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ASYMPTOTIC BEHAVIOUR OF THE FIRST POSITIONS OF UNIFORM
PARKING FUNCTIONS

ETIENNE BELLIN,∗ Ecole Polytechnique

Abstract

In this paper we study the asymptotic behaviour of a random uniform parking function
πn of size n. We show that the first kn places πn(1), . . . , πn(kn) of πn are asymptotically
independent and identically distributed (i.i.d.) and uniform on {1, 2, . . . , n}, for the total
variation distance when kn = o(

√
n), and for the Kolmogorov distance when kn = o(n),

improving results of Diaconis and Hicks. Moreover, we give bounds for the rate of con-
vergence, as well as limit theorems for certain statistics such as the sum or the maximum
of the first kn parking places. The main tool is a reformulation using conditioned random
walks.
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1. Introduction

A parking function of size n is a function πn : [[1, n]] → [[1, n]] such that, if π ′
n(1) ≤ · · · ≤

π ′
n(n) is the non-decreasing rearrangement of (πn(1), . . . , πn(n)), then π ′

n(i) ≤ i for all i.
Konheim and Weiss [16] first introduced parking functions, in the context of information
storage, to study hashing functions, and they have shown that there are (n + 1)n−1 parking
functions of size n. Since then, parking functions have become a subject of interest in the fields
of combinatorics, probability, group theory, and computer science. More precisely, parking
functions are linked to the enumerative theory of trees and forests [8], to coalescent pro-
cesses [6, 7], to the analysis of set partitions [20], hyperplane arrangements [19, 21], polytopes
[9, 22], and sandpile groups [10]. Finally, the study of probabilistic properties of parking func-
tions has recently attracted some interest [11, 15, 25]. We refer to [24] for an extensive survey.
Our initial interest in parking functions comes from the study of minimal factorisations of
cycles [3].

For all n ≥ 1, consider a random parking function (πn(i))1≤i≤n chosen uniformly among all
the (n + 1)n−1 possible parking functions of size n. For all 1 ≤ k ≤ n, let

dTV (k, n) := 1

2

n∑
i1,...,ik=1

∣∣∣∣P(πn(1) = i1, . . . , πn(k) = ik) − 1

nk

∣∣∣∣ (1)
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1202 E. BELLIN

denote the total variation distance between (πn(1), . . . , πn(k)) and (Un(1), . . . , Un(k)), where
(Un(i))1≤i≤n are independent and identically distributed (i.i.d.) and uniform in [[1, n]]. Diaconis
and Hicks [11, Corollary 6] have shown that dTV (1, n) tends to 0 as n tends to infinity, and
conjectured that for any fixed k, dTV (k, n) should be O(k/

√
n). In the same paper they studied

the Kolmogorov distance

dK(k, n) := max
1≤i1···ik≤n

∣∣∣∣P(πn(1) ≤ i1, . . . , πn(k) ≤ ik) − i1 · · · ik
nk

∣∣∣∣, (2)

and have shown that [11, Theorem 3] for 1 ≤ k ≤ n,

dK(k, n) = O

(
k

√
log n

n
+ k2

n

)
.

They also discuss the growth threshold of k at which dK no longer converges towards 0, and find
that for k of order n the convergence fails. We prove a stronger version of Diaconis and Hicks’
conjecture when k is allowed to grow with n at rate at most

√
n. Moreover, the Kolmogorov

distance converges towards 0 when k = o(n), as shown in the following result.

Theorem 1. (i) If kn = o(
√

n), then

dTV (kn, n) = O

(
kn√

n

)
. (3)

(ii) If kn = o(n) and
√

n = o(kn), then

dK(kn, n) = O

(√
n

kn
+
(

kn

n

)0.19)
. (4)

Remark 1. In Theorem 1(ii),
√

n is assumed to be o(kn). Since the function k �→ dK(k, n) is
non-decreasing for fixed n, the distance dK(kn, n) still tends towards 0 as long as kn = o(n).
Thus sequence an = n satisfies dK(kn, an) → 0 if kn = o(an) and dK(kn, an) 	→ 0 if an = O(kn).
It would be very interesting to identify such a sequence for dTV instead of dK , and, in particular,
to see if dTV (kn, n) → 0 when kn = o(n).

The main idea in proving Theorem 1 is to express the law of πn in terms of a condi-
tioned random walk (Proposition 2 below) and to control its moments, uniformly in time
(Proposition 4). Such uniform estimates on conditioned random walks are delicate to estab-
lish, and we believe them to be of independent interest. As an application, we obtain limit
theorems for the maximum and the sum of the first kn parking places. Namely we obtain the
following corollary (whose proof is postponed to the last section).

Corollary 1. (i) If kn = o(
√

n) and kn → ∞, then the convergence√
12

kn

(
πn(1) + · · · + πn(kn)

n
− kn

2

)
−→N (0, 1)

holds in distribution, where N (0, 1) is a standard normal distribution.

(ii) If kn = o(n) and kn → ∞, then the convergence

kn

(
1 − 1

n
max{πn(1), . . . , πn(kn)}

)
−→ E(1)

holds in distribution, where E(1) is an exponential distribution with mean 1.
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Asymptotic of uniform parking functions 1203

Remark 2. The complete sum πn(1) + · · · + πn(n) has been studied, and converges, after
renormalisation, towards a more complicated distribution involving zeros of the Airy function
(see [11, Theorem 14]).

When kn ∼ cn we obtain the following limit theorem for the first kn parking places. The
proof uses other techniques and Proposition 2 (or rather its proof).

Proposition 1. If kn ∼ cn with c ∈ (0, 1], then for all a ∈N there exists an integer-valued
random variable S∗

a such that 0 ≤ S∗
a ≤ a almost surely and

P(n − max{πn(1), . . . , πn(kn)} ≥ a) −→E
[
(1 − c)a−S∗

a
]
.

In Section 2 we use a bijection between parking functions and Cayley trees and use it to
reformulate the law of πn in terms of conditioned random walks. Then in Section 3 we bound
the moments of a conditioned random walk in order to control the probability mass function
of πn and prove Theorem 1(i). In Section 4 we prove (ii) using arguments developed in the
previous sections. The last section is devoted to the proof of Corollary 1 and Proposition 1.

In the following, C denotes a constant which may vary from line to line.

2. Bijection between parking functions and Cayley trees

Here the goal is to use the bijection found by Chassaing and Marckert [8] between parking
functions of size n and Cayley trees with n + 1 vertices (i.e. acyclic connected graphs with
n + 1 vertices labelled from 0 to n). This bijection will allow us to express the joint distribution
of the first positions of a uniform parking function in terms of random walks. To this end, we
start with some notation and definitions. Let Cn+1 be the set of Cayley trees with n + 1 vertices
labelled from 0 to n, where the vertex labelled 0 is distinguished from the others (we call it
the root of the tree). Also, let Pn be the set of parking functions of size n. We consider the
breadth-first search on a tree t ∈ Cn+1 by ordering the children of each vertex of t in increasing
order of their labels (thus t is viewed as a plane tree) and then taking the regular breadth-first
search associated with the plane order (see [8] for a detailed definition and see Figure 1 for an
example). For t ∈ Cn+1 and 1 ≤ i ≤ n, define r(i, t) to be the rank for the breadth-first search of
the parent of the vertex labelled i in t. The bijection of Chassaing and Marckert is described in
the following theorem.

Theorem 2. (Chassaing and Marckert.) The map

t �→ (r(1, t), . . . , r(n, t)) (5)

is a bijection between Cn+1 and Pn.

Remark 3. Chassaing and Louchard [7] described a similar bijection using what they call the
standard order instead of breadth-first search.

Let (Xi)i≥1 be i.i.d. random variables distributed as a Poisson distribution of parameter 1. For
all n ≥ 0 we set Sn := ∑n

i=1 (Xi − 1) and, for all a ∈Z, τa := min{n ≥ 1 : Sn = a} the first time
that the random walk (Sn)n reaches a. Consider the probability measure Pn := P(·|τ−1 = n + 1)
and set En := E[ · |τ−1 = n + 1]. It is well known that a Bienaymé–Galton–Watson tree with
a critical Poisson reproduction law conditioned on having n vertices has the same distribution,
when we uniformly randomly label the vertices from 1 to n, as a uniform Cayley tree with n
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0,1

3,2 4,3 6,4

1,5 2,6 5,7 8,8

7,9 9,10

FIGURE 1. Example of a Cayley tree t with 10 vertices. For every vertex, its label is represented in black
on the left and its rank for the breadth-first search is in red on the right. Here, for example, we have

r(5, t) = 2. The parking function associated with this tree by (5) is (2, 2, 1, 1, 2, 1, 8, 4, 8).

vertices (see e.g. [14, Example10.2]). From this, Chassaing and Marckert deduce the following
corollary.

Corollary 2. (Chassaing and Marckert.) Let Tn+1 be a random Cayley tree in Cn+1 with
uniform distribution. The random vector (#{1 ≤ j ≤ n : r(j, Tn+1) = i})1≤i≤n+1 has the same
distribution as (Xi)1≤i≤n+1 under Pn.

We are now able to state and prove the main result of this section.

Proposition 2. Fix 1 ≤ k ≤ n and 1 ≤ i1, . . . , ik ≤ n. Let j1 < · · · < jr be such that
{i1, . . . , ik} = {j1, . . . , jr} (so the vector (j1, . . . , jr) is the vector (i1, . . . , ik) where repeated
elements have been reduced to a single one, and r is the number of distinct elements of
(i1, . . . , ik)). Define ms = #{u : iu = js} for all 1 ≤ s ≤ r. Then

P(πn(1) = i1, . . . , πn(k) = ik) = (n − k)!
n! En

[
r∏

s=1

(Xjs )ms

]
, (6)

where (x)m := x(x − 1) · · · (x − m + 1).

Proof. Let Tn+1 be a random Cayley tree in Cn+1 with uniform distribution. Let S(k, n)
denote the set of all injections between [[1, k]] and [[1, n]]. We have

P(πn(1) = i1, . . . , πn(k) = ik) = (n − k)!
n!

∑
σ∈S(k,n)

P(πn(σ (1)) = i1, . . . , πn(σ (k)) = ik)

= (n − k)!
n! E

[ ∑
σ∈S(k,n)

1r(σ (1),Tn+1)=i1,...,r(σ (k),Tn+1)=ik

]

= (n − k)!
n! E

[
r∏

s=1

(#{1 ≤ j ≤ n : r(j, Tn+1) = js})ms

]

= (n − k)!
n! E

[
r∏

s=1

(Xjs )ms

]
.
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The first equality comes from the fact that any permutation of a parking function is still a
parking function, thus any permutation induces a bijection in Pn. The second equality comes
from Theorem 2 and the last from Corollary 2. This completes the proof. �

3. Convergence for the total variation distance

In this section we suppose that kn = o(
√

n). We will write k instead of kn to ease notation,
but keep in mind that k depends on n. The goal of this section is to show item (i) of Theorem 1.

3.1. Probability that the parking places are distinct

The first step is to reduce the problem to distinct parking places; in this case equation (6)
becomes easier. To this end we introduce the set of distinct indices

Dn := {(u1, . . . , uk) ∈ [[1, n]]k : i 	= j ⇒ ui 	= uj}.
We also introduce the set

Gn := {(u1, . . . , uk) ∈ [[1, n]]k : P(πn(1) = u1, . . . , πn(k) = uk) ≥ (n − k)!/n!}
and the quantity

δ(k, n) :=
∑

(i1,...,ik)
∈Dn∩Gn

[
P(πn(1) = i1, . . . , πn(k) = ik) − (n − k)!

n!
]

. (7)

The next lemma shows that the first k parking places of a uniform parking function are all
distinct with high probability. It also shows that if δ(k, n) is O(k/

√
n) then so is dTV (k, n).

Recall that (Un(i))1≤i≤n are i.i.d. uniformly distributed in [[1, n]].

Lemma 1. We have

(i) P((Un(1), . . . , Un(k)) ∈ Dn) = 1 + O

(
k√
n

)
,

(ii) P((πn(1), . . . , πn(k)) ∈ Dn) = 1 + O

(
k√
n

)
,

(iii) δ(k, n) = O

(
k√
n

)
=⇒ dTV (k, n) = O

(
k√
n

)
.

Proof. Let μn be the law of (πn(1), . . . , πn(k)) and νn the law of (Un(1), . . . , Un(k)), with
support on the same finite space En := [[1, n]]k. First we check (i). By Markov’s inequality,

νn(Dc
n) = P

(∑
r<s

1Un(r)=Un(s) ≥ 1

)
≤
∑
r<s

P(Un(r) = Un(s)) =
∑
r<s

1

n
= 1

n

k(k − 1)

2
.

Since k = o(
√

n), we have

1

n

k(k − 1)

2
= O

(
k2

n

)
= O

(
k√
n

)
.

Now we check (ii). To do so, we will use the Prüfer encoding (or a slight variant thereof)
of a rooted Cayley tree t ∈ Cn into a sequence (p1, . . . , pn−2) ∈ [[0, n − 1]]n−2, which we now
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explain. For a ∈ [[1, n − 1]], define p(t, a) to be the label of the parent of the vertex labelled a in
t. Also, define �(t) as the biggest leaf label of t, and t∗ the tree t obtained after removing the leaf
labelled �(t) and its adjacent edge. Finally we define the sequence of trees t1 := t, ti := t∗i−1
for 2 ≤ i ≤ n − 2. The Prüfer encoding of t is then defined as pi := p(ti, �(ti)). For example,
the Prüfer encoding of the tree in Figure 1 is (8, 8, 6, 0, 3, 0, 3, 3). The key property of this
encoding is that it is a bijection between the sets Cn and [[0, n − 1]]n−2. Now, let Tn+1 be a
uniform Cayley tree in Cn+1. Theorem 2 implies that μn(Dn) is equal to the probability that
the vertices labelled 1 to k in Tn+1 have distinct parents. Let (v1, . . . , vk) be a random vector
with uniform distribution in Dn independent of Tn+1. Since the distribution of Tn+1 is invariant
under permutation of the labels, the previous probability is also equal to the probability that
the vertices labelled v1, . . . , vk have distinct parents in Tn+1. Let (p1, . . . , pn−1) be the Prüfer
encoding of the tree Tn+1. We complete this vector with pn := 0 (this comes from the fact
that tn−2 has two vertices, one of them being the root labelled 0). Since Tn+1 is uniformly
distributed in Cn+1, the vector (p1, . . . , pn−1) is uniformly distributed in [[0, n]]n−1. From the
previous discussion and the definition of the Prüfer encoding, we deduce that

μn(Dn) = P((pv1 , . . . , pvk ) ∈ Dn).

Consider the event Zn := {v1, . . . , vk 	= n}. Under this event, it is easy to see that (pv1 , . . . , pvk )
has the same law as k i.i.d. random variables uniformly distributed in [[0, n]]. So from (i) we
have

μn(Dn) ≥ P((pv1, . . . , pvk ) ∈ Dn | Zn) P(Zn) =
(

1 + O

(
k√
n

))
P(Zn).

To conclude, notice that P(Zn) = 1 − k/n.
Finally we show (iii). Assume that δ(k, n) = O(k/

√
n). For all i1, . . . , ik, let

�i1,...,ik denote the quantity (P(πn(1) = i1, . . . , πn(k) = ik) − (n − k)!/n!). Notice that nk(n −
k)!/n! − 1 = O(k/

√
n), so

2dTV (k, n) =
n∑

i1,...,ik=1

|�i1,...,ik | + O

(
k√
n

)
.

Let d+
n denote the sum of �i1,...,ik over the indices in Gn and d−

n the opposite of the sum over
the indices in En \ Gn. We have

d+
n − d−

n =
n∑

i1,...,ik=1

�i1,...,ik = 1 − nk(n − k)!
n! = O

(
k√
n

)
.

The last two equalities imply that

2dTV (k, n) = d+
n + d−

n + O

(
k√
n

)
= 2d+

n + O

(
k√
n

)
.

In conclusion we just need to show that d+
n is O(k/

√
n). Notice that

d+
n = δ(k, n) + μn(Dc

n ∩ Gn) − νn(Dc
n ∩ Gn) × nk(n − k)!

n! .

From (i), (ii), and the assumption on δ(k, n), we deduce that d+
n is indeed O(k/

√
n). �

To prove (i) of Theorem 1 it remains to show that δ(k, n) = O(k/
√

n). This is the goal of the
next three sections.
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3.2. A monotonicity argument

In this section we bound the terms En[Xi1 · · · Xik ] that appear in (6) when i1, . . . , ik are dis-
tinct with terms involving En[Si1 · · · Sik ], since the latter are more manageable. More precisely,
the aim of this section is to prove the following result.

Proposition 3. Fix i1, . . . , ik ∈ [[1, n]] pairwise distinct. We have

i1 · · · ik En[Xi1 · · · Xik ] ≤En[(Si1 + i1) · · · (Sik + ik)]. (8)

To prove Proposition 3 we first state a really useful lemma which, put in simple terms, says
that the steps of the random walk S tend to decrease under Pn.

Lemma 2. Fix n ≥ k ≥ 1 and m1, . . . , mk ≥ 1. Let 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · <
jk ≤ n such that jr ≤ ir for all 1 ≤ r ≤ k. Let f : N×N \ {0} �→ [0, ∞) be a non-negative
function such that f (0, m) = 0. Then

En[f (Xi1, m1) · · · f (Xik , mk)] ≤En[f (Xj1, m1) · · · f (Xjk , mk)]. (9)

Proof of Lemma 2. To ease notation, we define the random vector X := (X1, . . . , Xn+1) and
write x as a shortcut to designate an element (x1, . . . , xn+1) of Nn+1. Let s := min{r ≥ 1 : jr <

ir}. We only need to treat the case where ir = jr for all r 	= s and j := js = is − 1 (the general
result can then be obtained by induction). Let σ = (j j + 1) ∈Sn+1 be the permutation that
transposes j and j + 1. Let

En := {x ∈N
n+1 : (x1 − 1) + · · · + (xt − 1) = −1 if and only if t = n + 1}

and let

E ′
n := {x ∈ En : xj+1 > 0 or (x1 − 1) + · · · + (xj−1 − 1) > 0}.

Note that (x1, . . . , xn+1) �→ (xσ (1), . . . , xσ (n+1)) is a bijection on E ′
n. Then

E

[
k∏

r=1

f (Xir , mr)1τ−1=n+1

]
=
∑
x∈En

k∏
r=1

f (xir , mr) P[X = x]

=
∑
x∈E ′

n

k∏
r=1

f (xσ (ir), mr) P[X = x]

+
∑

x∈En\E ′
n

k∏
r=1

f (xir , mr) P[X = x].

If x ∈ En \ E ′
n, then f (xj+1, mj+1) = f (0, mj+1) = 0; in particular, since f is non-negative,

f (xi1, m1) · · · f (xik , mk) ≤ f (xσ (i1), m1) · · · f (xσ (ik), mk).
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Finally

E

[
k∏

r=1

f (Xir , mr)1τ−1=n+1

]
≤
∑
x∈En

k∏
r=1

f (xσ (ir), mr) P[X = x]

=E

[
k∏

r=1

f (Xσ (ir), mr)1τ−1=n+1

]

=E

[
k∏

r=1

f (Xjr , mr)1τ−1=n+1

]
. �

Remark 4. In Lemma 2 we can for instance take f (x, m) = xm or f (x, m) = (x)m. Note that in
Lemma 2 the indices (ir)r must be pairwise distinct as well as the indices (jr)r. In the proof of
Proposition 3, we extend the result for f (x, m) = xm to the case where only the (ir)r are pairwise
distinct.

Proof of Proposition 3. First we show the following inequality. Fix n ≥ k ≥ 1. Let 1 < i1 <

· · · < ik ≤ n, 1 ≤ j1 ≤ · · · ≤ jk ≤ n be such that jr ≤ ir for all 1 ≤ r ≤ k. Then

En[Xi1 · · · Xik ] ≤En[Xj1 · · · Xjk ]. (10)

To show (10) it is actually enough to show the following result. Let J ⊂ [[1, n]] and 2 ≤ i ≤ n
such that i and i − 1 do not belong to J. Let mj ≥ 1 for j ∈ J and m ≥ 1. Then

En

[
Xm

i−1Xi

∏
j∈J

X
mj
j

]
≤En

[
Xm+1

i−1

∏
j∈J

X
mj
j

]
. (11)

Inequality (10) can then be obtained by induction using Lemma 2 and (11). By Young’s
inequality,

Xm
i−1Xi ≤ m

m + 1
Xm+1

i−1 + 1

m + 1
Xm+1

i .

Combining this with Lemma 2 gives (11) and concludes the proof of (10). Now, using
inequality (10), we obtain

i1 · · · ik En[Xi1 · · · Xik ] ≤
∑
jr≤ir

En[Xj1 · · · Xjk ] =En[(Si1 + i1) · · · (Sik + ik)],

which concludes the proof of Proposition 3. �

3.3. Bounding the moments of a random walk conditioned to be an excursion

The goal of this section is to find bounds for the moments of the random walk S conditioned
to be an excursion. More precisely, the aim of this section is to show the following result.

Proposition 4. There exists a constant C > 0 such that for all n ≥ 2, 1 ≤ k ≤ n − 1 and d ≥ 1,

(i) we have
En
[
Sd

k

]≤ (Cdn)d/2, (12)
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(ii) and

En
[
Sd

n−k

]≤( n

n − k

)3/2

(Cdk)d/2, (13)

(iii) as well as

En
[
Sd

k

]≤( n

n − k

)3/2(
Cd

√
k
)d. (14)

Remark 5. Items (i) and (ii) of Proposition 4 actually hold true for any random walk (Sn)n≥0
starting from 0 with i.i.d. increments all having the distribution μ whose support is N∪ {−1}
and such that μ has mean 0 and finite variance. However, (iii) uses in addition the fact that
a Poisson random walk has a sub-exponential tail (see e.g. [23, Example 3]), namely, for all
k ≥ 1 and x ≥ 0,

P(Sk ≥ x) ≤ exp

(
− x2

2(k + x)

)
. (15)

To prove Proposition 4 we will use the following lemma, whose proof is postponed to
the end of this section. This lemma is similar to the cyclic lemma in spirit, but instead of
conditioning the walk to be an excursion we only condition it to stay positive.

Lemma 3. Let n ≥ 1 and F : Rn → [0, +∞) be invariant under cyclic shifts. Then

E[F(X1, . . . , Xn)1S1,...,Sn>0] ≤ 1

n
E[F(X1, . . . , Xn)(Sn ∧ n)1Sn>0]. (16)

Proof of Proposition 4. We recall that C denotes a constant which may vary from line to line.
For (i), according to [2, equation (32)], the maximum of the excursion of S has a sub-Gaussian
tail, namely there exist constants C, α > 0 such that, for all n ≥ 1 and x ≥ 0,

Pn(Mn ≥ x) ≤ Ce−αx2/n,

where Mn := max{S0, . . . , Sn} is the maximum of the walk S on [0, n]. So we have

En
[
n−d/2Sd

k

]≤En
[
n−d/2Md

n

]
=
∫ ∞

0
dxd−1

Pn
(
Mn ≥ √

nx
)

dx

≤
∫ ∞

0
Cdxd−1 e−αx2

dx

≤ Cddd/2.

This shows (i).
The following computation is a common starting point to show both (ii) and (iii). Let

H(Sk, x) be either the indicator function 1Sk=x or 1Sk≥x with x > 0. Using the fact that
P(τ−1 = n + 1) is equivalent to a constant times n−3/2 (see e.g. [17, equation (10)]), and then
using the Markov property and finally the cyclic lemma (see e.g. [18, Section 6.1]), we get

En[H(Sk, x)] ≤ C n3/2
E[H(Sk, x) 1τ−1=n+1]

≤ C n3/2
E[H(Sk, x) 1S1,...,Sk≥0 P(τ−1−Sk = n − k)]

≤ C n3/2
E

[
H(Sk, x) 1S1,...,Sk≥0

1 + Sk

n − k
P(S′

n−k = −1 − Sk)

]
,
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where S′ is independent of S and has the same distribution. Now we use Janson’s inequality
[13, Lemma 2.1], which states that P(Sr = −m) ≤ Cr−1/2 e−λm2/r for all r ≥ 1 and m ≥ 0, to
get

En[H(Sk, x)] ≤ C n3/2
E

[
H(Sk, x) 1S1,...,Sk≥0

1 + Sk

(n − k)3/2
e−λ(1+Sk)2/(n−k)

]

≤ C

(
n

n − k

)3/2

E
[
H(Sk, x) 1S1,...,Sk≥0 Sk e−λS2

k/(n−k)]. (17)

To prove (ii) we first define Tk := max{0 ≤ i ≤ k : Si = 0}. Let pk(x) denote the probability of
the event {Sk = x, S1, . . . , Sk ≥ 0}. Using the Markov property, we obtain

pk(x) =
k−1∑
i=0

P(Sk = x, S1, . . . , Sk ≥ 0, Tk = i)

=
k−1∑
i=0

P(S1, . . . , Si ≥ 0, Si = 0) P(Sk−i = x, S1, . . . , Sk−i > 0).

We apply Lemma 3 and the local limit theorem (see e.g. [12, Theorem 4.2.1]), which gives a
constant C > 0 such that P(Sk−i = x) ≤ C(k − i)−1/2, for every k > i and x ∈Z, so that

pk(x) ≤
k−1∑
i=0

P(S1, . . . , Si ≥ 0, Si = 0)
x

k − i
P(Sk−i = x)

≤ C x
k−1∑
i=0

P(S1, . . . , Si ≥ 0, Si = 0)
1

(k − i)3/2
.

Notice that

P(S1, . . . , Si ≥ 0, Si = 0) = e P(τ−1 = i + 1) ≤ C

(i + 1)3/2
.

So, finally we have

pk(x) ≤ C x
k−1∑
i=0

1

((i + 1)(k − i))3/2
= C x

(k + 1)3/2

k−1∑
i=1

(
1

i + 1
+ 1

k − i

)3/2

≤ C x

k3/2
.

Putting the previous inequality in (17) with H(Sk, x) = 1Sk=x and replacing k with n − k gives

Pn(Sn−k = x) ≤ C

[
n

k(n − k)

]3/2

x2 e−λx2/k.

We can now bound the dth moment of Sn−k:

En
[
Sd

n−k

]≤ C

[
n

k(n − k)

]3/2 ∫ ∞

0
xd+2 e−λx2/k dx

≤ Cdkd/2
[

n

n − k

]3/2 ∫ ∞

0
xd+2 e−x2

dx

≤ Cdkd/2
[

n

n − k

]3/2

dd/2.
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This concludes the proof of (ii).
To prove (iii) we follow the same principle. Using the Markov property and Lemma 3, we

have

E[1Sk≥x 1S1,...,Sk≥0 Sk] =
k−1∑
i=0

E[1Sk≥x 1S1,...,Sk≥0 Sk 1Tk=i]

=
k−1∑
i=0

P(S1, . . . , Si ≥ 0, Si = 0)E[1Sk−i≥x 1S1,...,Sk−i>0 Sk−i]

≤
k−1∑
i=0

P(S1, . . . , Si ≥ 0, Si = 0)
1

k − i
E
[
1Sk−i≥x S2

k−i

]
.

Then we apply the Cauchy–Schwarz inequality:

E
[
1Sk−i≥x S2

k−i

]≤ P(Sk−i ≥ x)1/2
E
[
S4

k−i

]1/2 ≤ C(k − i)P(Sk−i ≥ x)1/2.

The last inequality comes from an explicit computation of the fourth central moment of a
Poisson distribution. We combine the last inequality with (15) to get

E
[
1Sk−i≥x S2

k−i

]≤ C(k − i) exp

(
− x2

4(k − i + x)

)
≤ C(k − i) exp

(
− x2

4(k + x)

)
.

Putting everything together, we obtain

E[1Sk≥x 1S1,...,Sk≥0 Sk] ≤ C exp

(
− x2

4(k + x)

) k−1∑
i=0

P(S1, . . . , Si ≥ 0, Si = 0)

≤ C exp

(
− x2

4(k + x)

) k−1∑
i=0

e P(τ−1 = i + 1)

≤ C exp

(
− x2

4(k + x)

)
.

We combine the last inequality with (17) to get

En
[
k−d/2Sd

k

]= ∫ ∞

0
dxd−1

Pn
(
Sk ≥ √

kx
)

dx

≤ C

[
n

n − k

]3/2 ∫ ∞

0
dxd−1 exp

(
− kx2

4(k + x
√

k)

)
dx.

We cut the last integral into two parts and obtain

∫ ∞

0
dxd−1 exp

(
− kx2

4(k + x
√

k)

)
dx ≤

∫ √
k

0
dxd−1 e−x2/8 dx +

∫ ∞
√

k
dxd−1 e−x/8 dx.

Noticing that the last two integrals are both smaller than Cddd, this concludes the proof
of (iii). �
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We now prove Lemma 3.

Proof of Lemma 3. For x = (x1, . . . , xn) ∈R
n and i ∈ [[0, n − 1]], let xi denote the ith cyclic

permutation of x, namely xi := (x1+i, . . . , xn, x1, . . . , xi). Consider the set

An :=
{

(x1, . . . , xn) ∈N
n : for all k ∈ [[1, n]],

k∑
i=1

(xi − 1) > 0

}

and write X := (X1, . . . , Xn). Then

E[F(X1, . . . , Xn)1S1,...,Sn>0] =E[F(X)1X∈An ]

= 1

n

n−1∑
i=0

E[F(Xi)1Xi∈An
] (18)

= 1

n
E

[
F(X)

n−1∑
i=0

1Xi∈An

]

≤ 1

n
E[F(X)(Sn ∧ n)1Sn>0].

The inequality comes from the fact that the number of cyclic shifts of X such that Xi ∈ An is
almost surely bounded by (Sn ∧ n)1Sn>0. �

3.4. Proof of Theorem 1(i)

Recall we want to show that dTV (k, n) = O(k/
√

n). In Section 3.1 we have shown that it is
enough to show δ(k, n) = O(k/

√
n), where the definition of δ(k, n) is given by (7). Thanks to

Proposition 2, this quantity can be rewritten as

δ(k, n) = nk(n − k)!
n!

∫
�k

[En[X�nt1� · · · X�ntk�] − 1] dt1 · · · dtk,

where

�k := {(t1, . . . , tk) ∈ (0, 1]k : (�nt1�, . . . , �ntk�) ∈ Dn ∩ Gn}.

As was already mentioned in Section 3.1, nk(n − k)!/n! = 1 + O(k/
√

n), so for our purpose it
is sufficient to bound the integral

I(k, n) :=
∫

�k

[En[X�nt1� · · · X�ntk�] − 1] dt1 · · · dtk.

Using inequality (8), we obtain

I(k, n) ≤
∫

[0,1]k

[
En

[(
S�nt1�
�nt1� + 1

)
· · ·

(
S�ntk�
�nt1� + 1

)]
− 1

]
dt1 · · · dtk. (19)

Notice that (i) and (iii) of Proposition 4 imply that for all 0 ≤ k ≤ n

En
[
Sd

k

]≤ (Cd
√

k
)d. (20)
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Indeed, Proposition 4(i) covers the case k ≥ n/2 of equation (20) and (iii) covers the case
k < n/2 (notice that the cases k = 0 and k = n are trivial, since, conditionally on τ−1 = n + 1,
S0 = Sn = 0). Hölder’s inequality shows that for 0 ≤ i1, . . . , id ≤ n

En[Si1 · · · Sid ] ≤ (Cd)d
√

i1 · · · id. (21)

Expanding the products in (19) and using (21) gives

I(k, n) ≤
k∑

d=1

(
k

d

)
(Cd)dn−d/2

∫
[0,1]d

dt1 · · · dtd
(t1 · · · td)1/2

.

Notice that t �→ t−1/2 is integrable, so

I(k, n) ≤
k∑

d=1

(
k

d

)
(Cd)dn−d/2.

Using the bound
(k

d

)≤ (ke/d)d,

I(k, n) ≤
k∑

d=1

(
Ce

k√
n

)d

.

Since k = o(
√

n), we conclude that I(k, n) = O(k/
√

n).

4. Convergence for the Kolmogorov distance

In this section we suppose that kn = o(n) and
√

n = o(kn). We will write k instead of kn

to ease notation, but keep in mind that k depends on n. The goal of this section is to show
Theorem 1(ii). The following lemma allows us to replace the cumulative probability in (2)
with the term En[(Si1 + i1) · · · (Sin + in)], which is more manageable.

Lemma 4. There is a constant C > 0 such that

dK(k, n) ≤ 1

nk
max

1≤i1···ik≤n
|En[(Si1 + i1) · · · (Sik + ik)] − i1 · · · ik| + Ck

n
. (22)

Before proving this lemma we show how it implies Theorem 1(ii). We will also need the
following simple lemma, which extends [4, equation (27.5)].

Lemma 5. Let r ≥ 1, w1, . . . , wr, and z1, . . . , zr be complex numbers of modulus smaller than
or equal to a > 0 and b > 0, respectively. Then∣∣∣∣∣

r∏
i=1

wi −
r∏

i=1

zi

∣∣∣∣∣≤
r∑

i=1

|wi − zi|ar−ibi−1. (23)

Proof of Lemma 5. The result readily follows from the identity

r∏
i=1

wi −
r∏

i=1

zi = (w1 − z1)
r∏

i=2

wi + z1

(
r∏

i=2

wi −
r∏

i=2

zi

)
. �
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Proof of Theorem 1(ii). Let 1/2 < α < 1. We define a sequence of intervals I1, . . . , IM+3
(depending on n) in the following way:

I1 := [1, n − k), I2 := [n − k, n − kα), I3 := [
n − kα, n − kα2)

, . . .

IM+1 := [
n − kαM−1

, n − kαM )
, IM+2 := [

n − kαM
, n − n/k

)
, IM+3 := [n − n/k, n],

where M is the biggest integer such that n − kαM ≤ n − n/k. Let 1 ≤ i1, . . . , ik ≤ n. Using
Lemma 5 (with a = b = 1 and noticing that (Si + i)/n under Pn is almost surely smaller than
1 for every i), we decompose the quantity En[(Si1 + i1) · · · (Sik + ik) − i1 · · · ik] depending on
those intervals to which the ij belong, so that

En

[(
Si1 + i1

n

)
· · ·

(
Sik + ik

n

)
− i1

n
· · · ik

n

]
≤

M+3∑
m=1

En

[∏
ij∈Im

Sij + ij
n

−
∏
ij∈Im

ij
n

]
. (24)

Fix m ∈ {1, . . . , M + 3} and let ι1, . . . , ιrm denote the ij that belong to Im. If m = 1, then by
Lemma 5 and Proposition 4(i),

En

[∏
ij∈I1

Sij + ij
n

−
∏
ij∈I1

ij
n

]
≤ 1

n

r1∑
j=1

En[Sιj ]

(
n − k

n

)j−1

≤ C
√

n

n

n

k

= C
√

n

k
.

If 2 ≤ m ≤ M + 2, we follow the same principle but we use Proposition 4(ii) instead:

En

[∏
ij∈Im

Sij + ij
n

−
∏
ij∈Im

ij
n

]
≤ 1

n

rm∑
j=1

En[Sιj ]

(
n − kαm−1

n

)j−1

≤ Ckαm−2/2

n

n

kαm−1

= C

k(α−1/2)αm−2 .

The previous computation works in the case m = M + 2 because the maximality of M implies
that n − n/k ≤ n − kαM+1

. Finally, if m = M + 3,

En

[ ∏
ij∈IM+3

Sij + ij
n

−
∏

ij∈IM+3

ij
n

]
≤ 1

n

rM+3∑
j=1

En[Sιj]

≤ rM+3
C

n

(
n

k

)1/2

≤ C

(
k

n

)1/2

.
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Notice that kαM ≥ n/k, so for all 0 ≤ m ≤ M, kαM−m ≥ (n/k)α
−m

. Summing the preceding
bounds for 2 ≤ m ≤ M + 2 gives

M+2∑
m=2

En

[∏
ij∈Im

Sij + ij
n

−
∏
ij∈Im

ij
n

]
≤ C

M∑
m=0

1

k(α−1/2)αm

= C
M∑

m=0

1

k(α−1/2)αM−m

≤ C
M∑

m=0

(
k

n

)(α−1/2)α−m

≤ C

(
k

n

)(α−1/2)

+ C
M∑

m=1

(
k

n

)−(α−1/2)e ln (α)m

≤ C

(
k

n

)(α−1/2)

+ C

(
k

n

)−(α−1/2)e ln (α)

,

where we used the fact that −e ln (α)m ≤ 1/αm for all m ≥ 1. If we take α such that α − 1/2 =
exp (−e−1) − 1/2 � 0.1922, then the last quantity is O(k/n)0.19. Putting everything together,
we finally obtain

1

nk
max

1≤i1···ik≤n

∣∣∣∣∣En

[
k∏

r=1

(Sir + ir)

]
−

k∏
r=1

ir

∣∣∣∣∣≤ C

[√
n

k
+
(

k

n

)0.19

+
(

k

n

)1/2]
.

Combining the last display with Lemma 4 gives the desired result. �

Now we prove Lemma 4.

Proof of Lemma 4. Define the empirical distribution function of πn, namely, for all i ∈
{1, . . . , n},

Fn(i) := 1

n

n∑
j=1

1πn(j)≤i.

As suggested in [11], we can use a result of Bobkov [5, Theorem 1.1]. The sequence
(πn(1), . . . , πn(n)) is an exchangeable extension of (πn(1), . . . , πn(k)), meaning that the dis-
tribution of (πn(1), . . . , πn(n)) stays the same after any permutation. So by Theorem 1.1 of [5]
we have

max
1≤i1···ik≤n

|P(πn(1) ≤ i1, . . . , πn(k) ≤ ik) −E[Fn(i1) · · · Fn(ik)]| ≤ C
k

n
,

where C is a universal constant. Using Proposition 2 and Corollary 2, we find

E[Fn(i1) · · · Fn(ik)] = 1

nk
En[(Si1 + i1) · · · (Sik + ik)].

Indeed, Proposition 2 implies that (Fn(1), . . . , Fn(n)) and (Gn(1), . . . , Gn(n)) have the same
distribution, with

Gn(i) := 1

n

n∑
j=1

1r(j,Tn+1)≤i,
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where Tn+1 is a uniform random tree of Cn+1. Then Corollary 2 shows that

Gn(i) = 1

n
#{1 ≤ j ≤ n : r(j, Tn+1) ≤ i} (d)= 1

n
(Si + i)

jointly for i ∈ {1, . . . , n}. This concludes the proof. �

5. Sum and maximum of the first parking places

We begin this section with the proof of Corollary 1. Then we finish by proving Proposition 1.

Proof of Corollary 1. (i) Recall that (Un(i))1≤i≤n are i.i.d. uniformly distributed in [[1, n]].
By the central limit theorem, the convergence√

12

kn

(
Un(1) + · · · + Un(kn)

n
− kn

2

)
−→N (0, 1)

holds in distribution. Using the first item of Theorem 1, we deduce that the total variation
distance between the distributions of

∑kn
i=1 Un(i) and

∑kn
i=1 πn(i) tends to 0. Thus the above

convergence still holds when Un(i) is replaced by πn(i).
(ii) Let x > 0. Then

P

[
kn

(
1 − 1

n
max{Un(1), . . . , Un(kn)}

)
≥ x

]
= 0 ∨ 1

n

⌊
n

(
1 − x

kn

)⌋kn

−−−→
n→∞ e−x.

Using Theorem 1(ii), we deduce that the above convergence still holds when Un(i) is replaced
by πn(i). �

Proof of Proposition 1. In this proof we write k instead of kn to ease notation. For every
a ≥ 0:

P(πn(1), . . . , πn(k) ≤ n − a) = (n − k)!
n! En[(Sn−a + n − a)k]. (25)

Indeed, following the same computation as in the proof of Proposition 2, we have

P(πn(1), . . . , πn(k) ≤ n − a) = (n − k)!
n!

∑
σ∈S(k,n)

P(πn(σ (1)), . . . , πn(σ (k)) ≤ n − a)

= (n − k)!
n! E

[ ∑
σ∈S(k,n)

1r(σ (1),Tn+1),...,r(σ (k),Tn+1)≤n−a

]

= (n − k)!
n! E[(X1 + · · · + Xn−a)k],

which leads to (25) since X1 + · · · + Xn−a = Sn−a + n − a. Let τn be a Bienaymé–Galton–
Watson tree with a critical Poisson offspring distribution μ conditioned on having n vertices,
and define Sn to be the associated Ł ukasiewicz path. More precisely, if v1, . . . , vn are the
vertices of τn ordered according to the lexicographic order (see e.g. [17, Section 1.1]), then for
all 0 ≤ k ≤ n,

Sn
k := #{e : e is an edge adjacent to a vertex vi with i ≤ k} − k.
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In the previous definition Sn
k is deduced from the first k vertices v1, . . . , vk, but it is possible to

see Sn
k in terms of the last n − k vertices vk+1, . . . , vn:

Sn
k = n − 1 − k − #{e : e is an edge between two vertices vi and vj with i, j > k}.

It is known that Sn+1 and S under Pn have the same distribution. Thus equality (25) can be
rewritten in the following way:

P(πn(1), . . . , πn(k) ≤ n − a) = (n − k)!
n! E

[(
Sn+1

n−a + n − a
)

k

]
. (26)

Let τ ∗ be the so-called Kesten’s tree associated with μ (see e.g. [1, Section 2.3]). Let
� denote the lexicographic order on the set of vertices of τ ∗. It is always possible to
find a unique infinite sequence u1, u2, . . . of distinct vertices of τ ∗ such that for all i ≥ 1,
{u : u is a vertex of τ ∗ such that ui � u} = {u1, . . . , ui}. In other words, u1, u2, . . . are the last
vertices of τ ∗ for the lexicographic order, which, necessarily, lie on the right of the infinite
spine. Similarly to the Łukasiewicz path we can define the quantity

S∗
a := a − #{e : e is an edge between two vertices ui and uj with i, j ≤ a + 1}.

It is known that τn converges in distribution, for the local topology, towards τ ∗ (see e.g. [1,
Section 3.3.5]). Making use of Skorokhod’s representation theorem, suppose that the latter con-
vergence holds almost surely. Thus Sn+1

n−a converges almost surely towards S∗
a. Consequently,

the convergence

(n − k)!
n!

(
Sn+1

n−a + n − a
)

k = (n − k)!(
n − k + Sn+1

n−a − a
)!
(
n + Sn+1

n−a − a
)!

n!
∼ (n − cn)a−S∗

a
1

na−S∗
a

−→ (1 − c)a−S∗
a

holds almost surely. Since the above sequence is bounded by 1, we deduce that the convergence
of the expectation holds, which concludes the proof. �
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