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Explanation in Biology 1

1 Scientific Explanation: Introduction
This Element examines scientific explanations in biology and the life
sciences. Explanations are viewed as a “primary” objective of science – they
offer deep understanding and knowledge of the world, as opposed to mere
descriptions, classifications, and predictions (Hempel 1991, 299). Classically,
scientific explanations are viewed as answers to “why-questions” that concern
some natural phenomenon of interest (Nagel 1961; Hempel 1965; Bromberger
1966). These include questions such as: Why is the sky blue? Why do cicadas
have prime-number year life cycles? Why is this individual sick while oth-
ers are not? These questions sometimes suggest that an outcome is surprising
in a manner that calls out for explanation. An explanation reduces this sur-
prise, showing why the outcome was inevitable and “to be expected” (Hempel
1965, 336). Various accounts of scientific explanation have been proposed in
the philosophical literature to capture what distinguishes scientific explanation
from other important projects in science. This Element focuses on two main
accounts that have received significant attention – causal and non-causal forms
of explanation.

1.1 A Brief History
The philosophical literature on scientific explanation has experienced nota-
ble shifts since foundational work in the late 1940s, with the rise and fall of
different accounts of explanation (Woodward and Ross 2021). A helpful start-
ing point is the influential deductive-nomological (DN) model, articulated by
Hempel and Oppenheim in a “first wave” of recent philosophical work on
explanation (Hempel and Oppenheim 1948; Baker 2012, 243).1 This model
suggests that scientific explanations are deductive arguments, in which (1) ini-
tial conditions and (2) laws of nature are used to (3) deduce and “explain” a
target of interest (Hempel and Oppenheim 1948).2 In order to see the structure
of the DN account, consider a mercury thermometer that is placed in boiling
water (Hempel 1965). When this thermometer is placed in boiling water, why
does the mercury column first dip down in the glass thermometer case and then
quickly rise? The explanation for this involves the initial expansion of the glass
thermometer casing, which increases its inner volume such that the mercury

1 While the topic of explanation has received significant attention in philosophy, the DN model
is often viewed as a helpful starting point for more recent work on the topic.

2 Attempts to frame explanation in terms of deduction are present as far back as the 4th century
BC with Aristotle’s explanatory syllogisms (Clatterbaugh 1999).
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2 Philosophy of Biology

Figure 1 The Deductive-nomological model of scientific explanation,
rewritten from (Hempel 1965, 336). In this model, the initial conditions are
represented by C1, C2, . . . ,Ck, while the general laws are L1,L2 . . . ,Lk. The
initial conditions and general laws make up the explanans (what does the

explanatory work), which deductively lead to the explanandum (or outcome
to be explained).

level drops. However, once the temperature reaches themercury inside, its level
rises as mercury has a larger coefficient of expansion than glass. According
to Hempel, this explanation is provided by antecedent conditions and general
laws (Hempel 1965). The antecedent conditions include the constituents of the
thermometer (the glass casing surrounding the mercury) and the fact that the
thermometer was placed in boiling water. The general laws include laws about
the thermic expansion of glass and mercury and the thermic conductivity of
the glass. In this manner, the antecedent conditions and general laws are said
to explain and “entail the consequence” that the mercury will drop and rise. On
this account, the explanatory target is a “logical consequence” of the relevant
antecedent conditions and general laws, with a structure shown in Figure 1.
While the DN model has its strengths, it also suffers from significant prob-

lems. First, this model fails to accommodate explanations in sciences that often
lack strict, universal laws of nature, such as biology and the life sciences. Genes
and environmental factors are cited in explaining traits in organisms, but these
explanations rarely (if ever) appeal to general laws from which these traits
deductively follow. A second problem is that the DN model fails to capture
the directionality of explanation. This is seen in the well-known “flagpole prob-
lem,” in which a flagpole’s height, the sun’s location, and laws of optics explain
the length of the flagpole’s shadow (Hempel 1962; Bromberger 1992).3 The
issue for the DN model is that it incorrectly counts the reverse direction as also
explanatory – it implies that the shadow’s length (with the sun’s location and
same general laws) explains the flagpole’s height, as this also meets the DN
criteria. These and other limitations began to receive attention in the 1960s,
which led to increased interest in alternative models of scientific explanation
(Woodward and Ross 2021).

3 This example first appears in Hempel’s work as he recalls a challenge that Bromberger pre-
sented to him (Hempel 1962; Bromberger 1992). Many discussions of the flagpole problem
cite Bromberger (1966), which lacks discussion of this case (but contains a related Empire
State Building example).
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Explanation in Biology 3

One celebrated solution to these problems was found in accounts of causal
explanation. On accounts of causal explanation, an outcome is explained by
citing the causes that produce it, as causes explain their effects. This solves
directionality because causation is asymmetric and contains a clear direction,
from cause to effect. This allows one to count the first flagpole scenario as the
true explanation, because the explanatory direction is captured by causality –
the sun’s rays cause, and thus explain, the shadow and not vice versa (Salmon
1989). Another advantage is that the causal framework accommodates explana-
tions in sciences that lack strict laws of nature. These explanations only require
causal regularities, which should hold in some set of conditions but need not
hold universally. If gene X causes brown coat color in guinea pigs in some
background conditions, this explains the trait even if such a regularity does not
hold for other animals or in other conditions.
For these and other reasons, causal accounts superseded the DN model as

the new reigning view of scientific explanation. This change was supported
by increased attention to examples of explanation outside of the physical sci-
ences – such as biology, neuroscience, ecology, and sociology – which were
better captured with causal frameworks than the DN model. This encouraged
a growing literature on causal explanation and work examining various defini-
tions of causality.4 This literature would explore a multitude of topics such
as causal selection, absence causation, explanatory reduction, causal com-
plexity, causal pluralism, and mechanistic explanation. In this work, causal
selection has to do with how to “select” the most explanatory causes (Lewis
1986; Waters 2007; Ross 2018), absence causation concerns whether absences
are genuinely causal or not (Beebee 2004), and explanatory reduction per-
tains to whether lower-level causes are more explanatory than higher-level
causes (Sober 1999; Bickle 2006). Causal complexity can refer to situations
in which causes are numerous, where causes are related in intricate ways,
and where causes are difficult to identify in the world (Wimsatt 1972; Lewis
1986;Mitchell 2009; Ross 2023b). Causal pluralism refers to different projects,
including views that there are different legitimate definitions of causation,
that there are distinct methods for identifying causality, and that there are
different types of causal explanation in science (Cartwright 2004; Hitchcock
2007; Godfrey-Smith 2013). Other work has examined causal mechanisms and
mechanistic explanation, in which outcomes are explained by citing the causal
mechanisms that produce them. The mechanistic research program has become

4 Examples of different definitions of causation include definitions in terms of regularities
(Mackie 1965), connected processes (Salmon 1984), probabilistic relationships (Cartwright
1979; Skyrms 1980), and counterfactuals (Lewis 1986; Woodward 2003).
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4 Philosophy of Biology

a mainstream philosophical account of explanatory practice in the life sciences
(Machamer et al. 2000; Bechtel and Richardson 2010; Glennan 2017) andwhat
some consider the “dominant view of explanation in the philosophy of science”
(Kaplan and Craver 2011). Some work in this area implicitly assumes that all
scientific explanations are causal, while other projects directly acknowledge
support of this view (Skow 2014).
While the philosophical literature experienced an increase in fruitful work

on causation, the view that all scientific explanations are causal would be
short-lived. An appreciation for other, non-causal forms of explanation has
been supported by examples from many scientific domains. The life sciences
have played a central role in these debates as many purported examples of
non-causal explanation come from biology, neuroscience, ecology, and so
on. Examples of these non-causal explanations include explanations of robust
and fragile ecosystems (Huneman 2010), of neural coding and firing behav-
iors (Ross 2015; Chirimuuta 2018), of the prime number life cycle of cicadas
(Baker 2005; Batterman 2010), the hexagonal-shaped honeycombs of bees
(Lyon and Colyvan 2008; Lange 2013), and why animal size is limited by
the square-cube law (Ross 2023c). In these examples, it is suggested that
an important part of the explanatory power comes from mathematics, which
is not the case in causal explanations. There are extensive, ongoing debates
about how exactly these non-causal, mathematical explanations work – what
their features, details, and nature are. As these debates continue, a growing
consensus in the field views non-causal, mathematical explanations as legit-
imate and accepts that scientific explanation is far more diverse than earlier
work assumed. While earlier theories of scientific explanation searched for
the single, universal account that captures all examples of scientific explana-
tion,5 more recent work views explanation as a diverse enterprise (Woodward
2019; Woodward and Ross 2021). This brings us to a relatively new position in
the field – an appreciation for various types of scientific explanation, without
expecting that they all fit a single model, but still requiring that they specify
rigorous standards for what counts as explanatory.
This Element focuses on two main categories of scientific explanation –

causal and non-causal explanation. These categories of explanation are exam-
ined in the context of biology and the life sciences. The discussion of causal
explanation (Section 2) will consider foundational topics in this area and three
main types of causal explanation – these include explanations that appeal

5 As evidence of this, consider Nagel’s claim that the DN model is the “paradigm for any ‘genu-
ine’ explanation, and has often been adopted as the ideal form to which all efforts at explanation
should strive” (Nagel 1961, 21).
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Explanation in Biology 5

to mechanisms, pathways, and cascades (Ross 2021a, In Press). In provid-
ing an analysis of non-causal explanation (Section 3), three main classes of
non-causal, mathematical explanation will be considered, including topologi-
cal and constraint-based explanations, optimality and efficiency explanations,
and minimal model explanations (Batterman 2001; Baker 2005; Lange 2018).
This work will examine similarities and differences across these explanatory
patterns – their shared structural features, different guiding principles, and para-
digmatic examples of each type. This work balances an appreciation for distinct
explanatory patterns, with the view that explanations should meet rigorous
standards.
While this work focuses on causal and non-causal explanation, other cat-

egories of scientific explanation have been studied. Examples of these other
accounts include unificationist explanations (Friedman 1974; Kitcher 1989),
narrative and historical explanations (Roth 1988), functional explanations
(Wright 1976), and structural explanations (Garfinkel 1981), among others.
While causal and non-causal explanation have received significant attention
in recent work, questions remain about how they both relate to the other
explanation classes mentioned earlier.
This Element is organized in the following manner. The next subsection

(1.2) introduces the basics of scientific explanation that will help in under-
standing the distinct accounts of explanation to come. The second section (2)
examines topics in causal explanation including various foundational ques-
tions and forms of causal explanation, including mechanism, pathway, and
cascade explanations. The third section will discuss types of non-causal, math-
ematical explanation, including topological and constraint-based explanation,
optimality and efficiency explanations, and minimal model explanations. The
fourth section will provide concluding remarks on the diversity of scientific
explanation in biology and the life sciences.

1.2 The Basics of Explanation
Scientific explanations often involve three main components – the explanan-
dum, explanans, and dependency relation, shown in Figure 2. The explanandum
is the explanatory target or phenomenon to be explained. The explanans is what
does the explanatory “work” or provides the explanation. A final component is
the dependency relation between the explanandum and explanans, which cap-
tures how they are related to each other. These elements are found in most
explanations, but their features vary across different types of explanation (as
will be discussed more soon). Many accounts of scientific explanation elab-
orate on versions of this three-part model in order to capture the standards
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6 Philosophy of Biology

Figure 2 The three-part model of scientific explanation contains: the
explanandum (phenomenon to be explained), the explanans (what does the
explanatory work), and the dependency relation that connects both. Most

philosophical accounts of scientific explanation fit this three-part model, but
they differ with respect to what counts as the explanans and how to

understand the dependency relation.

that scientific explanations need to meet (Reutlinger 2016; Jansson and Saatsi
2017; Woodward 2019). Identifying these standards is important because it
would allow us to distinguish genuine explanations from non-explanations and
to determine when explanations are better or worse. The notion of explanation
that is examined in this work does not include all broader uses of “explana-
tion” in everyday life, such as explaining the meaning of an expression, how to
bake a cake, or why a decision was made (which can involve a detailed descrip-
tion or justification) (Woodward 2003, 4). Instead, it focuses on explanations of
natural phenomena, often why they have occurred or why they have particular
features.
Discussions of scientific explanation frequently start with the explanatory

target. A scientific explanation cannot be provided until the explanatory tar-
get is sufficiently clear.6 In the philosophical literature, the explanatory target
is presented as an outcome that scientists are interested in, that they “stum-
ble across by accident” and find surprising, and that calls out for explanation
(Hempel 1965; Baker 2005). The target of interest is couched in terms of a
why-question, which frames the inquiry and ensuing explanatory quest.
Providing an explanation requires precisely specifying the explanatory

target. This precision involves identifying the contrastive focus of interest and
meaning of terms in the why-question. Consider the explanatory why-question:
“Why does guinea pig A have spotted-coloring on its trunk?” Without further

6 Of course, there may be other ways that scientists start the explanatory process besides first
specifying the explanandum of interest. For example, they may be interested in a particu-
lar gene and what it explains, controls, and predicts, as in the case of reverse genetics. This
involves discovery of the explanatory target after specifying a potential explanans of inter-
est. In this case, we still cannot provide an explanation until the explanandum is specified,
but we “discover” the explanandum through an initial interest in a potential explanans. This
is related to Rheinberger’s idea of “epistemic things,” which involve how new “objects come
into existence and are shaped in the empirical sciences” (Rheinberger 1997). This also relates
to Woodward and Bogen’s discussion of the “phenomena” that scientists seek to explain and
predict (and how these differ from data, measurements, etc.) (Bogen and Woodward 1988).
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Explanation in Biology 7

clarification, this question is ambiguous and does not sufficiently specify the
explanatory target. For example, this question might be asking why guinea pig
A has spotted-coloring on its trunk versus solid coloring; or why guinea pig A
has spotted-coloring on its trunk as opposed to its legs; or why guinea pig A
has this spotted-coloring as opposed to guinea pig B. Each of these contrasts
refers to a different explanatory why-question that may have different answers.
Specifying the explanatory target with precision is essential for ensuring that
scientists are discussing the same explanatory question and not talking past
each other. Clarity here helps avoid situations in which scientists mistakenly
compare explanations without realizing that the explanations have different tar-
gets of interest and, thus, aim to explain different things. This is especially
important because natural phenomena can be represented in different ways and
have distinct features, which emphasize different contrasts that we might want
to explain.
Designating a clear explanatory target also requires defining relevant terms

in the explanatory why-question and explanandum. If scientists aim to explain
a phenomenon that lacks clear characterization, is ill-defined, or invokes mul-
tiple definitions, there are likely to be challenges in providing an explanation.
Consider the question, “Why do human beings have lungs?” which we might
seek an answer to. As Nagel states, this “question as it stands is ambiguous”
because it can be interpreted in distinct ways (Nagel 1961, 19). The principle
outlined here is that, if it is not clear what we want to explain, then we are
not equipped to provide or assess an explanation. The explanatory target can
change through scientific work, but if explanatory potential is to be assessed
then some target must be fixed and specified. As a further example, if “con-
sciousness” is defined in myriad or ambiguous ways, then determining how to
explain consciousness and whether it has been explained are likely to be con-
tentious and unsettled. If there is little agreement on how to characterize Y,
there will likely be little agreement on whether some account explains Y or
not.7 In short, providing an explanation requires that one is very clear about
the phenomenon to be explained.
A secondmain component of scientific explanations is the explanans or what

does the explanatory work. This is associated with the “answer” that is provided
to the explanatory why-question. If we want to explain why guinea pig A’s
trunk is spotted as opposed to solid-colored, we might appeal to a gene that is
responsible for this phenotype. Perhaps other phenotypes (behaviors, disease
states, etc.) are caused by environmental factors, such as stress, temperature,

7 In fact, even if there appears to be agreement, we should be skeptical, as the differing meanings
of Y can easily produce cross-talk.
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8 Philosophy of Biology

Figure 3 Air pressure is a common cause of both the barometer reading and
storm occurrence – air pressure causes and explains both of these outcomes.
While the barometer reading accurately predicts (and is correlated with) the

storm, it does not cause or explain it.

and contagions. Factors that are cited in explaining the outcome are said to have
“explanatory power” with respect to the target of interest. It is common to view
these explanatory factors as “difference-makers” for the target of interest, such
that changes in the explanans “make a difference” to the states of the expla-
nandum. Relatedly, the explanandum is said to “depend” on the explanatory
factors specified in the explanans.
Most philosophical work on scientific explanation is focused on the expla-

nans and criteria that it needs to meet to ensure that a legitimate explanation
is provided. Explanations provide deep understanding in a way that is dis-
tinct from other scientific projects such as mere description, prediction, and
classification. While it is important to describe, predict, and classify distinct
guinea pig coat coloring patterns, these are different tasks than explaining why
one of these colorings is produced. Accounts of scientific explanation should
exclude cases in which a purported explanans simply redescribes or predicts
the explanandum. A classic example of the latter is a common cause scenario,
shown in Figure 3, in which (A) air pressure causes two distinct outcomes,
namely, (1) changes to a barometer reading and (2) changes in storm occurrence
(Woodward 2003, 14–15). Notice that the (1) barometer accurately predicts (2)
storm occurrence, but we would not say that it explains this outcome. The cor-
relation between (1) and (2) allows this relationship to be useful and reliable,
but we are more likely to view both (1) and (2) as caused and explained by
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Explanation in Biology 9

the (A) air pressure. This type of example has led to claims that explanatory
factors need to do more than simply predict outcomes or make themmore prob-
able. Accounts of scientific explanation aim to specify exactly what standards
the explanans and explanatory factors need to meet, to ensure that a genuine
scientific explanation has been provided.
The third feature of scientific explanations is the dependency relation that

connects the explanans and explanandum. It has been suggested that many
diverse forms of scientific explanation share this dependency relation feature –
that they involve some specification of how the explanandum is dependent on
factors in the explanans (Woodward 2003; Reutlinger 2016; Jansson and Saatsi
2017). In some cases, this dependency relation helps distinguish types of expla-
nations, including causal explanations from non-causal, mathematical expla-
nations (Woodward 2019). For causal explanations, this dependency relation is
causal as the factors in the explanans and explanandum are connected causally.
Alternatively, for some accounts of non-causal explanation, the dependency
relation is said to be mathematical and non-empirical in character (Woodward
2019). While causal dependencies are revealed through an empirical, a pos-
teriori study of the natural world, mathematical dependencies are identified
through mathematical and a priori considerations. This difference between
causal and mathematical dependencies bears similarity to Hume’s distinction
between “matters of fact” and “relations of ideas,” referred to as “Hume’s fork”
(Hume 1985). While “matters of fact” are a type of knowledge revealed by
experiences of the world, “relations of ideas” are “discoverable independently
of experience” as they are logical and mathematical propositions, that are true
by definition and known through reason alone (Morris and Brown 2019). Other
unique features of these mathematical dependencies are that they can exhibit
a stronger form of necessity than standard causal relations (Lange 2018) and
they can contain other types of non-causal information (Chirimuuta 2018).
This is discussed in more detail in Section 3, which covers different types of
non-causal, mathematical explanation.
The focus of this work will be to identify the standards and “formal pattern”

of explanation in biology and the life sciences (Nagel 1961). This work aims to
strike a balance between capturing standards that scientific explanations should
meet, while appreciating that there are different patterns of explanatory prac-
tice. Accounts of scientific explanation should capture actual scientific work,
but they should also rule out non-explanations. Scientific explanation is not
an “anything goes” type of project – correct explanations guide medical treat-
ments, public policy interventions, regulations on our environmental impact,
and accounts of how to control and change outcomes in the world. An important
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10 Philosophy of Biology

role of philosophy involves clarifying the features, characteristics, and struc-
ture of scientific explanations and how they give us a principled understanding
of the natural world.

2 Causal Explanation
Accounts of causation and causal explanation have received attention in
the philosophical literature for over two millennia (Hume 1985; Mill 1874;
Aristotle 1970). In the late twentieth century, interest in causal explanation
began to increase when it was appreciated that accounts of causal explana-
tion could handle problems faced by the popular deductive-nomological (DN)
model of explanation. Since then, there has been significant interest in the fea-
tures, standards, and types of causal explanation in science. Literature in this
area has examined foundational topics, such as defining causation, causal selec-
tion, the implications of reduction for scientific explanation, and distinct types
of causal explanation, including mechanistic forms and other alternatives. This
section provides an overview of these topics.

2.1 Foundational Questions
In the context of causal explanation in biology and the life sciences, three
foundational topics include defining causation, causal selection, and reductive
explanation. With respect to the first, accounts of causal explanation require
defining causation, which involves specifying the characteristic or hallmark
features of causality. Once these features are specified, they can be used to
distinguish true, genuine causal relationships from everything else, including
non-causal relationships and mere correlations. The ability to define causality
and reliably make these distinctions is very useful and it has occupied sig-
nificant attention in philosophy and in science. As causal explanations cite
causal factors, a definition of causality is required to identify which factors,
relationships, and systems are legitimately causal and capable of provid-
ing these explanations. While many different definitions of causation have
received attention, four of the most commonly discussed include regularity
accounts (Hume 1985; Mackie 1965), connected process accounts (Salmon
1984; Dowe 2018), probabilistic accounts (Suppes 1970; Cartwright 1979), and
interventionist accounts (Woodward 2003).8

8 Regularity accounts understand causation in terms of regularities or the “constant conjunc-
tion” of cause and effect (Hume 1985). Connected process accounts view causal relationships
as ones that are capable of transmitting some mark or conserved quantity from cause to effect
(Dowe 2018). Probabilistic accounts view causal relationships as captured statistically, often
such that causes are factors that increase the probability of their effects (Hitchcock 2018).
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Explanation in Biology 11

While all of these accounts of causation have proponents, one of the most
influential andwidely used accounts of causation isWoodward’s interventionist
framework (Woodward 2003).9 This account is motivated by causal reasoning
in scientific contexts, empirical studies of human cognition, and formal meth-
ods of causal analysis (Woodward 2021). On the interventionist account of
causation, the relata of causal relationships are variables (X, Y, Z, etc.), which
represent properties of interest, such as phenotypes, genes, and environmen-
tal factors. These variables take on different values (0,1,2, etc.) that represent
the states of these properties, such as coat color that is brown, gray, and black,
or a gene variant that is present or absent. On the interventionist account of
causation, to say that X is a cause of Y means that if X were intervened upon
and changed, in background conditions B, this would lead to changes in Y. For
example, to say that gene G causes a guinea pig’s coat to be brown, as opposed
to gray or black, means that changes to this gene G (in early development)
would have produced a different coat color. In this manner, causes are factors
with “control” over their effects, as manipulating them would produce changes
to the effect of interest.
This helps reveal the connection between causation and causal explana-

tion. Explaining why, for example, a guinea pig has coat color that is brown,
as opposed to other colors, requires citing the cause or causes that “make-a-
difference-to” this outcome (Woodward 2003; Waters 2007). In this case, it
involves citing a genetic cause because if the genetic cause had been different,
in the same set of background conditions, an alternative coat color would have
been produced. This reveals the importance of a contrastive focus in specify-
ing an explanatory target and how explanatorily relevant causes should relate
to this target. If an environmental factor (such as changes in temperature) met
these criteria, then the environmental factor would be viewed as the cause
or main cause of coat color. However, true background conditions – such as
the presence of oxygen, diet, and so on – should be excluded as main causes
and explanations of this phenotype. While background conditions are present
and supportive, they are not causally responsible for this phenotype because
manipulating them does not control whether the phenotype is in one state or
another. If oxygenweremanipulated (from present to absent) this would control

Finally, interventionist accounts understand causation in terms of interventionist counterfac-
tuals – causes are factors that when intervened upon and changed, produce changes in their
effects (Woodward 2003).

9 For example, Gopnik states that Woodward’s interventionist account of causation has “revolu-
tionized the philosophical discussion of causation” (Gopnik 2021). Additionally, Ismael claims
that Woodward’s bookMaking Things Happen (2003) – in which he details his interventionist
account of causation and causal explanation – is arguably “the most important philosophical
book about causation to appear in decades” (Ismael 2021).
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12 Philosophy of Biology

whether the guinea pig is alive or dead, but this is not the contrastive focus of
interest. We are interested in what explains one coat color versus other col-
ors in a living guinea pig. When background conditions are required for life,
they are necessary conditions for phenotypes to manifest, which prevents them
from explaining, causing and controlling the presence of one phenotype versus
another. This is why many background conditions do not explain the outcome
of interest (even if they seem relevant to it) – they are not explanatory if they
do not “make a difference” to the contrastive focus in question.
The interventionist account does not require that causes are actually manipu-

lable with current technology or according to ethical standards. Interventionism
just requires that we can consider hypothetical manipulations, which involve
what would happen if the intervention were to occur (Woodward 2016). This
is consistent with causal reasoning in scientific and everyday life contexts, in
which we accept causal claims even when we cannot perform interventions
on the relevant causal factor(s). Examples of legitimate causes that we cannot
intervene on include: historical or past causes (“yesterday the medicine cured
my headache”), causes that are not manipulable with current technology (“the
location of the moon causes the tides to ebb and flow”), and causes that we
cannot manipulate for ethical reasons (“the patient’s genes have caused their
disease”). The interventionist account includes these as genuine causes because
they meet the hypothetical manipulation requirement – in all of these cases, we
can consider hypothetical manipulations of the cause, and our evidence and
theory supports the claim that this hypothetical manipulation would change
the effect of interest.10 If a purported causal claim cannot be associated with
a hypothetical manipulation – perhaps because the suggested changes to the
candidate cause are inconsistent with scientific theory or because the purported
causes and effects are not sufficiently defined (asmentioned in subsection 1.2) –
then this gives good reason to be skeptical that a causal claim has been provided
(Woodward 2003, 2016).
Significant amounts of philosophical work has focused on the question of

how to define causality. While interventionism provides one answer to this
question, there remains the further topic of how many definitions of causation
we need to capture causal relationships in the world. This relates to “causal plu-
ralism,” which is associated with different views in the literature (Cartwright
2004; Hitchcock 2007; Godfrey-Smith 2013). Three forms of causal pluralism

10 There are various ways to get information about causation even when intervention experi-
ments cannot be performed. Evidence about interventionist difference-making relationships
can be supported by quasi-experiments, instrumental variables, observational methods, nat-
ural experiments, and other methods and aspects of biological theory (Shadish et al. 2002;
Angrist and Pischke 2009).
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Explanation in Biology 13

to keep distinct are definitional pluralism, methodological pluralism, and (what
I call) structural pluralism. Definitional pluralism about causation claims that
we need two or more definitions of causation to capture causality in the world.
Definitional monism about causation claims that we only need one definition of
causation to capture causality in the world. Alternatively, methodological plu-
ralism refers to the number of methods that can identify (or provide evidence
of) causality in the world (Shadish et al. 2002; Reiss 2009). A methodological
pluralist claims that many methods can be used to identify causal relation-
ships, while a methodological monist claims that only one method can provide
this (with a main contender being randomized control trials).11 A third type of
causal pluralism–structural pluralism about causation – captures distinct causes
and causal systems that can meet the same definition of causation, but differ
with respect to other features. Examples discussed later in this section aremech-
anisms, pathways, and cascades, which are distinct causal systems (Ross 2021a,
In Press). Further examples are differences between causes that are proximal,
distal, predisposing, exciting, and organized in different manners (such as lin-
ear chains, feedback loops, etc.). While these causal systems can all meet the
same definition of causation, they differ with respect to other features. While
most scholars accept some type of structural pluralism, versions of structural
monism are seen in claims that all causal systems are best understood as “mech-
anisms” no matter what their differences are (Craver 2007; Levy and Bechtel
2013; Craver and Tabery 2015).12

A second foundational topic in the area of causality has to do with causal
selection, which refers to selecting or identifying causes that are the most
explanatory for an outcome. Consider that the number of causally relevant fac-
tors for any target of interest can be seemingly “infinite” (Lewis 1986, 214). For
any explanatory target, there appear to be an enormous set of factors far “back”
in its causal history (extending back to the Big bang) and far “down” at lower
scales (such as fundamental physics).While this list of factors is nearly endless,
we do not view all of these causes as equally explanatory for the outcome – only

11 The Journal of the American Medical Association (JAMA) prohibits authors from using
“causal language” (including “effect” and “efficacy”) in their submitted papers unless a “ran-
domized clinical trial” has been conducted that supports the work. As they state, “all other study
designs (including meta-analyses of randomized clinical trials), methods and results should
be described in terms of association or correlation and should avoid cause-and-effect word-
ing” (JAMA 2023). This strict view is consistent with a methodological monist position about
causality.

12 While these accounts often appreciate different types of mechanisms, they still maintain that
all causal systems are of one “type” in a way suggestive of a monist view. The claim is not
just that these systems are all causal (which is trivially true as they are causal systems), but
that they share some further “mechanism” feature that unifies all causal systems, as opposed
to capturing pluralism.
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14 Philosophy of Biology

a few are selected as the main, explanatory causal factors. A main question for
any account of explanation is how to determine which factors are most explan-
atory and why. What guidelines or criteria distinguish causal factors that are
more explanatory from those that are less explanatory? In philosophy of sci-
ence, there are longstanding debates about whether a cogent rationale for causal
selection exists or if it is hopelessly unprincipled. For example, Mill and Lewis
have claimed that causal selection is guided by “capricious” and “invidious”
sentiments, respectively (Mill 1874; Lewis 1986). Lewis suggests that when we
select the main causes of an outcome, that this is guided merely by our interest
in these causes, the fact that we find these causes to be good or bad, or simply
because they are causes under our control. These claims suggest that causal
selection is guided by arbitrary, subjective, and non-scientific reasons.13 Such
a position is problematic for the view that scientific explanation has a princi-
pled nature – if causal explanation and causal selection are guided by principled
considerations, these principles and the role they play need to be specified.
In the biological sciences, a central example of causal selection is genetic

causation, in which genes are viewed as the main cause for various traits (sickle
cell disease, Huntington’s disease, etc.). Significant literature has focused on
what rationale justifies privileging genes as the main causes for these out-
comes. An important tool that can be used to address these questions involves
clarifying various “distinctions among causation,” which capture objective
differences across types of causal factors Woodward (2010, 2021). For exam-
ple, some causes are more specific, stable, strong, or fast than others – these
differences can figure in why some are more or less explanatory for an out-
come. It has been suggested that genes are prioritized in scientific explanations,
because they are more specific and stable than other causal factors (Waters
2007; Woodward 2010; Weber 2017, 2022). A specific cause (in the sense used
in these discussions) is a cause that produces fine-grained control over an out-
come – this is seenwhen specific changes inDNA result in fine-grained changes
in the protein product created.14 This type of specificity can be understood
as a cause variable with many values, in which each values corresponds to

13 As Lewis states, “We sometimes single out one among all the causes of some event and call it
‘the’ cause, as if there were no others. Or we single out a few as the ‘causes,’ calling the rest
mere ‘causal factors’ or ‘causal conditions’ . . . I have nothing to say about these principles of
invidious discrimination” (Lewis 1986, 558–559).

14 A second type of causal specificity refers to the number of cause variables for an effect
(specificity of cause) and the number of effect variables for a cause (specificity of effect)
(Woodward 2010; Ross In Press). In this case specificity refers to “one” cause or effect (not
fine-grained control) and non-specific refers to many causes or many effects. An example
of non-specificity of effect is pleiotrophy, which refers to a single gene that produces many
different effects.
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Explanation in Biology 15

a unique value in the effect variable. (This is similar to a dimmer switch that
has fine-grained control over the brightness of a light.) This is contrasted with a
non-specific cause, in which binary values of the cause variable control a binary
outcome of the effect (as seen in an on/off switch for the on/off of a light bulb).
Additionally, a stable cause is a factor that exerts its causal influence across a
wide range of changes in background conditions. Consider that various gene
mutations are stable in the sense that they cause disease in patients even when
there are differences in diet, childhood upbringing, and other environmental
factors (Kendler 2005; Woodward 2010). Research in empirical psychology
shows that humans view stable causes as more paradigmatically causal than
less stable causes, and stable causes clearly have advantages when it comes
to understanding and control (Cheng 1997; Lombrozo 2010; Vasilyeva et al.
2018).
Another important causal distinction, especially in the context of causal

selection and explanatory causes, is causal strength. The strength of a causal
relationship refers to the degree to which a cause increases the probability of
its effect or produces a large magnitude of change in its effect.15 ,16 A classic
example are Mendelian genes, which are frequently described as having causal
action that is “deterministic” in the sense that the presence of the gene ensures
occurrence of the trait (Kendler 2005). Other causes are said to be “probabi-
listic” as they increase the probability of their effects, without guaranteeing
or determining them (Parascandola and Weed 2001; Kendler 2005).17 Similar
to specificity and stability, causal strength is a feature that comes in degrees,
as causes can differ continuously with respect to how probability boosting
their causal influence is. Many paradigmatic causes in biology and the life
sciences are not only highly stable (according to the aforementioned descrip-
tion), but also rank high in terms of strength. This is seen for Mendelian traits
and diseases that fit the monocausal model – most of these cases cite single
causes that produce their effects with a high probability and in a wide range
of contexts.18 While stability is similar to the “generalizability” of a causal
relationship, strength is similar to scientific discussions of “deterministic” and

15 This notion of causal strength is similar to what Cheng (1997) refers to as causal power. For
more on this see: (Cheng 1997; Griffiths and Tenenbaum 2005; Woodward 2021).

16 This framework differs from definitions of causation in terms of causes increasing the prob-
ability of their effects (Suppes 1970; Salmon 1977; Cartwright 1979). On this view, an
interventionist account can be used to define causation Woodward (2003), and the strength
of a causal relationship is secondary – a sort of extra causal feature.

17 This feature of strength also relates to debates over genetic determinism, which concerns
whether genes alone determine outcomes of interest.

18 Examples include the pathogenic gene for Huntington’s disease (HD) and the lack of dietary
vitamin C causing scurvy.
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16 Philosophy of Biology

“probabilistic” causes, which concerns whether a cause guarantees its effect
or not (or how probability boosting it is for its effect). Factors that are often
referred to as “sufficient causes” often rank high in terms of both stability and
strength (and notions of sufficient causation can problematically conflate these
distinct causal varieties).
Many other distinctions among causation have been studied in recent work.

These include whether causes produce their effects in ways that are fast or
slow, irreversible or reversible, in ways that transfer material to the effect
or not, and in ways that are proportional (Woodward 2010; Ross 2018;
Ross and Woodward 2022; Ross 2023a).19 Research into these and other causal
distinctions is a helpful approach, in efforts to capture how main, explana-
tory causes can (and should be) distinguished from less explanatory causes.
The fact that scientific communities often reach consensus on the main causes
of outcomes – and that these causes serve specific goals, such as control –
supports the view that causal selection in science is often guided by principled
considerations, as opposed to ever-changing subjective preferences.
A third foundational topic in the causation literature is explanatory reduction,

which refers to how far “down” an explanation should go when citing causal
factors (Mayr 1989).20 These debates commonly reference a “layer cake” pic-
ture of the world, in which phenomena differ with respect to the “scale” or
“level” they reside on (Batterman 2001; Waters 2009; Potochnik 2021). This
view suggests a hierarchical picture in which distinct sciences focus on differ-
ent scales or levels – the lower levels are studied by physics, the next higher
levels by chemistry, and further increasing levels are the focus of biology, psy-
chology, and various social sciences (Wimsatt 1976; Sober 1999).21 Suppose an
explanatory target is specified in the context of biology, such as an organism’s
phenotype. With respect to this phenotype, are explanations that cite factors
from lower biological scales – such as molecular biology – better than expla-
nations that cite factors from higher-scales such as cellular networks, neural
circuits, pathways, and system-level topologies? Will the best explanations of
these outcomes cite causes from the biological scale or should it ultimately

19 Proportionality refers to causes and effects being on the same “level” or scale of description.
For example, suppose a gene variant is known to cause individuals to (i) seek out “sensation-
seeking” activities, in general. If one were to claim, instead, that the gene causes individuals
to (ii) seek out extreme sports, bungee-jumping, speeding, and sky diving, we could say that
(i) is more proportional than (ii), in the sense that (i) contains descriptions of cause and effect
that are on the same level of description (Kendler 2005; Woodward 2010).

20 For helpful work on the features and limits of reduction in biology see: (Bickle 2006; Brigandt
2010; Hüttemann and Love 2011; O’Malley et al. 2014; Kaiser 2015; Barwich 2021).

21 Scientific fields outside of fundamental physics are sometimes called “the special sciences” or
simply, “higher-level” sciences, in this literature (Fodor 1974).
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Explanation in Biology 17

Figure 4 Based on Fodor (1974) and Sober (1999).

include causes from chemistry and physics? Many who argue for explanatory
reduction claim that the best explanations – even of biological outcomes – will
ultimately cite causal factors from lower-levels (Sober 1999; Strevens 2008;
Butterfield 2011).
These questions about explanatory reduction can be illustrated with Sober’s

discussion of explanations of lung cancer (Sober 1999). In this case, the higher-
level causal regularity is “smoking cigarettes causes lung cancer,” which is
represented by “P → Q” in Figure 4. In this example, causal variable P
“smoking cigarettes” is realized by different lower-level carcinogens, namely,
carcinogens A1, A2, . . .An. Similarly, effect variable Q “lung cancer” is real-
ized by distinct cellular cancer types, namely, B1, B2, . . .Bn. A main question
with respect to this example is which causal factors best explain the higher-
level lung cancer phenotype Q? In particular, are causes at lower or higher
levels more explanatory?
Sober claims that lower-level causal details provide objectively superior

explanations when compared to higher-level causes. He claims that, while
higher-level causal detail might be preferred by some scientists and might give
explanatory breadth, this higher-level causal detail never provides an objec-
tively superior explanation compared to lower-level causal details (Sober 1999;
Ross 2020). Sober argues for this position with three main points. First, he
claims that lower-level causes can always be included in an explanation, with-
out reducing explanatory power, while the same cannot be said for higher-level
causes. He suggests that lower-level causal detail is never unexplanatory – it
might be more than a scientist wants to hear, but at worst it (simply) “explains
too much” (Sober 1999). In other words, just because we “may not want to
hear the gory details . . . does not mean that the details are not explanatory”
(Sober 1999, 549). Second, Sober claims that lower-level causes are what do
the real “work” in producing the explanatory target of interest and that this
justifies their explanatory priority over higher-level causes (Sober 1999, 548).
A final point he makes is that lower-level causal detail – such as detail from
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18 Philosophy of Biology

fundamental physics – has the advantage of providing “causal completeness,”
which cannot be supplied by higher-level causal detail. As he states, “if singular
occurrences can be explained by citing their causes, then the causal complete-
ness of physics ensures that physics has a variety of explanatory completeness
that other sciences do not possess” (Sober 1999). In other arguments in the
literature, explanatory reduction is supported by views that higher-level detail
provides “shallow explanations” compared to “deeper accounts” provided by
lower-level causal information (Waters 1990).
In contrast to explanatory reduction, I suggest that a level-agnostic view

of causal explanation is more compelling. On a level-agnostic view of causal
explanation the most explanatorily relevant causes for an outcome can be at
any scale or level (not just at lower-levels). Indeed, in some cases, higher-level
causes are more explanatory than lower-level causal details. The guiding prin-
ciples of this framework are that (i) the level of causal detail that is explanatory
depends on the explanatory target of interest and (ii) the explanatorily relevant
causes should “make a difference to” and provide control over this explana-
tory target. In some cases, higher-level causes better meet these standards than
lower-level ones – this captures the principled reasons for why the higher-level
causes are more explanatory. The pithy way to capture this level-agnostic view
is to say—causal explanation is not a game of how low can you go, but what
gives you control. In some cases, the causes with control (over the effect) are
at higher scales.
The strength of this level-agnostic view of causal explanation can be illus-

trated with Sober’s lung cancer example and discussions of multiple realiz-
ability (Putnam 1967; Fodor 1974; Ross 2020). Multiple realizability refers
to situations in which some higher-level phenomenon x (such as smoking
cigarettes) is multiply realized by distinct lower-level details, z1, z2, . . . zn
(such as distinct carcinogens that vary across cigarette types). In the context
of Sober’s smoking example, the multiple realization of x relates to a type of
causal complexity – called causal heterogeneity – in which distinct causes or
combinations of causes (z1, z2, . . . zn) are all individually sufficient to produce
the same effect (y). This is seen in Figure 5 that captures how distinct lower-
level carcinogens (z1, z2, . . . zn) are all able to cause the same higher-level lung
cancer outcome (y).
Suppose that our explanatory why-question is: “What is the cause of lung

cancer in this population?” If we want to explain this type or population level
target y – all cases of lung cancer – there is a problem with appealing to a
lower-level carcinogen, such as z1. The problem is that this lower-level cause
z1 only “makes a difference” to and explains a small fraction of lung cancer
cases and we want to explain all of them. Intervening on z1 does not control
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Figure 5 This diagram is based on Fodor (1974) and Sober (1999). The
property x is multiply realized by z1, z2, . . . zn, and each of these realizers is a

cause of y, making y causally heterogeneous.

or account for all lung cancer outcomes, as the other lung cancer outcomes
are produced by other causes (z2, z3 . . .). Alternatively, a clear advantage of
the higher-level causal factor “smoking cigarettes” (x) is that it does “make a
difference to” and provide control over all (or most) instances of this disease.
Preventing most or all lung cancer outcomes is possible with smoking cessa-
tion, unlike interventions on specific carcinogens, which differ across cigarette
types. This is why public health campaigns purposefully target smoking habits
(and not individual carcinogens) in their efforts to reduce lung cancer. How-
ever, if the explanatory target is a token or single instance of lung cancer, the
lower-level carcinogen can easily surpass the higher-level cause in explanatory
power. In this case, the lower-level cause “makes-a-difference” to the outcome
and provides control over it. An issue with Sober’s analysis is that it focuses on
the token-outcome explanation, while multiple realizability arguments are con-
cerned with type-level explanatory targets (Ross 2020). As life scientists often
want to understand and explain reoccurring, type-level outcomes, the challenge
of multiple realizability (and citing lower level-causes) is significant. A central
message in this analysis is that the causal factors that are explanatory and the
“level” that they reside at can change with the explanatory target of interest.22

A main suggestion of this analysis is that different explanatory targets can
require different levels of causal detail – there is not a particular level of causal
detail that is always privileged or objectively better in providing scientific

22 Can the reductive explanation be saved by citing a disjunctive set of lower-level carcinogens?
One problem with this is that it is not clear how to intervene on (or perform a scientific experi-
ment on) a disjunction – as explanatory causes need to meet this feature, this is problematic for
viewing a disjunction as causally responsible and explanatory. Second, we also expect expla-
nations to be contained, unified answers to explanatory why-questions – if the response to the
why-question involves citing a set of 300 disjunctive properties and it is not clear how they
relate to each other, or what they have in common, we are left unsatisfied with the explanation.
This large set of disjuncts is also unhelpful in designing targets for control, as they suggest
targeting 300 different factors to control the outcome, in contrast to targeting a shared causal
process, such as “smoking cigarettes.”
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explanations. Once an explanatory target is specified, explanatory causes need
to be factors that provide control over the target. In some cases, causal factors
at higher-levels provide better control and explanation of the explanatory target
of interest, when compared to causal factors at lower-levels.
Finally, it is worth addressing claims about whether biology can be – in prin-

ciple or in some future science – completely reduced to or explained away
with fundamental physics. Some challenges for such claims are that they are
often guesses or desires about future science, without reflecting actual scientific
work. These guesses differ from person to person, and they are difficult to sup-
port with evidence or argument. In other cases, such claims are motivated by
metaphysical or philosophical assumptions about the nature of the world (per-
haps about how all biological phenomena supervene on fundamental physics).
The work provided in this Element takes more of a methodological orientation
in using science and scientific methods to settle such questions. Attention to
actual work in the life sciences encourages skepticism of strongly reductive
claims about explanation. Researchers in biology and the life sciences have
a strong track record of successfully identifying causes and providing causal
explanations. Medical researchers have successfully identified causes of dis-
eases, neuroscientists identify axonal, circuit, and network causes of behavior,
and ecologists discover the causes of ecosystem perturbations. That scien-
tists are successful is supported by their use of these causal relationships to
change the world – they have eliminated diseases from the planet (such as
smallpox), developed effective treatments for neurological conditions (such as
epilepsy), and restored ecosystem stability (as in the reintroduction of the gray
wolf population to Yellowstone National Park). These successes are not attrib-
utable to fundamental physics – they are the fruits of the biological and life
sciences. Capturing scientific explanation and scientific successes in biology,
neuroscience, and ecology requires appreciating the actual scientific methods,
assumptions, and reasoning that are present in these scientific domains.

2.2 Mechanistic Explanation
So far, this discussion has focused on definitions of causation and the rationale
behind viewing particular causes as explanatory. Much of this work focuses
on single (or a few) main causal factors, but most outcomes in biology and the
life sciences are multicausal, as they are the result of many interacting causes
(L. N. Ross 2023b). Mechanistic explanations accommodate this multicausal
perspective as they cite causal mechanisms – which contain multiple causes –
that produce the explanatory target of interest. Accounts of mechanistic expla-
nation have been extremely influential, leading to views that mechanistic
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explanation is the “dominant view of explanation in the philosophy of science
at present” (Kaplan and Craver 2011).
Modern accounts of mechanistic explanation have three main influences. A

first influence is the seventeenth-century mechanical philosophy views of Des-
cartes, Newton, Boyle, and others (Henry 2001). This mechanist work opposed
vitalist conceptions of living systems, as vitalist conceptions explained natural
phenomena by appealing to occult powers, vital forces, and magical proper-
ties. Alternatively, the mechanist framework explained living systems with the
“mathematical discipline of mechanics,” in which systems were divisible into
lower-level entities that interact through “contact action” to produce behaviors
of the system (Clatterbaugh 1999; Henry 2001). This framework was reduc-
tive in appealing to causes at lower-scales and it defined causation in terms
of action, physical forces, and matter in motion. This mechanistic perspective
relied heavily on the analogy of living systems to machines – both were said
to contain lower-level parts that mechanically interact, similar to the levers,
pulleys, and pipes in simplemachines (Henry 2001).Modern accounts ofmech-
anistic explanation are referred to as “new” mechanist accounts in order to
acknowledge their origin in this earlier work, but also to distinguish them
from it. These modern accounts retain a focus on mechanisms as constitu-
tive (in containing lower-level parts) and as providing reductive explanations,
but they sometimes distance themselves from direct analogy of mechanisms to
machines (Craver and Tabery 2015).
A second main influence on new mechanist accounts of explanation is

Salmon’s “causal mechanical” model of explanation, which relies on a con-
nected process view of causation (Salmon 1984). Connected process accounts
of causation maintain that genuine causal processes are capable of transmitting
marks through their steps, while non-causal, “pseudo-processes” are incapa-
ble of reliably transmitting marks. Examples of causal processes and the marks
they transmit are: scuffs on a fly baseball, snow on the roof of a railcar, carved
initials on a flying arrow, and chalk marks on a sequence of colliding bil-
liard balls (Reichenbach 1971; Salmon 1984; Woodward 2016). In all of these
cases, some physical mark moves through the causal process in question. A
shadow that moves alongside an object in motion is a pseudo-process – the
shadow is non-causal because it cannot reliably transmit a mark (while the trav-
eling object can). Although there are different conceptions of what counts as
a “mark,” inmuch of this work various types of properties have counted, such as
“constituent material, bonding forces . . . geometrical shape” (Dowe 2018) and
“momentum, energy, or electric charge” (Salmon 1997). A significant feature
of Salmon’s causal mechanical model is his suggestion that the causal struc-
ture of the world is mechanistic. He views explanation as a project of fitting
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an explanandum into the “causal nexus” of the world, and this causal nexus
is exclusively mechanistic. This supports an expansive notion of mechanism
as mechanism captures the entire causal structure of the world. While mod-
ern accounts of mechanistic explanation seldom rely on Salmon’s connected
process account of causation, they sharemany other features. For example, con-
temporary accounts of mechanistic explanation adopt Salmon’s view that the
causal structure of the world is mechanistic, they often view all causal explana-
tions asmechanistic, and they often agree that mechanisms come in constitutive
and etiological varieties (Salmon 1984). With respect to defining causation,
many mechanistic analyses either rely on an interventionist account or they are
silent on what definition of causation should be used to understand their notion
of mechanism (Craver 2007; Bechtel and Richardson 2010; Craver and Tabery
2015).23

Finally, a third main influence on – and motivation for – mechanistic
accounts is the fact that scientists commonly use the mechanism concept in
biology and the life sciences. Biologists and life science researchers frequently
use the term “mechanism” when they describe causal systems and provide
explanations. This is seen in appeals to the mechanisms of gene expression,
mechanisms of neuron signal propagation, a drug’s mechanism of action,
reference to various circuit and network mechanisms of the brain, and so
on (Pickrell et al. 2010; Cole et al. 2016; Masse et al. 2019). While scientists
commonly appeal to mechanisms in explaining outcomes, philosophers are
interested in specifying what type of causal structure mechanism refers to, such
that the standards, features, and nature of these explanations can be clarified and
understood.
The philosophical literature on mechanisms and mechanistic explanation

is vast. There are many different accounts of mechanism and mechanistic
explanation and they are applied to various questions in philosophy (Andersen
2014a,b).While there is no consensus on how to understand mechanisms, some
common claims emerge in the literature. These include claims about the fea-
tures of mechanisms, their association with the machine analogy, and claims
that they are studied with the investigative strategies of decomposition and
localization.
In terms of what causal structures count as mechanisms, a first common

claim is that mechanisms are hierarchical, in the sense that they contain
lower-level causal parts that interact together to produce a higher-level outcome

23 One exception to this is found in the work of Glennan, in which mechanism is used to provide
an account of causation (Glennan 2017).
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Figure 6 Mechanism. This figure captures the hierarchical feature of
mechanisms, in which they are systems with lower-level causes that produce
higher-level outcomes of the system. Similar representations are found in

Craver (2007) and Craver and Tabery (2015).

of the system.24 This feature of mechanisms is also referred to as “part-whole,”
“constitutive,” “componential,” or as having a “nested character,” as these
terms capture the difference in level or scale of causal parts to their effect
(Craver 2007, 108). This feature is often represented with an illustration
similar to the one shown in Figure 6, in which lower-level causal parts all
interact to produce a higher-level outcome of the system. Emphasis on this
hierarchical feature reveals how these new mechanist accounts are similar to
seventeenth-century notions of mechanism and to Salmon’s constitutive notion
of mechanism. It also shows how the new mechanist framework supports a
reductive picture of scientific explanation, in which outcomes are explained by
lower-level causes.
Second, it is commonly claimed that mechanisms contain significant

amounts of fine-grained detail. In this manner, simple monocausal models
(that specify one cause for an effect) do not count as mechanisms and highly
sparse network models do not count as mechanisms either. This point is argued
by Craver who captures the completeness of mechanism representations on
a “continuum” of more or less detail (Craver 2007). On this picture, less-
detailed causal representations are mere “sketches” or “schema” that are not yet
complete mechanisms. These “incomplete” mechanism representations leave
gaps and use filler terms that “veil failures of understanding” or provide an

24 This common notion of mechanism is similar to Salmon’s “constitutive” mechanisms, which
he distinguishes from “etiological” mechanisms (Salmon 1984). While constitutive mecha-
nisms have lower-level causes in a part-whole system, etiological mechanisms have upstream
causes along a linear chain (Salmon 1984). Although Salmon considers both of these causal
structures mechanisms, the current mechanism literature focuses almost entirely on the hier-
archical, constitutive, and part-whole form of mechanism. In fact, etiological causal systems
are more similar to other causal concepts, such as pathways, which many new mechanists dis-
tinguish from genuine mechanisms (Craver and Darden 2013). These non-mechanistic causal
systems are discussed in the next two subsections.
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“illusion of understanding” (Craver and Darden 2013, 113–114). On this view,
making “progress” in providing causal explanations involvesmoving along this
continuum to gain more detail about the mechanism (Craver and Darden 2013,
113–114). These points are also seen in claims that sparse causal structures are
“incomplete” and reflect a “shallowness” of understanding and that monocausal
models are “[t]he sketchiest ofmechanism sketches” (Craver and Darden 2013;
Glennan 2017).25 On these accounts, in order for a causal structure to count as a
mechanism and to be sufficiently explanatory, it must contain some significant
amount of causal detail.
A third common claim about mechanisms is that the causal relationships

they contain are described in terms of mechanical interactions, such as force,
action, and motion. In a mechanism, it is not enough to say that X causes Y
– one needs to say how X causes Y, often in terms of mechanical interactions
and detail. For example, these mechanistic interactions can involve specifying
that X splices, activates, triggers, opens or binds to Y.26 This third feature of
mechanisms is related to the second feature in the sense that when you give
additional information about how a cause produces its effect you also serve the
second feature by providing more detail about the system.
In addition to these three features, mechanisms in the life sciences are

often analogized to machines and they are studied with causal investigative
strategies that include decomposition and localization (Bechtel and Richardson
2010). With respect to the former, causal structures that scientists refer to as
mechanisms are often claimed to be machine-like. Examples from molecu-
lar biology include referring to enzymes as “motors,” “biological ratchets,”
and “molecular machines” (Mahadevan and Matsudaira 2000; Endow 2003).
The fact that mechanisms in the life sciences are analogized to machines is
unsurprising, because many everyday life machines share the three main mech-
anism features listed earlier.27 Finally, it is often suggested that mechanisms
are studied with the investigative strategies of decomposition and localization
(Bechtel and Richardson 2010). These strategies involve fixing an explana-
tory outcome and then drilling down to identify the lower-level causal parts

25 An example of mechanism that differ from this is found in the work of Levy and Bechtel
(2013), in which they argue for abstract causal mechanisms (Levy and Bechtel 2013).

26 This mechanical interaction feature is related to the new mechanist’s focus on verbs in cap-
turing mechanism activities (Machamer et al. 2000) and prior work that focuses on the added
causal content of verbs and “thick” causal concepts (Anscombe 1971; Cartwright 2004)

27 We see this in everyday life machines, such as car engines and watch mechanisms – both con-
tain lower-level parts that produce a higher-level behavior of the system, causal representations
of these systems are highly detailed, and descriptions of their causal relationships emphasize
force, action, and motion.
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that produce this outcome. These strategies are related to the hierarchical
organization of mechanisms and the fact that they are defined by and relative
to single explanatory targets (Ross 2021a). The explanatory target of interest
is what fixes the particular “parts” and circumscribes the bounds of the causal
mechanical system.
Mechanistic accounts of explanation have received enormous attention in

recent philosophical literature on scientific explanation. Central questions in
this literature concern the exact character of mechanistic explanation and its
prevalence in biology and the life sciences. With respect to the prevalence of
mechanistic explanation, consider two questions that capture different views
on this topic:

1. Are all explanations in the life sciences mechanistic or is mechanistic
explanation one type of explanation in this domain?

2. Are all causal explanations in the life sciences mechanistic or is mechanistic
explanation one type of causal explanation in this domain?

In early work, many new mechanists supported an explanatory monist posi-
tion with respect to (1) and argued that all explanations in biology and the
life sciences are mechanistic (Machamer et al. 2000; Craver 2007; Bechtel and
Richardson 2010; Kaplan and Craver 2011). On this view “explanations are
said to be adequate to the extent, and only to the extent, that they describe
the causal mechanisms that maintain, produce, or underlie the phenomenon to
be explained” (Kaplan and Craver 2011). These claims were viewed by many
as overly bold and “imperialist” in claiming that mechanistic explanation is the
exclusive form of explanation in the life sciences (Kaplan 2017). These explan-
atory monist claims were strongly countered by various discussions of the
limits of mechanistic explanation (Weber 2008; Dupré 2013; Woodward 2013;
Skillings 2015; Halina 2018; Ross 2021a) and myriad examples of non-causal,
mathematical explanations, which explain without appealing exclusively to
causal information (Silberstein and Chemero 2013; Batterman and Rice 2014;
Ross 2015; Chirimuuta 2018). These non-causal explanation types have been
overwhelmingly accepted in the philosophical literature on scientific explana-
tion (and they are discussedmore in the next subsection).Many newmechanists
have been convinced by positions on non-causal (and, thus, non-mechanistic)
explanation and they have revised their views to acknowledge the legitimacy
of these explanation types.
However, in revising their views, many new mechanists have adopted a sec-

ond monist position, captured by the second (2) question earlier. These new
mechanists have adopted monism about causal explanation, which claims that
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all causal explanations in the life sciences are mechanistic.28 The tenability of
this position depends on how “mechanism” is defined and understood. Notice
that if mechanism is defined narrowly by the three features earlier (constitutive
organization, fine-grained detail, andmechanical interactions), or by any partic-
ular features, this conflicts with the monist position – this is because there are a
great variety of distinct causal structures that are cited in biological and life sci-
ence explanations, and there is no specific set of features that are shared across
all of these causal structures. For example, some explanations cite higher-level
causes that produce lower-level outcomes, other explanations appeal to causal
systems that are sparse and abstract away from detail (such as topological and
network models), and yet other explanations refer to causal systems with linear,
causal chain organizations. As these do not share the previously outlined mech-
anism features, they qualify as non-mechanistic causal systems. These are just
three alternative causal structures – many other diverse causal systems exist
and are cited in life science explanations. Thus, an important question to ask
is, given the variety of causal systems that figure in life science explanations,
which of these causal systems count as mechanisms?
While many new mechanist accounts began with specific, narrower concep-

tions of mechanism (such as the three-feature account earlier), recent accounts
have broadened the notion of mechanism to the point of equating it with nearly
any type of causal system. This broad notion of mechanism is seen in accounts
that refrain from specifying any defining or characteristic features of mech-
anisms. For example, some of these accounts claim that mechanisms can be
highly detailed or not, machine-like or not, reductive or not, driven by push-
pull dynamics or not, and so on (Craver and Tabery 2015). Whichever feature
it is suggested that some mechanisms have, it is quickly stated that other mech-
anisms need not have this feature. Similarly, when these new mechanists state
what does not count as a mechanism, they tend to only provide examples of
non-causal systems (these are obviously not mechanistic because they are not
causal). Insofar as helpfully articulating the mechanism concept requires spec-
ifying what does and does not count as a mechanism, many of these broad

28 For example, Kaplan and Craver (2011) state that “models in “lower-level” neuroscience, carry
explanatory force to the extent, and only to the extent, that they reveal (however dimly) aspects
of the causal structure of a mechanism” (Kaplan and Craver 2011, 602). Similarly, Glennan
(2017) states “The phenomena that constitute our world are the products of mechanisms:
car engines are mechanisms for rotating drive shafts; eyes are mechanisms for transducing
light into neural impulses; oxidation is a mechanism that produces rust” (Glennan 2017).
This monist claim is also found implicitly in the literature, in the sense that discussions of
non-mechanistic explanation focus on identifying explanations that are non-causal as it is
often assumed that all causal explanations (and those causal concepts figuring in them) are
mechanistic (Kaplan and Craver 2011; Silberstein and Chemero 2013; Chirimuuta 2018).
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views have been found to be overly expansive and wanting by many. As Dupré
states, “if the concept of a mechanism is to do any work, we must surely have
some sense of what isn’t a mechanism” (Dupré 2013). I will add that we must
also have a sense of what causal systems are not mechanisms; otherwise, the
term is only as meaningful as “causal system,” despite being advertised as
much more.
It is clear that many distinct types of causal systems figure in explanations

in biology and the life sciences. The question is whether to view some of these
causal systems as mechanisms (narrow mechanism view) or to view all of
these causal systems as mechanisms (broad mechanism view).29 Challenges
for the broad mechanism view are that it threatens to over-expand and trivi-
alize the notion of mechanism by equating it with generic notions of “causal
system” or “causation.” In many scientific and everyday life contexts, mech-
anism implies much more than “causal system” or “causality” – “mechanism”
is often a high-status causal term that communicates knowledge of significant
detail and information (Hutchinson 2007; Ankley et al. 2010). Furthermore, if
“mechanism” just means “causal system,” then accounts of mechanistic expla-
nation are limited in what they add to our understanding of causal explanation
in science. Since the fall of the DN model, accounts of causal explanation have
received significant attention. These accounts claim that causes explain their
effects and they define causation in order to capture how these explanations
work. Accounts of mechanistic explanation have entered this scene and their
main contribution is that “causal explanations cite mechanisms.” However, if
“mechanism” is synonymous with “causal system,” then these accounts are
merely stating that “causal explanations cite causal systems.” This is obvi-
ous, tautological, and something we already knew – it is implied by the causal
explanation framework and it fails to add to our understanding of how these
explanations work. Thus, it is worth questioning whether the broad notion of
mechanism advances our understanding of explanation in the life sciences and
whether it captures the use of mechanism in these domains.
Whether one adopts a narrow or broad notion of mechanism, most agree

that accounts of causal explanation should capture the diversity of causal
systems that are explanatory. This Element adopts a narrow conception of
mechanism – captured by the three features earlier – and examines other types
of causal systems and causal explanation in the life sciences. Two other types

29 Scientists also appear to use the term “mechanism” in varying ways. This can lead to chal-
lenges when publications and grants are assessed in terms of whether they reveal “mechanistic
insights” which is a standard often found in journal publication guidelines and grant calls (Seals
2023; Andersen 2008). For more on this in the context of neuroscience see: Ross and Bassett
(2024).
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of causal systems are examined – these include the pathway and cascade con-
cepts. The next section explores these two causal concepts and how they have
unique features, are associated with distinct analogies, and are studied with
particular causal investigative strategies. However, the analysis in the next sec-
tion does not require that one commit to the narrow mechanism notion. If the
broad notion of mechanism is preferred, then these three causal systems (which
are called “mechanisms,” “pathways,” and “cascades” in this Element) can all
be considered distinct types of causal mechanisms. The important point is not
what we call these causal systems, per se, but that we have an account that cap-
tures the distinct features of these causal systems and different types of causal
explanations they provide.

2.3 Pathways
When biologists and other life scientists provide causal explanations, what
types of causal systems do they refer to? What causal language is important
for capturing the causal systems they find explanatory? While “mechanism” is
a common causal term and concept, many other causal concepts are found in
these scientific fields. Examples of causal concepts in the life sciences include
pathways, cascades, circuits, triggers, causal cycles, and structuring causes.
This subsection examines the pathway and cascade concepts. I argue that path-
ways and cascades differ from mechanisms in terms of their characteristic or
hallmark features, the analogies they are associated with, and the causal inves-
tigative strategies used to study them. This analysis is used to suggest that
explanations that appeal to pathways, cascades, and mechanisms are distinct
types of explanation because they cite different types of causal systems.
A first causal concept to consider is the notion of a pathway, which is com-

monly found in biology, neuroscience, physiology, ecology, and numerous
other life sciences (Boniolo and Campaner 2018; Ross 2018). Examples of
the pathway concept include gene expression pathways, metabolic pathways,
neural pathways, vascular pathways, developmental pathways, and ecological
pathways, as seen in Figure 7. In these contexts, pathways are causal systems
that have four main features. These features include: a sequence of causal steps,
the flow of information or material, abstraction from causal detail, and causal
relationships that emphasize causal connection (as opposed to mechanical
interactions) (Ross 2021a). Additionally, while mechanisms are often analo-
gized to machines, pathways have their own unique analogy – pathways are
often analogized to roadways, highways, and city streets. The reasons for this
analogy will become clear as the main features of the pathway concept are
discussed in detail.
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Figure 7 Pathway examples in the life sciences, including (a) metabolic
pathways, (b) developmental pathways, (c) vascular pathways (or blood
vessels), and (d) ecological pathways (which capture prey–predator

relationships).

A first feature of pathways is that they involve a sequence of causal steps –
these steps outline a causal route from upstream, to intermediate, to down-
stream factors.30 In their simplest form, pathways are linear but they can be
organized inmore complex branching configurations. This sequential feature of
pathways is seen in the butterfly developmental pathway in Figure 7, in which a
sequence of causal steps – from egg to larvae, to pupa, to adult – is represented.
Second, pathways involve the flow of some entity along their sequence of

causal steps. In many cases, pathways involve the flow of some material or
information that is relevant to the system of interest. For example, metabolic
pathways involve the flow of metabolites, neural pathways guide the flow of
information, vascular pathways dictate the flow of blood, ecological pathways
channel the flow of energy through ecosystems, and developmental pathways
trace the flow of cells, tissues, or organisms, as they mature. In this manner,
pathways involve both an entity that changes and a sequence of steps that limits,

30 The relevant notion of order in pathways – used to clarify when a factor is upstream or down-
stream – is determined causally. Thus, pathways specify causal order (as opposed to mere
temporal order).
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guides, and channels how the entity changes over time.31 These scientific path-
ways are analogized to roadways, because roadways outline a route that guides,
channels, and constrains the flow of traffic.
A third feature of pathways, and one that clearly distinguishes them from

mechanisms, is that they abstract from large amounts of causal detail. One
way that pathways abstract from detail is by representing complex processes
in an economy of causal steps. We see this in the developmental pathway of
a butterfly, which represents this entire developmental process (the entire life
cycle) in just three main steps. While any one of these steps could be divided
into further causal links, this is not represented with the pathway concept,
which abstracts from this information. A second way that pathways abstract
from detail is that they omit lower-level, mechanistic information about how
an entity moves from one causal step to the next. When vascular, develop-
mental, and neural pathways capture a sequence of causal steps, they outline
and emphasize the different steps that the entity moves through, but not the
lower-level causal details that are involved in this process. Again, similar to the
roadway analogy, roadways capture macro-level information about where an
object can flow in a system, but not how it flows (or moves) through this space.
A roadway reveals where cars can travel, but not the mechanistic details of
how the car moves from one location to another. Similarly, metabolic pathways
capture causal routes along which metabolites travel, but not the lower-level
enzymatic details that drive this travel. For example, the glycolytic pathway
captures a ten-step metabolic process that is shared and “conserved” across
nearly all species on the planet. However, it is only the higher-level, causal
steps outlined in the glycolytic pathway that are shared – this pathway is
instantiated by different causal-mechanical details in different systems (such as
different enzymes at a given step of the pathway). By abstracting from detail,
the pathway can capture what all these systems share and it can explain the
glycolytic process (conversion of glucose into pyruvate) generally, across all
systems. Including lower-level mechanistic detail would prevent this, because
such details are not shared across all systems.
A fourth feature of pathways is that their causal relationships emphasize

causal connection, but not lower-level detail or mechanical detail. In other
words, pathways capture that X is a cause of Y, but they do not reveal mecha-
nistic details about how X causes Y. Their role is to highlight the set of causal
connections in some domain – namely, who is causally connected to who,
but not fine-grained information about these causal connections. For example,

31 In some cases, pathways involve constraints that limit the possibility space of outcomes that a
system can produce (Ross 2023b,c, 2024).
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neural tracts can outline the flow of neural signals from one location to another,
but they do not convey how these signals flow, travel, or move. This emphasis
on causal connection with the pathway concept is seen when scientists organize
many causal pathways together into network diagrams or what they sometimes
call “roadmaps” of causal connections. This is seen in reference to “roadmaps”
of metabolic pathways, “roadmaps” of stem cell developmental pathways,
and “roadmaps” of ecological pathways (Marina et al. 2018; Ly et al. 2020;
Zheng et al. 2021).
If pathways are unique causal systems, with the four features mentioned

earlier, how do they provide explanations? How do pathways provide causal
explanations that differ from mechanistic explanation? Consistent with the
three-part model of explanation (shown in Figure 2), pathway explanations are
cases in which pathways serve as the explanans and explain the outcome of
interest. As pathways refer to a causal structure that differs from mechanisms,
citing them provides a distinct type of causal explanation. On this view, one
way to capture different types of causal explanations is by appreciating the
distinct causal systems they cite that perform the explanatory “work.” As men-
tioned earlier, consider explanations of glycolysis, which is a process by which
organisms breakdown glucose into energy. When scientists explain glycolysis
across a large number of species (or in living systems in general) they cite the
“conserved” glycolytic pathway, with ten chemical conversion steps (from glu-
cose to pyruvate). This pathway abstracts from lower-level mechanistic details,
such as the enzymes that catalyze each step of the process. The reason for
this abstraction is that the ten-step glycolytic pathway is shared across all sys-
tems in the explanatory target, while the lower-level enzymes are not. As the
lower-level mechanisms in these systems are not shared, they cannot be cited
to explain their identical behavior of glucose production. Similar reasoning is
found in many explanations in biology (Sober 1999; Ross 2020) and in expla-
nations of shared or universal behaviors across systems that differ in terms of
their lower-level details (Batterman 2001; Ross 2015; Woodward 2017).
Another way to see the uniqueness of pathway explanations is with the

network and “roadmap” diagrams of pathways. Consider the map of ecolog-
ical pathways, shown in Figure 7. These pathway maps allow scientists to
answer unique explanatory why-questions that mechanisms do not address.
These explanatory why-questions include: (1) Given a starting point on the
map, which downstream locations can (and cannot) be reached? (2) Given
a downstream location, which upstream positions can (and cannot) arrive at
this location? (3) What is the most (and least) direct way to get from any
two points in the map? While there are other questions that this pathway map
can answer, the important point is showing how pathway information helps
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scientists answer distinct types of explanatory why-questions. The questions
here concern a possibility-space of outcomes and how an entity moves through
this space. This matters for determining the flow of toxins as they damage spe-
cies in an ecosystem, how blood clots move through blood vessels to damage
some organs in the body (and not others), and how to manufacture particu-
lar chemical species from available chemical reactions (Ross 2021a, 2023b).
Examining these pathway maps makes it clear that they do not represent mech-
anistic information – these maps do not represent a mechanism, in the sense of
lower-level causal parts (or gears) that interact together to produce a single out-
come of the system. Instead, these pathway maps capture a possibility space of
routes in the system that capture where some entity can and cannot flow through
this space. While pathways provide dynamic information about possible out-
comes within a complex space, mechanisms explain why a particular, specific
outcome presents.
Finally, in addition to their four main features, pathways are studied with

unique causal investigative strategies. Scientists often study these systems by
exploiting their “flow” feature. In particular, they often use tags and tracers to
mark some entity, and then watch it as it flows along the steps of the pathway.
This is seen in radioactive tracer and dye experiments, in which these materials
are used to illuminate the steps of many different types of pathways, includ-
ing metabolic, vascular, neural, and ecological (Ross 2021b). For example,
radioactive tracers are attached to carbon atoms that flow through metabolic
pathways, radioactive tracers are introduced into prey and followed through
prey–predator relationships in ecosystems, and dyes are attached to material
that flows through neural pathways and tracts (Ross 2021b). These are not tech-
niques that can always or easily be used with mechanisms, because many of
them lack the reliable flow of some entity through their causal steps. This is
similar to the gears of a watch mechanism – while these gears are involved in
the causal process, there is no material that reliably moves along them (from
the first gear, through all intervening gears, to the final time keeping behavior
of interest). However, for metabolic, vascular, and ecological pathways, there
are materials that reliably flow through the causal steps and that are targeted
by tracers in the study of these systems. This reveals how these systems have
distinct features that matter for how they are studied. Thus, while mechanisms
are often studied by “drilling down,” pathways are studied by dropping tags
or tracers into a system and “expanding out” along causal routes. These tracers
reveal the causal sequences of interest in some domain, but not the fine-grained,
mechanical details of the causal routes of interest.
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Before moving on, it might help to consider some objections that mechanists
have voiced toward viewing pathways as an explanatory causal structure. Does
the sparse detail of pathways make them less explanatory than mechanisms?
Are pathways mere mechanism sketches that should be suffused with more
detail in order to explain? These points are supported by Craver and Darden
(2013) who consider pathways to be explanatorily deficient due to their lack of
detail. They associate pathways with the “vice of chainology,” in which “one
becomes fascinated by nodes in a causal chain but loses sight of how the nodes
work to produce, underlie, or maintain the phenomenon” (Craver and Darden
2013, 91). Along these lines, they claim that pathways are causal structures
that are “incomplete” and that they reflect a “shallowness” of understanding
(Craver and Darden 2013, 91–92).
These statements misunderstand scientists’ use of the pathway concept and

its explanatory role. The sparse nature of pathways is central to their explan-
atory power because it captures shared higher-level causal connections across
systems with different lower-level details (Ross 2020). This is seen in expla-
nations of glycolysis and other cases in which shared behaviors present across
systems that differ in terms of their mechanistic details. In addition to captur-
ing shared, macro-level details, pathways also capture distinct types of causal
details, as seen in the “roadmaps” of causal connections. Mechanisms are
equipped to capture lower-level causes that produce a particular behavior of
interest, but they are not suited to capture a map of possible causal routes
through a system. For this type of causal information, the pathway concept is
much better-suited, as is the analogy of these pathways to roadways, highways,
and city streets. Here we see that mechanisms are limited, not just because they
involve lower-level details that we do not need, but because mechanisms do
not capture information about flow and possible routes, which is required for
some explanatory why-questions. Further varieties of causal (and non-causal)
explanation are considered in the next subsection and section.

2.4 Cascades
Another causal concept that commonly figures in explanations in biology and
many other scientific domains is the notion of a cascade (Ross In Press). Exam-
ples of cascades are plentiful in science – they include cell signaling cascades
in physiology, trophic cascades in ecology, ischemic cascades in neuroscience,
cascading reactions in physics and chemistry, and cascading disasters (or fail-
ures) in the social sciences, as seen in Figure 8 (Macfarlane 1966; Ripple et al.
2016; Smolyak et al. 2020). Similar to mechanisms and pathways, cascades
are causal structures with unique features, analogies, and causal investigative
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Figure 8 Cascade examples, including (a) cascading reactions in physics and
chemistry, (b) cascading disease spread in epidemiology, (c) ecological

cascades, and (d) cell-signaling cascades.

methods. Cascades have three main features: they involve an initial trigger,
sequential amplification, and stable progression. In examining cascades in sci-
ence it will help to introduce them with the analogies they are associated with.
Cascades are often analogized to systems such as the snowball effect, ripple
effect, and waterfalls (synonymous with “cascades,” their namesake). We see
why this is the case, by exploring their features more next.
First, cascades are initiated by a trigger, which is often conceptualized as a

binary switch (on/off) that sets the process off. In order to see this, consider one
of the first causal systems to receive the “cascade” label in modern biology,
namely, the blood coagulation cascade (Davie and Ratnoff 1964; Macfarlane
1966). Blood coagulation is a process that functions to stop massive bleeding
after blood vessel injury – this injury triggers an enzyme cascade, which culmi-
nates in a large clot to stop the bleeding. The trigger for blood coagulation is this
vessel injury, which initiates the cascade process. Other examples of triggers
in cascades are seen in the causal systems they are analogized to. The snowball
effect is triggered by a small amount of snow, the ripple effect is triggered by
a single drop of water, and waterfalls (or natural cascades) begin with a small
amount of upstream water, which progressively disperses.
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Second, the central feature of cascades is sequential amplification, which
involves a small cause that produces an increasingly large amount of some
effect.32 At the scale of a single causal step, there are at least two types of
causal amplification: a small amount of cause can produce a large amount of a
single effect, called single-product amplification, or a small cause can produce
many different effect types, called multi-product amplification (Ross In Press).
An example of single product amplification is seen in enzyme cascades, such as
the blood coagulation cascade, as these involve a small amount of some enzyme
“a” that produces a large amount of downstream enzyme “b”. In this enzyme
case, there is amplification of a single product, as there is a large amount of
enzyme “b.” An example of multiproduct amplification is a disaster cascade,
such as when an earthquake causes many different downstream outcomes, such
as fires, collapsing bridges, and water damage from broken water pipes. In this
disaster cascade, there is amplification in the sense of the production of many
different types of effects.
While these two types of amplification help capture the notion of causal

amplification at a single step, cascades involve sequential amplification, in
which there are a sequence of amplifying steps. This is important because when
amplifiers are arranged in series, this drastically increases the overall amplifi-
cation of the system – the overall amplification of the system is the product
of the gain at each step. For example, if one unit of enzyme “a” produces ten
units of enzyme “b” and one unit of enzyme “b” produces ten units of enzyme
“c,” the overall process has a gain of one hundred (producing one hundred
units of “c” for every single unit of “a”). This allows blood coagulation and
other physiological cascades to produce “explosive” outcomes in which colos-
sal amounts of a product are produced. In some cases, this amplification serves
a physiological function, such as clot formation in the blood coagulation cas-
cade and signal amplification in hormonal cascades. These cascades are also
exploited in various technologies, such as polymerase-chain reaction (which
amplifies trace amounts of some substance). In other cases, the amplification is
non-functional and produces significant damage, as seen in ischemic cascades,
disaster cascades, and cascading failures (Smolyak et al. 2020).
The sequential amplification feature of cascades is seen in the analogies they

are associated with and the diagrams used to represent them. Notice that the
cascade analogies all involve a small cause that amplifies a downstream effect.

32 As seen in the examples here, a cause or effect is “small” or “large” relative to the units of
interest (or choice of variable and values selected by scientists). This depends on the units
specified, such as molecules of an enzyme in the blood coagulation cascade, or snow amount
at steps along an avalanche.
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For example, the snowball effect refers to a small amount of snow that causes
a huge avalanche, the ripple effect involves a small drop that produces outward
ripples that increase in size, and waterfalls involve a narrow stream of water
that progressively amplifies in speed and distribution of spread. In analogizing
scientific cascades to these systems, a main goal is to highlight and commu-
nicate the amplification in these causal systems. This amplification feature is
also emphasized in the diagrams used to represent scientific cascades. These
diagrams often depict one-to-many causal systems, in which one cause gives
rise to many effects in succession (this is seen in the illustrations in Figure 8).
Interestingly, as the degree of amplification (or gain) at any given step of the
cascade is larger than can be easily drawn, scientists find other ways to repre-
sent this significant amplification (sometimes by representing the amplification
numerically, with a 103 at a given step).
A third feature of cascades is that once initiated they involve stable pro-

gression to their final effect. In other words, cascades gain in momentum and
are propelled forward as they move through their sequence of causal steps
(Dodge et al. 2009). One implication of this is that, once initiated, cascades
can be very difficult to stop. They have the potential to “run-away” or “become
uncontrolled” (Bloomfield and Stephens 1996, 168, 171). This is similar to
descriptions of the snowball effect, in which a small snow fall triggers a grow-
ing, unavoidable avalanche. As Stein states, “cascade refers to a process that
once started, proceeds stepwise to its full, seemingly inexorable, conclusion
[. . .] the danger of a cascade is that it can be inappropriately triggered [. . .]
once triggered, it is virtually impossible to stop” (Stein 1990). This stable pro-
gression feature is seen in examples such as the initiation of a chemical chain
reaction, the spread of COVID through the population, and cascading failures
triggered by natural disasters. Due to this feature, scientists often recommend
intervening early on in a causal cascade as a way to modify or stop it, as it
becomes harder to control as its steps unfold.
If the narrow notion of mechanism is adopted (see Subsection 2.2), the cas-

cade concept is an additional alternative to mechanism. In order to see this,
consider that cascades do not always have the hierarchical organization of
mechanisms (in which lower-level causes produce a higher-level effect). Cas-
cades are level-agnostic with respect to their causes and effects. Cascades can
have causes and effects at the same level, they can have higher-level causes
that produce lower-level effects, and they can have lower-level causes that pro-
duce higher-level effects. Enzymatic cascades are an example of the first type
(causes and effects at the same level) as the cause and effect are both enzymes.
An example of higher-level causes producing lower-level effects are energy
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cascades involved in turbulence, which involve the transfer of energy from
“large scales of motion to the small scales” ((Richardson 1922, 66); see also
Wilson (2021)). Yet another example are traumatic experiences that alter gene
expression, referred to as “downward cascades” (Masten and Cicchetti 2010,
492). Finally, a cascade example with a lower-level cause that produces a
higher-level effect is a hormone cascade, in which a hormone trigger produces
some system-level behavior. Another example is a pharmacological interven-
tion that alters behavior, sometimes called an “upward cascade” (Masten and
Cicchetti 2010 2010, 492).
Yet another difference between cascades and mechanisms is that unlike

mechanisms, cascades do not always have a single, main effect of interest.
Recall that the decomposition and localization methods used to study mech-
anisms require first fixing a single explanatory target before “drilling down” to
identify the causal parts of the system. Cascades cannot be reliably studied in
this way because they often have many distinct effects, as seen in multiproduct
amplification cases. Furthermore, even when cascades do have a single main
explanatory target, their causes cannot always be identified by “drilling down”
because, as just mentioned, their causes are not always at lower-levels. Instead,
cascades are often studied with tools that intervene on their initial trigger, using
this as a way to study what their downstream effects are.
Finally, even if a broad notion of mechanism is adopted – such that the afore-

mentioned cascade and pathway examples are said to count as mechanisms – it
will still be important to distinguish across kinds of mechanisms. As suggested
in this analysis, these varieties of causal systems (whatever they are called)
have different features that set them apart from each other, require different
causal investigative strategies, provide different types of control over effects,
and figure in distinct types of explanations. Capturing the nuanced picture of
causal varieties in the world and types of causal explanations in science requires
a framework that appreciates these distinct causal systems.

2.5 Causal Explanation Conclusions
Providing an account of causal explanation in biology and the life sciences
requires specifying the types of causal structures that scientists cite in their
explanations. These causal structures serve as the explanans in the three-part
model of explanation, and they capture what does the explanatory “work”
in these cases. The analysis in this section is compatible with the claim that
“causes explain their effects.”What is highlighted is that there aremany distinct
types of causes and causal systems that play this explanatory role. Referring to
all of these explanatory causal systems as “mechanisms” involves adopting a

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009300940
Downloaded from https://www.cambridge.org/core. IP address: 3.145.48.180, on 23 Jan 2025 at 18:02:49, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009300940
https://www.cambridge.org/core


38 Philosophy of Biology

broad, expansive notion of mechanism, on which mechanism is synonymous
with “causal system.” As others have voiced, while it may be possible to “shoe-
horn descriptions of biological systems into talk of mechanisms,” the “attempt
to do so risks reducing the idea of a mechanism to vacuity” (Dupré 2013).33

Alternatively, referring to particular causal systems as mechanisms adopts a
narrow notion of mechanism – a notion in which “mechanism” refers to causal
systems with specific features. Whichever view of “mechanism” one adopts,
the important point is that different types of causes, causal relationships, and
causal systems are explanatory. Identifying and distinguishing these causal
types is an important part of providing an account of scientific explanation that
captures work in biology and the life sciences.

3 Non-Causal, Mathematical Explanation
When the deductive-nomological (DN) model of scientific explanation was
revealed as having various limitations, causal accounts of scientific explana-
tion began to receive increasing amounts of attention (Woodward and Ross
2021). One reason for this increased attention to causal explanation is that many
problems with DN explanation were resolved by including causal details and
information.34 This perceived importance of causality in explanation led many
to suggest that causal explanation is the main or only type of explanation in sci-
ence (Lewis 1986; Strevens 2008; Skow 2014). As work on causal explanation
began to develop further – in terms of specifying the features, types, and limits
of causal explanation – many began to question claims that all scientific expla-
nations are causal in character. Various philosophers began to claim that some
genuine scientific explanations are non-causal or mathematical (Sober 1983;
Batterman 2001; Baker 2005; Lange 2018). A large number of projects have
focused on clarifying the structure of non-causal, mathematical explanations,
including: the particular types of non-causal, mathematical factors these expla-
nations involve, what exactly makes these factors explanatory, and whether
there are different types of non-causal, mathematical explanations in science.
In the context of debates concerning scientific explanation, accounts of non-

causal, mathematical explanation often adhere to various standards.35 First,

33 Another worry is that, on these broad accounts, “it seems that mechanisms just are whatever
explains whatever happens” (Dupré 2013).

34 For example, including causal information helped address issues concerning asymmetries and
irrelevancies.

35 In referring to explanations in this section as “non-causal, mathematical” I do not mean to
suggest that all non-causal explanations are mathematical. I use this expression to highlight
two main features of the explanations discussed in this work, namely, their non-causal nature
and that they involve explanatory mathematics.
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these accounts are focused on explanations of natural phenomena – they are
focused on the use of mathematics (or non-causal information) in natural
science explanations or explanations of the physical world. Expressed in a
different way, these accounts are not interested in mathematical explanations
in the field of mathematics or in non-scientific domains (Baker 2005). Addi-
tionally, many of these philosophical accounts of non-causal, mathematical
explanation aim to capture explanatory reasoning found in scientific work. As
Lange notes, this is a view of scientific explanation that aims to “do justice to
scientific practice” (Lange 2018, 24). This requires identifying explanatory tar-
gets of scientific interest, such that these targets can be couched in explanatory
why-questions and then answered, as opposed to providing obscure mathemat-
ical answers to previously unknown and scientifically uninteresting questions
(Baker 2005).
A second important standard that these accounts of non-causal, mathemat-

ical explanation are held to is that they need to justify the explanatory role
of mathematics. It is well appreciated that mathematics is used to represent
phenomena in the world. However, while this representational capacity can
support the scientific aims of description, prediction, and classification, these
are all distinct from explanation. This is why these cases are often referred to
as “distinctively mathematical” – they are not just explanations that “employ”
mathematics, but cases in which the mathematics has the special feature of
being explanatory (Lange 2018, 4). A convincing argument for the explana-
tory nature ofmathematics must address this question of explanatory power and
demonstrate how the math is doing more than merely representing phenomena
in the world. Finally, most accounts of non-causal, mathematical explanation
do not claim to be entirely free of causal information. While these explanations
often have some causal information, it is argued that they require non-causal,
mathematical information to be explanatory. In these accounts, there is some
mathematical (or non-causal) kernel required for the complete explanation that
marks it as distinct from standard causal explanations.
The topic of non-causal, mathematical explanation has received growing

attention for different reasons. One reason stems from concerns that philo-
sophical accounts of scientific explanation have overlooked non-causal, mathe-
matical explanation and focused mainly (or exclusively) on causal explanation
(Lange 2018). Work in this area aims to correct this deficiency by clarifying
how non-causal, mathematical explanations should be understood and how
they work. A second reason for attention to this topic concerns debates about
the existence of mathematical objects and so-called “indispensability argu-
ments” that argue in favor of this existence (Baker 2005; Lyon and Colyvan
2008; Lyon 2012). In these debates, Platonists argue that mathematical objects
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exist by showing that mathematics is indispensable to scientific explanation
of the physical world. As Maddy states, according to a simple indispensabil-
ity argument “we have good reason to believe our best scientific theories, and
mathematical entities are indispensable to those theories, so we have good rea-
son to believe in mathematical entities” (Maddy 1992, 278). On the other hand,
nominalists deny the existence of mathematical objects and find ways to refute
these Platonist arguments. These discussions center on whether “pure mathe-
matics can be genuinely explanatory with respect to physical phenomena” as
this is viewed as having consequences for whether we accept the existence of
mathematical entities or not (Baker 2005, 225).
In this Element, analysis of non-causal, mathematical explanation will focus

on the first motivation, namely, on an interest in mathematical explanation
for the sake of clarifying how legitimate scientific explanations work. As all
explanations discussed in this section are non-causal in character and have
mathematical components, the terms “non-causal explanation” and “mathemat-
ical explanation” will be used interchangeably. This section will focus on three
categories of mathematical explanation: (i) topological and constraint-based
explanations, (ii) optimality and efficiency explanations, and (iii) minimal
model explanations. While these are three common types of mathematical
explanation, I will not suggest that these categories are exhaustive of all forms
of mathematical explanation. Additionally, while these categories of mathe-
matical explanation are marked by distinct features (with paradigmatic cases in
each category), this analysis is open to “boarder-line” cases, in which a mathe-
matical explanation may share features frommore than one of these categories.
This analysis will also reveal some similarities between previously discussed
causal explanations and the non-causal, mathematical explanations examined
here.
This section will examine the structure of these explanation types, how they

capture the explanatory role of mathematics, and how they fit with the standard
three-part model of explanation, which includes the explanandum, explanans,
and dependency relation.

3.1 Topological and Constraint-Based Explanations
A first type of non-causal, mathematical explanation are topological explana-
tions. These explanations are commonly found in network and systems science
areas, in which life science cases are studied with network models, graph the-
ory, and pathway analysis. In these examples, systems are represented with
network models containing nodes and edges – nodes capture properties in the
system (metabolic compounds, areas of the brain, species in an ecosystem,
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etc.), while edges capture relations between these properties (chemical con-
versions, anatomical connections, prey–predator relations, etc.). In the context
of network neuroscience, some of these models capture the brain’s structural
and anatomical connections, which are referred to as the brains “network
architecture,” “structural topology” and “hard-wired connection topology”
(Zöller et al. 2021). Similar methods are used to represent networks in other
domains, such as enzyme interactions in molecular biology, cellular interac-
tions in immunology, prey–predator relationships in ecology, and many others
(Montoya and Solé 2002; Kitano and Oda 2006; Taylor et al. 2013). These net-
work diagrams reveal the “global shape” of connections in some domain and,
because of this, are also referred to as “circuit diagrams” and “wiring diagrams”
of connections in the system (Karuza et al. 2016).
Representing systems with network and graphical formats can reveal impor-

tant topological properties of the system. These topological properties capture
how relations between entities in the system are arranged and organized – in
this manner, the “topology of a graph defines how the links between system ele-
ments are organized” (Fornito et al. 2016). Examples of topological properties
include: connection or linkage density, link distance number, small-worldness,
nested relations, power-law scale-free distributions and scaling properties
(Bassett and Bullmore 2017). In many cases, these topological properties are
cited in explaining unique behaviors of the system. While these topological
properties are sometimes characterized as “mathematical” themselves, they are
also claimed to bear a mathematical relationship to the system-level behaviors
that they produce. In this manner, it is suggested that there is a mathemati-
cal dependency relation between the topology of a system and the behavior
produced.
As an introductory example, consider a topological explanation that is com-

monly discussed in the philosophical and mathematics literatures (Euler 1956;
Pincock 2012; Lange 2018). While this example is not drawn from the life sci-
ences, it motivates and captures an explanatory pattern that is identified inmany
life science contexts. This is the well-known case of the Königsberg bridges. In
this example, a set of rivers runs through the eighteenth-century city of Königs-
berg, shown in Figure 9 (Adams and Franzosa 2008). In this layout, there are
seven bridges that span the river, such that the two central islands are connected
to surrounding land. According to this story, there was interest in determin-
ing whether it was possible to walk a path across each bridge exactly and only
once. After much deliberation an answer was provided by Euler in the form of a
mathematical proof. Euler represented the bridge system graphically, as shown
in Figure 9, in which landmasses are represented as nodes and the bridges
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Figure 9 The Königsberg bridges. The figure on the left represents the seven
Königsberg bridges, which cross different sections of river. This structure of
bridges is represented graphically in the figure on the right, in which the

landmasses are represented as nodes and the bridges as edges
(Adams and Franzosa 2008).

as edges.36 He used this graphical depiction to demonstrate that in order for
there to be a walking path of this nature – what we now call an Eulerian path –
two conditions needed to be met: (3.1a) all nodes should be connected and
(3.1b) the amount of nodes with an odd number of connections (or edges)
should be zero or two (Euler 1956; Ross 2021). In this example, the explan-
atory why-question is “In the Königsberg bridge case, is it possible to walk
across each bridge exactly and only once?”37 Importantly, the answer to this
question is “no,” and the explanation of this is provided by mathematics, in par-
ticular the mathematical proof and failure to meet both conditions mentioned
earlier (3.1a, 3.1b).
This example is viewed as a non-causal explanation for a number of reasons.

First, the causal properties and constituents of the bridges are irrelevant to the
explanation – all the matters is the macroscale topology of the system. If the
same arrangement of bridges is present, but you change the lower-level materi-
als they are made of (steel, iron, wood, etc.) the explanation still holds (Pincock
2012). The topological structure lacks lower-level physical-causal details, but
it also lacks causal details at macro-scales. As Huneman states, this type of
“topological explanation” is one that “abstracts away from causal relations and

36 This is now considered some of the earliest work in graph theory and topology.
37 This explanatory why-question can be rephrased as “Does this system have an Eulerian path

or not?”
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interactions in a system, in order to pick up some sort of ‘topological’ properties
of that system and draw from those properties mathematical consequences that
explain the features of the system they target” (Huneman 2010, 214). In this
example, math is used to capture abstract features of the system that are explan-
atory and independent of causal details. Second, not only does the explanans
(the topological structure) have a mathematical character in this case, but the
dependency relation in this explanation is mathematical as well. This explana-
tion contains a dependency relation between topological properties (meeting
the two criteria mentioned earlier) and presence of an Eulerian path. Whether
an Eulerian path is present or not depends on the topology of the system. How-
ever, in the Königsberg case, this dependency relation is mathematical and not
causal (Woodward 2019). Causal dependencies have an empirical character that
mathematical dependencies lack. Causal dependencies require empirical study
to be identified and studied in the world. Identifying that a gene, drug, or vita-
min deficiency causes some outcome requires empirical study in the world and
cannot be revealed by mathematics alone (proofs, derivations, etc.). However,
for the Königsberg case and others, once the topological features of the system
are identified, mathematical understanding alone can reveal consequences of
the system and answer explanatory why-questions. In these examples, topolog-
ical properties have “mathematical consequences” that power the explanation,
as opposed to causal consequences that require empirical discovery (Huneman
2010).
Consider similar explanations in the context of ecology and neuroscience.

A first example involves explanations of ecosystem robustness in the face of
species extinctions. An ecosystem’s prey–predator relationships can be repre-
sented with graphical models, in which nodes represent different species and
edges capture the relations between species. With this graphical model, the
extinction of species from the ecosystem can be represented with the deletion
of nodes. One way to explain the robustness of an ecosystem to species extinc-
tion is to determine how the system responds to randomdeletions to nodes in the
network. In this case, topological properties of the network can explain whether
the ecosystem will be stable (or robust) in the face of a random node deletion in
the network. In particular, if the graph has a scale-free or small world structure,
in which there are few highly connected nodes, the system is more stable as a
less-connected node is more likely to be deleted (Huneman 2010; Ross 2021).
Removing a less-connected node is less disturbing to the network than remov-
ing a highly connected node. Alternatively, if a system lacks this scale-free
structure (and has many highly connected nodes) a random deletion is more
likely to hit a highly connected node, which would lead to more disruption and
instability. Similar to the Königsberg case, explaining why a system is more or
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less robust has to do with abstract, topological features of the system and not
with the system’s physical constituents, realizers, or higher-scale causal con-
nections. This allows the same explanation to be provided for other systems
that share the same topological structure, even when they differ in terms of
lower-level and causal details.
Other examples of topological explanation are found in neuroscience, such

as those involving human brain networks and neural networks of model organ-
isms, such as C. elegans. Studies of the C. elegans neural network reveals
a “small-world” network topology characterized by high clustering and a
short path length (Watts and Strogatz 1998). This small-world “connection
topology” – found in C. elegans, other living organisms, and various non-
living systems – has been cited in explaining particular behaviors, such as
signal-propagation speed, computational power, and synchronizability (Watts
and Strogatz 1998, Bassett and Bullmore 2017). In other cases, the small-world
structure of neural networks is cited in explaining the economical character of
the system, in the sense of minimizing biological costs, while maximizing top-
ological integration (Bassett and Bullmore 2017).38 These explanations fit the
non-causal category because the explanatory target of interest – unique behav-
iors of the system – are a mathematical consequence of the system’s topology,
as opposed to an empirically identified cause-effect relationship. In these expla-
nations, the “abstract, dimensionless” topological features are unique in that
they “tell us nothing about the physical layout” of the nervous system or how
it is “embedded in anatomical space” (Bassett and Bullmore 2017).
All three of these examples – the Königsberg, ecological, and neural net-

work cases – share explanatory features. Each of these cases specifies how
the topology of the system (the explanans) “makes a difference’ to the sys-
tem’s behavior (the explanandum), in which this difference-making relation
(dependency relation) is specified mathematically. In these cases, the explana-
torywork is supplied by topological properties, which abstract from lower-level
and causal details. The fact that these explanations abstract from lower-level
details, gives them the ability to generalize across microstructurally dis-
tinct systems. A system’s scale-free structure explains its robustness across
contexts – this explanation holds in the contexts of enzyme networks, cellu-
lar networks, brain networks, ecological networks, social networks, and so on.
This captures the global and domain-general nature of these explanations, as the
same topological properties can be instantiated by different lower-level details.

38 In this case, biological costs include the costs of maintaining physical connections and com-
munication between nodes.
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While these topological cases are examples of non-causal explanation, this
does not mean that topology only explains in a non-causal manner. In some situ-
ations, topology can capture higher-level causal connections in a system, which
provide causal explanations (Ross 2021). Examples of these causal topolo-
gies include the bowtie (fan-in, fan-out) network structure of human immune
cell interactions, the chokepoint topology in enzyme networks, and unique
connection topologies in ecosystem networks (Ross 2021). The abstraction
involved in both the non-causal and causal topological explanations captures
their autonomy from lower-level detail and their domain general character.
After significant emphasis on reductive explanation in the philosophical liter-
ature, these cases have proved helpful in demonstrating the rationale behind
non-reductive explanations and cases in which macro-scale structures have
explanatory power.
These non-causal topological explanations are related to another account of

non-causal explanation that Lange refers to as “explanations by constraint”
(Lange 2018, 3). Lange provides an account of non-causal explanation, in
which factors are explanatory in virtue of the fact that they constrain the sys-
tem in some way. Notice that in the Königsberg bridge case, the topology is
explanatory in virtue of its constraining influence on potential walking paths.
Lange elaborates on this to identify two important features of these explana-
tions. First, these constraint-based explanations are non-causal because (i) the
constraining influence of mathematics is stronger than causal influence. The
strength of the constraining influence in these mathematical explanations, sets
them apart from the weaker causal influence found in causal explanations. In
this manner, mathematical explanations have a stronger form of necessity than
causal relationships – this allows mathematical explanations to show why an
outcome “was inevitable to a stronger degree than could result from the action
of causal powers” (Lange 2018, 6). Second, (ii) the strength of the constraining
influence of the explanatory mathematics in these cases allows them to provide
a unique type of “impossibility” explanation. These explanations do not just
show why some outcomes are not realized, but why it is strictly impossible for
them to occur. This is intended to capture how the Königsberg topology has
explanatory impact that is stronger than causality and how it explains why it is
impossible to take an Eulerian path in the system.
Lange uses these two features (i, ii) to identify other non-causal explanations,

which need not involve topology. Consider a non-scientific explanation that
illustrates this: suppose a mother has twenty-three strawberries and she wants
to divide them evenly among her three children. What explains why this is
impossible? According to Lange, this impossibility is explained by mathemati-
cal facts and it does not have to do with causal relationships in the world. While
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causal relationships have influence over which outcome of a set of possible out-
comes manifests, they lack the strong form of necessity implied by the explana-
torily relevant mathematics in these cases. The strong type of necessity in these
mathematical explanations is what allows them to explain impossibilities – not
just why something did not happen, but why it could not possibly happen at all.
As Lange states, “[t]he Königsberg bridges as so arranged were never crossed
because they couldn’t be crossed. Mother’s strawberries were not distributed
evenly among her children because they couldn’t be” (Lange 2018, 9).
Consider a similar non-causal explanation from the contexts of human genet-

ics. In humans, genes contain four different types of nucleotides (A,C,T,G),
which are arranged linearly in DNA. When genes are expressed to produce
proteins, these nucleotides are “read” sequentially, three at a time. Each three
nucleotides in a gene – referred to as a “codon” – codes for a particular
amino acid, which are small units that make-up proteins. Scientific research has
revealed which three-nucleotide sequences (codons) code for particular amino
acids and it has become clear that there are only 64 possible codons in humans.
What explains this limit on codon types? If our explanatory-why question is,
“Why are there 64 possible codons in humans as opposed to more or less?”
the answer to this is provided by mathematics. The fact that there are only four
nucleotide options, which are organized in sequences of three, mathematically
entails that there are 64 possibilities (as 43 or 4 × 4 × 4 = 64).39 In this case,
the explanatory power is not derived from causality, but frommathematics. The
mathematics explains why there are exactly 64 possibilities andwhy it is impos-
sible for there to be more. In other words, the math constrains possible codon
number and it explains why it is impossible to have more than 64 codon types
in humans. Similar to the Königsberg, ecological, and neuroscience examples,
there are some empirical facts that are accepted when formulating the explan-
atory why-question. However, the answer to this question is provided from
mathematical derivation alone and not empirical-causal assessment. There are
surely other types of these mathematical, impossibility explanations in the life
sciences. In exploring these types, it will be fruitful to focus on cases that mat-
ter to scientists, that they view as furthering their understanding of the natural
world, and that capture their explanatory practices, aims, and goals.

39 Consider the three positions in the nucleotide code – for the first position there are four options
(A,C,T,G), for the second there are four options again, and same for the third position. This
means that there are (4× 4× 4 = 64) 64 different (three nucleotide) codon possibilities. These
64 different codons do not all code for unique amino acids – some of them have overlap and
code for the same ones. There are about 20 different amino acids (that are coded for in humans).
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This analysis reveals overlap and dissimilarities between two accounts of
non-causal explanations, namely, topological and constraint-based explana-
tions. Both explanation types involve a mathematical explanans and a math-
ematical dependency relation. Differences include the fact that sometimes
the explanatory math is topological, while other times it is not (such as in
the strawberry and genetics examples). Furthermore, both types contain some
impossibility explanations (as seen in the Königsberg and genetics examples),
but in topological cases there is sometimes more interest in explaining unique
behaviors of the system (such as fragility, robustness, energy costs, etc.) as
opposed to whether an outcome is impossible or possible for the system.

3.2 Optimality and Efficiency Explanations
A second main category of non-causal, mathematical explanation are optimal-
ity or efficiency explanations, which often arise in the context of evolutionary
biology. Modern interest in these cases is motivated by indispensability argu-
ments and attempts to capture the diversity of explanatory practice in science
(Baker 2005; Lyon and Colyvan 2008; Lyon 2012; Pincock 2012; Lange 2013).
Many of these cases involve surprising traits in organisms, which are explained
by appealing to mathematical considerations. Examples of these surprising
traits include explaining why cicadas emerge on prime-number-year life cycles,
why honeybees have hexagonal-shaped honeycombs, and why sunflower seeds
are arranged according to a Fibonacci-sequence (or Golden ratio) on the heads
of sunflowers (Baker 2005; Lyon and Colyvan 2008; Ross 2023c). For many of
these cases, the explanation involves two main components: (i) a background
assumption that evolutionary processes select traits that are more efficient, opti-
mal, or advantageous for the individual or species, and (ii) an argument – often
mathematical – for how the trait in question meets this standard of being more
efficient, optimal, or advantageous. The point is not that these explanations
lack causal information – they clearly include this by appealing to evolutionary
processes. The claim is that the explanatory work is not provided by causality
alone, as it also requires mathematics.
Optimality and efficiency explanations build on the structure of the previ-

ous topological and constraint-based explanations in an important way. While
cases in the previous subsection explained the system’s behavior by appeal-
ing to its mathematical features, the explanations in this subsection explain the
presence of mathematical features in the system by appealing to the evolution-
ary advantage that these mathematical features convey.40 The similarity is that

40 One implication of this is that some of the topological explanations in the last subsection can be
converted into optimality/efficiency explanations if the focus is on explaining why the system
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explanations in this and the last subsection capture how mathematical features
have particular consequences for the system – the difference is that explana-
tions in this subsection use these consequences to explainwhy themathematical
features are present in the system. As will be discussed more soon, optimality
and efficiency explanations share a similar structure to “existence” or func-
tional explanations, which explain the existence of some property in a system
on the basis of the consequence it produces or entails (Wright 1976).
A first example of optimality and efficiency explanations is the case of cicada

life cycles. Cicadas are insects that spend part of their life cycle underground
as nymphs, after which they emerge on predictable intervals. One species of
cicada (the Magicicada genus) reliably emerges on intervals of prime number
years – in particular 13 and 17 years – and there is interest in explaining why
this is the case (Baker 2005, 230). To be clear, there is interest in explaining
why these cicadas emerge on prime number years as opposed to more com-
mon non-prime number year intervals. Explanations of this prime number year
emergence are provided by the fact that prime number life cycles reduce the
cicadas overlap with predator species. It is suggested that the evolutionary
advantage of this reduced overlap has led to the selection and permanence of
this prime number year life cycle.
The mathematical component of this explanation requires explaining why

prime numbers reduce predator overlap. This explanation is provided by the
notion of the lowest common multiple (lcm) within number theory in math-
ematics, as this shows how the frequency of intersection is minimized with
prime numbers (Baker 2005, 230–232). Given that cicadas can have life cycles
between thirteen and 18 years (due to ecological constraints), this is the age
range that is considered. In considering this range, the advantage of primes is
evident by the mathematical fact that “12 (a non-prime) intersects with 1, 2, 3,
4, and 6; while 13 (a prime) only intersects with 1” (Lyon 2012, 561). For these
reasons, mathematics, and number theory in particular, are said to play “a genu-
inely explanatory role in accounting for the cycle lengths of periodical cicadas”
(Baker 2005, 237). The mathematics in this case helps explain why “primes are
optimal,” which is necessary to explain why they have been selected through
evolutionary processes (Baker 2005, 232).
In considering the structure of this explanation, it helps to examine the

role of the mathematics involved. The explanatory target in this case is pre-
sented as the prime number year life cycle of cicadas. In traditional accounts of

evolved to have the topological properties in question. Examples of this can be seen in neuro-
science research that considers how “selection pressures might be operative on the evolution
and development of nervous systems” and how “brain networks have been selected” to have
various features (Bassett and Bullmore 2017).
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scientific explanation, one selects the explanatory target and then identifies fac-
tors “upstream” of this target that account for, produce, or cause the target, and
that the target “depends” on. This captures the directionality of the explana-
tion from explanans to explanandum. For this prime number year life cycle
there are “upstream” evolutionary considerations that “selected” for this trait.
However, these explanations also cite the prime number year as an “upstream”
factor that has mathematical consequences for the “downstream” outcome of
species intersection frequency. This is natural because changing whether life
cycles are prime or not “makes-a-difference” to and explains the degree of
intersection in the species. And, relatedly, species intersection “depends” on
presence of prime number year life cycle. However, this is somewhat non-
standard because it places the original explanatory target (prime number), in the
upstream “explanans” position and the consequences of this math (the species
intersection) in the downstream explanandum position. Interestingly, explain-
ing primeness does not involve merely citing the upstream factors that selected
it, but also appealing to its forward influence on the cicada species. The need
to appeal to what produces and is produced by the prime-year life cycle makes
this explanation unique.
This cicada example bears similarity to types of “functional explanation,”

in which one explains the existence of a biological trait on the basis of the
trait’s function in an organism or species (Wright 1973). In standard functional
explanations, the link between the trait and the goal it serves is causal – for
example, the heart exists in mammals because it causes the blood to circulate
(and serves the function of blood circulation). As circulation is a subgoal that
serves main goals of the organism (survival and reproduction), this explains
the existence of the heart. The cicada example differs from this, in that the
dependency relation between the prime-year life cycle and predator overlap is
mathematical, as opposed to causal.41 This mathematical dependency relation
captures what is importantly non-causal and mathematical about this example,
which distinguishes it from causal explanation.
A main question raised by this cicada example is how to integrate the math-

ematical and evolutionary components in the explanation. This explanation
requires both components and they play different roles. One natural inter-
pretation is to separate the explanation into two explanatory why-questions,

41 What makes this dependency relation mathematical? This is supported by the fact that the rela-
tionship between prime years and predator overlap is revealed a priori through mathematics,
and does not require empirical study of the world (which is the case for causal relationships)
(Woodward 2019). This is related to discussion in subsection 1.2 regarding Hume’s fork and
different types of dependency relations in scientific explanations (Hume 1985; Woodward
2019).
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which both need to be addressed. A first explanatory why-question is: Why do
cicadas have the feature of prime-number year life cycles? Answer: Because
this feature is evolutionarily efficient, optimal, or advantageous. A second
explanatory why-question is: Why are prime-number year life cycles evolu-
tionarily efficient, optimal, or advantageous? Answer: Because they reduce
predator overlap, as explained by mathematical features of the least common
multiple principle. The full explanation is not provided until both questions are
answered, and they require causal and mathematical responses, respectively.
While many philosophical accounts of evolutionary explanations assume that
existing traits have been selected because they are optimal, efficient, or advan-
tageous, this piece often requires careful justification (Wakil and Justus 2017).
Consider two further optimality explanations that fit a similar pattern. A sec-

ond optimality explanation involves the explanatory why-question, “Why do
bees have hexagonal-shaped honeycombs as opposed to honeycombs of other
shapes?” The explanation of this geometrical trait involves a mathematical
component revealing that hexagonal honeycombs are more efficient than other
shapes because they use less honey and wax. The explanation of this optimality
is provided by the honeycomb theorem, which “explains why a hexagonal grid
is the optimal way to divide a surface up into regions of equal area” (Lyon and
Colyvan 2008, Lyon 2012). The second piece is the evolutionary explanation,
which specifies that this optimality makes these bees “fitter” and explains why
the trait is selected for in the population. A third example is the Golden ratio
spiral configuration of seeds on sunflower heads. Why do sunflowers pack their
seeds in this configuration and not another? The answer here involves the fact
that with this Golden ratio structure “the optimal packing of sunflower seeds is
achieved” and that such optimality, due to the benefit it provides the species,
is selected for through evolutionary processes. In both cases the mathematical
trait makes a difference to some optimal outcome (less use of materials and
higher packing density, respectively), and this difference is explained in virtue
of mathematical relationships, dependencies, and information.
Other candidates for optimality and efficiency explanations are Sober’s

“equilibrium explanations” (Sober 1983), Chirimuuta’s efficient coding expla-
nations (Chirimuuta 2014), and Rice’s discussion of various optimality expla-
nations in biology (Rice 2015). Each of these cases explains an outcome by
appealing to some evolutionary advantage – whether it is the “reproductive
advantage” of a 1:1 sex ratio in a population, “evolutionary principles” that
explain current behaviors such as the ability of neurons to “transmit more infor-
mation,” and other cases in which optimality models are used to “explain why
a system has evolved the optimal strategy” (Sober 1983, Chirimuuta 2014,
Rice 2015). While the optimality and efficiency explanations discussed in
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this section provide one class of non-causal, mathematical explanation, this
does not imply that all evolutionary explanations or optimality explanations
are non-causal. Some evolutionary explanations are causal in character and
this framework is open to optimality and efficiency explanations outside of
evolutionary biology.42

3.3 Minimal Model Explanations
A third class of non-causal mathematical explanations are “minimal model”
explanations (Batterman 2002, 2021). These involve “minimal models,” which
abstract from various types of information, including causal detail, in order
to have explanatory power. Batterman introduces this form of explanation by
distinguishing two types of explanatory-why questions. The first is a type (i)
why-question, which “asks for an explanation of why a given instance of some
pattern obtained” (Batterman 2001, 23). The second is a type (ii) why-question,
which “asks why, in general, patterns of a given type can be expected to obtain”
(Batterman 2001, 23). In this manner, type (ii) why-questions ask why the same
pattern is exhibited generally or universally across a large group of different
systems.
Minimal model explanations provide answers to type (ii) why-questions –

they aim to explain why behaviors generally obtain and why they are shared
across distinct systems. In scientific contexts, these shared behaviors are
captured with the notion of “universality” as they are universal behaviors
that are shared across physically distinct systems (Kadanoff 1990; Batterman
2021). Examples of universal behaviors in the physical sciences include how
the Navier-Stokes equations capture the behavior of many microstructurally
distinct fluids, that physically distinct pendulums exhibit periods that are pro-
portional to the square root of their length, and that systems as diverse as
fluids and magnets exhibit identical behavior at their critical points (Batterman
2001; Batterman and Rice 2014).While Batterman’s account ofminimalmodel
explanations was first examined in the context of physical science examples,
later work applied his account to biological and life science explanations.
Examples of universal behaviors in the life sciences include firing behaviors
that are shared across physically distinct neurons (such as class I excitability),
cases in which the same phenotype has different genetic and environmen-
tal causes (such as Parkinson’s disease), and processes that are “conserved”
across nearly all living systems (such as glycolysis). The central explanatory
why-question in these contexts is why systems with different physical details
all exhibit the same universal behavior.

42 For an analysis of the role of optimality models in causal explanation, see Potochnik (2007).
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Batterman suggests that universal behaviors are often explained with prin-
cipled techniques that isolate a “minimal model,” which is a model that “most
economically caricatures the essential” features of the system (Goldenfeld
1992; Batterman 2001). In many of these explanations, mathematical tech-
niques are used to remove irrelevant detail from models of distinct systems
until the reduced models collapse into the same “minimal model” or the
same “universality” class of models. Given that these techniques allow for
the principled removal of detail – which preserves the qualitative behavior
of systems – the fact that distinct systems are all reduced to the same model
or class explains why they exhibit shared behavior. A main feature of these
cases is the use of mathematical techniques in providing the explanation.While
other mathematical explanations involve “mathematical entities” (a number,
a graph, a geometrical feature, etc.), minimal model explanations involve
an “essential operation” that is mathematical and does the explanatory work
(Batterman 2010).43

Consider an example of the minimal model approach in neuroscience. In
the mid-twentieth century, Hodgkin used voltage clamp studies of single crab
neurons to identify three different types of neural excitability, referred to as
class I, class II, and class III excitability (Hodgkin 1948). For class I neurons
the frequency–current relationship increases continuously from zero, for class
II neurons it is discontinuous, and for class III neurons it is undefined (Ross
2015, 40). Hodgkin identified that class I neurons are found in many different
animals and it was later discovered that these neurons differ greatly in terms of
their microstructural details. In order to appreciate this, consider mammalian
pyramidal neurons, many of which exhibit class 1 behavior. These neurons
have three main types of voltage-gated ion channels (selective for Na+, K+,
and Ca2+), and each of these can have hundreds of molecularly distinct sub-
types. From this variety, each neuron can express over a dozen different types
of voltage-gated ion channels and these vary in density along the membrane
producing unique voltage-dependent conductances. This helps capture the vast
molecular diversity of mammalian pyramidal neurons with this behavior – the
diversity across all neurons with this behavior (beyond mammalian pyramidal
neurons) is, of course, much greater.
Neuroscientists have been interested in explaining why neurons that differ

in terms of their lower-level details all exhibit the same excitability behav-
ior. A central component of this explanation was provided by Ermentrout and
Kopell, who derived a canonical model for class I excitability (Hoppensteadt
and Izhikevich 1997). This work involved using mathematical abstraction

43 For example, some of the physical science examples that Batterman discusses involve renor-
malization group methods, as the mathematical technique in question.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009300940
Downloaded from https://www.cambridge.org/core. IP address: 3.145.48.180, on 23 Jan 2025 at 18:02:49, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009300940
https://www.cambridge.org/core


Explanation in Biology 53

procedures to condense models of molecularly diverse neural systems to a sim-
ple model, referred to as a canonical model. In this case, “when mathematical
abstraction techniques are used to abstract away from details of mathematical
representations of neural systems, all representations converge onto the same
canonical model” (Ross 2015, 41). It is this convergence of the distinct models
onto a shared single model that explains why they exhibit the same behavior
despite their lower-level differences. In other words, because these mathemati-
cal reduction techniques eliminate detail while preserving qualitative behavior,
the fact that all reduced models converge on the same model or class of models
confirms and explains their qualitative similarity. This mathematical operation
captures features of these systems that are “stable under perturbation of their
microscopic details” (Batterman 2001).44

The minimal model account captures a non-reductive form of explanation
that is supported by actual methods that scientists use in their work. Among the
advantages of this explanatory framework is that it clarifies exactly why reduc-
tive forms of explanation are limited for particular explanatory targets. This
limitation is that the shared, universal behavior of interest – that scientists want
to explain – does not have a particular lower-level story, account, or explana-
tion. In a line of reasoning that extends back to the work of Putnam (1967) and
Fodor (1974) these shared behaviors are multiply-realized by different lower-
level details, in a way that makes citing such lower-level details insufficient
(Batterman 2001; Ross 2020). This is seen in cases in which the same meta-
bolic pathway is instantiated by different lower-level enzymes, where the same
bridge topology can have different lower-level material constituents, and where
the same neural firing behavior is made-up of different ion channel details. This
clarifies a strong problem with assuming that these explanatory targets should
fit a reductive model of explanation. The next step in these cases, involves pro-
viding the principled rationale that guide which factors do (and do not) explain
and what justifies this. Distinct strategies for finding and representing abstract
features propose different frameworks to address this second question, from
those that emphasize causal relevance and control, topological properties with
pertinent consequences, and mathematical abstraction techniques that expose
qualitative similarity.

3.4 Non-Causal Explanation Conclusions
The three types of non-causal explanation presented in this section have unique
features, they share similarities, and sometimes the border between them is
less distinct. Similar to minimal model explanations, topological explanations

44 A similar attention to forms of explanation and understanding that involve abstracting from
lower-level details is present in Green and Batterman (2017) and Batterman (2021).
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abstract from large amounts of lower-level detail. In fact, it is a main feature of
topological representations of systems that these representations are indifferent
to lower-level, physical instantiations. This is what allows the same topol-
ogy and explanation to capture neural networks in C. elegans, immune cell
networks in humans, and social networks in societies. This is comparable to
how the physical material of the Königsberg bridges are irrelevant to whether
they have an Eulerian path or not. And a similar autonomy from lower-level
details are found in some optimality and efficiency explanations. This is seen in
Sober’s equilibrium explanations for the 1:1 sex ratio in many species at repro-
ductive age (Sober 1983). In this case, the 1:1 sex ratio is explained by showing
“how the event would have occurred regardless of which of a variety of causal
scenarios actually transpired” (Sober, 1983, 202). It is not factors in the actual
causal history of any outcome that matter for these explanations – instead a
variety of disjuncts captures possible outcomes, without the need to specify
which actually occurs. Similarly, the mathematics underpinning the optimali-
ties and efficiencies in the cicada, honeybee, and sunflower cases do not depend
on or require particular lower-level details. The lowest common multiple prin-
ciple, honeycomb proof, and Golden rule hold regardless of the details of
the system. All accounts provide strong, principled reasons for why particular
lower-level details are irrelevant to the explanation.
However, these types of non-causal explanation also differ in notable ways.

Topological and constraint-based explanations tend to lean on coarse math-
ematical relationships, with little (to no) information about a system’s goals
or purposes. Unlike other forms of non-causal explanation, these include the
unique impossibility explanations, which explain why some outcomes are
impossible or off-limits for a system (Ross 2023c). Optimality and efficiency
explanations, on the other hand, have the unique feature of including assump-
tions about a system’s goals and how these are supported by the system’s
features. These are often found in evolutionary or design cases, in which there
is interest in explaining why a system has a particular feature. Despite their
differences, in many of these cases, insights into novel forms of explanation in
biology and the life sciences have been provided by revealing unique types of
explanatory targets and explanatory why-questions.

4 Final Remarks
The topic of scientific explanation continues to receive significant attention in
the philosophical literature.Many continue to view explanation as a “distinctive
aim” (Nagel 1961, 15) of science and one of its “primary objectives” (Hempel
1991, 299). Similar to work on scientific explanation in themid to late twentieth
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century, current projects aim to identify the standards that genuine explanations
should meet, they search for formal patterns that underlie explanatory prac-
tice, and they examine how well such projects include examples we take to be
genuinely explanatory (while excluding cases we view as non-explanatory).
However, since this mid-to-late-twentieth-century work, while many ques-

tions about scientific explanation and basic orientations to them have stayed
the same, philosophical accounts of scientific explanation have also changed
in notable ways. First, while earlier accounts of scientific explanation had
monist aspirations – attempting to capture the single structure of explana-
tion and the “ideal form to which all efforts at explanation should strive”
(Nagel 1961) – current accounts are much more pluralist in what they count
as explanatory. Current accounts are generally open to scientific explanation
having different forms, structures, and patterns. In fact, many novel accounts
of scientific explanation use monist frameworks (such as the DN model or
mechanistic explanation) as a foil for showing that other forms of explanation
exist (Batterman 2001; Dupré 2013; Woodward and Ross 2021; Ross 2021a,
In Press). Much current work appreciates that there are causal and non-causal
forms of explanation, with subtypes in each category. This pluralistic orienta-
tion is often viewed as compatible with the fact that different scientific domains
have unique explanatory situations, targets, and goals.
Second, while earlier explanatory frameworks were often reductive in char-

acter, current accounts accommodate non-reductive explanations. In earlier
work, it was common to find claims that explanatory power tracks appeal to
fundamental physics or increasingly lower-levels of detail (Salmon 1984; Sober
1999). However, these reductive claims have largely been replaced by views
that this is not always so – that sometimes higher-level causes, factors, and con-
cepts provide the best explanation (Weber 2008; Woodward 2017; Ross 2020).
Such non-reductive accounts justify the explanatory power of higher-level fac-
tors, and they clarify why abstraction is required for understanding (Batterman
2010; Pincock 2012). Gaining clarity on these issues is consistent with accept-
ing that principled forms of reductive explanation exist and are sometimes
needed (Bickle 2006; Barwich 2021). This acknowledgment of reductive and
non-reductive explanation in biology and the life sciences further illustrates
the pluralistic point earlier. This pluralistic view suggests that the level or scale
of explanatory detail is not always fixed and can differ from case to case, as
dictated by principled considerations.
Third, it has grown increasingly common to expect philosophical accounts

of scientific explanation to capture the actual work of scientists. This is an
orientation to scientific explanation that requires close contact with the meth-
ods, reasoning, concepts, and strategies that scientist’s use in their efforts to
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understand and explain the world (Batterman 2001; Chirimuuta 2018; Weber
2022). Accounts with this orientation are guided by scientific methods such
as randomized-control trials, gene knock-out experiments, tracer experiments,
mathematical reduction techniques, and neural imaging. In addition, these
practice-oriented accounts are sensitive to distinct scientific concepts – such as
mechanism, pathway, and cascade – and the role these concepts play in untan-
gling unique types of structure and information (Ross In Press). This work is
also sensitive to different goals found in explanatory practice and the various
types of targets that scientists aim to explain.
Finally, it is important to consider the significance of this topic for discus-

sions in scientific practice, for decisions about what types of research should
be supported, and in efforts to improve science communication to various
audiences (including the public and experts). Explanation and causality are
frequently viewed as foundational topics by researchers working in the life
sciences, but there is often significant debate, crosstalk, and differing views
on how these should be understood and what it takes for a model or theory
to be genuinely explanatory. Even when there is a lack of consensus on this
topic in scientific fields, philosophical frameworks can help clarify the dis-
tinct positions, assumptions they make, and how they relate to each other,
in a way that supports discussion and progress. One way that philosophical
frameworks can help is by keeping assessments of the quality of explanations
relative to their chosen explanatory target. While distinct scientific explana-
tions can quickly be pitched as rivals, this can be a false comparison if they aim
to explain different targets. This can happen when there is interest in explain-
ing different aspects of the same physical system and when the same term is
used to refer to the explanatory target, but it is used in different ways through-
out the field (such as an interest in explaining “consciousness” or “memory”).
Another benefit of philosophical accounts is that they reveal how scientific
explanation is often much more of a piecemeal process (in which a system is
broken into distinct explanatory targets) as opposed to a complete, full theory
or explanation of everything (Woodward 2017). Appreciating these features of
explanation as explanandum-relative and piecemeal can help in identifying and
assessing candidate explanations in science. Additionally, providing a frame-
work for understanding the logic and structure of scientific explanation matters
because it clarifies the standards that should guide which scientific projects
are supported and pursued. The specific wording of grant calls and journal
guidelines significantly shape which types of scientific work are funded, sup-
ported, and valued. When such calls and guidelines emphasize the importance
of identifying “mechanisms,” or biological causes (over socioenvironmental
causes), or reductive approaches to explanation, they can reinforce problematic
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assumptions about scientific explanation and disincentivize work in impor-
tant areas of research (such as areas that study environmental, social, and
macro-scale causes) (Insel 2022; NIM 2023; Ross and Bassett 2024). Clari-
fying the standards, logic, and hallmarks of scientific explanation is essential
for communicating scientific findings to the public. This arises in efforts to
communicate how scientific methods justify their conclusions, what it means
to say that a causal mechanism (or pathway, or cascade) has been identified,
and what it means to say that we now have a fuller explanation of some phe-
nomenon of interest, whether in biology, neuroscience, medicine, ecology, or
some other field.
The analysis provided in this Element provides a picture of scientific expla-

nation in biology and the life sciences that is heterogeneous, complex, and
principled. Just as there is no single “scientific method” this work is consistent
with their being no single type of “scientific explanation.” Of course, there is
a balance to strike in capturing the diversity of explanatory patterns in science,
while specifying the standards of explanation. Much of the work outlined in
this Element aims to capture this nuance, that is, both the variety and limits of
scientific explanation.
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