The vector f is split

into two halves, the first of which contains entries f1 = Tsubs from (6.5c), fi = Pe(T j
i +

S j
i ) for 2 ≤ i ≤ N − 1 (corresponding to the right-hand side of (6.5b)), and fN = −Bi +

St Lṁ j
ev − Pe Eimp − St D from (6.5d). The second half of the vector f provides the latent

heat contribution, as will be given by a regime flag update (cf. Appendix A). These entries
are either fN+i = φi = 0 or fN+i = φi = St/Pe, the value of which depends on the flag at
the ith grid point.

The matrix M consists of four smaller sparse matrices, each of size N × N

M =
(

T S
A B

)
. (6.7)

The matrix T is tridiagonal. In general, the ith row contains the coefficients of Tj+1
i−1 , Tj+1

i

and Tj+1
i+1 from (6.5b). The exception to this is the first row, whose only non-zero entry is

the coefficient of Tj+1
1 from (6.5c), and the last row whose two non-zero entries are the

coefficients of Tj+1
N−1 and Tj+1

N . For the matrix S, only two diagonal bands contain non-zero
entries. These are the main diagonal, and that immediately above it. The non-zero entry
in the first row of S is 1, the coefficient of Sj+1

1 from (6.5c). The last row contains the
coefficient of Sj+1

N from (6.5d). The rows in between these, for 2 ≤ i ≤ N − 1, contain the
coefficients of Sj+1

i and Sj+1
i+1 from (6.5b).

The entries of the diagonal matrices A and B are either 0 or 1 on the main diagonal, with
the value dependent on the flag value at ξi. The matrix B is used to specify the enthalpy
jump in the cases of non-freezing temperatures, while the matrix A is used to specify
freezing temperature. Their diagonal entries are defined by

Aii =
{

0 for T /= 0,

1 for T = 0,
Bii =

{
1 for T /= 0 ( flag specifies water or ice),
0 for T = 0 ( flag specifies mixed phase).

(6.8)

The matrices A, B, and the second half of f are used to represent the relationship
between temperature and enthalpy, which can be solved efficiently under an implicit
scheme. Further details of the flag updates are given in Appendix A. This concludes our
specification of the sparse matrix M . We solve the linear system (6.7) by constructing
the matrix M and vector f in MATLAB, and then directly inverting the matrix using
the function ‘inv(M)’ to find e = M−1 f . This yields solution values at the next time step.
Note that the flag values in A, B and f , need to be iterated on for consistency to be reached.
The iterative process to achieve this is described in Appendix A. Once the flag values are
consistent, we end this iterative process and obtain the final set of solution values, Tj+1

i

and Sj+1
i , at time step τj+1.

This process is repeated until a certain time is reached, typically t = τ = 10. For our
enthalpy simulations we pick the time step as 	τ = 0.01, and the number of spatial
gridpoints to be N = 400 yielding 	ξ = 0.0025. A typical computational time on a
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desktop computer for evolution from t = 0 to t = 50 is one second. This efficiency is the
reason why a flag-update scheme was implemented. While this ‘flag-update’ method used
to reformulate the enthalpy problem at each time step into a linear system presents new
complications, it results in much faster calculation of numerical solutions in comparison
with a standard iterative method. This is because without the flag-update scheme, the
enthalpy model is nonlinear.

6.3. Numerical results

6.3.1. Dynamics of the water/ice layers
We now show typical evolutions of the different heights for both the three-layer model and
the enthalpy model in the cases of Pe = 0.185 (figure 8) and Pe = 3.69 (figure 9). Firstly,
in the insets (a) of both figures, we plot the absolute heights of the three-layer model
zw, zwi, ztop as defined earlier in (2.5). Similarly, in insets (b) of both figures, we show the
total height of the enthalpy method htotal and the extracted internal water layer hwater. In
all cases, the asymptotic solutions to O(Pe0) and O(Pe1) are presented. For the three-layer
model, asymptotic approximations of layer heights are given by (5.29c)–(5.29h); for the
enthalpy model, the approximations are given in (5.36c)–(5.36f ).

For the parameters we have investigated, the evolution of the system is typically
qualitatively similar: in each figure, the single water layer grows until some critical height,
h∗, and time, t∗, followed by the growth of the ice/water layers. The agreement with
both the O(Pe0) and the two-term (O(Pe1), h(0) + Pe h(1)) asymptotic approximation is
excellent for the baseline value of Pe = 0.185. For example, at t = 5 there is <1 % error
between the numerical and O(Pe1) solutions for both the enthalpy and three-layer models,
where the asymptotic curve (dashed) is nearly visually indistinguishable from the full
numerics (solid). However, as we increase the Péclet number to twenty times from the
baseline value of Pe = 3.69, we observe that the correction term h1(t) overcompensates,
resulting in a reduced water layer. We observe an increased reduction for the enthalpy
model compared with the three-layer model, as a result of dependence on Steff rather than
St.

In figure 10, we plot the numerical, leading-order solution, and two term solution at
t = 5, for different heights, against the Péclet number. The three-layer model water height
is shown in figure 10(a) and the ice height in (b). The enthalpy water height is plotted in
figure 10(c) and the mush in (d). As Péclet number increases, we observe divergence
between the numerical and the asymptotic expansion, and thus show that neither the
leading order nor two term approximation can accurately predict the evolution of the
different layers for large Péclet.

All existing ICI models assume quasi-steady-state heat transfer within the accretion
layers, which is equivalent to the O(Pe0) approximation. However, as shown in
figure 10, a deviation of more than 10 % occurs at Pe ≈ 0.5, showing the inaccuracy
of quasi-steady-state assumption. Note that Pe for the baseline is calculated using an
impingement flux on the lower end from the literature. The highest impingement flux given
in table 2 leads to a Péclet number of 0.799, which will result in an even larger difference
between the full transient and quasi-steady-state solutions. Therefore, it is important to
evaluate the Péclet condition when the quasi-steady-state assumption is taken. The effect
of Pe and St on the critical time of freezing is explained in detail in § 6.3.2.

An apparent difference between the enthalpy model and the three-layer model is the
thickness of the icing layer. As the enthalpy model is developed based on the physically
observed mixed-phase nature of the icing layer, it results in a much thicker icing layer
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Three layer Enthalpy

Bi (min, max) Mr (min, max) Bi (min, max) Mr (min, max)

0.003 1.138 0.05 0.25 0.003 1.138 0.05 0.25

h∗
water 0.776 NA 0.683 0.874 0.776 NA 0.683 0.874

t∗ 0.784 NA 0.690 0.883 0.784 NA 0.690 0.883
hwater (t = 5) 2.373 4.970 2.367 2.382 2.636 4.970 2.492 2.782
hice (t = 5) 1.733 NA 2.188 1.368 1.851 NA 2.235 1.534

Table 4. Variation of the Biot number – Bi, and melt ratio – Mr, to typical minimum and maximum values,
examining critical height, h∗ and time, t∗, for freezing to occur, as well as the height of the internal water
and ice at a representative time, t = 5. Note that, in the case of the enthalpy model, we have extracted the
ice component from the mush height as described in (3.9). Other parameters are at the baseline value given
in table 3. Note that Bi = 1.138 < Bicrit (4.2) for the baseline conditions and thus freezing would eventually
occur.

compared with the pure ice layer in the three-layer model. The solutions of both models
during the water-only stage are identical, as shown in figures 8 and 9 and table 4. However,
after the onset of icing accretion (t = t∗), the water layer thickness of the enthalpy model
develops faster, owing to the lower enthalpy level of the mushy layer and, hence, the
modified Stefan condition on the interface with the mushy layer (see (5.31)).

The modified St is determined by the mushy phase enthalpy fraction, which is in turn
determined by the convective heat transfer parameter Bi and the impinging melt ratio Mr.
If Bi increases for positive recovery temperatures, we would expect more heat transfer from
convection, resulting in more water content. As we adjust melt ratio, smaller values reduce
the time of freezing and significantly increase the ice layer. Table 4 presents the effects of
Bi and Mr on h∗

water, t∗, h(t = 5) and hice(t = 5) at the baseline Pe. As Mr is multiplied by
5, the onset of icing is delayed by 0.193 with a thicker h∗

water. As Bi increases, there will be
eventually no icing due to enhanced heating on the top surface (see figure 7). In addition,
the kinetic energy parameter D will also affect the growth, as an increased D will lead to
greater kinetic energy in the heat flux, leading to more water content.

6.3.2. Bifurcation curves of the critical time of freezing
In figure 11(a), we show the effect of the Péclet number on the critical time t∗ over a range
of Stefan numbers, where the surface temperature reaches freezing. For small Péclet, Pe �
1, the value of t∗ remains fairly constant. As the Péclet increases, there is a sharp decrease
in the critical time. We also observe that agreement between the numerical and asymptotic
solutions for small Péclet is dependent on the Stefan number. The three Stefan numbers
consist of our baseline value, and St1 = 0.5, St2 = 5, where all three are shown on figure 7.
There is almost perfect agreement between the leading-order and numerical solutions up
until about Pe ≈ 1 for St = 5, Pe ≈ 0.5 for St = 1.61, and Pe ≈ 0.1 for St = 0.5. After
these Péclet values, the critical time begins to decrease in the numerical solution leading
to over prediction in the leading-order asymptotic solution. We also note, that as the Stefan
number is decreased, the range of agreement between the leading-order and numerical
solutions decreases. In figure 11(b), we plot the difference between the numerical solution
t∗ and leading-order prediction (t∗0 from (5.12a)) and compare this with the first-order
solution (Pe t∗1 from (5.10)). We observe a linear trend for Pe < 1 in the case of St = 0.5
and until Pe ≈ 10 for St = 5. We must note, however, that both t∗0 and t∗1 are solved under
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the constant evaporation approximation from § 5.1.1 and thus the discrepancy between the
solid and dashed lines for small Péclet highlight the effect of this simplification.

7. Conclusions

Motivated by a previous three-layer formulation for modelling ICI, in this work, we have
developed a novel alternative that uses enthalpy to allow the simulation of mixed-phase
icing. Our model shares similarities with a formulation presented in the computational
experiments of Malik et al. (2023, 2024); our analysis carefully performs the analysis
for the 1-D growth of the early mix-phase ice accretion layer for a warm substrate. The
enthalpy model is compared with an existing three-layer model (Bucknell et al. 2019a),
which is also reformulated, non-dimensionalised, and studied more rigorously. In its
simplest form, the icing problem is controlled by a group of non-dimensional parameters,
including Pe, St, Mr, Bi, ṁev , L, D which categorise regions of freezing and determine
accretion growth.

Asymptotic solutions in the limit of Pe → 0 are derived, and these compare favourably
with the numerical solutions showing the evolution of the accretion in both models.
For Pe � 0.5, the asymptotic approximations present good agreement with numerical
solutions. As the Péclet number increases, we observe divergence between the numerical
and the asymptotic expansion; in this regime, neither the leading-order nor two-term
approximation can accurately predict the evolution of the different layers. Prior works
of the general ICI problem have not performed asymptotic analysis to this level of detail;
these analytical solutions also show clearly the effects of modifying parameters such as Bi
and St. The comparison between the asymptotic and numerical solutions shows that the
assumption of quasi-steady-state heat transfer within accretion layers, which was widely
used in existing icing models, can only be valid at Pe � 0.5.

As compared with the three-layer model, the enthalpy model presents a thicker mushy
accretion layer relative to the pure ice accretion of the three layer. The thickness of
this layer, within the enthalpy model, is less than the sum of the ice and surface-water
layers within the three-layer model. The enthalpy model predicts a greater internal water
thickness, driven by the modified Stefan number determined by the enthalpy fraction. In
the three-layer model, this difference is attributed to the application of an ad hoc melting
condition imposed on the top water layer by Bucknell et al. (2019a), and a resulting thicker
surface-water layer. Such differences are enhanced at large Péclet numbers.

8. Discussion

In performing this work, the authors developed a significant appreciation for the hidden
complexity of the three-layer model of ICI introduced in the recent work of Bucknell et al.
(2019a). Although this layered model is only one of many reductions considered in the
recent literature (see e.g. review by Yamazaki et al. 2021), it has found some success in
providing a sufficiently simple conceptual model of the icing process that can form the
basis of more complicated geometries and setups. To some extent, the complexity of the
three-layer model is unavoidable: it must account for the multiple surface heat fluxes,
which includes the effects of convection, evaporation, melting/freezing, sensible heat and
kinetic energy. Within a real aeroengine geometry, which is the primary motivator for this
research, such contributions would be provided via flow analysis of the engine; therefore
flexibility in specifying such fluxes is paramount. One of the contributions of this work
has been to present the three-layer model in a more systematic and clear way, where the
underlying assumptions are more transparent. The importance of non-dimensionalisation
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in highlighting key effects has also been stressed, and our survey of typical parameter sizes
is useful for modelling. We have been able to develop asymptotic analysis in the limit of
Pe → 0, which provides simple expressions for water and ice growth rates.

Previously, a quasi-steady approach was taken to model the water layer (Bucknell 2018;
Connolly 2021) (equivalent to considering Pe = 0). In our work, we have more carefully
justified under what conditions this assumption is valid, and we explored how the system is
affected by the adjustment of further non-dimensional parameters. Key behaviours, such as
the time of freezing and the corresponding water thickness, are characterised numerically
and asymptotically.

The complexity of the three-layer model, along with its inability to model situations
of mixed ice-water phases, thus motivated the development of the enthalpy model in this
work. The enthalpy model is able to deal with conditions where the substrate temperature
is above freezing, and can account for a ‘mushy’ layer as has been observed in icing
under warm conditions. The framework is also computationally advantageous in that the
temperature field can be solved within the entire domain, including both ice and water,
and without requiring evolution of the interior interfaces. Our work also highlights the
importance of the ‘balancing enthalpy’, i.e. the enthalpic value for which the heat flux
is zero (cf. (3.7)). In § 3.2, we demonstrated the connections between the balancing
enthalpy and the previous melt/freeze rates established in Bartkus et al. (2018) and
Bucknell et al. (2019a). Note also that we have assumed equal densities for water and
ice in this work. It is possible to extend the enthalpy model to account for different
water ρw and ice ρi densities. This requires a modification of the enthalpy definition
(3.1a), for which the varying density of the mixed-phase ‘mushy’ layer would be given
by ρm(z, t) = [1 − E(z, t)/(ρwLf )]ρi + E(z, t)/Lf .

The enthalpy model solves the transient heat transfer equation, whereas the existing
quasi-steady model overestimate the heat flux at the water–ice interface and hence the
water layer thickness. The difference in height prediction is more apparent at Pe > 0.5. In
addition, the enthalpy model solves the enthalpy distributions directly, which is then used
to determine the water–ice interface; hence there is no need to track the interface. Most
importantly, instead of a pure solid ice layer, this model enables an ice layer containing
both liquid and solid water content, which is consistent with the physical observation
of Malik et al. (2023). Finally, the enthalpy model allows the modelling of features that
may be of key importance in the complex environment, e.g. ice layer porosity or variable
thermal and mechanical properties of the fluid. Therefore, the enthalpy model presents
strong advantageous in modelling of ICI.

Following prior work by e.g. Bucknell et al. (2019a), we have focused on the formulation
and analysis of simplified 1-D dynamics for the three-layer and enthalpy models. In terms
of replicating real engine environments, a number of extensions should be examined.
For example, as a means of comparison with prior models, we have used assumptions
of perfect thermal contact and infinite thermal capacity, e.g. imposing T(0, t) = Tsubs.
However, there has been experimental evidence that suggests that it is important to
consider the response of the substrate, itself, which may cool down due to particle
impingement (Bartkus et al. 2018; Currie 2020; Connolly 2021; Malik et al. 2023). Other
important effects neglected include considerations of shear and pressure on water runback
and erosion. There is a need for further analysis in realistic engine conditions that will
establish thresholds for early-time icing, as functions of shear stress, mass flux, substrate
temperature and so forth.

Currently, the present authors are preparing an extension of this work that studies
ICI with 2-D dynamics, i.e. where the water and ice layers are allowed to be functions
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of a substrate coordinate. In the 2-D case, two substantial complexities are introduced.
First, the temperature or enthalpy fields now require the solution of the 2-D diffusion
equation within the ice/water regions. Second, the advection and thin-film dynamics must
be considered, instead of (3.5c) and (3.5f ); such dynamics captures the effects of water
runback, shear and pressure (Myers, Charpin & Chapman 2002). Such thin-film models
have also been considered by e.g. Wright et al. (2015), Currie (2020) and Connolly (2021);
like the detailed analysis between layered and enthalpy models presented here for the 1-D
case, 2-D dynamics introduces significant and fascinating complexity.

Beyond consideration of the water/ice phases itself, further analyses of the effects of
particle impact and erosion are crucial. Previously, such effects have been incorporated
in computational studies via phenomenological or empirical laws. While there have been
advances in our understanding of ice-particle impact (Reitter et al. 2022; Senoner et al.
2022), detailed analyses of e.g. the conditions for which an ice crystal adheres to a thin
water film or solid surface in a high-speed flow, remain challenging. We highlight work
done by e.g. Hicks & Smith (2011), Jolley, Palmer & Smith (2021) and Jolley & Smith
(2023) on understanding ice-particle impact on surfaces; the work of e.g. Cimpeanu &
Moore (2018) and Fudge et al. (2023) may be helpful in formulating mixed-phase problems
where there are both water, ice and air phases.
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Appendix A. Further details for the numerical computation of the enthalpy model

For our enthalpy simulation described in § 6.2, the implicit discretisation of the equation
yielded a linear system of equations, Me = f , to be solved at each time step. Here, M
is a 2N × 2N matrix. The top half of this, consisting of the N × N matrices T and S
formed from discretisation of the PDE and boundary conditions, was detailed in § 6.2.3.
In this appendix, we describe how the lower half of M is formed. This lower half is split
into the two N × N matrices A and B, which consist of ones on the main diagonal and
are dependent on the flag regime. In addition, A + B = I , where I is the identity matrix.
Finally, we have the flag vector given by

F = [F1, . . . FN], (A1)

for which the corresponding entries, Fi, indicate the phase at location ξ = ξi.
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A.1. Flag updates
Each flag entry Fi takes a value if 0, 1 or 2, corresponding to whether the corresponding
substance is ice, water or mush, respectively. We consider the different cases and how it
affects A, B and the values of φ in f .

(i) Fi = 0 ⇒ Ice
There is no latent heat contribution for the enthalpy. This results in φi = 0, Ai,i = 0,
Bi,i = 1. Intuitively, this is setting Si = 0.

(ii) Fi = 1 ⇒ Water
There is a latent heat contribution for the enthalpy. This results in φi = St/Pe, Ai,i =
0, Bi,i = 1. Intuitively, this is setting Si = St/Pe.

(iii) Fi = 2 ⇒ Mushy
The temperature is zero, resulting in S ∈ [0, St/Pe]. This results in φi = 0, Ai,i = 1,
Bi,i = 0. Intuitively, this is setting Ti = 0.

After each time step, we check the flag, examining the consistency of the solution. If the
solution is inconsistent, we change the flag updating the matrices and run again. This is
done in the following way, by comparing the flag with the temperature/latent heat at each
grid point:

(i) ‘Warm ice’ (Fi = 0 ∧ Ti > 0)

The flag indicates the ice regime but the temperature is positive which is
inconsistent. We set the flag to the mushy regime (⇒ Fi = 2).

(ii) ‘Freezing water’ (Fi = 1 ∧ Ti < 0)

The flag indicates the water regime but the temperature is negative which is
inconsistent. We set the flag to the mushy regime (⇒ Fi = 2).

(iii) ‘Negative latent heat’ (Fi = 2 ∧ Si < 0)

The flag indicates the mushy regime but the latent heat contribution is negative
which is inconsistent. We set the flag to the ice regime (⇒ Fi = 0).

(iv) ‘Super latent heat’ (Fi = 2 ∧ Si > St/Pe)
The flag indicates the mushy regime but the latent heat contribution exceeds the
threshold which is inconsistent. We set the flag to the water regime (⇒ Fi = 1).

This process is iterated at each time step until consistency is reached. Only A, B and the
values of φ in f need to be changed in this process.

Appendix B. Evaporative mass flux

In (2.1a) and (3.2f ), we assume that the evaporative mass flux, ṁev , evaporation is
determined by the following formula:

ṁev(T) =
[

htc

P0ca Le1−b
Mw

Ma

]
(Pvap,sat,surf (T) − Pvap,sat,∞), (B1)

where htc is the heat transfer coefficient, P0 is the air pressure, ca is the heat capacity of air,
Le is the Lewis number, b is a coefficient based on the Chilton–Colburn heat–mass transfer
analogy, Mw, Ma are the molar mass of water and air respectively, Pvap,sat,surf is the vapour
saturation pressure at the surface, Pvap,sat(Tsurf ), and Pvap,sat,∞ is the vapour saturation
pressure at T∞ multiplied by the relative humidity, Pvap,∞ = RH∞Pvap,sat(T∞). The
above is taken from (A8) in Bucknell et al. (2019a).
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c−1 c0 c1 c2 c3 c4
Liquid water −5800 1.391 −4.864 × 10−2 4.176 × 10−5 −1.445 × 10−8 6.545

d−1 d0 d1 d2 d3 d4
Ice −5674 6.392 −9.677 × 10−3 6.221 × 10−7 2.074 × 10−9 4.163

Table 5. Coefficients from Wexler et al. (1983) used to calculate vapour saturation pressure in (B2).

Various equations can be used to calculate the vapour saturation pressure, Pvap,sat. Here
Hyland & Wexler’s equation is used (Wexler et al. 1983), and can be written as

Pvap,sat(T) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp

⎡
⎣c4 log(T + TK) +

3∑
i=−1

ci(T + TK)i

⎤
⎦ T ≥ 0,

exp

⎡
⎣d4 log(T + TK) +

3∑
i=−1

di(T + TK)i

⎤
⎦ T < 0,

(B2)

where TK = 273.15 is the temperature shift from Celsius to Kelvin and the coefficients, ci
and di, for i = −1, 0, 1, . . . , 4, are different for vapour over liquid water and solid ice, and
are listed in table 5.

Previously, Myers (2001) provided a linear fit for the evaporative flux, while Bucknell
et al. (2019a) used a piecewise linear fit for the saturation pressure. By writing a linear fit
for the saturation pressure, this leads to a linear fit for the nondimensional evaporative flux
ṁev for T ∈ [0, 10] ◦C, which is then used in § 5. This is

ṁev(T) ≈
[

htc

P0ca Le1−b
Mw

Ma

]
(ẽ1 + ẽ2T − RH(ẽ1 + ẽ2T∞)),

ṁ′
ev(T) ≈

[
htc

P0ca Le1−bṁimpTrec

Mw

Ma

]
(ẽ1 − RH(ẽ1 + ẽ2T∞) + ẽ2T),

ṁ′
ev(T) ≈ α1 + α2T,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B3)

where α1 = 0.003 and α2 = 0.0017 and are both non-dimensional. This is accurate to
within 7 % over the specific range. Since for the most part use of (B3) does not structurally
yield so much more simplification than the full model (B1), we have used the full model
in our numerical work.

Appendix C. Further equations for numerical methods

We use a forward Euler scheme to evolve the total height. Thus we can write (3.5f ) as

hn+1
total = hn

total + (1 − ṁev(TN))	t. (C1)

Rewriting our boundary condition for our discretisation, we have

T1 = Tsubs, S1 = St/Pe, (C2a,b)

−TN+1 − TN

htotal	ξ
= Bi(TN − 1) + St Lṁev(TN) + Pe(TN + SN − Eimp) − St D. (C3)
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