PERTURBATIONS OF TYPE I AW*-ALGEBRAS

MAHMOOD KHOSHKAM

(Received 14 May 1984; revised 2 October 1984)

Communicated by J. H. Chabrowski

Abstract

The distance between two operator algebras acting on a Hilbert space H is defined to be the Hausdorff distance between their unit balls. We investigate the structural similarities between two close AW*-algebras A and B acting on a Hilbert space H. In particular, we prove that if A is of type I and separable, then A and B are *-isomorphic.

1980 Mathematics subject classification (Amer. Math. Soc.): 46 L 05.

Introduction

Our main result states that if A and B are AW*-algebras acting on a Hilbert space H and $\|A - B\|$ is sufficiently small (see Section 1 for the definition), then under certain conditions (for example, if A is type I and separable) A and B are *-isomorphic. First we show that if A and B are close AW*-algebras, then their central projections corresponding to various portion of type are also close. This is known for von-Neumann algebras [5] and the proof for AW*-algebras given here is similar. However, Lemma 1.8, which corresponds to Lemma 15 of [5], is done completely differently. We also show that close AW*-algebras have close centers. We prove our main Theorem 2.3 by using these and Kaplansky's Theorem 1 of [7].

^{© 1986} Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

These results are part of the author's Ph.D. dissertation done at Dalhousie University under the supervision of Professor John Phillips.

1. Stability of type

We recall the the distance between C^* -algebras A and B acting on a Hilbert space H is defined by

$$||A - B|| = \sup \left\{ \inf_{a} ||a - b||, \inf_{b} ||a - b|| : a \in A_1, b \in B_1 \right\}$$

where A_1 and B_1 are the unit balls of A and B respectively.

- 1.1. NOTATION. As usual for an AW*-algebra A, $P_{\rm I}$, $P_{\rm III}$, $P_{\rm III}$ denote the unique maximal central projections in A such that $P_{\rm I}A$, $P_{\rm II}A$ and $P_{\rm III}A$ are of type I, II and III respectively. In the case that A is of type I or II we denote by $P_{\rm I_1}$, $P_{\rm I_{\infty}}$, $P_{\rm II_1}$, $P_{\rm II_{\infty}}$ the central projections in A corresponding to the finite and properly infinite portions of A. By I_A we denote the identity of A. If e is a projection in A, then c(e) denotes the central cover of e in A. Our reference on AW*-algebras is [1].
- 1.2. REMARK. Let A and B be C*-algebras acting on H with $||A B|| < \gamma < 1/2$. By [2, Lemma 2.1], if $p \in A$ is a projection, we can choose a projection $q \in B$ such that $||p q|| < 2\gamma$. Moreover, if p is central and $\gamma \le 1/6$, p is abelian and $\gamma \le 1/30$ or p is finite and $\gamma \le 1/40$, then q is central, abelian or finite respectively (cf. [5] and [8, Lemma 2.3]).
- 1.3. LEMMA. Let A and B be AW*-algebras acting on H such that $||A B|| < \gamma < 1/200$. Let h_i , i = 1, 2, 3, 4 be the unique central projections in A such that
 - (i) h_1A is finite and $(I_A h_1)A$ is properly infinite,
 - (ii) h_2A is abelian and $(I_A h_2)A$ is properly non-abelian,
 - (iii) h_3A is semifinite and $(I_A h_3)A$ is purely infinite,
 - (iv) h_4A is discrete and $(I_A h_4)A$ is continous.

If g_i , i = 1, 2, 3, 4 are the corresponding projections in B, then $||h_i - g_i|| < 2\gamma$, i = 1, 2, 3, 4.

PROOF. Let $\{h_{\alpha}\}$ be a maximal orthogonal family of non-zero finite central projections in A. By [1, §15, Theorem 1], $h_1 = \sup h_{\alpha}$. Now by 1.2 we can choose for each α a finite central projection $k_{\alpha} \in B$ such that $||h_{\alpha} - k_{\alpha}|| < 2\gamma$. If $\alpha \neq \beta$, then $h_{\alpha}h_{\beta} = 0$ and we have

$$||k_{\alpha}k_{\beta}|| \leq ||k_{\alpha}k_{\beta} - h_{\alpha}k_{\beta}|| + ||h_{\alpha}k_{\beta} - h_{\alpha}h_{\beta}|| < 4\gamma < 1.$$

Thus $k_{\alpha}k_{\beta}=0$ and $\{k_{\alpha}\}$ is an orthogonal family of projections in B. Suppose for some finite central projection $k \in B$, $kk_{\alpha}=0$ for every α . Choose a finite central projection $h \in A$ such that $||k-h|| < 2\gamma$. Then it follows that $hh_{\alpha}=0$ for every α , which is in contradiction with the maximality of $\{h_{\alpha}\}$. This shows that $\{k_{\alpha}\}$ is a maximal family of finite central projections and $[1, \S15, Theorem 1]$ implies that $k_1 = \sup k_{\alpha}$. Let $\hat{k} \in B$ be a finite projection such that $||h-h_1|| < 2\gamma$. We show that $\hat{k} = k_1$. Now $\hat{k} \le k_1$ and

$$||k_{\alpha} - \hat{k}k_{\alpha}|| \le ||k_{\alpha} - h_{\alpha}|| + ||h_{1}h_{\alpha} - h_{1}k_{\alpha}|| + ||h_{1}k_{\alpha} - \hat{k}k_{\alpha}||$$

$$\le ||k_{\alpha} - h_{\alpha}|| + ||h_{\alpha} - k_{\alpha}|| + ||h_{1} - \hat{k}|| < 6\gamma < 1.$$

Hence $k_{\alpha} = \hat{k}k_{\alpha}$, i.e. $\hat{k} \ge k_{\alpha}$ for every α . Therefore $\hat{k} \ge k_1$. This together with $\hat{k} \le k_1$ implies that $\hat{k} = k_1$.

Next we show that $||h_3 - k_3|| < 2\gamma$. By [1, §15, Theorem 1], $h_3 = \sup h_{\alpha}$ for a maximal orthogonal family $\{h_{\alpha}\}$ of semifinite central projections. For each α choose a projection $k_{\alpha} \in B$ such that $||k_{\alpha} - h_{\alpha}|| < 2\gamma$. We show that k_{α} is semifinite. Since h_{α} is semifinite $h_{\alpha} = c(e_{\alpha})$ for some finite projection e_{α} . Now it follows from $||h_{\alpha} - k_{\alpha}|| < 2\gamma$ and $||A - B|| < \gamma$ that $||h_{\alpha}A - k_{\alpha}B|| < 5\gamma \le 1/40$. Hence, as mentioned in 1.2, we can choose a finite projection $f_{\alpha} \in k_{\alpha}B$ such that $||f_{\alpha} - e_{\alpha}|| < 10\gamma$. Then it follows from [5, Lemma 7] that $||c(e_{\alpha}) - c(f_{\alpha})|| < 20\gamma$. Now

$$||k_{\alpha} - c(f_{\alpha})|| \le ||k_{\alpha} - h_{\alpha}|| + ||c(e_{\alpha}) - c(f_{\alpha})|| < 22\gamma < 1,$$

so that $c(f_{\alpha}) = k_{\alpha}$. Hence k_{α} is a semifinite projection. Moreover $k_3 = \sup k_{\alpha}$ and the rest of the proof goes as in the first paragraph. Similar arguments can be used in order to show that $||h_2 - k_2|| < 2\gamma$ and $||h_4 - k_4|| < 2\gamma$, and we omit the details.

1.4. Lemma. Let A and B be AW*-algebras acting on H with $||A - B|| < \gamma \le 1/200$. Let $P_{\rm I}$, $P_{\rm II}$, $P_{\rm III}$, $P_{\rm I_{\infty}}$, $P_{\rm II_{0}}$, $P_{\rm II_{0}}$ be the unique maximal central projections described in 1.1 and let $Q_{\rm I}$, $Q_{\rm II}$, $Q_{\rm II}$, $Q_{\rm I_{0}}$, $Q_{\rm II_{0}}$, $Q_{\rm II_{0}}$, $Q_{\rm II_{0}}$, be the corresponding projections in B. Then

$$||P_x - Q_x|| < 2\gamma \quad \text{for } x \in \Gamma = \{I, II, III, I_1, I_{\infty}, II_1, II_{\infty}\}.$$

PROOF. By [1, Section 15, Theorems 2 and 3], we have $P_{\rm I}=h_4$, $P_{\rm II}=h_3({\rm I}_A-h_4)$, $P_{\rm III}={\rm I}_A-h_3$, $P_{\rm I_1}=P_{\rm I}h_1$, $P_{\rm I_\infty}=P_{\rm I}({\rm I}_A-h_1)$, $P_{\rm II_1}=P_{\rm II}h_1$ and $P_{\rm II_\infty}=P_{\rm II}({\rm I}_A-h_1)$. Now from 1.4 and the fact that $\|{\rm I}_A-{\rm I}_B\|<2\gamma$ one can easily verify that $\|P_x-Q_x\|<6\gamma$ for every $x\in\Gamma$. Now by 1.2, for each $x\in\Gamma$, we can choose a central projection $Q_x'\in B$ such that $\|P_x-Q_x'\|<2\gamma$. Hence

$$||Q_x - Q_x'|| \le ||Q_x - P_x|| + ||P_x - Q_x'|| < 8\gamma \le 1.$$

This implies that $Q_x = Q_x'$ and hence $||Q_x - P_x|| < 2\gamma$, as desired.

- 1.5. Remark. We recall that an AW*-algebra A is said to be \aleph -homogeneous if there exists an orthogonal family $\{e_{\alpha}\}_{\alpha \in \Omega}$ of pairwise equivalent abelian projections in A such that $I_A = \sup e_{\alpha}$, where card $\Omega = \aleph$. In this case we say that A is of type I_{\aleph} . We note that a homogeneous AW*-algebra is necessarily of type I.
- 1.6. REMARK. Let A be a C*-algebra and $e, f \in A$ be projections. We write $e \sim f$ if e and f are Murray von-Neumann equivalent. The equivalence class of e under \sim is denoted by [e]. The set of these equivalence classes, denoted by S(A), is equipped with a partial addition as follows: [e], $[f] \in S(A)$ can be added if there exist projections e', $f' \in A$ such that $e' \sim e$, $f' \sim f$ and e'f' = 0. Then we set [e] + [f] = [e' + f']. If A and B are C*-algebras acting on B and B = B = A and B = B = A and B = B are B = A
- 1.7. Lemma. Let A and B be AW*-algebras acting on H and $||A B|| < \gamma \le 1/60$. Suppose A is of type I_{\aleph_0} and $\{e_n\}$ is an orthogonal sequence of equivalent abelian projections in A such that $I_A = \sup e_n$. Then there exist sequences $\{f_n\}$ and $\{f_n'\}$ of projections in B such that
 - (i) $f_n \sim f'_n$ for every n,
 - (ii) $||f'_n e_n|| < 2\gamma$ for every n,
 - (iii) $f_n f_m = 0$, if $n \neq m$,
 - (iv) the f_n are abelian and $f_n \sim f_m$ for every n and m.

PROOF. We use induction in order to construct $\{f_n\}$ and $\{f'_n\}$. Suppose f_1, \ldots, f_N and f'_1, \ldots, f'_N satisfy the conditions of the lemma. Let $f = f_1 + \cdots + f_N$ and choose a projection $e \in A$ such that $||e - f|| < 2\gamma$ (see 1.2). Then

$$[e] = \rho[f] = \rho[f_1 + \dots + f_N]$$

$$= \rho([f_1]) + \dots + \rho([f_N])$$

$$= \rho([f'_1]) + \dots + \rho([f'_N])$$

$$= [e_1] + \dots + [e_n] = [e_1 + \dots + e_N],$$

(see 1.6 for notation). Hence $e \sim e_1 + \cdots + e_N$. By [1, §17, Theorem 2], $e_1 + \cdots + e_n$ is a finite projection and [1, §17, Proposition 5] implies that

$$I_A - e \sim I_A - (e_1 + \cdots + e_N) = \sup_{n > N} e_n.$$

Let $V \in A$ be a partial isometry such that $VV^* = I_A - e$ and $V^*V = I_A - (e_1 + \cdots + e_N)$. Then $(Ve_{N+1}V^*)(I_A - e) = Ve_{N+1}V^*$ and we conclude that

 $Ve_{N+1}V^*$ is orthogonal to e. Now since $||e-f|| < 2\gamma < 1/6$, by [8. Lemma 2.4] we can choose a projection $\hat{f} \in B$ such that $\hat{f}f = 0$ and $||Ve_{N+1}V^* - \hat{f}|| < 6\gamma$. Let $f_{n+1} = \hat{f}$ and choose $f'(=f'_{N+1})$ in B such that $||f'_{N+1} - e_{N+1}|| < 2\gamma$. Now f_1, \ldots, f_{N+1} and f'_1, \ldots, f'_{N+1} satisfy conditions (ii) and (iii). Conditions (i) and (iv) follow from [8, Lemma 2.3] and [5, Corollary D]. We note that we need $\gamma \le 1/60$ in order to be able to use Corollary D of [5].

1.8. Lemma. Let A and B be AW*-algebras acting on H and suppose that $||A - B|| < \gamma \le 1/300$. If A is of type I_8 , with $\aleph \le \aleph_0$, then B is also of type I_8 .

PROOF. We consider the case that A is of type I_{\aleph_0} . The case that A is finite can be dealt with in the same way. Suppose $I_A = \sup e_n$, where $\{e_n\}$ is an orthogonal sequence of abelian equivalent projections in A. Let $\{f_n\}$ and $\{f'_n\}$ be as constructed in 1.7. Let $F = \sup f_n$ and choose a projection $G \in A$ such that $\|F - G\| < 2\gamma$. Then one verifies that $\|FBF - GAG\| < 5\gamma \le 1/60$. Now 1.7 can be applied to the AW*-algebras FBF and GAG in order to get sequences $\{g_n\}$ and $\{g'_n\}$ of projections in GAG for which the conditions of Lemma 1.7 are fulfilled. Then $\|e_n - f'_n\| < 2\gamma$ and $\|g'_n - f_n\| < 2\gamma$, and [8], Lemma 2.3] implies that $g_n \sim g'_n \sim e_n$. Now $\{e_n\}$ and $\{g_n\}$ are sequences of pairwise orthogonal projections, and $e_n \sim g_n$ for every n. By [6], Theorem 5.5], we have $\sup e_n \sim \sup g_n$, i.e. $I_A \sim \sup g_n \le G$. Therefore $I_A \le G$ and since $G \le I_A$ we must have $G \sim I_A$. Now standard arguments imply that $\|I_A - I_B\| < 2\gamma$, and we have $\|F - G\| < 2\gamma$. Hence it follows from [8], Lemma 2.3] that $F \sim I_B$. If $w \in B$ is a partial isometry such that $w^*w = F$ and $ww^* = I_B$, then $I_B = \sup \{wf_nw^*\}$ and this shows that B is of type I_{\aleph_0} .

2. Main result

2.1. PROPOSITION. Let A and B be AW*-algebras acting on a Hilbert space H and suppose that $||A - B|| < \gamma$. Then $||Z(A) - Z(B)|| < 6\gamma$, where Z(A) and Z(B) are the centers of A and B respectively.

PROOF. Let $a \in Z(A)$ and ||a|| < 1. We must show that there exists an element $b \in Z(B)$, $||b|| \le 1$, such that; $||a - b|| < 6\gamma$. Choose $c \in B_1$ such that $||a - c|| < \gamma$. Now let $y \in B_1$ and choose $x \in A_1$ such that $||x - y|| < \gamma$. Then

 $\|ad_{c}(y)\| = \|cy - yc\| \le \|cy - cx\| + \|cx - ax\| + \|xa - ya\| + \|ya - yc\| < 4\gamma.$

Hence $||ad_c|| < 4\gamma$. By [4, Corollary 4.8] there exists an element $b' \in Z(B)$ such that $||ad_c|| = 2||c - b'||$. Therefore

$$||a-b'|| \le ||a-c|| + ||c-b'|| < \gamma + 1/2 ||ad_c|| < 3\gamma.$$

Let b = b'/||b'||. Then $||b' - b|| < 3\gamma$ and we get

$$||a-b|| \le ||a-b|| + ||b-b'|| < 6\gamma.$$

By reversing the argument we can show that for any element $b \in Z(B)$, $||b|| \le 1$, there exists an element a in the unit ball of Z(A) such that $||a - b|| < 6\gamma$. Hence $||Z(A) - Z(B)|| < 6\gamma$ as desired.

2.2. PROPOSITION. Let A and B be AW*-algebras acting on a Hilbert space H with $||A - B|| < \gamma \le 1/300$. If A is of type I_{\aleph} ($\aleph \le \aleph_0$), then A and B are *-isomorphic.

PROOF. By 2.1, $||Z(A) - Z(B)|| < 6\gamma < 1/10$, and [3, Theorem 5.3] implies that $Z(A) = UZ(B)U^*$ for some unitary operator U. Also Lemma 1.8 implies that B is of type I_{\aleph} . Now it follows from [7, Theorem 1] that A and B are *-isomorphic.

2.3. THEOREM. Let A and B be AW*-algebras acting on a Hilbert space H such that $||A - B|| < \gamma \le 1/6300$. If A is of type I and its properly infinite portion is of type I_{\aleph_0} , then A and B are *-isomorphic.

PROOF. Let $h_1 \in A$ and $k_1 \in B$ be the unique central projections as described in the statement of Lemma 1.3. Then $||h_1 - k_1|| < 2\gamma$ and one easily verifies that $||h_1A - k_1B|| < 5\gamma$ and $||(I_A - h_1)A - (I_B - k_1)B|| < 9\gamma$. Now, since $(I_A - h_1)A$ is of type I_{\aleph_0} by hypothesis, 2.2 implies that $(I_A - h_1)A \cong (I_B - k_1)B$. Also, by [1, §18, Theorem 4], there exists an orthogonal sequence $\{\hat{h}_n\}$ of central projections in h_1A such that h_1A is the C*-sum of \hat{h}_nA and each \hat{h}_nA is either 0 or of type I_n . Now for each n, we can choose by 1.2 a central projection $\hat{k}_n \in k_1B$ such that $||\hat{k}_n - \hat{h}_n|| < 10\gamma$. Then $||\hat{k}_nB - \hat{h}_nA|| < 21\gamma \le 1/300$ and Lemma 1.8 implies that \hat{k}_nB is of type I_n . Moreover, one can easily verify that \hat{k}_1B is the C*-sum of \hat{k}_nB . Hence we conclude from 2.2 that k_1B is *-isomorphic to h_1A . This ends the proof of the theorem.

2.4. COROLLARY. Let A and B be AW*-algebras acting on a separable Hilbert space H with ||A - B|| l < 1/6300. If A is of type I, then A and B are *-isomorphic.

References

- [1] S. K. Berberian, Baer *-rings (Springer-Verlag, Berlin and New York, 1972).
- [2] E. Christensen, 'Perturbations of type I von Neumann algebras', J. London Math. Soc. 9 (1975), 395-405.
- [3] E. Christensen, 'Perturbation of operator algebras', Invent. Math. 43 (1977), 1-13.
- [4] G. A. Elliott, 'On derivations of AW*-algebras', Tohoku Math. J. 30 (1978), 263-276.
- [5] R. V. Kadison and D. Kastler, 'Perturbations of von Neumann algebras, stability of type', Amer. J. Math. 94 (1972), 38-45.
- [6] I. Kaplansky, 'Projections in Banach algebras', Ann. of Math. (2) 53 (1951), 235-249.
- [7] I. Kaplansky, 'Algebras of type I', Ann. of Math. (2) 56 (1952), 460-472.
- [8] J. Phillips and I. Raeburn, 'Perturbations of AF-algebras', Canad. J. Math. 31 (1979), 1012-1016.

Department of Mathematics University of Saskatchewan Saskatoon Canada