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Abstract
This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves.
We aim to learn the dependence structure among the different yield curves induced by the globalization of finan-
cial markets and exploit it to produce more accurate forecasts. By combining the self-attention mechanism and
nonparametric quantile regression, our model generates both point and interval forecasts of future yields. The
architecture is designed to avoid quantile crossing issues affecting multiple quantile regression models. Numerical
experiments conducted on two different datasets confirm the effectiveness of our approach. Finally, we explore
potential extensions and enhancements by incorporating deep ensemble methods and transfer learning mechanisms.

1. Introduction
Yield curves are used for a wide variety of tasks in actuarial science and finance for deriving the present
value of future cashflows within valuations that apply a market-consistent approach. A market-consistent
approach to liability valuation is required by modern solvency regulations, such as Solvency II, while
updated accounting standards, such as the recently introduced IFRS 17, require the use of credit and
liquidity-adjusted yield curves for discounting liabilities, including both life and nonlife insurance liabil-
ities. Modern actuarial valuation practices for insurance-related liabilities can be categorized according
to the type of underlying liability that needs to be valued; these are liabilities that result only from insur-
ance risk and liabilities that result from a combination of both insurance risk and market risk. Expected
claims payments, which comprise the majority of the liabilities entered into by nonlife insurers and a
significant portion of life insurance liabilities, are an example of the former type of liabilities, whereas
the valuation of options and guarantees embedded into life insurance contracts, such as guaranteed ben-
efits linked to market values in variable annuity contracts, are an example of the latter type of liabilities.
Importantly, insurance risk-related liabilities cannot usually be hedged in financial markets, whereas
market-linked insurance benefits often can be hedged with financial instruments. For the former type, in
both Solvency II and IFRS 17, liability valuation is usually performed by, first, projecting the real-world
expected cashflows resulting from insurance contracts, and, second, discounting these cashflows using
the discount rates implied by the yield curve, since the yield curve replicates the market-consistent valu-
ation of these cashflows, see Europeen (2012) for a practice-orientated overview and Kemp (2009) for a
detailed review. Finally, since the projection of these liabilities is done under the real-world probability
measure P, that is not a risk-neutral valuation, a last step is to add a risk margin to the liability value to
recover an approximate market-consistent value. For liabilities with a direct link to market variables, on
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the other hand, the actuarial valuation is performed in a slightly more complex manner, first, by valu-
ing the expected cashflows under a risk-neutral measure Q, then, by discounting the expected value of
these back to the valuation date by using the discount rates from the yield curve. Beyond valuation of
liabilities, insurance products with long contract boundaries, for example, those contracts which operate
over a periods more than a single year, will also usually be priced on a discounted basis. Thus, since the
major liability line item on insurer’s balance sheets depends on the yield curve, having good forecasts of
the yield curve is important for both life and nonlife insurers. Moreover, insurers, and other entities, that
report on these discounted liabilities are exposed to the risk of changes in the interest rates in their mar-
kets, which translate directly into changes in the solvency of these entities. Therefore, managing this risk
of adverse changes in yield curves – which we refer to as interest rate risk in what follows - is an important
task within actuarial work, which is usually considered in the context of corresponding changes in the
asset portfolio backing these liabilities, changes in the value of which may act as an offset. This process
is, therefore, usually referred to as asset–liability management (ALM). Moreover, insurers are required
to hold capital to ensure that their solvency is adequately protected in most solvency regimes, such as
Solvency II. To measure the extent of the interest rate risk, as well as the corresponding capital needed to
be held, insurers and other financial institutions often rely on modeling the uncertain future evolution of
the yield curve using a variety of different models. Once the yield curves have been modeled, the models
are used to derive scenarios for the future evolution of the yield curves, which are then applied to derive
capital requirements, which are referred to as the Solvency Capital Requirements (SCR) in Solvency II.
Notably, to derive the SCR, potential changes in the yield curve need to be assessed using real-world
probabilities, in other words, under the P measure. For non-hedgeable insurance-linked liabilities, the
risk arising from changes in the yield curve is derived by discounting these using both the original yield
curve and a yield curve derived in the scenario of interest, which is the 1-in-200 year downside scenario
in a Solvency II context. The difference between these quantities is taken as the SCR requirement for
interest rate risk. For hedgeable liabilities containing benefits linked to market variables, the process is
more complex, often performed in practice using a nested Monte-Carlo valuation approach in which the
yield curve is first projected under the real-world measure P and then, conditional on this projection, a
risk-neutral valuation of the cashflows is performed under the risk-neutral measure Q. The projection
step is often called the “outer step” of the valuation procedure and the risk-neutral step is often called the
“inner step.” In this work, we focus on the projection of the yield curve under the real-world measure,
which is useful both for valuation and SCR calculations of non-hedgeable insurance-linked liabilities,
as well being useful for performing the outer step of nested Monte-Carlo valuation. Moreover, other
components of Solvency II and quantitative risk management within insurers require real-world stresses
and scenarios for interest rate risk management, for example, the Own risk and Solvency Assessmment
(ORSA). For this purpose of projecting the yield curve under the real-world measure P, we distinguish
between unconditional and conditional approaches to yield curve modeling: the former approach cali-
brates models of the yield curve evolution using historical data at a point in time, derives stresses based
on these, and then applies these stresses without recalibrating these based on current market conditions.
This approach underlies, for example, the standard formula approach of the Solvency II regulation.
On the other hand, the conditional approach uses current market information to recalibrate yield curve
stresses; this approach is often taken in internal model approaches within the Solvency II regulation.

Modeling interest rate risks is made more difficult due to the complexity of requirements of recent
accounting standards, as well as the interconnected nature of financial markets across asset classes and
geographies. The recent IFRS 17 standard departs from a purely market-consistent valuation approach
by requiring insurers to use yield curves that are modified to correspond to the financial characteristics
of the liabilities being valued, as well as the asset portfolios backing these. While we do not explain
this in detail, in short, insurers must derive yield curves consisting of the (credit) risk-free interest rate,
as well as an allowance for an illiquidity premium. Thus, insurers reporting under IFRS 17 calibrate
several different yield curves for discounting liabilities, the evolution of which will differ depending on
both how risk-free rates and illiquidity premia change over time. Another reason that insurers may need
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to model the evolution of multiple yield curves is due to their investing in assets with different levels
of credit quality; to manage the risk of the asset portfolio, it is often necessary to calibrate multiple
yield curves which take account of credit-risk premia and model the (joint) evolution of these. Finally,
insurers operating in multiple geographic jurisdictions need to manage the interest rate risk arising from
changes in the different yield curves used in these markets. In all of these scenarios, it is not sufficient
merely to model the dynamics of each yield curve on an independent basis, since this approach will not
capture the correlation between asset classes and geographies and may lead to misstated estimates of
risk and capital; rather the joint future evolution of the complete set of yield curves used by the insurer
must be modeled.

In this work, we focus on exactly this problem of jointly modeling and forecasting multiple yield
curves for interest rate risk management, ALM, and derivation of capital requirements; we note that
this is done on the real-world basis and not the risk-neutral basis which is useful for option valuation.
Our research considers a concept of “multiple yield curves” that differs from the standard literature.
While conventional literature refers to curves with varying structures by maturity, also known as tenor-
dependent yield curves (Grbac and Runggaldier, 2015), we consider families of curves defined on the
same maturity structure but differing among them in credit quality or because they are associated with
different government bonds. For this task, we use neural network models trained jointly on a significant
amount of historical yield curve data across geographies to forecast yield curves on an expected (best-
estimate) basis, as well as to forecast the quantiles of the yield curves; the latter can be used directly for
risk management purposes, for example, calculating the value-at-risk of the insurer.

1.1. Literature review
Several different approaches have appeared in the literature to model the uncertain future evolution of
the yield curve (Venter, 2004; Teichmann and Wüthrich, 2016).

One class of models – focused on the risk-neutral evolution of the yield curve – consists of arbitrage-
free models, which impose restrictions on the evolution of the yield curve to avoid risk-free profit
opportunities. Prominent examples are the models developed in Hull and White (1990) and Heath et al.
(1992). Although these models are widely used in option pricing, without further adaptation, they are
often found to forecast poorly compared with a simple random walk model (see Duffee, 2002). We refer
to Yasuoka (2018), and the citations therein, for interesting discussions of adapting risk-neutral interest
rate models for real-world purposes by estimating the market price of interest rate risk.

A well-known technique is to apply principal components analysis (PCA) to vectors of the changes
in the yield curve at each term and then to use the simulated changes in the yield curve to derive a
distribution of yield curves (for an overview, see Redfern and McLean, 2014). This approach was used,
for example, to calibrate the yield curve stresses in the interest rate risk module of Solvency II. This is an
example of the unconditional approach to yield curve modeling, since the PCA analysis was performed
at a point in time in the past, and is assumed to still be relevant in current market conditions. Other
authors follow a purely statistical approach. This class of models has evolved from univariate (Fama
and Bliss, 1987) to multivariate time series models and recent advances in dynamic factor models.
Among them, the dynamic extension of the well-known Nelson–Siegel (NS) modmodel (Nelson and
Siegel, 1987) proposed in Diebold and Li (2006) (from now on referred to as DNS) has become very
popular among practitioners thanks to its simplicity and discrete forecasting ability. In addition to being
a relatively simple and parsimonious model, the DNS approach is also appealing since the NS model
(and its extensions) underlying the DNS approach is often used by central banks and other institutions
for calibrating the yield curve. Other notable examples of factor models can be found in Bowsher and
Meeks (2008), Härdle and Majer (2016).

Numerous extensions of the DNS approach have been developed in the literature. Some research
investigated using more flexible versions of the NS model, for example, the model proposed in Bliss
(1996), the four-factor extension suggested in Svensson (1994), and the five-factor model investigated
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in De Rezende and Ferreira (2013). Other authors try to improve the forecasting performance of the
DNS model, including some macroeconomics variables in the models (see Diebold et al., 2006). A nice
overview of the NS and DNS models is in Diebold and Rudebusch (2013), who also provide economic
intuitions for the factors used in the NS model.

1.1.1. Multiple yield curve modeling
Globalization has intensified the connection among the financial markets, inducing a dependence
structure among different yield curves, which renders the process of modeling these jointly complex;
moreover, above we have discussed other reasons for the need for joint modeling of multiple yield curves,
which is a challenging task. Despite the relevance of the topic for financial markets, there is relatively
little discussion of this topic in the literature on a real-world basis; on the other hand, more literature is
available in the risk-neutral setting, see Cuchiero et al. (2016) for an overview. Within the real-work set-
ting, here we mention Gerhart and Lütkebohmert (2020), who introduced a multiple-curves PCA method
where the dynamics of multiple yield curves captured through principal component analysis (PCA) are
modeled as autoregressive processes and Atkins and Cummins (2023), who proposed a two-step method
to jointly capture the risk-factor relationships within each curve and the risk-factor relationships between
the curves. In the first stage, the authors use the PCA to derives components describing the dynamics of
each curve, and then, secondly, combine these to describe the dynamics across all the curves. Notably,
the joint forecasting of best-estimates and quantiles is not done in these works, and this is a novel aspect
of the model presented here.

1.1.2. Neural networks for yield curve modeling
Recently, deep learning models have become popular for general machine learning (ML) tasks, due to
their ability to model massive volumes of data in a flexible manner, and within finance and actuarial
science. Deep neural networks have been successfully applied to several tasks such as pricing (Noll
et al., 2020; Barigou and Delong, 2022), reserving (Gabrielli, 2020), and mortality forecasting (Perla
et al., 2021; Scognamiglio, 2022). A detailed overview of the application of artificial intelligence (AI)
and ML techniques in actuarial science can be found in Richman (2021a,b). Focusing on yield curves
modeling and interest rate risk management, the literature is relatively sparse. Aljinović and Poklepović
(2013) shows that feed-forward NN can be used to replace time series models to extrapolate the future
values of the NS parameters. Kauffmann et al. (2022) proposes to improve the flexibility of the DNS
model using NN for deriving the factor loadings. Nunes et al. (2019) directly employ feed-forward NN
to forecast future yields, and Gerhart et al. (2019) use modern recurrent neural networks (RNNs) such
as the long short-term memory (LSTM) which are specifically designed to analyze sequential data, such
as the time series of the yields.

1.1.3. Contributions
In this work, we develop deep learning models that simultaneously model and forecast the dynamics of
the multiple yield curves, which could be related to different countries, credit qualities, or liquidity char-
acteristics; here, we focus on the first two of these. With their ability to describe high-dimensional time
series data and model the nonlinearity often present in the data, deep learning techniques are promising
tools for multiple yield curve modeling and forecasting. The idea is to exploit the dependence struc-
ture among the different yield curves induced by the globalization of financial markets or relationships
between asset classes to improve the forecasting performance of our models by jointly training these on
historical datasets of yield curves. Importantly, we focus both on producing best-estimate forecasts of the
yield curve, as we as employ deep learning techniques to quantify the uncertainty around the predictions
by forecasting quantiles. Although this latter aspect is relevant both from a practical risk management

https://doi.org/10.1017/asb.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.26


ASTIN Bulletin 467

and a theoretical point of view, it has not been deeply investigated in the literature, and creating joint fore-
casts of these is, to our knowledge, novel. For uncertainty quantification we use modern deep learning
approaches, such as nonparametric quantile regression and deep ensembles model (Lakshminarayanan
et al., 2017). This augmentation of best-estimate forecast models with forecast quantiles is particularly
useful for risk management purposes since the quantiles correspond to the VaR, which, in practice,
underlies many quantitative risk management systems in practice. A comparison among these methods
for measuring the uncertainty in the forecasts is also of interest, since it could provide additional insights
into how well these methods describe the evolution of the yield curves.

We utilize recent advances in deep learning methodology into our selected yield curve model, specifi-
cally, the self-attention mechanism, which has been used to great success in natural language processing
(Vaswani et al., 2017) and has recently been applied for severity modeling of flood insurance claims
(Kuo and Richman, 2021). Here, we show how the features derived using a convolutional neural network
(CNN) can be enhanced using the self-attention mechanism for greater forecasting accuracy.

Finally, we investigate the use of transfer learning methods, which aim to transfer as much knowledge
as possible from an existing model to a new model designed for a similar task. These methods are already
intensively used in computer vision and natural language processing tasks, where models are trained on
large general datasets and then fine-tuned on more specific tasks. In our context, the transfer learning
mechanism is applied to exploit knowledge learned by parameterizing models on a database of yield
curves from multiple jurisdictions and then transferring the learned model to a smaller dataset of yield
curves derived for assets of various credit quality.

Organization of the manuscript: The rest of the manuscript is structured as follows. Section 2 intro-
duces two of the most popular factor models for yield curve modeling and forecasting, Section 3
describes neural network building blocks used in Section 4, where we present the proposed yield curve
model. Section 5 illustrates some numerical experiments on a large cross-geography dataset of yield
curves, Section 6 discusses some possible ways to extend and enhance the proposed model, and Section 7
concludes.

2. Dynamic Nelson–Siegel and Nelson–Siegel–Svensson models
We consider a scenario where the objective is to model the dynamics of yield curves belonging to
different families. These curve families might pertain to yield curves that vary in credit rating quality;
for example, families could be labeled as ‘A’, ‘AA’, ‘AAA’, and so forth. Alternatively, the yield curves
could be associated with government bonds from different countries, with families labeled as ‘Euro’,
‘United Kingdom’, and so on.

Let I represent the set of considered curve families, M denote the set of time-to-maturities for
which the curve is defined, T denote a set of dates, and y(i)

t (τ ) denote the continuously compounded
zero-coupon nominal yield at time t ∈ T on a τ -month bond (i.e., at tenor τ ∈M) for the i-th bond in
the set I. Importantly, we note that here we work with spot rates, whereas, for example, PCA analysis of
yield curves is often performed on forward rates. Here, we focus on describing more traditional models
which will be used as a benchmark for the neural network models introduced later.

In their influential work, Nelson and Siegel (NS) (Nelson and Siegel, 1987) introduce a three-factor
model that, at a given date t, describes the relationship between the yield and maturity τ . Given that the
classical NS model is static, Diebold and Li (2006) introduces a dynamic version where the model’s
parameters can vary over time. In this case, y(i)

t (τ ) can be expressed as follows:

y(i)
t (τ ) = β

(i)
0,t + β

(i)
1,t

(1 − e−λ(i)
t τ

λ
(i)
t τ

)
+ β

(i)
2,t

(1 − e−λ(i)
t τ

λ
(i)
t τ

− e−λ(i)
t τ

)
+ ε(i)

t (τ ), ε(i)
t (τ ) ∼N (0, σ 2

ε
(i)
t

),

where β (i)
0,t, β

(i)
1,t, β

(i)
2,t, λ

(i)
t ∈R are model parameters governing the shape of the curve that are estimated

for each date t and each family curve i by using market data. More specifically, the parameters β (i)
j,t with
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j ∈ {0, 1, 2} can be interpreted as three latent factors defining the level, slope, and curvature of the yield
curve, respectively, while λ(i)

t indicates where the loading achieves its maximum; here, we follow the
interpretation of these factors given in Diebold and Li (2006) Different calibration procedures for the
dynamic NS model exist in the literature. In the following sections, we adopt the methodology suggested
in the original paper (Diebold and Li, 2006) For further details, please refer to Appendix A.1.

To make forecasts, a dynamic model for the latent factors β
(i)
j,t with j ∈ {0, 1, 2} has to be specified.

The simplest choice consists of using a set of individual first-order autoregressive (AR) models:
β (i)

j,t =ψ
(i)
0,j +ψ

(i)
1,jβ

(i)
j,t−1 + ζ (i)

j,t , ζ (i)
j,t ∼N (0, σ 2

ζ
(i)
j

) (2.1)

where ψ (i)
0,j ,ψ

(i)
1,j ∈R, i ∈ I, j ∈ {0, 1, 2} are the time series model parameters and ζ (i)

t are normally dis-
tributed error terms. Alternatively, one could also model the vector β

(i)
t = (

β
(i)
0,t, β

(i)
1,t, β

(i)
2,t

) ∈R3 using
single first-order multivariate vector autoregressive (VAR) model:

β
(i)
t = a(i)

0 + A(i)β
(i)
t−1 + η(i)

t , η(i)
t ∼N (0, E(i)) (2.2)

with a(i)
0 ∈R3, A(i) ∈R3×3, and η(i)

t ∼ N(0, E(i)) is the normally distributed error term with matrix E(i) ∈
R3×3.

Numerous extensions of the NS model and its dynamic version have been proposed in the literature.
One of the most popular enhancements, due to Svensson (Svensson, 1994), introduces an additional
term to augment flexibility. This extension enhances the model’s capacity to capture various shapes of
yield curves by incorporating additional curvature components. The Svensson extension allows for a
more general representation of the term structure of interest rates, establishing it as a valuable and often
used tool in fixed-income and financial modeling. The Nelson–Siegel–Svensson (NSS) model is defined
as follows:

y(i)
t (τ ) = β

(i)
0,t + β

(i)
1,t

(1 − e−λ(i)
1,tτ

λ
(i)
1,tτ

)
+ β

(i)
2,t

(1 − e−λ(i)
1,tτ

λ
(i)
1,tτ

− e−λ(i)
1,tτ
)

+ β
(i)
3,t

(1 − e−λ(i)
2,tτ

λ
(i)
2,tτ

− e−λ(i)
2,tτ
)

+ ε(i)
t (τ ),

where β (i)
3,t ∈R is a second curvature parameter and λ(i)

1,t, λ
(i)
2,t ∈R are two decay factors. Also for the NSS

extension, we consider the calibration scheme adopted in Diebold and Li (2006). In the upcoming sec-
tions, we will present comparisons involving both the NS model and its NSS extension. We will use the
notation NS_AR (NSS_AR) to refer to cases where the latent factors of the NS models are described
as independent AR(1) models and NS_VAR (NSS_VAR) to refer to cases where a single multivariate
VAR(1) model is utilized.

3. Neural Networks
Neural networks (NNs) represent nonlinear statistical models originally inspired by the functioning of
the human brain, as implied by their name, and subsequently extensively developed for multiple appli-
cations in ML, see Goodfellow et al. (2016) for a review. A feed-forward neural network comprises
interconnected computational units, or neurons, organized in multiple layers. These neurons “learn”
from data through training algorithms. The fundamental concept involves mapping input data to a new
multidimensional space, extracting derived features. The output (target) is then modeled as a nonlinear
function of these derived features; this process is called representation learning (Bengio et al., 2013).
Implementing multiple feed-forward network layers is called deep learning in the literature and has
proved to be particularly promising when dealing with high-dimensional problems requiring the identi-
fication of nonlinear dependencies. The arrangement of connections among the units delineates various
types of neural networks. Our neural network model is constructed on the principles of both feed-forward
and RNNs. An overview of the neural network blocks employed in the best-performing model presented
in this paper is provided below, whereas we summarize briefly the network blocks that are used in models
that perform less well. For more detail on neural networks in an actuarial context, we refer to Wüthrich
and Merz (2021), whose notation we follow.
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3.1. Fully connected layer
A fully connected network (FCN) layer, also commonly known as a dense layer due to the dense con-
nections between units, is a type of layer in a neural network where each neuron or unit is connected
to every neuron in the previous layer. In other words, each neuron in a fully connected layer receives
input from all the neurons in the preceding layer; if the layer is the first in a network, then each neuron
receives inputs from all of the covariates input into the network.

Let x ∈Rq0 be the input vector; a FCN layer with q1 ∈N units is a vector function that maps x into a
q1-dimensional real-valued space:

z(1) : Rq0 →Rq1 , x �→ z(1)(x) = (
z(1)

1 (x), z(1)
2 (x), . . . , z(1)

q1
(x)
) ′.

The output of each unit is a new feature z(1)
j (x), which is a nonlinear function of x:

z(1)
j (x) = φ(1)

(
w(1)

j,0 +
q1∑

l=1

w(1)
j,l xl

)
j = 1, 2, ..., q1,

where φ(1) : R �→R is the activation function and w(1)
j,l ∈R represent the weights. In matrix form, the

output z(1)(x) of the FCN layer can be written as:

z(1)(x) = φ(1)
(
w(1)

0 + W (1)x
)
. (3.1)

Shallow neural networks are those networks with a single dense layer and directly use the features
derived in the layer for computing the (output) quantity of interest y ∈Y . In the case ofY ⊆R, the output
of shallow NN reads

y = φ(o)
(
w(o)

0 + 〈w(o), z(1)(x)〉) ,

where w(o)
0 ∈R, w(o) ∈Rq1 , φ(o) : R �→R, 〈·, ·〉 denotes the scalar product in Rq1 .

If, on the other hand, the network is deep, the vector z(1)(x) is used as input in the next layer for
computing new features and so on for the following layers. Let h ∈N be the number of hidden layers
(depth of network), and qk ∈N, for 1 ≤ k ≤ h, be a sequence of integers that indicates the dimension of
each FCN layer (widths of layers). A deep FCN can be described as follows:

x �→ z(h:1)(x) = (
z(h) ◦ · · · ◦ z(1)

)
(x) ∈Rqh ,

where the vector functions z(k) : Rqk−1 →Rqk have the same structure of (3.1), and W (k) = (w(k)
j )1≤j≤qk ∈

Rqk×qk−1 , w(k)
0 ∈Rqk , for 1 ≤ k ≤ h are the network weights. In the case of deep NN, the output layer uses

the features extracted by the last hidden layer z(h:1)(x) instead of those z(1)(x). FCN layers are used to
process numerical features or the outputs from other layers, such as recurrent, embedding, or attention
layers.

Finally, we mention that if the inputs to the FCN have a sequential structure, one way of processing
these is to apply the same FCN to each input in turn, producing learned features for each entry in the
sequence. This is called a point-wise neural network in Vaswani et al. (2017) and a time-distributed
network in the Keras library.

3.2. Embedding layer
An embedding layer is designed to acquire a low-dimensional representation of categorical variable
levels. Let qL ∈N denote the hyperparameter determining the size of the embedding. The categorical
variable levels are transformed into a real-valued qL-dimensional space, and the coordinates of each
level in this new space serve as learned parameters of the neural network, requiring training; see Guo
and Berkhahn (2016) who introduced this technique for deep learning models.

The distances between levels in this learned space reflect the similarity of levels concerning the target
variable: closely related levels exhibit small Euclidean distances, while significantly different categories
display larger distances.
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Formally, let l1, l2, . . . , lnL represent the set of categories for the qualitative variable. The embedding
layer functions as a mapping:

e : {l1, . . . , lnL} �→RqL , lk �→ e(lk)
set= e(k).

The total number of embedding weights to be learned during training is nLqL. Generally, embedding
layers are applied to the original categorical covariates to learn a numerical representation of the levels.
These representations are then passed to subsequent layers, which can be of various types, that utilize
the information from these vectors to compute the quantity of interest.

3.3. Attention layer
An attention layer is a component in neural network architectures that implements an attention mech-
anism, which, in some sense “focuses” on certain aspects of the input data that are deemed to be
relevant for the problem at hand. These mechanisms allow the flexibility and performance of models
to be enhanced and have produced excellent results, especially in tasks involving sequences like natu-
ral language processing, as well as within actuarial tasks, see, for example, Kuo and Richman (2021).
The main idea of attention mechanisms is their ability to enable deep neural networks to reweight the
significance of input data entering the model dynamically.

Several attention mechanisms have been proposed in the literature. We focus on the most popular
form of attention, which is the scaled dot-product attention proposed in Vaswani et al. (2017) for as a
component of the Transformer model proposed there.

Let Q ∈Rq×d be a matrix of query vectors, K ∈Rq×d be a matrix of key vectors, V ∈Rq×d is a matrix
of value vectors. The scaled dot-product attention mechanism is a mapping:

A : R(q×d)×(q×d)×(q×d) →R(q×d), (Q, K, V) �→ A = attn(Q,K,V).

The attention mechanism is applied to the matrix V , and the resulting output is calculated as a
weighted sum of its elements. These attention coefficients depend on the matrices Q and K . They
undergo scalar-dot multiplication first, followed by the application of the softmax function to normalize
the scores. Formally, the attention mapping has the following structure:

A = softmax(B)V = softmax
(

QK
√

d

)
V

where d ∈ [0, +∞) is a scalar coefficient, and the matrix of the scores B∗ is derived from the matrix B:

B∗ = softmax(B) where b∗
i,j =

exp (bi,j)∑q
k=1 exp (bi,k)

∈ (0, 1).

d can be set equal to the dimension of the value vectors in the attention calculation or can alternatively
be a learned parameter. The scalar dot attention mechanism is computationally efficient, mainly because
it does not require recursive computation and is thus easily implemented on graphics processing units
(GPU), and has been widely adopted in Transformer-based models due to its simplicity and effectiveness
in capturing relationships between elements in a sequence.

We provide a simple intuition for the learned attention scores in B∗, which are multiplied by the value
vectors in V . Each row of the new matrix B∗V is comprised of a weighted average of the vectors in V ,
where the weights – adding to unity – determine the “importance” of each row vector i of V . Attention
layers are typically used for processing numerical input. They can be applied directly to original data in
numerical form or to the learned representations generated by embedding layers for categorical features.
The output of the attention layer can then be further processed by various types of layers, including FCN
layers.
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3.4. Other network layers
Here, we briefly mention other neural network layers that were tested when designing the attention
network that is the main result presented in Section 4.

The network components presented to this point process inputs to the network without any reference
to previous inputs to the network. RNNs modify neural networks to maintain an internal state that is
calibrated from previous inputs of the network. An example of a RNN is the LSTM network introduced
in Hochreiter and Schmidhuber (1997). The key innovation of LSTM networks lies in their architecture,
which incorporates specialized memory cells capable of selectively retaining or discarding information
over time. This is achieved through a set of gating mechanisms that regulate the flow of information
within the network. Specifically, LSTM units contain three gates: the input gate, the forget gate, and
the output gate. The input gate determines which information from the current input should be stored
in the memory cell. The forget gate decides which information from the previous internal state should
be discarded.The output gate controls the information that will be output the current memory cell. By
dynamically adjusting the operations of these gates based on the input data and the network’s internal
state, LSTMs can effectively learn and remember patterns across varying timescales in sequential data.
This capability makes them particularly well suited to effectively capture long-term dependencies in
sequential data.

CNNs differ from FCNs by connecting the units of this network only to a small patch of the inputs,
whereas the units in FCNs are connected to all of the inputs. They are especially promising when
processing spatial data, such as images or sequences. CNN layers employ a sliding window called a
kernel or filter, which moves across the input data, scanning small patches at a time. This localized con-
nectivity allows CNNs to effectively capture spatial hierarchies and patterns present in the input data.
Moreover, the same set of learnable weights is applied across all patches, facilitating parameter shar-
ing and reducing the overall number of parameters in the network, which is crucial for scalability and
generalization.

Finally, a Transformer model (Vaswani et al., 2017) builds on the self-attention layer in two main
ways. First, instead of employing self-attention in a single head, Transformer models utilize multi-head
attention mechanisms. This involves performing self-attention multiple times in parallel, each with its
own set of learnable parameters. By allowing the model to attend to different parts of the input sequence
simultaneously, multi-head attention enhances the model’s ability to capture diverse and complex rela-
tionships within the data. Secondly, Transformers employ feed-forward neural networks, also known as
point-wise fully connected layers, to process the outputs of the multi-head attention mechanism.

We refer to Goodfellow et al. (2016) and Wüthrich and Merz (2021) for more detail on these network
layers.

3.5. Network calibration
The network’s performance hinges on appropriately calibrating the weights in different layers, denoted
as w(k)

l,j . In the case of FCN layers, these weights manifest as matrices W (k) and a bias term w(k)
0 for each

k ranging from 1 to m. Meanwhile, for embedding layers, the weights correspond to the coordinates of
levels in the new embedding space, represented as e(l) for all l in L. These weights need to be optimized
not only to fit the available data well but also to produce accurate predictions on new examples. To
assess this, the standard procedure entails dividing the available data into two parts: the learning sample,
utilized for model calibration, and the testing sample, used to evaluate out-of-sample performance. The
training process arise an unconstrained optimization, where a suitable loss function L(w(k)

l,j , ·) is chosen,
and the objective is to find its minimum. The NN training employs the back-propagation (BP) algorithm,
wherein weight updates are determined by the gradient of the loss function measured on the learning
sample. The iterative adjustment of weights aims to minimize the error between the network outputs and
reference values. The training complexity increases with the number of layers and units per layer in the
network architecture; these are hyperparameters that should be suitably chosen. Indeed, a too deep NN
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would lead to overfitting producing a model unable to generalize to new data points, or, alternatively,
lead to the vanishing gradient problem, which prevents the BP algorithm from updating the weights
successfully. One remedy for the overfitting problem is the application of regularization methods such
as dropout. Dropout Srivastava et al. (2014) is a stochastic technique that ignores, that is, sets to zero,
some randomly chosen units during the network fitting. This is generally achieved by multiplying the
output of the different layers by independent realizations of a Bernoulli random variable with parameter
p ∈ [0, 1]. Mathematically, the introduction of the dropout in a FCN layer, for example, in the k-th layer,
induces the following structure:

r(k)
i ∼ Bernoulli(p)

ż(k−1)(x) = r(k) ∗ z(k−1)(x)

z(k)(x) = φ
(
wk)

0 + W (k)ż(k−1)(x)
)

,

where ∗ denotes the element-wise product and r(k) = (r(k)
1 , . . . , r(k)

qk−1
) is a vector of independent Bernoulli

random variables, each of which has a probability p of being 1. This mechanism leads to zero the value
of some elements and encourages more robust learning.

For a comprehensive understanding of neural networks and back-propagation, a detailed discussion
can be found in Goodfellow et al. (2016).

4. YC_ATT – a neural network model for multiple yield curve modeling and forecasting
This section formally outlines the proposed deep learning-based multiple yield curve model, which we
call YC_ATT model. We make the assumption that the different yield curve observations over time are
members of families of yield curves that are defined on the same tenor structure M. For example, we
will have multiple observations of the US yield curve, which is one family of yield curves among other
families of yield curves defined by geography. The name YC_ATT emphasizes that the architecture
exploits attention mechanism, for enabling efficient processing of a (multivariate) time series of yield
time series, implicit information selection, and formulation of accurate predictions. Our goal is to derive
precise point forecasts and effectively measure the uncertainty of the future yield curve. To achieve this,
we have designed a model that allows us to jointly estimate a measure of the central tendency of the
distribution of future spot rates (mean or median) and two quantiles at a specified tail level, forming
confidence intervals for the predictions. We note that, despite this section focusing on the attention-
based architecture, nonetheless in Section 5 we will present a comparative study with some variants
of this architecture based on different deep learning models. Denoting as y(i)

t = (y(i)
t (τ ))τ∈M ∈RM the

vector (yield curve) containing the spot rates for different maturities related to the curve family i, at time
t, where M = |M|.

Choosing a look-back period L ∈N and a confidence level α ∈ (0, 1), we design a model that takes as
input the matrix of yield curves related to the previous L dates denoted as Y (i)

t−L,t =
(
y(i)

t−l

)
0≤l≤L

∈R(L+1)×M

and the label related to the curve family i ∈ I, and produces three output vector ŷ(i)
α/2,t+1, ŷ(i)

t+1, ŷ(i)
1−α/2,t+1 ∈

RM. More specifically, ŷ(i)
α/2,t+1 is the vector of quantiles at levels of confidence α/2, ŷ(i)

t+1 is the vector of
a such measure of the central tendency of the distribution (in what follows, we consider both the mean
or the median), and ŷ(i)

1−α/2,t+1 is the vector of quantiles at level (1 − α/2). The quantile statistics will be
calibrated to quantify the uncertainty in future yields. We desire to learn the mapping:

f : R(L+1)×M × I →RM ×RM ×RM(
Y (i)

t−L,t, i
) �→ (̂

y(i)
α/2,t+1, ŷ(i)

t+1, ŷ(i)
1−α/2,t+1

)= f
(
Y (i)

t−L,t, i
)

.

We approximate f (·) with a DNN that combines embedding, FCN, and attention layers. More specifi-
cally, we process the label i using an embedding layer of size qI ∈N. It is a mapping with the following
structure:
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e : {family1, . . . , familynI } �→RqI , familyi → e(familyi)
set= e(i).

where e(i) is a vector that encoded the information related to the family of curves i. It can be seen as a
new representation of i in a new qI-dimensional real-valued space that is optimal with respect to the
response variable. On the other hand, we process the matrix of the past yield curves with three time-
distributed FCN layers aiming to derive, respectively, the query, key, and value vectors for input into
the attention component. The time-distributed mechanism consists of applying the same transformation
(the same layer) to each row of the matrix Y (i)

t−L,t containing the yield curves of the different dates. We
apply three FCN layers that can be formalized as:

z(j) : RM →RqA , y(i)
t �→ z(j)(y(i)

t )

where qA is the number of units of the three layers, and j ∈ {Q, K, V}. They produce the following
matrices:

Q(i)
t = (

q(i)
t−l

)
0≤l≤L

∈R(L+1)×qA , q(i)
t−l = z(Q)(y(i)

t−l) = φ(Q)
(
w(Q)

0 + W (Q)y(i)
t−l

) ∈RqA

K(i)
t = (

k(i)
t−l

)
0≤l≤L

∈R(L+1)×qA , k(i)
t−l = z(K)(y(i)

t−l) = φ(K)
(
w(K)

0 + W (K)y(i)
t−l

) ∈RqA

V (i)
t = (

v(i)
t−l

)
0≤l≤L

∈R(L+1)×qA , v(i)
t−l = z(V)(y(i)

t−l) = φ(V)
(
w(V)

0 + W (V)y(i)
t−l

) ∈RqA ,

where w(j)
0 ∈RqA , W (j) ∈R

qA ×M are network parameters, and φ(j) : R �→R are activation functions , j ∈
{Q, K, V}. The three matrices Q(i)

t , K(i)
t , V (i)

t are processed by an attention layer that combine them
according to the following transformation:

X(i)
t = softmax

(
Q(i)

t (K(i)
t )

√
dk

)
V (i)

t ∈R(L+1)×qA

The output of this layer is arranged in a vector x(i)
t = vec(X(i)

t ) that can be interpreted as a set of features
that summarizes the information contained in the matrix Y (i)

t−L,t. We remark that other deep learning
models could be used to derive the vector of features from the matrix of the past data; here, we use the
attention mechanism, having found that this produces the best out-of-sample forecasting performance.

Finally, we apply three different |M|-dimensional FCN layers to the set of features x(i)
t for deriving

the predictions related to the three vectors of output statistics of interest. The first layer aims to derive
the lower quantiles of the yields, the second one aims to compute the mean (or the median), while the
third one is related to the upper quantiles. Each unit of these layers is dedicated to a specific maturity,
and we have in each layer as many units as the maturities considered. Before inputting the outputs of the
attention layer x(i)

t to these FCNs, we apply dropout to x(i)
t for regularization and reducing overfitting. In

this setting, the predictions are obtained according to the following set of equations:

r(att)
i ∼ Bernoulli(p(att)

1 )

ẋ(i)
t = r(att) ∗ x(i)

t

ŷ(i)
t+1 = g

(
bc + Uce(i) + Wcẋ(i)

t

)
(4.1)

ŷ(i)
α/2,t+1 = ŷ(i)

t+1 − φ+

(
blb + Ulbe(i) + Wlbẋ(i)

t

)
(4.2)

ŷ(i)
1−α/2,t+1 = ŷ(i)

t+1 + φ+

(
bub + Uube(i) + Wubẋ(i)

t

)
(4.3)

where r(k) = (r(k)
1 , . . . , r(k)

(L+1)×qA
), p(att)

1 ∈ [0, 1] is the dropout rate, g : R→R and φ+ : R→ ]0, +∞) are
strictly monotone functions, and bj, Uj, Wj, j ∈ {c, lb, ub} are network parameters. We remark that the
number of units in these three output layers corresponds to the number of maturities considered, denoted
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as M. This means that if we modify the set of maturities, we only need to adjust the size of the input and
output layers. This flexibility ensures that the model can be applied across diverse financial and insur-
ance contexts, accommodating scenarios where yield curves may exhibit varying numbers of maturities.
Looking at this set of equations, some remarks can be made:

(1) The model presents some connections with the affine models1 discussed in Piazzesi (2010).
Considering a single maturity τ , Equation (4.1) can be formulated as follows:

g−1
(̂
y(i)

t+1(τ )
)= bc,τ + 〈

uc,τ , e(i)
〉+ 〈

wc,τ , ẋ(i)
t

〉
.

Indeed, it has the constant-plus-linear structure and depends on the vector of variables x(i)
t

derived by the past observed data. Furthermore, the following additional arguments can be
provided:

– bc can be interpreted as a sort of global intercept;
–
〈
uc,τ , e(i)

〉
is an intercept correction related to the curve family i and maturity τ ;

– wc,τ is the vector of maturity-specific weights associated with x(i)
t . These coefficients are

shared among all the curve families since these do not depend on i.
(2) The formulation we propose avoids potential quantile crossing, which refers to the scenario in

which the estimated quantiles of a probability distribution do not respect the expected order.
Inaccurate or inconsistent quantile estimates have the potential to affect the reliability and inter-
pretability of predictions from the model. Indeed, the use of the activation function φ+(·) that
assumes only positive values ensures that:

ŷ(i)
α/2,t+1 < ŷ(i)

t+1 < ŷ(i)
α/2,t+1.

(3) Rewriting Equations (4.2) for a single maturity, we have

φ−1
+

(̂
y(i)

t+1(τ ) − ŷ(i)
α/2,t+1(τ )

)
= blb,τ + 〈

ulb,τ , e(i)
〉+ 〈

wlb,τ , ẋ(i)
t

〉
emphasizing that we model, on the φ−1

+ scale, the difference between the central measure and
lower quantile at a given maturity τ is an affine model. Similar comments can be made for the
difference between the upper quantile and the central measure.

We illustrate the YC_ATT model in Figures 1 and 2.
The calibration of the multi-output network is carried out accordingly, with a loss function specifically

designed for our aim. It is the sum of three components:
Lα,γ (θ ) =L(1)

α/2(θ) +L(2)
γ

(θ) +L(3)
1−α/2(θ)

=
∑
i,t,τ

�α/2(y(i)
t (τ ) − ŷ(i)

α/2,t(τ )) +
∑
i,t,τ

hγ (y(i)
t (τ ) − ŷ(i)

t (τ )) +
∑
i,t,τ

�1−α/2(y(i)
t (τ ) − ŷ(i)

1−α/2,t(τ )) (4.4)

where �α(u), α ∈ (0, 1) is the asymmetric loss function introduced in Koenker and Bassett (1978) also
known in ML literature as pinball function:

�α(u) =
⎧⎨⎩(1 − α)|u| u ≤ 0

α|u| u> 0,

and hγ (u), γ ∈ {1, 2} is

hγ (u) =
⎧⎨⎩|u| γ = 1

u2 γ = 2,

1The term “affine term structure model” is used in different ways by the literature, we refer to the definition given in Chapter 12
of [Piazzesi (2010)].
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Figure 1. Diagram of the feature processing components of the YC_ATT model. A matrix of spot rates is
processed by three FCN layers in a time-distributed manner, to derive the key, query, and value matrices
which are then input into a self-attention operation.

We emphasize that the first term of the loss function is the pinball function with parameter α/2
associated with the estimation of the lower quantile. The second term represents a generic function linked
to the estimation of the central tendency, while the last term is the pinball function with parameters α/2
associated with the estimation of the upper quantile.

Regarding the function hγ ( · ), it is a general function that encompasses two different criteria com-
monly used in the literature to fit models describing the central tendency of the distribution of the
response variable. If one wishes to estimate the mean, γ should be set to 2, in which case hγ ( · ) becomes
the mean squared error (MSE). Conversely, if one wishes to estimate the median, γ should be set to 1,
in which case hγ ( · ) becomes the mean absolute error (MAE).

5. Numerical experiments
We present some numerical experiments conducted on data provided by the European Insurance and
Occupational Pensions Authority (EIOPA). The authority publishes risk-free interest rate term structures

https://doi.org/10.1017/asb.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.26


476 Ronald Richman and Salvatore Scognamiglio

Figure 2. Diagram of the output components of the YC_ATT model. The matrix of features produced by
the first part of the model are flattened into a vector and then dropout is applied. We add a categorical
embedding to this vector, and, finally, then the best-estimate and quantile predictions are produced.

derived from government bonds of various countries; these are published on a monthly basis as spot
curves, which are the default option for use in the Solvency II regime for discount rates. We define I as
the set of all available countries and M as the set of maturities expressed in years, M= {τ ∈N : τ ≤
150}, such that |M| = 150. We note that we are in a setting where the set of maturities M is the same for
all the families considered, as is the case with the EIOPA data.2 Our sample data covers the period from
December 2015 to December 2021, and Figure A2 provides a graphical representation of the EIOPA
data.

Selecting an observation time t0, we partition the full dataset into two parts. The first, containing
yields before time t0 (referred to as the learning sample), is used for model calibration. The second,
encompassing data after time t0 (referred to as the testing sample), is employed to evaluate the out-of-
sample accuracy of the models. Interval forecasts are constructed by considering the case in which we
desire a coverage probability α= 0.95. As suggested in the application of ML methods, we preprocess
the data by applying min-max scaling.

To benchmark our model, we consider the dynamic NS proposed in Diebold and Li (2006) and its
related Svensson (NSS) extension. We examine both cases where the latent factors follow individual
AR(1) models and the case of a single multivariate VAR(1) model, denoted respectively as NS_AR
(NSS_AR) and NS_VAR (NSS_VAR).

Since our focus is on measuring forecasting accuracy in terms of both point and interval forecasts, we
employ several metrics to compare the models. Concerning point forecast accuracy, we use the global

2More information about EIOPA data are available at https://www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-
structures_en.
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Table 1. Performance of the NS and NSS models in terms of MSE,
MAE, PICP, and MPIW; The MSE values are scaled by a factor of
105, while the MAE values are scaled by a factor of 102.

Model MSE MAE PICP MPIW
NS_AR 0.7433 0.4496 0.9984 0.0540
NS_VAR 0.4977 0.3492 0.7288 0.0080
NSS_AR 0.5379 0.3709 0.9987 0.4253
NSS_VAR 0.4626 0.3226 0.7462 0.0307

(i.e., evaluated for all countries in the dataset) MSE and the MAE defined as follows:

MSE = 1

n

∑
i∈I

∑
t∈T

∑
τ∈M

(y(i)
t (τ ) − ŷ(i)

t (τ ))2, (5.1)

MAE = 1

n

∑
i∈I

∑
t∈T

∑
τ∈M

|y(i)
t (τ ) − ŷ(i)

t (τ )|, (5.2)

where n ∈N is the number of instances. We emphasize that MSE is based on the l2-norm of the errors
and penalizes a larger deviation from the observed values with respect to the MAE which is based on
the l1-norm of the errors. For measuring the interval prediction accuracy, we consider the prediction
interval coverage probability (PICP):

PICP = 1

n

∑
i∈I

∑
t∈T

∑
τ∈M

1{y(i)
t (τ ) ∈ [ŷ(i)

t,LB(τ ), ŷ(i)
t,UB(τ )]} (5.3)

Furthermore, we also analyse the mean prediction interval width (MPIW) to take into account the width
of the confidence interval:

MPIW = 1

n

∑
i∈I

∑
t∈T

∑
τ∈M

(
ŷ(i)

t,UB(τ ) − ŷ(i)
t,LB(τ )

)
. (5.4)

Intuitively, a good model should provide a PICP close to the value of α, indicating that the model is
well calibrated, while having as small an MPIW, as possible. Table 1 presents the performance related
to the four measures considered for the NS and NSS benchmark models.

Regarding the accuracy of point forecasts, it is worth noting that employing a VAR(1) model instead
of independent AR(1) models for modeling the latent factors dynamics enhances the performance of both
the NS and NSS models. This improvement is evident in terms of both MSE and MAE. Furthermore,
it is noteworthy that NSS models consistently demonstrate superior accuracy compared to NS models.
Turning our attention to interval forecasts, it becomes apparent that models incorporating AR processes
tend to exhibit over coverage, as indicated by excessively high PICP and impractically large interval
widths providing very limited information content. In contrast, versions based on VAR models for NS
and NSS tend to yield more reasonable interval widths. However, given their relatively low coverage
probability, they fall short of adequately capturing the uncertainty in future yields. In summary, we
designate the NSS_VAR model as the optimal choice, as it yields the lowest MSE and MAE, along
with the highest PICP and a reasonable MPIW. Consequently, we will employ this model for subsequent
comparisons throughout the remainder of the paper.

Now, we can focus on the YC_ATT model. We examine two variants distinguished by the gamma
parameter in the loss function employed for calibration. The first variant is calibrated by setting γ = 1
(denoted as YC_ATTγ=1) and, in that case, the second component of the loss function is the MAE. On
the other hand, the second variant is calibrated with γ = 2 and the component of the loss related to the
central tendency of the distribution then uses the MSE. Regarding the other hyperparameters, we have
configured the number of units in the dense intermediate layers comprising the attention component
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Table 2. Out-of-sample performance of the different deep learning models in terms of MSE, MAE,
PICP, and MPIW; the MSE values are scaled by a factor of 105, while the MAE values are scaled by a
factor of 102. Bold indicates the smallest value, or, for the PICP, the value closest to α = 0.95.

MSE MAE PICP MPIW

Model Average Ensemble Average Ensemble Average Ensemble Average Ensemble
YC_ATTγ=1 0.2947 0.2887 0.2667 0.2616 0.9154 0.9191 0.0106 0.0106
YC_ATTγ=2 0.3663 0.3638 0.3463 0.3451 0.8528 0.8573 0.0105 0.0105
YC_CONVγ=1 0.3778 0.3642 0.2975 0.2850 0.9035 0.9235 0.0115 0.115
YC_CONVγ=2 0.4258 0.4244 0.3890 0.3884 0.8509 0.8530 0.0110 0.0110
YC_LSTMγ=1 0.4272 0.4111 0.3164 0.2970 0.7757 0.8147 0.0093 0.0093
YC_LSTMγ=2 0.3898 0.3697 0.3352 0.3198 0.6911 0.7081 0.0084 0.0084
YC_TRANγ=1 0.4308 0.4167 0.3313 0.3168 0.8371 0.8645 0.0113 0.0113
YC_TRANSγ=2 0.4232 0.4124 0.4042 0.3987 0.5771 0.5760 0.0091 0.0091

of the model as qA = 8, while the dropout rate is set p(att)
1 = 0.5. As previously indicated, the part of

the network architecture that processes the past yields can be constructed using various neural network
blocks. The attention layer, discussed earlier, is just one of the available choices. We further explore the
utilization of other well-established deep learning models that have demonstrated success in modeling
sequential data. Specifically, we investigate other three variants:

• YC_LSTM: based on the LSTM network of Hochreiter and Schmidhuber (1997) that is a
popular kind of RNN;

• A simplification of the YC_ATT model, that removes the attention mechanism and relies only
on processing the yield curves using time-distributed FCNs; since these are also called one-
dimensional CNNs, we call this variant YC_CONV;

• YC_TRANS which is a more complex Transformer-based model (Vaswani et al., 2017), which
adds extra FCNs to the YC_ATT model.

For all these models, we set g(x) and φ+(x) equal to the sigmoid function, while employing hyperbolic
tangent activation for all intermediate layers. In order to make the comparison fair, also for these variants
we set the number of units in the layers equal to 8. Furthermore, for each one of these architectures, we
respectively test the variants with γ = 1 and γ = 2.

Table 2 presents the performance metrics, including MSE, MAE, PICP, and MPIW, for various deep
learning models.

To account for randomness in batch sampling and the random initial parameters for each network
for the optimization, multiple training attempts were conducted, and the results represent the average
performance over 10 training attempts. The boxplots related to the 10 training attempts are shown in
Figure A3 (Appendix A). Additionally, we also consider the use of averaging ensemble mechanisms.
In that case, predictions are generated by averaging the predictions from the 10 trained models. More
specifically, let ŷ(i,k)

t (τ ) be the predictions generated by the k-th training attempt of a given model, for
k = 1, . . . , 10, according to the use of the averaging ensemble mechanism, predictions are calculated as:

ŷ(i,ENS)
t (τ ) = 1

10

10∑
k=1

ŷ(i,k)
t (τ ).

We can then calculate the performance metrics (5.1)–(5.4) using the average ensemble predictions
ŷ(i,ENS)

t (τ ). The idea is that the averaging mechanism allows the errors from different models to counter-
balance each other, potentially resulting in the ensemble’s performance being superior to the average
performance of individual models. Additionally, this technique can be applied to the lower and upper

https://doi.org/10.1017/asb.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.26


ASTIN Bulletin 479

quantile predictions ŷ(i,k)
t,LB(τ ) and ŷ(i,k)

t,UB(τ ), enhancing the interval predictions. We remark that, generally,
the average performance across different runs differs from the performance of the ensemble predictions
obtained by averaging the predictions of the different models. However, we note that the average MPIW
model performance across different training attempts coincides with the MPIW related to the ensemble
predictions. The proof of this statement is provided in Appendix A.2.

Several noteworthy findings emerge. First, the consistent adoption of ensemble mechanisms leads to
superior performance compared to the average performance across individual models. This trend holds
across all examined models and metrics, aligning with prevailing findings in the literature on predictive
modeling with deep learning. Moreover, a notable trend is highlighted: models configured with γ = 1
consistently outperform their counterparts with γ = 2 in both point forecasts and interval forecast accu-
racy. This outcome can be attributed to the robust nature of MAE as a measure, providing increased
resilience to outliers and contributing to a more stable model calibration. Suprisingly, this is even the
case when evaluating the models using the MSE metric. Finally, among the deep learning models, the
YC_ATT model with γ = 1 demonstrates the best performance, suggesting that this architecture is par-
ticularly well suited for the regression task at hand. Also notable is that the ensemble predictions of
the YC_ATT model with γ = 1 are almost the best calibrated, as measured by the PICP metric, while
the bounds are relatively narrow, as measured by the MPIW metric. Nonetheless, the best performance
on the PICP metric on a standalone basis is the YC_CONV with γ = 1. Regarding ensemble predic-
tions, it is noteworthy that the average MPIW model across various training attempts coincides with the
MPIW associated with ensemble predictions. The proof of this assertion can be found in the Appendix.
In summary, evaluating the models on all of the metrics, the YC_ATT performs the best overall.

Figure 3 graphically compares the point and interval forecasts generated by the NSS_VAR and
YC_ATT models for yield curves across various countries. The figure refers to the central date within the
forecasting horizon, specifically June 2021, as the forecasting period spans monthly observations from
January to December 2021. The figure shows the actual observed yield curve, and an out-of-sample fore-
cast of the best-estimate and quantiles using the previous 10 months of data; model parameters are those
calibrated using data up to the end of 2020. Upon examination, it becomes evident that the NSS_VAR
model falls short in accurately depicting the shape of yield curves in certain countries. Notably, the real-
ized yields deviate significantly from the projected forecasts and extend beyond the confidence intervals.
This discrepancy is particularly pronounced in the cases of Brazil, Colombia, Mexico, India, Russia,
South Africa, and others. In contrast, the YC_ATT model exhibits more flexibility and demonstrates the
ability of effectively capturing the uncertainties associated with future yields.

Figure 4 offers a more in-depth analysis of the performance exhibited by the YC_ATT and NSS_VAR
models across various countries of the EIOPA yield curves. It illustrates the MSE, MAE, and PICP
produced by the different models for the different yield curve families. From the standpoint of point
forecasts, it is noted that in certain instances, the YC_ATT and NSS_VAR models produce comparable
results. However, for specific cases, the YC_ATT model demonstrates a notable enhancement, particu-
larly evident in developing countries such as Brazil, Chile, Malaysia, Mexico, South Africa, and Turkey.
This finding suggests that yields shows that when the yield curve evolution can be adequately described
by the NSS_VAR model, our YC_ATT tends to replicate the same point predictions. On the other hand,
for the yield curve families for which the NSS_VAR model is not optimal, the YC_ATT improve the
results. In terms of interval forecasts, there is a noticeable improvement attributable to the YC_ATT
model, impacting all the EIOPA yield curves under consideration.

To gain insights into the mechanism underlying the YC_ATT model, we investigate the features that
the model extracts from the input data and that are used by the output layers to derive key statistics. We
consider the time series of the feature vector (e(i), x(i)

t ) ∈RqI+qA×M, t ∈ T , and conduct PCA to reduce
the dimensionality. We extract the first four principal components (PCs) which explain the 97% of the
variability of (e(i), x(i)

t ) such that we have a mapping with the structure RqI+(L+1)×qA �→R4 for each feature
vector. To assess the similarity of information contained in the four PCs with the time series of β

(i)
t factors

of the NSS model, we calculate, for each β-coefficient, the average correlation (in absolute value) with
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Figure 3. Point and interval forecasts for EIOPA yield curves generated by the NSS_VAR and YC_ATT models as of June 2021, the central date of the
forecasting period.
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Figure 4. MSE, MAE, and PICP obtained by the YC_ATT and NSS_VAR models in the different
countries.

the first four PCs. These quantities measure how much the PCs are linearly correlated with the β
(i)
t

factors that contain information about the level, slope, and curvature of the yield curves.The results
for each yield curve family are presented in Figure 5. Notably, we observe that very high correlations
are detected in some cases, while low correlations are obtained in the others. Examining this figure
in conjunction with Figure 4, we note that in families exhibiting similar performances, such as Euro,
Bulgaria, Denmark, and Iceland, the PCs are high correlated with the NSS latent factors. Conversely,
instances of notable improvements by the YC_ATT model, as seen in Mexico, Turkey, Malaysia, and
Brazil, are accompanied by smaller correlations between the PC components from the output of the
attention layer and the beta parameters of NSS. In essence, this figure confirms that in cases where the
yield curves follow a process adequately described by the NSS models, the YC_ATT model replicates
this by extracting variables highly correlated with beta. However, when this is not the case, and the yields
present more complex patterns, our attention model derives features that deviate from the NNS model,
resulting in better outcomes.

6. Extensions and variants of the YC_ATT model
In this section, we explore potential extensions and variants of the YC_ATT, considering some
modifications that aim to enhance the modeling of yield curves and their associated uncertainties.

6.1. Deep ensemble
An alternative approach for modeling uncertainty in future yields is the deep ensemble (DE) method
discussed in Lakshminarayanan et al. (2017). In contrast to the quantile regression-based YC_ATT, this
method relies on distributional assumptions for the response. The idea consists of formulating a het-
eroscedastic Gaussian regression model that provides joint estimates for both the mean and variance of
the yields, denoted as (y(i)

t (τ ), (σ (i)
t (τ ))2). This technique not only facilitates the extraction of additional

insights into future yields but also accommodates heteroscedasticity in the modeling process; this is
different from the networks calibrated in the previous section which are equivalent to assuming that the
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Figure 5. Linear correlation coefficients (in absolute value) of the four PCs derived from the learned features, represented as (e(i), x(i)
t ) ∈RqI+(L+1)×qA ,

with respect to the β
(i)
t factors of the NSS model for the different yield curve families.
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responses follow a homoscedastic Laplace or Gaussian distribution for choices of γ ∈ {0, 1}, respec-
tively. Furthermore, confidence intervals can be derived using these estimates. In this vein, we design
a network architecture with two output layers that produces predictions of the yield curves and their
related variances. We refer to this model as YC_ATT_DE. As discussed in Nix and Weigend (1994),
model calibration of the DE model can be performed by minimizing the following loss function:

L(θ ) =
∑
t,i,τ

[
y(i)

t (τ ) − ŷ(i)
t (τ )

(σ (i)
t (τ ))2

+ log
(
(σ (i)

t (τ ))2
)

2

]
.

The first component represents the MSE between the prediction and the actual yields, scaled by the
variance. Meanwhile, the second term acts as a penalization factor for observations with notably high
estimated variances. We calibrate the YC_ATT_DE model on the EIOPA data in the same setting used
above. Figure 6 shows the standard deviation estimates (σ̂ (i)

t (τ ))τ∈M associated with the yield curves for
the different countries obtained through the YC_ATT_DE model.

We notice that larger standard deviations are detected for the yields corresponding to short time-
to-maturity in contrast to the yields associated with longer maturities. This observation aligns with
intuition, as shorter-term yields are more susceptible to market fluctuations, rendering them more
volatile. Additionally, we note that standard deviation estimates are notably higher for specific members
of the EIOPA family of yield curves, specifically those linked to Turkey, Russia, Brazil, and Mexico.
This finding is plausible in light of the economic instability experienced in these countries.

Figure 7 illustrates the PICP of the YC_ATT, YC_ATT_DE, and NSS_VAR models across various
time-to-maturities. Notably, the NN-based models exhibit significantly superior performance compared
to the NSS_VAR model, confirming once again that the NSS model is not sufficiently flexible to capture
uncertainty in certain yield curve families. On the other hand, YC_ATT and YC_ATT_DE emerge as
more promising candidates to address this task, producing higher PICP for all the maturities considered.
Furthermore, upon comparing YC_ATT and YC_ATT_DE, we observe that the former tends to excel
for short time-to-maturity, while the latter yields higher PICPs for longer times to maturity. This finding
suggests that the Gaussian distribution assumption appears to be more suitable for yields with long
maturities, since the yields related to short maturity are more susceptible to market fluctuations and
may be affected by some asymmetry and fat tails.

We note that the forecast term structures of standard deviations from the YC_ATT_DE are a nice
by-product of this method and can be used for other quantitative risk management applications.

6.2. Transfer learning
The calibrated YC_ATT models may also provide some benefits when used on smaller datasets through
the mechanism of transfer learning. Transfer learning allows for leveraging knowledge gained from
solving one task and applying it to improve the performance of a different but related task. In other
words, we take a model trained on one task (the source task) is repurposed or fine-tuned for a different
but related task (the target task).

For this particular application, we aim to exploit a model with experience acquired in modeling and
forecasting EIOPA yield curves to construct forecasting models for different families of yield curves.
Transfer learning is of particular interest when a dataset of experience is available, that is too small to
calibrate reliable models on. For example, with the recent implementation of IFRS 17, companies will
produce portfolio specific illiquidity-adjusted yield curves. It is likely that these curves comprise too
small a dataset to model; in this case transfer learning can be used.

To explore this idea, we collected a new, smaller dataset of US spot curves relating to assets with
different rating levels. A visual representation of this supplementary data is presented in Figure A4 in
the appendix. In this context, the set of yield curve families is defined as İ = {AAA, AA, A, BBB, BB, B}.
The set of maturities is represented by
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Ṁ= {0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30}, denoting Ṁ = |Ṁ| its cardinality, and the
timespan Ṫ covers monthly observations from January 2015 to October 2021. Importantly, we here have
different inputs to the networks, both in terms of the number of maturities and the categorical input i.
We divided the dataset into a learning sample and a testing sample, conducting a forecasting exercise
for the most recent 12 months of experience in this dataset.

As noted, the two groups of curves present different number of maturities (Ṁ �= M), and directly
applying the YC_ATT model to the new data becomes unfeasible. To address this issue, we equip
YC_ATT model with an additional layer designed to align the US credit curves with the same dimension
as the EIOPA curves. This adjustment enables us to process them using pre-calibrated attention layer of
the YC_ATT model, facilitating the extraction of the relevant features x(i)

t . Denoting as Ỹ (i)
t−L,t ∈R(L+1)×Ṁ

the matrix of past yield curves related to the L + 1 previous date, we apply the (learned) mapping:

ż : R(L+1)×Ṁ →R(L+1)×M, E(i)
t−L,t = ż(Ẏ (i)

t−L,t);

this used an FCN layer. Furthermore, since we are now considering a different set of yield curve families,
we also introduce a new embedding layer aimed to learn a R-valued representation of the elements in İ
that is optimal with respect to the forecasting task. It is a mapping with the structure

ė : {AAA, AA, A, BBB, BB, B} →Rqİ , li → ė(li)
set= ė(i).

where qİ ∈N is the hyperparameter defining the size of the embedding layer. In this case, the three
output layers related to the calculation of the lower quantiles, the best estimates, and the upper quantiles
have size equal to Ṁ.

Letting θ̇ be the vector of NN parameters of these two new layers, the calibration process is carried
out by minimizing the loss, as defined in Equation (4.4), which now also depends on the parameters θ̇ .
The objective is to learn an effective mapping that transforms the US credit curve data into the dimension
of the EIOPA yield curve data in order to be processed by the pretrained attention layer of the YC_ATT
model and simultaneously train the new embedding layer. In essence, we optimise the model with respect
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Table 3. MSE, MAE, PICP, and MPIW of the different models considered. Bold
indicates the smallest value, or, for the PICP, the value closest to α = 0.95.

Model MSE MAE PICP MPIW
NS_AR 0.4605 0.5279 0.5243 0.9221
NS_VAR 0.3273 0.4412 0.43056 0.5796
NSS_AR 0.4833 0.5381 0.5512 1.0109
NSS_VAR 0.3416 0.4514 0.4323 0.8853
YC_ATTγ=1 0.3178 0.4691 0.9003 2.3189
YC_ATTγ=1 (ensemble) 0.3113 0.4640 0.9019 2.3189
YC_transferγ=1 0.3152 0.4622 0.9285 2.1109
YC_transferγ=1 (ensemble) 0.2262 0.3963 0.9852 2.1109

to θ̇ while keeping constant (or “frozen”)) the parameters θ
(ATT) related to the key, query, and value FCNs

and the attention layer:

arg minθ̇L(θ̇ , θ (ATT)).

To benchmark our model with transfer learning – called YC_transfer in the below – we present the
comparison against the NS and NSS models. Since we are considering a different set of data, we now
extend again the comparison to all four versions of the NS and NSS models with both AR(1) and VAR(1)
parameter forecasts. We also include in the comparison the model YC_ATT that is directly trained on the
US credit curve data. For both NN-based models, we also investigate the use of the ensemble mechanism.
In this application, we focus on the case γ = 1, that is, calibrating the best-estimates output of the model
using the MAE.

Table 3 presents the performance metrics for all the models across the four measures. We note that
NS_VAR and NSS_VAR models outperform their counterparts that are based on independent AR mod-
els, in terms of point forecasts. However, it is noteworthy that all four models exhibit poor performance
in terms of PICP, indicating a limited ability to capture uncertainty surrounding future yields. When
examining NN-based models, we also note the ensemble mechanism consistently enhances the results
of both the YC_ATTγ=1 and YC_transferγ=1 models. The most accurate outcomes are obtained with the
YC_transferγ=1 (ensemble), which produces superior performance in terms of MSE, MAE, and PICP.
Figure 8 illustrates the point and interval forecasts of the YC_ATTγ=1 and the YC_transferγ=1 models
on three distinct dates: the starting date, the middle date, and the last date of the forecasting horizon.
Notably, the width of the forecast interval expands as we transition from yield curves associated with
high AAA ratings to those with lower B ratings. This evidence works for all three dates. This trend aligns
with expectations, as greater uncertainty is logically anticipated in yields linked to lower-rated compa-
nies. Moreover, both models exhibit commendable performance in predicting yields for reliable ratings
(BBB, A, AA, AAA). The transfer model, in particular, demonstrates enhanced coverage for the lower-rated
categories (B and BB), where more uncertainty is expected. A plausible explanation for this observa-
tion is that the transfer model adeptly captures tension by leveraging insights gained from EIOPA data,
featuring yield curves marked by substantial volatility.

7. Conclusions
The accurate modeling of the yield curves is crucial in insurance and finance for several reasons, play-
ing a fundamental role in risk management, investment decision-making, and asset-liabilities evaluation.
This paper has advanced the field by developing deep learning models to describe the dynamics of multi-
ple yield curves associated with diverse credit qualities or countries simultaneously. We have confirmed
the intrinsic ability of these models to effectively describe large-dimensional time series data and model
nonlinearity inherent in yield curve dynamics. Our study shows that these models outperform other
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Figure 8. Point and interval forecasts for the US credit curves generated by the YC_ATT and YC_transfer models for the central, the middle and the final
date of forecasting period.

https://doi.org/10.1017/asb.2024.26 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/asb.2024.26


488 Ronald Richman and Salvatore Scognamiglio

well-known models such as the dynamic version of the Nelson and Siegel (Nelson and Siegel, 1987;
Diebold and Li, 2006) and the related Svenson extension (Svensson, 1994) in the multiple yield curve
modeling and forecasting tasks. We performed several numerical experiments on the data provided by
the EIOPA. Although different kinds of neural network architecture have been investigated, we dis-
cover the most promising results have been obtained by using the self-attention mechanism, which has
proven successful in natural language processing. Furthermore, we also investigate techniques for quan-
tifying the uncertainty around predictions, a critical yet under-explored in the existing literature. We
explored the use of nonparametric quantile regression and designed an architecture specifically designed
to avoid quantile crossing issues. The numerical analysis of the performance, conducted in terms of PICP
and MPIW, shows the effectiveness of the proposed approach. We finally discuss two possible extensions
and variants of the proposed model. The first one considers using the DE method for measuring
uncertainty in forecasts. This approach, which requires the assumption of heteroscedastic Gaussian dis-
tributions of the response, appears to be promising, especially in describing the dynamics of yields with
long time-to-maturities; the DE approach also produces a term structure of forecast volatility, which is
a useful by-product. The second extension uses a transfer learning mechanism that could be useful to
exploit the experiences gained in modeling the EIOPA yield curves to improve the performance of a
model related to a different set of yield curves. A numerical illustration of this approach is conducted
considering the US credit curve data with different credit qualities (ratings). We show that this approach
allows for improved forecasting performance, especially in terms of prediction intervals, when the data
we are considering are subject to more uncertainty.

In future studies, we plan to explore the use of explainable deep learning techniques, in particular, the
LocalGLMnet model introduced in Richman and Wüthrich (2023), to model effectively the uncertainty
inherent in future yield predictions in an interpretable manner. Initially designed for expected values, an
extension to quantile modeling is interesting but also challenging due to the intricate issue of quantile
crossing. Moreover, we would like to model jointly interest rates and other market variables using a
similar model. Finally, our future research agenda extends to the investigation of other potential appli-
cations of attention and transfer models within the insurance domain. Specifically, we aim to explore
their efficacy in nonlife insurance fields, such as frequency-severity modeling.
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Appendix
A Appendix: Proof, data, and plots
A.1 Calibration of the Nelson–Siegel and Nelson–Siegel–Svensson models
The procedure introduced in Diebold and Li (2006) was originally designed for modeling the evolution
over time of a single family of yield curves. Since we are considering multiple families, we apply the
procedure to each family of curves individually. For a chosen observation date, we fit the NS model on
the yields of the different dates. The method sets λ(i)

t to a constant value λ(i) for all t ∈ T . In our exper-
iments, we set this constant equal to the reciprocal of the average maturity. The remaining parameters
are estimated date by date by solving a sequence of independent linear optimization problems:

β̂
(i)

t = arg min
β

(i)
0,t ,β

(i)
1,t ,β

(i)
2,t

∑
τ∈M

(
y(i)

t (τ ) − β
(i)
0,t − β

(i)
1,t

(1 − e−λiτ

λ
(i)
t τ

)
− β

(i)
2,t

(1 − e−λ(i)
t τ

λ
(i)
t τ

− e−λ(i)
t τ

))2

, ∀t ∈ T .

This procedure results in the time series of the estimates b̂(i)
t = (β̂ (i)

0,t, β̂
(i)
1,t, β̂

(i)
2,t) of the latent factors for

each family of curves i ∈ I. To formulate the forecasts of the future yield curves, we need to extrapolate
the future values of these latent factors. Both the models in (2.1) and (2.2) can be considered for this
purpose. The parameters of these time series models can be estimated individually for each family of
yield curves using the ordinary least squares (OLS) estimator, leveraging standard statistical packages.
We use the R package “forecast” (see Hyndman and Khandakar, 2008).

Figure A1 illustrates, for each family of curves, the estimates of the latent factors and their associated
forecasts using both AR(1) and VAR(1) models, based on the EIOPA data analyzed in the numerical
experiments outlined in Section 5.

For the NSS models, we adopt a similar methodology. Specifically, we set λ(i)
1,t = λ

(i)
1 and λ(i)

1,t = λ
(i)
2 ,

respectively, equal to the first and third quartiles of the distribution of the maturities. The remaining
parameters are optimized through the resolution of the following equations:

arg min
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.

Also in this case, the future values of these parameters can be extrapolated by using univariate or
multivariate time series models.

A.2 Proof: average MPIW and MPIW of the averaging ensemble predictions
Here, we show that the average MPIW across different training attempts coincides with the MPIW of
the averaging ensemble predictions of the K models.

We denote

• y(i,k)
t,α/2(τ ) lower quantile estimate at level α/2 of the k-th model,

• y(i,k)
t,1−α/2(τ ) upper quantile estimate at level 1 − α/2 of the k-th model,

• n = |M| × |I| × |T |.
The MPIW of the k-th model on the different data points is

MPIWk = 1

n

∑
t

∑
i

∑
τ

(
y(i,k)

t,1−α/2(τ ) − y(i,k)
t,α/2(τ )

)
.
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Figure A1. Time series of the estimates and the related forecast of the latent factors β̂
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t for the different families of yield curves.
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Figure A2. Risk-free interest rate term structures derived from government bonds of different countries;observation period spans from December 2015
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The average MPIW over K training attempts is

MPIWaverage = 1

K

K∑
k=1

MPIWk = 1
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∑
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∑
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the MPIW of the ensemble predictions is

MPIWensemble = 1

n

∑
t

∑
i

∑
τ

(
1

K

K∑
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y(i,k)
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)
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k=1

∑
t

∑
i

∑
τ

(
y(i,k)

t,1−α/2(τ ) − y(i,k)
t,α/2(τ )

)
.

Then, we can conclude that

MPIWaverage = MPIWensemble.

A.3 R Code for the YC_ATT model and its variants
A.4 Data and other plots

Listing 1: Keras Code for defining the YC ATT model and its variants.
1 # mod_type (string) is a variable defining the type of Neural Network layer that processes

2 # the past yield curves.

3 # u (integer) is an hyperparameter defining the size of the intermediate layers.

4

5 k_clear_session ()

6 yields <- layer_input(shape = c(10,150), dtype = ’float32 ’, name = ’yields ’)

7 Country <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Country ’)

8 Country_embed=Country%>%

9 layer_embedding(input_dim = 34, output_dim = 5) %>%

10 layer_flatten(name= ’Country_embed ’)

11

12 if (mod_type == "YC_ATT "){

13 #Pure Self -Attention model

14 query = yields %>% time_distributed(layer_dense(units =u, activation = "tanh "))

15 key = yields %>% time_distributed(layer_dense(units =u, activation = "tanh "))

16 value = yields %>% time_distributed(layer_dense(units =u, activation = "tanh "))

17 features = list(query , key , value) %>% layer_attention(use_scale = T, trainable = T) %>%

18 layer_flatten( name = "features ") %>% layer_dropout (0.5)

19 }else if (mod_type == "YC_CONV" ){

20 #Pure convolutional model

21 features = yields %>% layer_conv_1d(filter =u, kernel_size =1, activation = "tanh",

22 padding = "causal", input_shape =c(10 ,150))% >%

23 layer_flatten ()%>% layer_dropout (0.5)

24 }else if (mod_type == "YC_LSTM" ){

25 #Pure LSTM model

26 features = yields %>% layer_lstm(units=u, activation = "tanh", return_sequences = T,

input_shape =c(10,d))%>%

27 layer_flatten ()%>% layer_dropout (0.5)

28 }else if (mod_type == "YC_TRAN" ){

29 #Transformer model

30 intermediate = yields %>% layer_conv_1d(filter =u, kernel_size =3, activation = ’tanh ’,

31 padding = "causal", input_shape =c(10 ,150))% >% layer_dropout (0.2)

32

33 query = intermediate %>% time_distributed(layer_dense(units = u, activation = "tanh "))

34 key = intermediate %>% time_distributed(layer_dense(units = u, activation = "tanh "))

35 value = intermediate %>% time_distributed(layer_dense(units = u, activation = "tanh "))

36 attended = list(query , key , value) %>% layer_attention(use_scale = T, trainable = T)

37 for_ln = list(intermediate , attended) %>% layer_add ()

38 attended2 = for_ln %>% time_distributed(layer_dense(units = u*4, activation = "tanh ")) %>%

39 time_distributed(layer_dense(units = u, activation = "tanh "))

40 features = list(attended2 , for_ln) %>% layer_add () %>% layer_flatten () %>% layer_dropout (0.5)

41 }

42

43 central_comp = features %>%list(Country_embed )%>%

44 layer_concatenate(name = "central_comp ") %>%

45 layer_dense(units = d, activation = ’sigmoid ’) %>%

46 layer_reshape(c(1,d),name = ’forecast_yields ’)

47 lower_comp = features %>%list(Country_embed )%>%

48 layer_concatenate () %>%

49 layer_dense(units = d, activation = ’sigmoid ’) %>% layer_lambda(function(x) -x) %>%

50 layer_reshape(c(1,d),name = ’lower_comp ’)

51 upper_comp = features %>%list(Country_embed )%>%

52 layer_concatenate () %>%

53 layer_dense(units = d, activation = ’sigmoid ’) %>%

54 layer_reshape(c(1,d),name = ’upper_comp ’)

55

56

57 upper = central_comp %>% list(upper_comp) %>% layer_add ()%>% layer_reshape(c(1,d),name = ’upper ’)

58 lower = central_comp %>% list(lower_comp) %>% layer_add ()%>% layer_reshape(c(1,d),name = ’lower ’)

59

60

61 model <- keras_model(inputs = list(yields ,Country), outputs = c(central_comp , lower , upper))
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