
55

D, B and Bc exclusive weak decays

This chapter1 contains a discussion of the different results obtained from the vertex sum
rules for the weak semi-leptonic decays of the D, B and Bc. Intensive activities have been
devoted to these processes during the last few years using different non-perturbative QCD
approaches (QSSR [3,364,761–771]; light-cone sum rules [360,780–782]; lattice calcula-
tions [723]; heavy quark symmetry [164], and a perturbative factorization treatment within
a heavy quark approach [784,600,601]). Here, we shall concentrate on the study of the
previous decays from the point of view of QSSR from which we can extract the values of
the form factors and some CKM mixing angles.

55.1 Heavy to light exclusive decays of the B and D mesons

55.1.1 Introduction and notations

One can extend the analysis carried out for the two-point correlator to the more complicated
case of three-point function, in order to study the form factors related to the heavy to light
transitions: B → K ∗γ and B → ρ/π semi-leptonic decays. In contrast to the heavy to
heavy transitions, where the symmetry of the heavy quarks can be exploited and which
considerably simplifies the analysis, the heavy to light processes need non-perturbative
approaches such as lattice or/and QSSR. For the QSSR approach, which we shall discuss
here, we can consider the generic process:

B(D) → L + γ (l ν̄) , (55.1)

and the corresponding three-point function:

V (p, p′, q2) ≡ −
∫

d4x d4 y ei(p′x−py) 〈0|T JL (x)O(0)J †
B(y)|0〉 , (55.2)

where JL , JB are the currents of the light and B mesons; O is the weak operator specific
for each process (penguin for the K ∗γ , weak current for the semi-leptonic); q ≡ p − p′

1 This is an extension and an update of the part of book [3] and the review given in [364].
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55 D, B and Bc exclusive weak decays 639

and q2 ≡ t .2 The vertex obeys the double dispersion relation:

V (p2, p′2) �
∫ ∞

M2
b

ds

s − p2 − iε

∫ ∞

m2
L

ds ′

s ′ − p′2 − iε

1

π2
ImV (s, s ′) . (55.3)

As usual, the QCD part enters the LHS of the sum rule, while the experimental
observables can be introduced through the spectral function after the introduction of the
intermediate states:

V (p2, p′2) � 〈0|JL (x)|L〉〈L|O(0)|B〉〈B|JB(y)|0〉(
M2

L − p′2)(M2
B − p2

) + higher states . (55.4)

ML and MB are respectively the masses of the final L and B mesons. The matrix elements are:

〈0|JP,B(x)|P, B〉 =
√

2 fP,B M2
P,B , 〈0|Jµ

V (x)|V 〉 =
√

2M2
V

2γV
εµ , (55.5)

respectively, for pseudoscalar and vector states, where fπ = 92.4 MeV and γρ = 2.55.
The meson decay constants have been obtained either from the meson leptonic width or
from the analysis of the two-point function discussed in the previous chapter of this book.
Here, we shall be interested on the evaluation of the matrix element:

〈L|O(0)|B〉 . (55.6)

The improvement of the dispersion relation can be done in the way discussed previously
for the two-point function. In the case of the heavy to light transition, where the two sum rule
scales are quite different, the only possible improvement with a good Mb behaviour at large
Mb (convergence of the QCD series3) is the so-called hybrid sum rule (HSR) corresponding
to the uses of the moments for the heavy-quark channel and to the Laplace for the light one
[721,761]:

H(n, τ ′) = 1

π2

∫ ∞

M2
b

ds

sn+1

∫ ∞

0
ds ′ e−τ ′s ′

ImV (s, s ′) . (55.7)

Assuming that the higher state contributions to the spectral function are approximated
by those of the QCD continuum from a threshold tc and t ′

c, and assuming that the QCD
contribution also obeys a double dispersion relation, one obtains the FESR:

H(n, τ ′) = 1

π2

∫ tc

M2
b

ds

sn+1

∫ t ′
c

0
ds ′ e−τ ′s ′

ImV (s, s ′) . (55.8)

2 It has to be noticed that we shall use here, like in [761–764], the pseudoscalar current JP = (mu + md )ū(iγ 5)d for describing
the pion, where the QCD expression of the form factor can be deduced from the one in [767] by taking mc = 0 and by remarking
that the additional effect due to the light quark condensate for B → π relative to B → D vanishes in the sum rule analysis. In
the literature [768,771], the axial-vector current has been used. However, as it is already well known in the case of the two-point
correlator of the axial-vector current, by keeping its qµqν part, (which is similarly done in the case of the three-point function)
one obtains the contribution from the π plus the A1 mesons but not the π contribution alone. Although, the A1 effect can be
numerically small in the sum rule analysis due to its higher mass, the mass behaviour of the form factor obtained in this way
differs significantly from the one where the pseudoscalar current has been used due to the different QCD expressions of the form
factor in the two cases.

3 One should notice here that contrary to the case of the double exponential (Borel) sum rule where the mixed condensate explodes,
the OPE behaves quite well, at least to leading order in αs .
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640 X QCD spectral sum rules

Finally, in order to minimize the effects of the sum rule parameters into the analysis, it
is usual to introduce the two-point sum rule expression of the decay constants and use a
suitable relation between the three-point and two-point sum rules variables. These relations
are [773] (obvious index notations):

τ3 = τ2

2
(55.9)

for the double Laplace sum rule (DLSR), and [763]:

n3 = 1

2

(
n2 − 1

2

)
, (55.10)

for the hybrid sum rule (HSR) and lead to a cancellation of the τ or n dependences in
the sum rule analysis [768,731,761–766]. The different form factors entering the previous
semi-leptonic and radiative processes are defined as:

〈ρ(p′)|ūγµ(1 − γ5)b|B(p)〉 = (MB + Mρ)A1ε
∗
µ − A2

MB + Mρ

ε∗ p′(p + p′)µ

+ 2V

MB + Mρ

εµνρσ pρ p′σ ,

〈π (p′)|ūγµb|B(p)〉 = f+(p + p′)µ + f−(p − p′)µ ,

(55.11)

and:

〈K ∗(p′)|s̄σµν

(
1 + γ5

2

)
qνb|B(p)〉 = iεµνρσ ε∗ν pρ p′σ F B→K ∗

1

+ {
ε∗
µ

(
M2

B − M2
ρ

) − ε∗q(p + p′)µ
} F B→K ∗

1

2
.

(55.12)

For completeness, we give the relations of these form factors to the decay rates of the
B meson. In the case of the pseudoscalar final state, we have:

d	+
dt

= G2
F |Vbq |2

192π3 M3
B

λ3/2
(
M2

B, M2
L , t

)
F2

+(t), (55.13)

while for the vector final state:

d	+
dt

= G2
F |Vbu |2

192π3 M3
B

〈1/2
(
M2

B, M2
L , t

)

×
[

2
(
F A

0

)2 + 〈F2
V + 1

4M2
F

((
M2

B − M2
L − t

)
F A

0 + 〈F A
+

)2
]

,

λ = λ
(
M2

B, M2
L , t

)
. (55.14)
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55 D, B and Bc exclusive weak decays 641

We have introduced the notation (often used in the literature):

F+ = f+ ;F A
0 = (MB + ML )A1;

F A
+ = −A2

MB + ML
;FV = 0

V

MB + ML
.

(55.15)

55.1.2 Estimate of the form factors and of Vub

In the numerical analysis, we obtain at q2 = 0, the value of the B → K ∗γ form factor
[762]:

F B→ρ

1 � 0.27 ± 0.03 ,
F B→K ∗

1

F B→ρ

1

� 1.14 ± 0.02 , (55.16)

which leads to the branching ratio (4.5 ± 1.1) × 10−5, in perfect agreement with the CLEO
data [16] Br (B0 → K ∗0γ = (4.55 ± 0.7 ± 0.34) × 10−5, and with the estimate in
[781,820] and in [723]. for the D meson, one obtains:

F D→ρ

1 � 0.62 ± 0.10 ,
F D→K ∗

1

F D→ρ

1

� 1.22 ± 0.04 . (55.17)

One should also notice that, in this case, the coefficient of the 1/M2
b correction is very large,

which makes the extrapolation of the c-quark results to higher values of the quark mass
dangerous. This extrapolation is often done in some lattice calculations.

For the semi-leptonic decays B → ρ, π + lν, QSSR gives a good determination of the
ratios of the form factors with the values for the B-decays [763]:

A2(0)

A1(0)
� V (0)

A1(0)
� 1.11 ± 0.01 ,

A1(0)

F B→ρ

1 (0)
� 1.18 ± 0.06 ,

A1(0)

f+(0)
� 1.40 ± 0.06 ,

(55.18)

although their absolute values are quite inaccurate [761] and [771]. The direct determi-
nations of the absolute values are given in Table 55.1, showing that different results are
consistent with each others. The precise measurement of the ratios is due to the cancellation
of systematic errors.

Combining these results with the ‘world average’ value of f+(0) = 0.25 ± 0.02 and the
one of F B→ρ

1 (0), one can deduce the rates:

	π � (4.3 ± 0.7)|Vub|2 × 1012 s−1 , 	ρ/	π � 0.9 ± 0.2 . (55.19)

These results indicate:

� The possibility to reach Vub with a good accuracy from the exclusive modes. Using the accurate B
lifetime τB+ = (1.655 ± 0.027) × 10−12 s, and the measured branching ratio into π [16], one can
deduce:

Vub = (3.6 ± 0.3) × 10−3 , (55.20)

inside the range (2 − 5) × 10−3 given by PDG.
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642 X QCD spectral sum rules

Table 55.1. Values of the different form factors in the D, B semi-leptonic processes at zero
momentum from hybrid (HSR), double Laplace (DLSR)∗ and light cone (LCSR) sum rules

Process f+(0) A1(0) A2(0) V (0) Ref.

D0 → π−l ν̄ 0.7 ± 0.2 [769]
0.5 ± 0.2 [771]
0.65 ± 0.10 [772]
0.80+0.21

−0.14 [16] Data

D0 → K −l ν̄ 0.8 ± 0.2 [769]
0.6 ± 0.13 [773]
0.75 ± 0.12 [772]
0.6 ± 0.1 [775]
0.76 ± 0.03 [16] Data

D+ → scalar 0.42 − 0.57 [776]
(ūu, s̄d) l ν̄

D+
s → η l ν̄ 0.50 ± 0.15 [777]

D0 → ρ−l ν̄ 0.5 ± 0.2 0.4 ± 0.1 1.0 ± 0.2 [771]
0.34 ± 0.08 0.57 ± 0.08 0.98 ± 0.11 [772]

D0 → K ∗−l ν̄ 0.50 ± 0.15 0.60 ± 0.15 1.1 ± 0.25 [773]
0.54 ± 0.04 0.67 ± 0.08 1.1 ± 0.1 [772]
0.58 ± 0.03 0.41 ± 0.06 1.06 ± 0.09 [16] Data

B̄0 → π+l ν̄ 0.23 ± 0.02 [761] (DLSR + HSR)
0.26 ± 0.02 [771]
0.24 ± 0.03 [774]
0.29 ± 0.04 [772]
0.24 − 0.29 [778] (LCSR)

B̄0 → Dl ν̄ 1.0 ± 0.2 [767]
0.62 ± 0.06 [761]

B̄0 → ρ+ l ν̄ 0.35 ± 0.16 0.42 ± 0.12 0.47 ± 0.14 [761] (DLSR + HSR)
0.5 ± 0.1 0.4 ± 0.2 0.6 ± 0.2 [771]

B̄0 → K ∗+ν̄ν 0.37 ± 0.03 0.40 ± 0.03 0.47 ± 0.03 [779]

B̄0 → D∗l ν̄ 0.46 ± 0.02 0.53 ± 0.09 0.58 ± 0.03 [761] (DLSR + HSR)

∗ If not mentioned DLSR have been used.

� One should also notice that the ratio between the widths into ρ and into π is about 1 due to
the non-pole behaviour of AB

1 , while in different pole models, it ranges from 3 to 10. This re-
sult is in agreement within 1σ with the data (1.5 ± 0.5). Data on B → K (K ∗) + ψ(ψ ′) decays
[785] also favour this non-pole behaviour, while LCSR and lattice calculations indicate a slight
increase of A1 for increasing q2. However, the arguments given in [782] for explaining the failure of
the standard QSSR approach is unclear to us and should deserve a further investigation. In the case
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55 D, B and Bc exclusive weak decays 643

of the non-pole behaviour, one obtains a large negative value of the asymmetry α, contrary to the
case of the pole models.

55.1.3 SU (3)F breaking in B̄/D → Kl ν̄ and determination of Vcd/Vcs and Vcs

We extend the previous analysis for the estimate of the SU (3)F breaking in the ratio of the
form factors:

RP ≡ f P→K
+ (0)/ f P→π

+ (0) , (55.21)

where P ≡ B̄, D. As mentioned before, we use the hybrid moments for the B and the
double exponential sum rules for the D. The analytic expression of RP is given in [764],
which leads to the numerical result:

RB = 1.007 ± 0.020 , RD = 1.102 ± 0.007 , (55.22)

where one should notice that for Mb → ∞, the SU(3) breaking vanishes, while its size at
finite mass is typically of the same sign and magnitude as the one of fDs or of the B → K ∗γ
discussed before. The previous value of RD can be used with the data [16]:

Br (D+ → π0lν)

Br (D+ → K̄ 0lν)
= (8.5 ± 3.4)% , (55.23)

for deducing the value of |Vcd |/|Vcs |
We can also determine directly from QSSR the absolute value of the D → K form factor.

We obtain [764]:

f D→K
+ (0) � 0.80 ± 0.16 . (55.24)

The data from D lifetime and De3 [16] gives:∣∣ f D→K
+ (0)

∣∣2∣∣Vcs

∣∣2 � 0.531 ± 0.027 . (55.25)

Using the previous prediction for f D→K
+ (0) leads to:

Vcs = 0.91 ± 0.18 , (55.26)

which differs slightly from the PDG prediction as the value of the form factor used there
was 0.7 ± 0.1. It is also expected that the most reliable result is the lower bound derived
from Eq. (55.25) and from f D→K

+ (0) ≤ 1, which is:

Vcs ≥ 0.73 . (55.27)

55.1.4 Large Mb-limit of the form factors

We have studied analytically the large Mb limit of some of the previous form factors [762–
764]. We found that, within the approximation at which we are working, and to leading
order in Mb, they are dominated, for Mb → ∞, by the effect of the light-quark condensate,
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644 X QCD spectral sum rules

which dictates (to leading order) the Mb behaviour of the form factors to be typically of the
form:

F(0) ∼ 〈d̄d〉
fB

{
1 + IF

M2
b

}
, (55.28)

whereIF is the integral from the perturbative triangle graph, which is constant as t ′2
c Ec/〈d̄d〉

(t ′
c and Ec are the continuum thresholds of the light and b quarks) for large values of

Mb. It indicates that at q2 = 0 and to leading order in 1/Mb, all form factors behave like√
Mb, although, in most cases, the coefficient of the 1/M2

b term is large, which explains
the numerical dominance of the perturbative contribution at finite Mb. It should be finally
noticed that owing to the overall 1/ fB factor, all form factors for the heavy to light transitions
have a large 1/Mb correction.

55.1.5 q2-behaviour of the form factors

Although the sum rules give a reliable prediction for the value of the form factors at zero
momentum transfer, the analysis of their q2 behaviour is more delicate due to the eventual
presence of non-Landau singularities [774] above a critical value:

tcr = (MQ + mq2 )2 , (55.29)

for a Q̄q1 meson decaying semi-leptonically into a q̄1q2 meson, where the weak current is
q̄2γµq1; MQ and mq are constituent quark masses. Much below tcr , the sum rule result is
expected to provide the right q2-behaviour of the form factor. The study of the q2 behaviours
of the B semi-leptonic form factors shows that, with the exception of the A1 form factor,
their q2 dependence is only due to the non-leading (in 1/Mb) perturbative graph, so that for
Mb → ∞, these form factors remain almost constant from q2 = 0 to q2

max, with a cautious
for the accuracy of the result at q2

max. The resulting Mb behaviour at q2
max is the one expected

from the heavy quark symmetry. The numerical effect of this q2-dependence at finite values
of Mb is a polynomial in q2 (which can be resummed), and mimics the pole parametrization
quite well for a pole mass of about 6–7 GeV. The situation for the A1 is drastically different
from the other ones, as here the Wilson coefficient of the 〈d̄d〉 condensate contains a q2

dependence with a wrong sign and reads [763]:

A1(q2) ∼ 〈d̄d〉
fB

{
1 − q2

M2
b

}
, (55.30)

which, for q2
max ≡ (MB − Mρ)2, gives the expected behaviour:

A1
(
q2

max

) ∼ 1√
Mb

. (55.31)

One can notice that the q2 dependence of A1 is in complete contradiction with the pole
behaviour due to its wrong sign. This result may explain the numerical analysis of [771].
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55 D, B and Bc exclusive weak decays 645

One should notice that a recent phenomenological analysis of the data [783] on the large
longitudinal polarization observed in B → K ∗ + ψ and a relatively small ratio of the rates
B → K ∗ + ψ over B → K + ψ [785] can only be simultaneously explained if the A1(q2)
form factor decreases as indicated by our previous result, while larger choices of increasing
or/and monotonically form factors fail to explain the data [786]. It is important to test this
anomalous feature of the A1-form factor from some other data. One should notice that
the q2 behaviour of A1 has also been studied from lattice calculations [723] and light-cone
sum rule (LCSR) [780,782]. The latter result shows a slower increase of A1 for increasing
q2. Contrary to the interpretation given in [782] where the arguments given there are not
clear to us (in particular the connection between the LCSR and the SVZ sum rule), the
increase of the form factor may indicate that non-leading contributions at finite Mb, not
accounted for in our approximation, can be numerically important, and competes with the
leading-order contribution presented here. We plan to come back to this point in the near
future. Finally, as a complement of the heavy quark symmetry which will be discussed in the
next section, we have also presented in Table 55.1 the results for the B → D, D∗ l ν̄ form
factors.

55.2 Slope of the Isgur–Wise function and value of Vcb

Using heavy quark symmetry in the infinite quark mass limit, the different form factors
of the semi-leptonic B → D∗ and B → D can be related to each others and expressed in
terms of a single form factor:

f+(q2) = V (q2) = A0(q2) = A2(q2) =
(

1 − q2

(MB + MD)2

)−1

A1(q2) , (55.32)

where:

A1(q2) = MB + MD

2
√

MB MD
ζ (y) . (55.33)

ζ (y ≡ v.v′) is the so-called Isgur–Wise (IW) function and contains all non-perturbative
QCD effects (v and v′ are respectively the B and D meson velocity). At zero recoil y = 1,
or at q2

max, it is normalized as ζ (1) = 1 from the conservation of the vector current. In this
limit, the B → D∗ decay distribution can be written as:

d	

dy
= G2

F

48π3
(MB − MD∗ )2 M3

D∗
√

y2 − 1(y + 1)2

×
[

1 + 4y

y + 1

M2
B − 2yMB MD∗ + M2

D∗

(MB − MD∗ )2

]
|Vcb|2F2(y) , (55.34)

where F(y) is the IW function including perturbative and power corrections. Near zero
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recoil, one can write the expansion:

F(1) = ηA

[
1 + C2

M2
Q

+ · · ·
]

, (55.35)

where ηA includes the perturbative corrections, which to two-loop accuracy reads [580]:

ηa = 0.960 ± 0.007 , (55.36)

while, there is no 1/M correction in virtue of the Luke’s theorem [568]. There are some
attempts to estimate the size of the 1/M2 terms in the literature [164,562,587], which remain
not under good control. The resuting compromise value is:

F(1) � 0.91(6) , (55.37)

where we have multiplied the quoted error by a factor 2 in order to be more conservative.
Let me now discuss the slope of the IW function. De Rafael and Taron [789] have exploited
the analyticity of the elastic b-number form factor F defined as:

〈B(p′)|b̄γ µb|B(p)〉 = (p + p′)µF(q2) , (55.38)

which is normalized as F(0) = 1 in the large mass limit MB � MD . Using the positivity of
the vector spectral function and a mapping in order to get a bound on the slope of F outside
the physical cut, they obtained a rigorous though weak bound:

F ′(vv′ = 1) ≥ −6 . (55.39)

Including the effects of the ϒ states below B̄ B thresholds by assuming that the ϒ B̄ B
couplings are of the order of 1, the bound becomes stronger:

F ′(vv′ = 1) ≥ −1.5 . (55.40)

Using QSSR, we can estimate the part of these couplings entering in the elastic form
factor. We obtain the value of their sum [765]:∑

gϒ B̄ B � 0.34 ± 0.02 . (55.41)

In order to be conservative, we have multiplied the previous estimate by a factor 3 larger.
We thus obtain the improved bound:

F ′(vv′ = 1) ≥ −1.34 , (55.42)

but the gain over the previous one is not much. Using the relation of the form factor with
the slope of the IW function, which differs by −16/75 log αs(Mb) [790], one can deduce
the final bound [765]:4

ζ ′(1) ≥ −1.04 . (55.43)

4 Voloshin in [791] derives also the upper bound ρ2 ≤ 1/4 + �̄/[2(MB′ − MB )], which, however, depends crucially on the less
controlled value of �̄ and the mass of the radial excitation MB′ .
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55 D, B and Bc exclusive weak decays 647

The previous bound combined with the Bjorken lower bound [792] leads to the allowed
domain:

1

4
≤ ρ2 ≡ −ζ ′(1) ≤ 1.04 . (55.44)

However, one can also use the QSSR expression of the IW function from vertex sum
rules [655] in order to extract the slope analytically. To leading order in 1/M , the physical
IW function reads [Rep. 18.5]:

ζphys(y ≡ vv′) =
(

2

1 + y

)2
{

1 + αs

π
f (y) − 〈d̄d〉τ 3g(y)

+ 〈αs G2〉τ 4h(y) + g〈d̄Gd〉τ 5k(y)

}
, (55.45)

where τ is the Laplace sum rule variable and f, h and k are analytic functions of y. From
this expression, one can derive the analytic form of the slope [765]:

ζ ′
phys(y = 1) � −1 + δpert + δN P , (55.46)

where at the τ -stability region:

δpert � −δN P � −0.04 , (55.47)

which shows the near-cancellation of the non-leading non-perturbative corrections at this
leading order in 1/M . Adding a generous 50% error of 0.02 for the correction terms, we
finally deduce the leading order result in 1/M :

ζ ′
phys(y = 1) � −1 ± 0.02 . (55.48)

Using this result in different existing model parametrizations, we deduce the value of the
mixing angle, to leading order in 1/M :

Vcb �
(

1.48 ps

τb

)1/2

× (37.3 ± 1.2 ± 1.4) × 10−3, (55.49)

where the first error comes from the data and the second one from the model-dependence.5

In order to discuss the effects due to the 1/M corrections, we proceed in the following
phenomenological way:

� We use the predicted value of the form factor 0.91 ± 0.03 at y =1,
� We also use the value 0.53 ± 0.09 at q2 = 0 [761]6 from the sum rule in the full theory (i.e without

using a 1/M-expansion).
� We join the two results, where the model dependence of the analysis enters through the concavity

of the form factor between these two extreme boundaries.

5 A recent analysis [574] relates the curvature with the slope, such that in this case, the model dependence of the result disappears.
6 This value is just on top of the CLEO data [793].
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Table 55.2. Different QSSR estimates of the slope of the
IW-function compared with the lattice result

−ζ ′ ≡ ρ2 References Comments

0.84 ± 0.02 [795] Numerical fit
0.70 ± 0.1 [796]
0.70 ± 0.25 [797]
1.00 ± 0.02 [765] Analytic expression
0.91 ± 0.04 QSSR average(
0.9+0.2 +0.4

−0.3 −0.4

)
[798] Lattice

If we use the value of the concavity given by [574], the form factor can be parametrized
as:

F(y) = F(1){1 + ζ̂ ′(y − 1) + ĉ(y − 1)2] , (55.50)

where:

ζ̂ ′ = ζ ′ − (0.16 ± 0.02) , ĉ ≈ −0.66ζ̂ ′ − 0.11 . (55.51)

Therefore, we can deduce the slope:

ζ ′ � −(0.75 ± 0.1) , (55.52)

which can indicate that the 1/M correction also tends to decrease the value of |ζ ′|. This
leads to the final estimate:

Vcb �
(

1.48 ps

τb

)1/2

× (38.8 ± 1.2 ± 1.5 ± 1.5) × 10−3 , (55.53)

where the new last error is induced by the error from the slope, while the model dependence
only brings a relatively small error. Using the measured B0-lifetime τB = 1.548 ± 0.032 ps,
one obtains:

Vcb � (37.9 ± 2.4) × 10−3 , (55.54)

compared with the value 0.0402 ± 0.0019 from LEP measurements of exclusive and inclu-
sive decays [16] and CLEO data [793]. Our result for the slope is also in good agreement
with the data. Finally, we compare the different results from the sum rules in Table 55.2,
from which we deduce the weighted average from the sum rules given in Table 55.2, where
we have taken the error of the most precise determinations which we have multiplied by
a factor 2 in order to be conservative. This average is in good agreement with the lattice
value, which is also given in this table.
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55.3 B∗(D∗) → B(D) π (γ ) couplings and decays

In [766], we have further applied the vertex sum rules in order to study the decays and
couplings of the B∗(D∗) → B(D) π (γ ), using systematically a 1/Mb expansion in the full
theory. The couplings are defined as:

〈B∗(p)B(p′)π (q)〉 = gB∗ Bπqµεµ ,

〈B∗(p)B(p′)γ (q)〉 = −egB∗ Bγ pα p′
βεµναβεµε′

ν , (55.55)

where q ≡ p′ − p and −Q2 ≡ q2 ≤ 0, while εµ are the polarization of the vector particles.
Our numerical predictions for the couplings are:7

gB∗ Bπ � 14 ± 4 , gD∗ Dπ � 6.3 ± 1.9 , (55.56)

in good agreement with the results in [800] obtained by combining QSSR with soft pion
techniques. These results lead to the prediction:

	D∗−→D0π− � 1.54	D∗0→D0π0 � (8 ± 5) keV , (55.57)

where we have assumed an isospin invariance for the couplings.
We notice that in the large Mb limit, the perturbative graph gives the leading contribution

like some other heavy-to-heavy processes studied within the same approach. In this limit,
we obtain:

gB∗Bπ � 2MB√
2 fπ

g∞
{

1 + E B
c

Mb
+ π2

2

〈ūu〉(
E B

c

)3

}
, (55.58)

where g∞ is the static coupling:

g∞ ≡ NC

2

(
mu + md

m2
π

) (
0.12E∞

c

) � (0.15 ± 0.03) , (55.59)

for E∞
c � (1.6 ± 0.1) GeV.

In the same way, we have also estimated the B∗ Bγ and D∗ Dγ couplings. We obtain:

	B∗−→B−γ � 2.5	B∗0→B0γ � (0.10 ± 0.03) keV . (55.60)

For the D∗ meson, one obtains:

	D∗0→D0γ � (7.3 ± 2.7) keV , 	D∗−→D−γ � (0.03 ± 0.08) keV , (55.61)

which despite the large errors, shows in the analysis that the heavy quark contribution acts
in the right direction for explaining the large charge dependence of the observed rates:

	D∗0→D0π0/	D∗0→D0γ , 	D∗−→D0π−/	D∗−→D−γ . (55.62)

7 The application of the 1/M expansion to the D and D∗ mesons might be a very crude approximation. A comparison of the result
with the recent CLEO data [799] gD∗ Dπ = 17.9 ± 0.3 ± 1.9 needs further investigation using a complete QCD expression of
the vertex.
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Table 55.3. Comparison of semi-leptonic form factors for different decays. We compare
the dimensionless quantities f+, A1, A2, V related to F A

0 , F A
+ and FV through Eq. (55.15)

Channels Reference f+ V A2 A1

cc̄ [731] 0.55 ± 0.10 0.48 ± 0.07 0.30 ± 0.05 0.30 ± 0.05
[801] 0.20 ± 0.01 0.37 ± 0.1 0.27 ± 0.03 0.28 ± 0.01

bs̄ [731] 0.60 ± 0.12 1.6 ± 0.3 0.06 ± 0.06 0.40 ± 0.10
[801] 0.30 ± 0.05 2.1 ± 0.25 0.39 ± 0.05 0.35 ± 0.20

B → D(∗) [771] 0.75 ± 0.05 0.8 ± 0.1 0.68 ± 0.08 0.65 ± 0.10
[803] 0.69 0.71 0.69 0.65
[48] 0.62 ± 0.06 0.58 ± 0.03 0.53 ± 0.09 0.46 ± 0.02

Bc → ηc Bc → Bs Bc → B Bc → D
Bc → J/ψ Bc → B∗

s Bc → B∗ Bc → D∗

F+(0) 0.55 ± 0.10 0.60 ± 0.12 0.48 ± 0.14 0.18 ± 0.08
FV (0) [GeV−1] 0.048 ± 0.007 0.15 ± 0.02 0.11 ± 0.02 0.02 ± 0.01
F A

+ (0) [GeV−1] −0.030 ± 0.003 −0.005 ± 0.005 0.005 ± 0.005 0.010 ± 0.010
F A

0 (0) [GeV] 3.0 ± 0.5 3.3 ± 0.7 1.7 ± 0.7 0.8 ± 0.4

One should also notice that the non-leading 1/Mb corrections are large in the two chan-
nels. For the P P∗π coupling, these corrections coming mainly from the perturbative graph
tend to cancel, which imply the validity of the HQET result:

gB∗ Bπ fB∗
√

MB � gD∗ Dπ fD∗
√

MD . (55.63)

For the electromagnetic, these large corrections are necessary to explain the large charge
dependence of the ratio of the D∗0 → D0γ over the D∗− → D−γ observed widths.
However, the new CLEO data give 	D∗−→D−γ � (96 ± 22) keV indicating that the 1/M
approach for the absolute width can be a bad approximation.

55.4 Weak semi-leptonic decays of the Bc mesons

The analysis of the semi-leptonic decays of the Bc meson has been performed in [731] using
QSSR methods. The procedure is very similar to the one used in the previous sections. The
principal results of the sum rules evaluation of the form factors in Eq (55.11) are collected
in Table 55.3. The value with the lower (resp. larger) modulus corresponds to the value of
the continuum energy Ec = 1 GeV (resp. 2 GeV). In Fig. 55.1, we show the q2 behaviour
of the Bc → ηc l ν̄ process, which shows a net deviation of the QSSR prediction from the
monopole fit:

F+(t) = F+(0)

1 − t/M2
pole

, (55.64)
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Fig. 55.1. q2 behaviour of the Bc → ηcl ν̄ form factor: QSSR predictions with polynomial fit (contin-
uous line) for two values of Ec; monopole parametrization with Mpole = MB∗

c = 6.33 GeV.

with Mpole = MB∗
c
, which can be tested experimentally. The same feature is observed in

other channels. For the Bc → J/ψ l ν̄ process, one obtains the fitted QSSR pole mass:

FV : Mpole � 4.08 GeV , F A
+ : Mpole � 4.44 GeV , F A

0 : Mpole � 4.62 GeV .

(55.65)
However, the question is, whether it is known if the previous q2-behaviour deviation

from the monopole model is an artifact of sum rule or something more fundamental. In
VDM, the vector current couples to the hadrons with appropriate flavour content, where
the intermediate vector mesons leads to the pole of the form factor F+(t) at t ≡ q2 = M2

V

giving the t-behaviour in Eq. (55.64), while an intuitive quark model form factor determined
by the Fourier transform of the hadron wave function gives:

F+(t) = 1 + 〈r2〉
6

t + O(t2) , (55.66)

where 〈r2〉 is the hadron mean-squared radius in the quark model. For light hadrons, the
vector meson is the ρ meson. Expanding Eq. (55.64) in t , and identifying with Eq. (55.66),
one obtains:

√
〈r2〉π =

√
6

Mρ

� 0.6 fm , (55.67)

which is a reasonable value for the quark model, while for the case of the Bc meson, the
vector meson is the B∗

c with a mass of 6.4 GeV leading to a mean radius of about 0.08 fm,
which is too small for a reliable validity of the non-relativistic quark model. This feature
might indicate that the non-relativistic picture is not reasonable, such that, we have, instead,
to discuss the problem within a relativistic field theory approach such as QSSR. We compare
in Table 55.4 different theoretical predictions based on QCD-like models.
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Table 55.4. Partial decay rates for Bc and B∗
c

mesons

Channels Reference Rates in 1010s−1

Bslν [731] 0.35 ± 0.10
[801] 0.18

B∗
s lν [731] 0.35 ± 0.10

[801] 0.87
bs̄lν [731]

[801]
[802] 2.91

ηclν [731] 0.27 ± 0.07
[801] 0.03

J/ψlν [731] 0.32 ± 0.08
[801] 0.21

cc̄lν [731]
[801]
[802] 6.90

55.4.1 Anomalous thresholds

Another subtle point in the vertex sum rule approach is the eventual existence of anomalous
thresholds in the study of the q2 behaviour of the form factors [804–806]. Let’s illustrate
the analysis from the study of the process Bc(b̄c) → �(c̄c)l ν̄. The interaction between b̄
and c leads to the formation of the vector meson B∗

c (c̄b) allowing us to approximate the
singularity by the pole of the vector meson mass near the normal threshold tn = (Mb + Mc)2,
where t should be large enough for ensuring the b̄ and c quark on-mass shell. Anomalous
threshold occurs, if under a certain condition, for smaller value ta of t , one is able to give
on-shell mass b a gentle kick in order to transform it into an on-shell mass c. The derivation
of the existence of anomalous thresholds can be simply done using dual diagrams [804]
shown in Fig. 55.2. The dual (b) of the QCD three-point function (a) can be obtained by
transforming the plane segments A, B, C, O of the planar diagram (a) into points of the
dual diagram connected by lines with lengths given by the masses of the particles dividing
the segments. If the point O of the dual diagram is inside the triangle ABC , then there
exists an anomalous threshold and its value is given by the square of the distance AB. For
the Bc of mass 6.25 GeV, anomalous thresholds do exist for the decay Bc → ηc, J/�

provided the quark mass fulfill the conditions: mc < 2.1 GeV and mb < 5.9 GeV, which
are satisfied by any quark models. The exact position of the anomalous threshold depends
strongly on the value of the quark masses. Using the constituent (pole) masses mb = 4.9
GeV and mc = 1.57 GeV, one would obtain

√
ta = 4.6 GeV, while the minimum possible

value is
√

ta ≥ mb − mc = 3.3 GeV. These values are consistent with the effective pole
mass of about 4.2 GeV found in the sum rule analysis. Everything looks consistent except
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Fig. 55.2. QCD three-point function (a) and its dual diagram (b).

that quarks are not free particles while perturbation theory breaks down if one tries to
approach the pole of the quark propagators. Therefore, an anomalous threshold should not
be present in the t-dependence of the (hadronic) form factors. The same conclusion holds
for the normal thresholds, as in the e+e− process, we do not observe a quark-antiquark state
but hadrons. Quark-hadron duality tells us that the discontinuity across the quark-antiquark
cut, if viewed from a certain distance or smeared over some energy interval describes the
hadronic production in e+e− quite well. In a QCD-like model, [805,806] found that although
quark anomalous thresholds are absent, at some distance from the calculated threshold, the
amplitude can be quite well approximated by anomalous singularities at the quark level.
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